1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.hpp"
  27 #include "gc_implementation/parNew/parNewGeneration.hpp"
  28 #include "gc_implementation/parNew/parOopClosures.inline.hpp"
  29 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  30 #include "gc_implementation/shared/ageTable.hpp"
  31 #include "gc_implementation/shared/parGCAllocBuffer.hpp"
  32 #include "gc_implementation/shared/gcHeapSummary.hpp"
  33 #include "gc_implementation/shared/gcTimer.hpp"
  34 #include "gc_implementation/shared/gcTrace.hpp"
  35 #include "gc_implementation/shared/gcTraceTime.hpp"
  36 #include "gc_implementation/shared/spaceDecorator.hpp"
  37 #include "memory/defNewGeneration.inline.hpp"
  38 #include "memory/genCollectedHeap.hpp"
  39 #include "memory/genOopClosures.inline.hpp"
  40 #include "memory/generation.hpp"
  41 #include "memory/generation.inline.hpp"
  42 #include "memory/referencePolicy.hpp"
  43 #include "memory/resourceArea.hpp"
  44 #include "memory/sharedHeap.hpp"
  45 #include "memory/space.hpp"
  46 #include "oops/objArrayOop.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "oops/oop.pcgc.inline.hpp"
  49 #include "runtime/handles.hpp"
  50 #include "runtime/handles.inline.hpp"
  51 #include "runtime/java.hpp"
  52 #include "runtime/thread.hpp"
  53 #include "utilities/copy.hpp"
  54 #include "utilities/globalDefinitions.hpp"
  55 #include "utilities/workgroup.hpp"
  56 
  57 #ifdef _MSC_VER
  58 #pragma warning( push )
  59 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  60 #endif
  61 ParScanThreadState::ParScanThreadState(Space* to_space_,
  62                                        ParNewGeneration* gen_,
  63                                        Generation* old_gen_,
  64                                        int thread_num_,
  65                                        ObjToScanQueueSet* work_queue_set_,
  66                                        Stack<oop, mtGC>* overflow_stacks_,
  67                                        size_t desired_plab_sz_,
  68                                        ParallelTaskTerminator& term_) :
  69   _to_space(to_space_), _old_gen(old_gen_), _young_gen(gen_), _thread_num(thread_num_),
  70   _work_queue(work_queue_set_->queue(thread_num_)), _to_space_full(false),
  71   _overflow_stack(overflow_stacks_ ? overflow_stacks_ + thread_num_ : NULL),
  72   _ageTable(false), // false ==> not the global age table, no perf data.
  73   _to_space_alloc_buffer(desired_plab_sz_),
  74   _to_space_closure(gen_, this), _old_gen_closure(gen_, this),
  75   _to_space_root_closure(gen_, this), _old_gen_root_closure(gen_, this),
  76   _older_gen_closure(gen_, this),
  77   _evacuate_followers(this, &_to_space_closure, &_old_gen_closure,
  78                       &_to_space_root_closure, gen_, &_old_gen_root_closure,
  79                       work_queue_set_, &term_),
  80   _is_alive_closure(gen_), _scan_weak_ref_closure(gen_, this),
  81   _keep_alive_closure(&_scan_weak_ref_closure),
  82   _promotion_failure_size(0),
  83   _strong_roots_time(0.0), _term_time(0.0)
  84 {
  85   #if TASKQUEUE_STATS
  86   _term_attempts = 0;
  87   _overflow_refills = 0;
  88   _overflow_refill_objs = 0;
  89   #endif // TASKQUEUE_STATS
  90 
  91   _survivor_chunk_array =
  92     (ChunkArray*) old_gen()->get_data_recorder(thread_num());
  93   _hash_seed = 17;  // Might want to take time-based random value.
  94   _start = os::elapsedTime();
  95   _old_gen_closure.set_generation(old_gen_);
  96   _old_gen_root_closure.set_generation(old_gen_);
  97 }
  98 #ifdef _MSC_VER
  99 #pragma warning( pop )
 100 #endif
 101 
 102 void ParScanThreadState::record_survivor_plab(HeapWord* plab_start,
 103                                               size_t plab_word_size) {
 104   ChunkArray* sca = survivor_chunk_array();
 105   if (sca != NULL) {
 106     // A non-null SCA implies that we want the PLAB data recorded.
 107     sca->record_sample(plab_start, plab_word_size);
 108   }
 109 }
 110 
 111 bool ParScanThreadState::should_be_partially_scanned(oop new_obj, oop old_obj) const {
 112   return new_obj->is_objArray() &&
 113          arrayOop(new_obj)->length() > ParGCArrayScanChunk &&
 114          new_obj != old_obj;
 115 }
 116 
 117 void ParScanThreadState::scan_partial_array_and_push_remainder(oop old) {
 118   assert(old->is_objArray(), "must be obj array");
 119   assert(old->is_forwarded(), "must be forwarded");
 120   assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
 121   assert(!old_gen()->is_in(old), "must be in young generation.");
 122 
 123   objArrayOop obj = objArrayOop(old->forwardee());
 124   // Process ParGCArrayScanChunk elements now
 125   // and push the remainder back onto queue
 126   int start     = arrayOop(old)->length();
 127   int end       = obj->length();
 128   int remainder = end - start;
 129   assert(start <= end, "just checking");
 130   if (remainder > 2 * ParGCArrayScanChunk) {
 131     // Test above combines last partial chunk with a full chunk
 132     end = start + ParGCArrayScanChunk;
 133     arrayOop(old)->set_length(end);
 134     // Push remainder.
 135     bool ok = work_queue()->push(old);
 136     assert(ok, "just popped, push must be okay");
 137   } else {
 138     // Restore length so that it can be used if there
 139     // is a promotion failure and forwarding pointers
 140     // must be removed.
 141     arrayOop(old)->set_length(end);
 142   }
 143 
 144   // process our set of indices (include header in first chunk)
 145   // should make sure end is even (aligned to HeapWord in case of compressed oops)
 146   if ((HeapWord *)obj < young_old_boundary()) {
 147     // object is in to_space
 148     obj->oop_iterate_range(&_to_space_closure, start, end);
 149   } else {
 150     // object is in old generation
 151     obj->oop_iterate_range(&_old_gen_closure, start, end);
 152   }
 153 }
 154 
 155 
 156 void ParScanThreadState::trim_queues(int max_size) {
 157   ObjToScanQueue* queue = work_queue();
 158   do {
 159     while (queue->size() > (juint)max_size) {
 160       oop obj_to_scan;
 161       if (queue->pop_local(obj_to_scan)) {
 162         if ((HeapWord *)obj_to_scan < young_old_boundary()) {
 163           if (obj_to_scan->is_objArray() &&
 164               obj_to_scan->is_forwarded() &&
 165               obj_to_scan->forwardee() != obj_to_scan) {
 166             scan_partial_array_and_push_remainder(obj_to_scan);
 167           } else {
 168             // object is in to_space
 169             obj_to_scan->oop_iterate(&_to_space_closure);
 170           }
 171         } else {
 172           // object is in old generation
 173           obj_to_scan->oop_iterate(&_old_gen_closure);
 174         }
 175       }
 176     }
 177     // For the  case of compressed oops, we have a private, non-shared
 178     // overflow stack, so we eagerly drain it so as to more evenly
 179     // distribute load early. Note: this may be good to do in
 180     // general rather than delay for the final stealing phase.
 181     // If applicable, we'll transfer a set of objects over to our
 182     // work queue, allowing them to be stolen and draining our
 183     // private overflow stack.
 184   } while (ParGCTrimOverflow && young_gen()->take_from_overflow_list(this));
 185 }
 186 
 187 bool ParScanThreadState::take_from_overflow_stack() {
 188   assert(ParGCUseLocalOverflow, "Else should not call");
 189   assert(young_gen()->overflow_list() == NULL, "Error");
 190   ObjToScanQueue* queue = work_queue();
 191   Stack<oop, mtGC>* const of_stack = overflow_stack();
 192   const size_t num_overflow_elems = of_stack->size();
 193   const size_t space_available = queue->max_elems() - queue->size();
 194   const size_t num_take_elems = MIN3(space_available / 4,
 195                                      ParGCDesiredObjsFromOverflowList,
 196                                      num_overflow_elems);
 197   // Transfer the most recent num_take_elems from the overflow
 198   // stack to our work queue.
 199   for (size_t i = 0; i != num_take_elems; i++) {
 200     oop cur = of_stack->pop();
 201     oop obj_to_push = cur->forwardee();
 202     assert(Universe::heap()->is_in_reserved(cur), "Should be in heap");
 203     assert(!old_gen()->is_in_reserved(cur), "Should be in young gen");
 204     assert(Universe::heap()->is_in_reserved(obj_to_push), "Should be in heap");
 205     if (should_be_partially_scanned(obj_to_push, cur)) {
 206       assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
 207       obj_to_push = cur;
 208     }
 209     bool ok = queue->push(obj_to_push);
 210     assert(ok, "Should have succeeded");
 211   }
 212   assert(young_gen()->overflow_list() == NULL, "Error");
 213   return num_take_elems > 0;  // was something transferred?
 214 }
 215 
 216 void ParScanThreadState::push_on_overflow_stack(oop p) {
 217   assert(ParGCUseLocalOverflow, "Else should not call");
 218   overflow_stack()->push(p);
 219   assert(young_gen()->overflow_list() == NULL, "Error");
 220 }
 221 
 222 HeapWord* ParScanThreadState::alloc_in_to_space_slow(size_t word_sz) {
 223 
 224   // Otherwise, if the object is small enough, try to reallocate the
 225   // buffer.
 226   HeapWord* obj = NULL;
 227   if (!_to_space_full) {
 228     ParGCAllocBuffer* const plab = to_space_alloc_buffer();
 229     Space*            const sp   = to_space();
 230     if (word_sz * 100 <
 231         ParallelGCBufferWastePct * plab->word_sz()) {
 232       // Is small enough; abandon this buffer and start a new one.
 233       plab->retire(false, false);
 234       size_t buf_size = plab->word_sz();
 235       HeapWord* buf_space = sp->par_allocate(buf_size);
 236       if (buf_space == NULL) {
 237         const size_t min_bytes =
 238           ParGCAllocBuffer::min_size() << LogHeapWordSize;
 239         size_t free_bytes = sp->free();
 240         while(buf_space == NULL && free_bytes >= min_bytes) {
 241           buf_size = free_bytes >> LogHeapWordSize;
 242           assert(buf_size == (size_t)align_object_size(buf_size),
 243                  "Invariant");
 244           buf_space  = sp->par_allocate(buf_size);
 245           free_bytes = sp->free();
 246         }
 247       }
 248       if (buf_space != NULL) {
 249         plab->set_word_size(buf_size);
 250         plab->set_buf(buf_space);
 251         record_survivor_plab(buf_space, buf_size);
 252         obj = plab->allocate(word_sz);
 253         // Note that we cannot compare buf_size < word_sz below
 254         // because of AlignmentReserve (see ParGCAllocBuffer::allocate()).
 255         assert(obj != NULL || plab->words_remaining() < word_sz,
 256                "Else should have been able to allocate");
 257         // It's conceivable that we may be able to use the
 258         // buffer we just grabbed for subsequent small requests
 259         // even if not for this one.
 260       } else {
 261         // We're used up.
 262         _to_space_full = true;
 263       }
 264 
 265     } else {
 266       // Too large; allocate the object individually.
 267       obj = sp->par_allocate(word_sz);
 268     }
 269   }
 270   return obj;
 271 }
 272 
 273 
 274 void ParScanThreadState::undo_alloc_in_to_space(HeapWord* obj,
 275                                                 size_t word_sz) {
 276   // Is the alloc in the current alloc buffer?
 277   if (to_space_alloc_buffer()->contains(obj)) {
 278     assert(to_space_alloc_buffer()->contains(obj + word_sz - 1),
 279            "Should contain whole object.");
 280     to_space_alloc_buffer()->undo_allocation(obj, word_sz);
 281   } else {
 282     CollectedHeap::fill_with_object(obj, word_sz);
 283   }
 284 }
 285 
 286 void ParScanThreadState::print_and_clear_promotion_failure_size() {
 287   if (_promotion_failure_size != 0) {
 288     if (PrintPromotionFailure) {
 289       gclog_or_tty->print(" (%d: promotion failure size = " SIZE_FORMAT ") ",
 290         _thread_num, _promotion_failure_size);
 291     }
 292     _promotion_failure_size = 0;
 293   }
 294 }
 295 
 296 class ParScanThreadStateSet: private ResourceArray {
 297 public:
 298   // Initializes states for the specified number of threads;
 299   ParScanThreadStateSet(int                     num_threads,
 300                         Space&                  to_space,
 301                         ParNewGeneration&       gen,
 302                         Generation&             old_gen,
 303                         ObjToScanQueueSet&      queue_set,
 304                         Stack<oop, mtGC>*       overflow_stacks_,
 305                         size_t                  desired_plab_sz,
 306                         ParallelTaskTerminator& term);
 307 
 308   ~ParScanThreadStateSet() { TASKQUEUE_STATS_ONLY(reset_stats()); }
 309 
 310   inline ParScanThreadState& thread_state(int i);
 311 
 312   void reset(int active_workers, bool promotion_failed);
 313   void flush();
 314 
 315   #if TASKQUEUE_STATS
 316   static void
 317     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
 318   void print_termination_stats(outputStream* const st = gclog_or_tty);
 319   static void
 320     print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
 321   void print_taskqueue_stats(outputStream* const st = gclog_or_tty);
 322   void reset_stats();
 323   #endif // TASKQUEUE_STATS
 324 
 325 private:
 326   ParallelTaskTerminator& _term;
 327   ParNewGeneration&       _gen;
 328   Generation&             _next_gen;
 329  public:
 330   bool is_valid(int id) const { return id < length(); }
 331   ParallelTaskTerminator* terminator() { return &_term; }
 332 };
 333 
 334 
 335 ParScanThreadStateSet::ParScanThreadStateSet(
 336   int num_threads, Space& to_space, ParNewGeneration& gen,
 337   Generation& old_gen, ObjToScanQueueSet& queue_set,
 338   Stack<oop, mtGC>* overflow_stacks,
 339   size_t desired_plab_sz, ParallelTaskTerminator& term)
 340   : ResourceArray(sizeof(ParScanThreadState), num_threads),
 341     _gen(gen), _next_gen(old_gen), _term(term)
 342 {
 343   assert(num_threads > 0, "sanity check!");
 344   assert(ParGCUseLocalOverflow == (overflow_stacks != NULL),
 345          "overflow_stack allocation mismatch");
 346   // Initialize states.
 347   for (int i = 0; i < num_threads; ++i) {
 348     new ((ParScanThreadState*)_data + i)
 349         ParScanThreadState(&to_space, &gen, &old_gen, i, &queue_set,
 350                            overflow_stacks, desired_plab_sz, term);
 351   }
 352 }
 353 
 354 inline ParScanThreadState& ParScanThreadStateSet::thread_state(int i)
 355 {
 356   assert(i >= 0 && i < length(), "sanity check!");
 357   return ((ParScanThreadState*)_data)[i];
 358 }
 359 
 360 
 361 void ParScanThreadStateSet::reset(int active_threads, bool promotion_failed)
 362 {
 363   _term.reset_for_reuse(active_threads);
 364   if (promotion_failed) {
 365     for (int i = 0; i < length(); ++i) {
 366       thread_state(i).print_and_clear_promotion_failure_size();
 367     }
 368   }
 369 }
 370 
 371 #if TASKQUEUE_STATS
 372 void
 373 ParScanThreadState::reset_stats()
 374 {
 375   taskqueue_stats().reset();
 376   _term_attempts = 0;
 377   _overflow_refills = 0;
 378   _overflow_refill_objs = 0;
 379 }
 380 
 381 void ParScanThreadStateSet::reset_stats()
 382 {
 383   for (int i = 0; i < length(); ++i) {
 384     thread_state(i).reset_stats();
 385   }
 386 }
 387 
 388 void
 389 ParScanThreadStateSet::print_termination_stats_hdr(outputStream* const st)
 390 {
 391   st->print_raw_cr("GC Termination Stats");
 392   st->print_raw_cr("     elapsed  --strong roots-- "
 393                    "-------termination-------");
 394   st->print_raw_cr("thr     ms        ms       %   "
 395                    "    ms       %   attempts");
 396   st->print_raw_cr("--- --------- --------- ------ "
 397                    "--------- ------ --------");
 398 }
 399 
 400 void ParScanThreadStateSet::print_termination_stats(outputStream* const st)
 401 {
 402   print_termination_stats_hdr(st);
 403 
 404   for (int i = 0; i < length(); ++i) {
 405     const ParScanThreadState & pss = thread_state(i);
 406     const double elapsed_ms = pss.elapsed_time() * 1000.0;
 407     const double s_roots_ms = pss.strong_roots_time() * 1000.0;
 408     const double term_ms = pss.term_time() * 1000.0;
 409     st->print_cr("%3d %9.2f %9.2f %6.2f "
 410                  "%9.2f %6.2f " SIZE_FORMAT_W(8),
 411                  i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
 412                  term_ms, term_ms * 100 / elapsed_ms, pss.term_attempts());
 413   }
 414 }
 415 
 416 // Print stats related to work queue activity.
 417 void ParScanThreadStateSet::print_taskqueue_stats_hdr(outputStream* const st)
 418 {
 419   st->print_raw_cr("GC Task Stats");
 420   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
 421   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
 422 }
 423 
 424 void ParScanThreadStateSet::print_taskqueue_stats(outputStream* const st)
 425 {
 426   print_taskqueue_stats_hdr(st);
 427 
 428   TaskQueueStats totals;
 429   for (int i = 0; i < length(); ++i) {
 430     const ParScanThreadState & pss = thread_state(i);
 431     const TaskQueueStats & stats = pss.taskqueue_stats();
 432     st->print("%3d ", i); stats.print(st); st->cr();
 433     totals += stats;
 434 
 435     if (pss.overflow_refills() > 0) {
 436       st->print_cr("    " SIZE_FORMAT_W(10) " overflow refills    "
 437                    SIZE_FORMAT_W(10) " overflow objects",
 438                    pss.overflow_refills(), pss.overflow_refill_objs());
 439     }
 440   }
 441   st->print("tot "); totals.print(st); st->cr();
 442 
 443   DEBUG_ONLY(totals.verify());
 444 }
 445 #endif // TASKQUEUE_STATS
 446 
 447 void ParScanThreadStateSet::flush()
 448 {
 449   // Work in this loop should be kept as lightweight as
 450   // possible since this might otherwise become a bottleneck
 451   // to scaling. Should we add heavy-weight work into this
 452   // loop, consider parallelizing the loop into the worker threads.
 453   for (int i = 0; i < length(); ++i) {
 454     ParScanThreadState& par_scan_state = thread_state(i);
 455 
 456     // Flush stats related to To-space PLAB activity and
 457     // retire the last buffer.
 458     par_scan_state.to_space_alloc_buffer()->
 459       flush_stats_and_retire(_gen.plab_stats(),
 460                              true /* end_of_gc */,
 461                              false /* retain */);
 462 
 463     // Every thread has its own age table.  We need to merge
 464     // them all into one.
 465     ageTable *local_table = par_scan_state.age_table();
 466     _gen.age_table()->merge(local_table);
 467 
 468     // Inform old gen that we're done.
 469     _next_gen.par_promote_alloc_done(i);
 470     _next_gen.par_oop_since_save_marks_iterate_done(i);
 471   }
 472 
 473   if (UseConcMarkSweepGC && ParallelGCThreads > 0) {
 474     // We need to call this even when ResizeOldPLAB is disabled
 475     // so as to avoid breaking some asserts. While we may be able
 476     // to avoid this by reorganizing the code a bit, I am loathe
 477     // to do that unless we find cases where ergo leads to bad
 478     // performance.
 479     CFLS_LAB::compute_desired_plab_size();
 480   }
 481 }
 482 
 483 ParScanClosure::ParScanClosure(ParNewGeneration* g,
 484                                ParScanThreadState* par_scan_state) :
 485   OopsInGenClosure(g), _par_scan_state(par_scan_state), _g(g)
 486 {
 487   assert(_g->level() == 0, "Optimized for youngest generation");
 488   _boundary = _g->reserved().end();
 489 }
 490 
 491 void ParScanWithBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, false); }
 492 void ParScanWithBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, false); }
 493 
 494 void ParScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, false); }
 495 void ParScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, false); }
 496 
 497 void ParRootScanWithBarrierTwoGensClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, true); }
 498 void ParRootScanWithBarrierTwoGensClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, true); }
 499 
 500 void ParRootScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, true); }
 501 void ParRootScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, true); }
 502 
 503 ParScanWeakRefClosure::ParScanWeakRefClosure(ParNewGeneration* g,
 504                                              ParScanThreadState* par_scan_state)
 505   : ScanWeakRefClosure(g), _par_scan_state(par_scan_state)
 506 {}
 507 
 508 void ParScanWeakRefClosure::do_oop(oop* p)       { ParScanWeakRefClosure::do_oop_work(p); }
 509 void ParScanWeakRefClosure::do_oop(narrowOop* p) { ParScanWeakRefClosure::do_oop_work(p); }
 510 
 511 #ifdef WIN32
 512 #pragma warning(disable: 4786) /* identifier was truncated to '255' characters in the browser information */
 513 #endif
 514 
 515 ParEvacuateFollowersClosure::ParEvacuateFollowersClosure(
 516     ParScanThreadState* par_scan_state_,
 517     ParScanWithoutBarrierClosure* to_space_closure_,
 518     ParScanWithBarrierClosure* old_gen_closure_,
 519     ParRootScanWithoutBarrierClosure* to_space_root_closure_,
 520     ParNewGeneration* par_gen_,
 521     ParRootScanWithBarrierTwoGensClosure* old_gen_root_closure_,
 522     ObjToScanQueueSet* task_queues_,
 523     ParallelTaskTerminator* terminator_) :
 524 
 525     _par_scan_state(par_scan_state_),
 526     _to_space_closure(to_space_closure_),
 527     _old_gen_closure(old_gen_closure_),
 528     _to_space_root_closure(to_space_root_closure_),
 529     _old_gen_root_closure(old_gen_root_closure_),
 530     _par_gen(par_gen_),
 531     _task_queues(task_queues_),
 532     _terminator(terminator_)
 533 {}
 534 
 535 void ParEvacuateFollowersClosure::do_void() {
 536   ObjToScanQueue* work_q = par_scan_state()->work_queue();
 537 
 538   while (true) {
 539 
 540     // Scan to-space and old-gen objs until we run out of both.
 541     oop obj_to_scan;
 542     par_scan_state()->trim_queues(0);
 543 
 544     // We have no local work, attempt to steal from other threads.
 545 
 546     // attempt to steal work from promoted.
 547     if (task_queues()->steal(par_scan_state()->thread_num(),
 548                              par_scan_state()->hash_seed(),
 549                              obj_to_scan)) {
 550       bool res = work_q->push(obj_to_scan);
 551       assert(res, "Empty queue should have room for a push.");
 552 
 553       //   if successful, goto Start.
 554       continue;
 555 
 556       // try global overflow list.
 557     } else if (par_gen()->take_from_overflow_list(par_scan_state())) {
 558       continue;
 559     }
 560 
 561     // Otherwise, offer termination.
 562     par_scan_state()->start_term_time();
 563     if (terminator()->offer_termination()) break;
 564     par_scan_state()->end_term_time();
 565   }
 566   assert(par_gen()->_overflow_list == NULL && par_gen()->_num_par_pushes == 0,
 567          "Broken overflow list?");
 568   // Finish the last termination pause.
 569   par_scan_state()->end_term_time();
 570 }
 571 
 572 ParNewGenTask::ParNewGenTask(ParNewGeneration* gen, Generation* next_gen,
 573                 HeapWord* young_old_boundary, ParScanThreadStateSet* state_set) :
 574     AbstractGangTask("ParNewGeneration collection"),
 575     _gen(gen), _next_gen(next_gen),
 576     _young_old_boundary(young_old_boundary),
 577     _state_set(state_set)
 578   {}
 579 
 580 // Reset the terminator for the given number of
 581 // active threads.
 582 void ParNewGenTask::set_for_termination(int active_workers) {
 583   _state_set->reset(active_workers, _gen->promotion_failed());
 584   // Should the heap be passed in?  There's only 1 for now so
 585   // grab it instead.
 586   GenCollectedHeap* gch = GenCollectedHeap::heap();
 587   gch->set_n_termination(active_workers);
 588 }
 589 
 590 // The "i" passed to this method is the part of the work for
 591 // this thread.  It is not the worker ID.  The "i" is derived
 592 // from _started_workers which is incremented in internal_note_start()
 593 // called in GangWorker loop() and which is called under the
 594 // which is  called under the protection of the gang monitor and is
 595 // called after a task is started.  So "i" is based on
 596 // first-come-first-served.
 597 
 598 void ParNewGenTask::work(uint worker_id) {
 599   GenCollectedHeap* gch = GenCollectedHeap::heap();
 600   // Since this is being done in a separate thread, need new resource
 601   // and handle marks.
 602   ResourceMark rm;
 603   HandleMark hm;
 604   // We would need multiple old-gen queues otherwise.
 605   assert(gch->n_gens() == 2, "Par young collection currently only works with one older gen.");
 606 
 607   Generation* old_gen = gch->next_gen(_gen);
 608 
 609   ParScanThreadState& par_scan_state = _state_set->thread_state(worker_id);
 610   assert(_state_set->is_valid(worker_id), "Should not have been called");
 611 
 612   par_scan_state.set_young_old_boundary(_young_old_boundary);
 613 
 614   par_scan_state.start_strong_roots();
 615   gch->gen_process_strong_roots(_gen->level(),
 616                                 true,  // Process younger gens, if any,
 617                                        // as strong roots.
 618                                 false, // no scope; this is parallel code
 619                                 false, // not collecting perm generation.
 620                                 SharedHeap::SO_AllClasses,
 621                                 &par_scan_state.to_space_root_closure(),
 622                                 true,   // walk *all* scavengable nmethods
 623                                 &par_scan_state.older_gen_closure());
 624   par_scan_state.end_strong_roots();
 625 
 626   // "evacuate followers".
 627   par_scan_state.evacuate_followers_closure().do_void();
 628 }
 629 
 630 #ifdef _MSC_VER
 631 #pragma warning( push )
 632 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 633 #endif
 634 ParNewGeneration::
 635 ParNewGeneration(ReservedSpace rs, size_t initial_byte_size, int level)
 636   : DefNewGeneration(rs, initial_byte_size, level, "PCopy"),
 637   _overflow_list(NULL),
 638   _is_alive_closure(this),
 639   _plab_stats(YoungPLABSize, PLABWeight)
 640 {
 641   NOT_PRODUCT(_overflow_counter = ParGCWorkQueueOverflowInterval;)
 642   NOT_PRODUCT(_num_par_pushes = 0;)
 643   _task_queues = new ObjToScanQueueSet(ParallelGCThreads);
 644   guarantee(_task_queues != NULL, "task_queues allocation failure.");
 645 
 646   for (uint i1 = 0; i1 < ParallelGCThreads; i1++) {
 647     ObjToScanQueue *q = new ObjToScanQueue();
 648     guarantee(q != NULL, "work_queue Allocation failure.");
 649     _task_queues->register_queue(i1, q);
 650   }
 651 
 652   for (uint i2 = 0; i2 < ParallelGCThreads; i2++)
 653     _task_queues->queue(i2)->initialize();
 654 
 655   _overflow_stacks = NULL;
 656   if (ParGCUseLocalOverflow) {
 657 
 658     // typedef to workaround NEW_C_HEAP_ARRAY macro, which can not deal
 659     // with ','
 660     typedef Stack<oop, mtGC> GCOopStack;
 661 
 662     _overflow_stacks = NEW_C_HEAP_ARRAY(GCOopStack, ParallelGCThreads, mtGC);
 663     for (size_t i = 0; i < ParallelGCThreads; ++i) {
 664       new (_overflow_stacks + i) Stack<oop, mtGC>();
 665     }
 666   }
 667 
 668   if (UsePerfData) {
 669     EXCEPTION_MARK;
 670     ResourceMark rm;
 671 
 672     const char* cname =
 673          PerfDataManager::counter_name(_gen_counters->name_space(), "threads");
 674     PerfDataManager::create_constant(SUN_GC, cname, PerfData::U_None,
 675                                      ParallelGCThreads, CHECK);
 676   }
 677 }
 678 #ifdef _MSC_VER
 679 #pragma warning( pop )
 680 #endif
 681 
 682 // ParNewGeneration::
 683 ParKeepAliveClosure::ParKeepAliveClosure(ParScanWeakRefClosure* cl) :
 684   DefNewGeneration::KeepAliveClosure(cl), _par_cl(cl) {}
 685 
 686 template <class T>
 687 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop_work(T* p) {
 688 #ifdef ASSERT
 689   {
 690     assert(!oopDesc::is_null(*p), "expected non-null ref");
 691     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 692     // We never expect to see a null reference being processed
 693     // as a weak reference.
 694     assert(obj->is_oop(), "expected an oop while scanning weak refs");
 695   }
 696 #endif // ASSERT
 697 
 698   _par_cl->do_oop_nv(p);
 699 
 700   if (Universe::heap()->is_in_reserved(p)) {
 701     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 702     _rs->write_ref_field_gc_par(p, obj);
 703   }
 704 }
 705 
 706 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(oop* p)       { ParKeepAliveClosure::do_oop_work(p); }
 707 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(narrowOop* p) { ParKeepAliveClosure::do_oop_work(p); }
 708 
 709 // ParNewGeneration::
 710 KeepAliveClosure::KeepAliveClosure(ScanWeakRefClosure* cl) :
 711   DefNewGeneration::KeepAliveClosure(cl) {}
 712 
 713 template <class T>
 714 void /*ParNewGeneration::*/KeepAliveClosure::do_oop_work(T* p) {
 715 #ifdef ASSERT
 716   {
 717     assert(!oopDesc::is_null(*p), "expected non-null ref");
 718     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 719     // We never expect to see a null reference being processed
 720     // as a weak reference.
 721     assert(obj->is_oop(), "expected an oop while scanning weak refs");
 722   }
 723 #endif // ASSERT
 724 
 725   _cl->do_oop_nv(p);
 726 
 727   if (Universe::heap()->is_in_reserved(p)) {
 728     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 729     _rs->write_ref_field_gc_par(p, obj);
 730   }
 731 }
 732 
 733 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(oop* p)       { KeepAliveClosure::do_oop_work(p); }
 734 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(narrowOop* p) { KeepAliveClosure::do_oop_work(p); }
 735 
 736 template <class T> void ScanClosureWithParBarrier::do_oop_work(T* p) {
 737   T heap_oop = oopDesc::load_heap_oop(p);
 738   if (!oopDesc::is_null(heap_oop)) {
 739     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 740     if ((HeapWord*)obj < _boundary) {
 741       assert(!_g->to()->is_in_reserved(obj), "Scanning field twice?");
 742       oop new_obj = obj->is_forwarded()
 743                       ? obj->forwardee()
 744                       : _g->DefNewGeneration::copy_to_survivor_space(obj);
 745       oopDesc::encode_store_heap_oop_not_null(p, new_obj);
 746     }
 747     if (_gc_barrier) {
 748       // If p points to a younger generation, mark the card.
 749       if ((HeapWord*)obj < _gen_boundary) {
 750         _rs->write_ref_field_gc_par(p, obj);
 751       }
 752     }
 753   }
 754 }
 755 
 756 void ScanClosureWithParBarrier::do_oop(oop* p)       { ScanClosureWithParBarrier::do_oop_work(p); }
 757 void ScanClosureWithParBarrier::do_oop(narrowOop* p) { ScanClosureWithParBarrier::do_oop_work(p); }
 758 
 759 class ParNewRefProcTaskProxy: public AbstractGangTask {
 760   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
 761 public:
 762   ParNewRefProcTaskProxy(ProcessTask& task, ParNewGeneration& gen,
 763                          Generation& next_gen,
 764                          HeapWord* young_old_boundary,
 765                          ParScanThreadStateSet& state_set);
 766 
 767 private:
 768   virtual void work(uint worker_id);
 769   virtual void set_for_termination(int active_workers) {
 770     _state_set.terminator()->reset_for_reuse(active_workers);
 771   }
 772 private:
 773   ParNewGeneration&      _gen;
 774   ProcessTask&           _task;
 775   Generation&            _next_gen;
 776   HeapWord*              _young_old_boundary;
 777   ParScanThreadStateSet& _state_set;
 778 };
 779 
 780 ParNewRefProcTaskProxy::ParNewRefProcTaskProxy(
 781     ProcessTask& task, ParNewGeneration& gen,
 782     Generation& next_gen,
 783     HeapWord* young_old_boundary,
 784     ParScanThreadStateSet& state_set)
 785   : AbstractGangTask("ParNewGeneration parallel reference processing"),
 786     _gen(gen),
 787     _task(task),
 788     _next_gen(next_gen),
 789     _young_old_boundary(young_old_boundary),
 790     _state_set(state_set)
 791 {
 792 }
 793 
 794 void ParNewRefProcTaskProxy::work(uint worker_id)
 795 {
 796   ResourceMark rm;
 797   HandleMark hm;
 798   ParScanThreadState& par_scan_state = _state_set.thread_state(worker_id);
 799   par_scan_state.set_young_old_boundary(_young_old_boundary);
 800   _task.work(worker_id, par_scan_state.is_alive_closure(),
 801              par_scan_state.keep_alive_closure(),
 802              par_scan_state.evacuate_followers_closure());
 803 }
 804 
 805 class ParNewRefEnqueueTaskProxy: public AbstractGangTask {
 806   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
 807   EnqueueTask& _task;
 808 
 809 public:
 810   ParNewRefEnqueueTaskProxy(EnqueueTask& task)
 811     : AbstractGangTask("ParNewGeneration parallel reference enqueue"),
 812       _task(task)
 813   { }
 814 
 815   virtual void work(uint worker_id)
 816   {
 817     _task.work(worker_id);
 818   }
 819 };
 820 
 821 
 822 void ParNewRefProcTaskExecutor::execute(ProcessTask& task)
 823 {
 824   GenCollectedHeap* gch = GenCollectedHeap::heap();
 825   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
 826          "not a generational heap");
 827   FlexibleWorkGang* workers = gch->workers();
 828   assert(workers != NULL, "Need parallel worker threads.");
 829   _state_set.reset(workers->active_workers(), _generation.promotion_failed());
 830   ParNewRefProcTaskProxy rp_task(task, _generation, *_generation.next_gen(),
 831                                  _generation.reserved().end(), _state_set);
 832   workers->run_task(&rp_task);
 833   _state_set.reset(0 /* bad value in debug if not reset */,
 834                    _generation.promotion_failed());
 835 }
 836 
 837 void ParNewRefProcTaskExecutor::execute(EnqueueTask& task)
 838 {
 839   GenCollectedHeap* gch = GenCollectedHeap::heap();
 840   FlexibleWorkGang* workers = gch->workers();
 841   assert(workers != NULL, "Need parallel worker threads.");
 842   ParNewRefEnqueueTaskProxy enq_task(task);
 843   workers->run_task(&enq_task);
 844 }
 845 
 846 void ParNewRefProcTaskExecutor::set_single_threaded_mode()
 847 {
 848   _state_set.flush();
 849   GenCollectedHeap* gch = GenCollectedHeap::heap();
 850   gch->set_par_threads(0);  // 0 ==> non-parallel.
 851   gch->save_marks();
 852 }
 853 
 854 ScanClosureWithParBarrier::
 855 ScanClosureWithParBarrier(ParNewGeneration* g, bool gc_barrier) :
 856   ScanClosure(g, gc_barrier) {}
 857 
 858 EvacuateFollowersClosureGeneral::
 859 EvacuateFollowersClosureGeneral(GenCollectedHeap* gch, int level,
 860                                 OopsInGenClosure* cur,
 861                                 OopsInGenClosure* older) :
 862   _gch(gch), _level(level),
 863   _scan_cur_or_nonheap(cur), _scan_older(older)
 864 {}
 865 
 866 void EvacuateFollowersClosureGeneral::do_void() {
 867   do {
 868     // Beware: this call will lead to closure applications via virtual
 869     // calls.
 870     _gch->oop_since_save_marks_iterate(_level,
 871                                        _scan_cur_or_nonheap,
 872                                        _scan_older);
 873   } while (!_gch->no_allocs_since_save_marks(_level));
 874 }
 875 
 876 
 877 bool ParNewGeneration::_avoid_promotion_undo = false;
 878 
 879 void ParNewGeneration::adjust_desired_tenuring_threshold() {
 880   // Set the desired survivor size to half the real survivor space
 881   _tenuring_threshold =
 882     age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
 883 }
 884 
 885 // A Generation that does parallel young-gen collection.
 886 
 887 void ParNewGeneration::collect(bool   full,
 888                                bool   clear_all_soft_refs,
 889                                size_t size,
 890                                bool   is_tlab) {
 891   assert(full || size > 0, "otherwise we don't want to collect");
 892 
 893   GenCollectedHeap* gch = GenCollectedHeap::heap();
 894 
 895   _gc_timer->register_gc_start(os::elapsed_counter());
 896   ParNewTracer gc_tracer;
 897   gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
 898 
 899   gch->trace_heap_before_gc(&gc_tracer);
 900 
 901   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
 902     "not a CMS generational heap");
 903   AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
 904   FlexibleWorkGang* workers = gch->workers();
 905   assert(workers != NULL, "Need workgang for parallel work");
 906   int active_workers =
 907       AdaptiveSizePolicy::calc_active_workers(workers->total_workers(),
 908                                    workers->active_workers(),
 909                                    Threads::number_of_non_daemon_threads());
 910   workers->set_active_workers(active_workers);
 911   _next_gen = gch->next_gen(this);
 912   assert(_next_gen != NULL,
 913     "This must be the youngest gen, and not the only gen");
 914   assert(gch->n_gens() == 2,
 915          "Par collection currently only works with single older gen.");
 916   // Do we have to avoid promotion_undo?
 917   if (gch->collector_policy()->is_concurrent_mark_sweep_policy()) {
 918     set_avoid_promotion_undo(true);
 919   }
 920 
 921   // If the next generation is too full to accomodate worst-case promotion
 922   // from this generation, pass on collection; let the next generation
 923   // do it.
 924   if (!collection_attempt_is_safe()) {
 925     gch->set_incremental_collection_failed();  // slight lie, in that we did not even attempt one
 926     return;
 927   }
 928   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
 929 
 930   init_assuming_no_promotion_failure();
 931 
 932   if (UseAdaptiveSizePolicy) {
 933     set_survivor_overflow(false);
 934     size_policy->minor_collection_begin();
 935   }
 936 
 937   GCTraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, NULL);
 938   // Capture heap used before collection (for printing).
 939   size_t gch_prev_used = gch->used();
 940 
 941   SpecializationStats::clear();
 942 
 943   age_table()->clear();
 944   to()->clear(SpaceDecorator::Mangle);
 945 
 946   gch->save_marks();
 947   assert(workers != NULL, "Need parallel worker threads.");
 948   int n_workers = active_workers;
 949 
 950   // Set the correct parallelism (number of queues) in the reference processor
 951   ref_processor()->set_active_mt_degree(n_workers);
 952 
 953   // Always set the terminator for the active number of workers
 954   // because only those workers go through the termination protocol.
 955   ParallelTaskTerminator _term(n_workers, task_queues());
 956   ParScanThreadStateSet thread_state_set(workers->active_workers(),
 957                                          *to(), *this, *_next_gen, *task_queues(),
 958                                          _overflow_stacks, desired_plab_sz(), _term);
 959 
 960   ParNewGenTask tsk(this, _next_gen, reserved().end(), &thread_state_set);
 961   gch->set_par_threads(n_workers);
 962   gch->rem_set()->prepare_for_younger_refs_iterate(true);
 963   // It turns out that even when we're using 1 thread, doing the work in a
 964   // separate thread causes wide variance in run times.  We can't help this
 965   // in the multi-threaded case, but we special-case n=1 here to get
 966   // repeatable measurements of the 1-thread overhead of the parallel code.
 967   if (n_workers > 1) {
 968     GenCollectedHeap::StrongRootsScope srs(gch);
 969     workers->run_task(&tsk);
 970   } else {
 971     GenCollectedHeap::StrongRootsScope srs(gch);
 972     tsk.work(0);
 973   }
 974   thread_state_set.reset(0 /* Bad value in debug if not reset */,
 975                          promotion_failed());
 976 
 977   // Process (weak) reference objects found during scavenge.
 978   ReferenceProcessor* rp = ref_processor();
 979   IsAliveClosure is_alive(this);
 980   ScanWeakRefClosure scan_weak_ref(this);
 981   KeepAliveClosure keep_alive(&scan_weak_ref);
 982   ScanClosure               scan_without_gc_barrier(this, false);
 983   ScanClosureWithParBarrier scan_with_gc_barrier(this, true);
 984   set_promo_failure_scan_stack_closure(&scan_without_gc_barrier);
 985   EvacuateFollowersClosureGeneral evacuate_followers(gch, _level,
 986     &scan_without_gc_barrier, &scan_with_gc_barrier);
 987   rp->setup_policy(clear_all_soft_refs);
 988   // Can  the mt_degree be set later (at run_task() time would be best)?
 989   rp->set_active_mt_degree(active_workers);
 990   if (rp->processing_is_mt()) {
 991     ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
 992     rp->process_discovered_references(&is_alive, &keep_alive,
 993                                       &evacuate_followers, &task_executor,
 994                                       _gc_timer);
 995   } else {
 996     thread_state_set.flush();
 997     gch->set_par_threads(0);  // 0 ==> non-parallel.
 998     gch->save_marks();
 999     rp->process_discovered_references(&is_alive, &keep_alive,
1000                                       &evacuate_followers, NULL,
1001                                       _gc_timer);
1002   }
1003   if (!promotion_failed()) {
1004     // Swap the survivor spaces.
1005     eden()->clear(SpaceDecorator::Mangle);
1006     from()->clear(SpaceDecorator::Mangle);
1007     if (ZapUnusedHeapArea) {
1008       // This is now done here because of the piece-meal mangling which
1009       // can check for valid mangling at intermediate points in the
1010       // collection(s).  When a minor collection fails to collect
1011       // sufficient space resizing of the young generation can occur
1012       // an redistribute the spaces in the young generation.  Mangle
1013       // here so that unzapped regions don't get distributed to
1014       // other spaces.
1015       to()->mangle_unused_area();
1016     }
1017     swap_spaces();
1018 
1019     // A successful scavenge should restart the GC time limit count which is
1020     // for full GC's.
1021     size_policy->reset_gc_overhead_limit_count();
1022 
1023     assert(to()->is_empty(), "to space should be empty now");
1024   } else {
1025     assert(_promo_failure_scan_stack.is_empty(), "post condition");
1026     _promo_failure_scan_stack.clear(true); // Clear cached segments.
1027 
1028     remove_forwarding_pointers();
1029     if (PrintGCDetails) {
1030       gclog_or_tty->print(" (promotion failed)");
1031     }
1032     // All the spaces are in play for mark-sweep.
1033     swap_spaces();  // Make life simpler for CMS || rescan; see 6483690.
1034     from()->set_next_compaction_space(to());
1035     gch->set_incremental_collection_failed();
1036     // Inform the next generation that a promotion failure occurred.
1037     _next_gen->promotion_failure_occurred();
1038 
1039     // Reset the PromotionFailureALot counters.
1040     NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
1041   }
1042   // set new iteration safe limit for the survivor spaces
1043   from()->set_concurrent_iteration_safe_limit(from()->top());
1044   to()->set_concurrent_iteration_safe_limit(to()->top());
1045 
1046   adjust_desired_tenuring_threshold();
1047   if (ResizePLAB) {
1048     plab_stats()->adjust_desired_plab_sz(n_workers);
1049   }
1050 
1051   if (PrintGC && !PrintGCDetails) {
1052     gch->print_heap_change(gch_prev_used);
1053   }
1054 
1055   if (PrintGCDetails && ParallelGCVerbose) {
1056     TASKQUEUE_STATS_ONLY(thread_state_set.print_termination_stats());
1057     TASKQUEUE_STATS_ONLY(thread_state_set.print_taskqueue_stats());
1058   }
1059 
1060   if (UseAdaptiveSizePolicy) {
1061     size_policy->minor_collection_end(gch->gc_cause());
1062     size_policy->avg_survived()->sample(from()->used());
1063   }
1064 
1065   // We need to use a monotonically non-deccreasing time in ms
1066   // or we will see time-warp warnings and os::javaTimeMillis()
1067   // does not guarantee monotonicity.
1068   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1069   update_time_of_last_gc(now);
1070 
1071   SpecializationStats::print();
1072 
1073   rp->set_enqueuing_is_done(true);
1074   if (rp->processing_is_mt()) {
1075     ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
1076     rp->enqueue_discovered_references(&task_executor);
1077   } else {
1078     rp->enqueue_discovered_references(NULL);
1079   }
1080   rp->verify_no_references_recorded();
1081 
1082   gch->trace_heap_after_gc(&gc_tracer);
1083 
1084   _gc_timer->register_gc_end(os::elapsed_counter());
1085 
1086   gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
1087 }
1088 
1089 static int sum;
1090 void ParNewGeneration::waste_some_time() {
1091   for (int i = 0; i < 100; i++) {
1092     sum += i;
1093   }
1094 }
1095 
1096 static const oop ClaimedForwardPtr = oop(0x4);
1097 
1098 // Because of concurrency, there are times where an object for which
1099 // "is_forwarded()" is true contains an "interim" forwarding pointer
1100 // value.  Such a value will soon be overwritten with a real value.
1101 // This method requires "obj" to have a forwarding pointer, and waits, if
1102 // necessary for a real one to be inserted, and returns it.
1103 
1104 oop ParNewGeneration::real_forwardee(oop obj) {
1105   oop forward_ptr = obj->forwardee();
1106   if (forward_ptr != ClaimedForwardPtr) {
1107     return forward_ptr;
1108   } else {
1109     return real_forwardee_slow(obj);
1110   }
1111 }
1112 
1113 oop ParNewGeneration::real_forwardee_slow(oop obj) {
1114   // Spin-read if it is claimed but not yet written by another thread.
1115   oop forward_ptr = obj->forwardee();
1116   while (forward_ptr == ClaimedForwardPtr) {
1117     waste_some_time();
1118     assert(obj->is_forwarded(), "precondition");
1119     forward_ptr = obj->forwardee();
1120   }
1121   return forward_ptr;
1122 }
1123 
1124 #ifdef ASSERT
1125 bool ParNewGeneration::is_legal_forward_ptr(oop p) {
1126   return
1127     (_avoid_promotion_undo && p == ClaimedForwardPtr)
1128     || Universe::heap()->is_in_reserved(p);
1129 }
1130 #endif
1131 
1132 void ParNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
1133   if (m->must_be_preserved_for_promotion_failure(obj)) {
1134     // We should really have separate per-worker stacks, rather
1135     // than use locking of a common pair of stacks.
1136     MutexLocker ml(ParGCRareEvent_lock);
1137     preserve_mark(obj, m);
1138   }
1139 }
1140 
1141 // Multiple GC threads may try to promote an object.  If the object
1142 // is successfully promoted, a forwarding pointer will be installed in
1143 // the object in the young generation.  This method claims the right
1144 // to install the forwarding pointer before it copies the object,
1145 // thus avoiding the need to undo the copy as in
1146 // copy_to_survivor_space_avoiding_with_undo.
1147 
1148 oop ParNewGeneration::copy_to_survivor_space_avoiding_promotion_undo(
1149         ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
1150   // In the sequential version, this assert also says that the object is
1151   // not forwarded.  That might not be the case here.  It is the case that
1152   // the caller observed it to be not forwarded at some time in the past.
1153   assert(is_in_reserved(old), "shouldn't be scavenging this oop");
1154 
1155   // The sequential code read "old->age()" below.  That doesn't work here,
1156   // since the age is in the mark word, and that might be overwritten with
1157   // a forwarding pointer by a parallel thread.  So we must save the mark
1158   // word in a local and then analyze it.
1159   oopDesc dummyOld;
1160   dummyOld.set_mark(m);
1161   assert(!dummyOld.is_forwarded(),
1162          "should not be called with forwarding pointer mark word.");
1163 
1164   oop new_obj = NULL;
1165   oop forward_ptr;
1166 
1167   // Try allocating obj in to-space (unless too old)
1168   if (dummyOld.age() < tenuring_threshold()) {
1169     new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
1170     if (new_obj == NULL) {
1171       set_survivor_overflow(true);
1172     }
1173   }
1174 
1175   if (new_obj == NULL) {
1176     // Either to-space is full or we decided to promote
1177     // try allocating obj tenured
1178 
1179     // Attempt to install a null forwarding pointer (atomically),
1180     // to claim the right to install the real forwarding pointer.
1181     forward_ptr = old->forward_to_atomic(ClaimedForwardPtr);
1182     if (forward_ptr != NULL) {
1183       // someone else beat us to it.
1184         return real_forwardee(old);
1185     }
1186 
1187     new_obj = _next_gen->par_promote(par_scan_state->thread_num(),
1188                                        old, m, sz);
1189 
1190     if (new_obj == NULL) {
1191       // promotion failed, forward to self
1192       _promotion_failed = true;
1193       new_obj = old;
1194 
1195       preserve_mark_if_necessary(old, m);
1196       // Log the size of the maiden promotion failure
1197       par_scan_state->log_promotion_failure(sz);
1198     }
1199 
1200     old->forward_to(new_obj);
1201     forward_ptr = NULL;
1202   } else {
1203     // Is in to-space; do copying ourselves.
1204     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
1205     forward_ptr = old->forward_to_atomic(new_obj);
1206     // Restore the mark word copied above.
1207     new_obj->set_mark(m);
1208     // Increment age if obj still in new generation
1209     new_obj->incr_age();
1210     par_scan_state->age_table()->add(new_obj, sz);
1211   }
1212   assert(new_obj != NULL, "just checking");
1213 
1214   if (forward_ptr == NULL) {
1215     oop obj_to_push = new_obj;
1216     if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
1217       // Length field used as index of next element to be scanned.
1218       // Real length can be obtained from real_forwardee()
1219       arrayOop(old)->set_length(0);
1220       obj_to_push = old;
1221       assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
1222              "push forwarded object");
1223     }
1224     // Push it on one of the queues of to-be-scanned objects.
1225     bool simulate_overflow = false;
1226     NOT_PRODUCT(
1227       if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
1228         // simulate a stack overflow
1229         simulate_overflow = true;
1230       }
1231     )
1232     if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
1233       // Add stats for overflow pushes.
1234       if (Verbose && PrintGCDetails) {
1235         gclog_or_tty->print("queue overflow!\n");
1236       }
1237       push_on_overflow_list(old, par_scan_state);
1238       TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
1239     }
1240 
1241     return new_obj;
1242   }
1243 
1244   // Oops.  Someone beat us to it.  Undo the allocation.  Where did we
1245   // allocate it?
1246   if (is_in_reserved(new_obj)) {
1247     // Must be in to_space.
1248     assert(to()->is_in_reserved(new_obj), "Checking");
1249     if (forward_ptr == ClaimedForwardPtr) {
1250       // Wait to get the real forwarding pointer value.
1251       forward_ptr = real_forwardee(old);
1252     }
1253     par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
1254   }
1255 
1256   return forward_ptr;
1257 }
1258 
1259 
1260 // Multiple GC threads may try to promote the same object.  If two
1261 // or more GC threads copy the object, only one wins the race to install
1262 // the forwarding pointer.  The other threads have to undo their copy.
1263 
1264 oop ParNewGeneration::copy_to_survivor_space_with_undo(
1265         ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
1266 
1267   // In the sequential version, this assert also says that the object is
1268   // not forwarded.  That might not be the case here.  It is the case that
1269   // the caller observed it to be not forwarded at some time in the past.
1270   assert(is_in_reserved(old), "shouldn't be scavenging this oop");
1271 
1272   // The sequential code read "old->age()" below.  That doesn't work here,
1273   // since the age is in the mark word, and that might be overwritten with
1274   // a forwarding pointer by a parallel thread.  So we must save the mark
1275   // word here, install it in a local oopDesc, and then analyze it.
1276   oopDesc dummyOld;
1277   dummyOld.set_mark(m);
1278   assert(!dummyOld.is_forwarded(),
1279          "should not be called with forwarding pointer mark word.");
1280 
1281   bool failed_to_promote = false;
1282   oop new_obj = NULL;
1283   oop forward_ptr;
1284 
1285   // Try allocating obj in to-space (unless too old)
1286   if (dummyOld.age() < tenuring_threshold()) {
1287     new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
1288     if (new_obj == NULL) {
1289       set_survivor_overflow(true);
1290     }
1291   }
1292 
1293   if (new_obj == NULL) {
1294     // Either to-space is full or we decided to promote
1295     // try allocating obj tenured
1296     new_obj = _next_gen->par_promote(par_scan_state->thread_num(),
1297                                        old, m, sz);
1298 
1299     if (new_obj == NULL) {
1300       // promotion failed, forward to self
1301       forward_ptr = old->forward_to_atomic(old);
1302       new_obj = old;
1303 
1304       if (forward_ptr != NULL) {
1305         return forward_ptr;   // someone else succeeded
1306       }
1307 
1308       _promotion_failed = true;
1309       failed_to_promote = true;
1310 
1311       preserve_mark_if_necessary(old, m);
1312       // Log the size of the maiden promotion failure
1313       par_scan_state->log_promotion_failure(sz);
1314     }
1315   } else {
1316     // Is in to-space; do copying ourselves.
1317     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
1318     // Restore the mark word copied above.
1319     new_obj->set_mark(m);
1320     // Increment age if new_obj still in new generation
1321     new_obj->incr_age();
1322     par_scan_state->age_table()->add(new_obj, sz);
1323   }
1324   assert(new_obj != NULL, "just checking");
1325 
1326   // Now attempt to install the forwarding pointer (atomically).
1327   // We have to copy the mark word before overwriting with forwarding
1328   // ptr, so we can restore it below in the copy.
1329   if (!failed_to_promote) {
1330     forward_ptr = old->forward_to_atomic(new_obj);
1331   }
1332 
1333   if (forward_ptr == NULL) {
1334     oop obj_to_push = new_obj;
1335     if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
1336       // Length field used as index of next element to be scanned.
1337       // Real length can be obtained from real_forwardee()
1338       arrayOop(old)->set_length(0);
1339       obj_to_push = old;
1340       assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
1341              "push forwarded object");
1342     }
1343     // Push it on one of the queues of to-be-scanned objects.
1344     bool simulate_overflow = false;
1345     NOT_PRODUCT(
1346       if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
1347         // simulate a stack overflow
1348         simulate_overflow = true;
1349       }
1350     )
1351     if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
1352       // Add stats for overflow pushes.
1353       push_on_overflow_list(old, par_scan_state);
1354       TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
1355     }
1356 
1357     return new_obj;
1358   }
1359 
1360   // Oops.  Someone beat us to it.  Undo the allocation.  Where did we
1361   // allocate it?
1362   if (is_in_reserved(new_obj)) {
1363     // Must be in to_space.
1364     assert(to()->is_in_reserved(new_obj), "Checking");
1365     par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
1366   } else {
1367     assert(!_avoid_promotion_undo, "Should not be here if avoiding.");
1368     _next_gen->par_promote_alloc_undo(par_scan_state->thread_num(),
1369                                       (HeapWord*)new_obj, sz);
1370   }
1371 
1372   return forward_ptr;
1373 }
1374 
1375 #ifndef PRODUCT
1376 // It's OK to call this multi-threaded;  the worst thing
1377 // that can happen is that we'll get a bunch of closely
1378 // spaced simulated oveflows, but that's OK, in fact
1379 // probably good as it would exercise the overflow code
1380 // under contention.
1381 bool ParNewGeneration::should_simulate_overflow() {
1382   if (_overflow_counter-- <= 0) { // just being defensive
1383     _overflow_counter = ParGCWorkQueueOverflowInterval;
1384     return true;
1385   } else {
1386     return false;
1387   }
1388 }
1389 #endif
1390 
1391 // In case we are using compressed oops, we need to be careful.
1392 // If the object being pushed is an object array, then its length
1393 // field keeps track of the "grey boundary" at which the next
1394 // incremental scan will be done (see ParGCArrayScanChunk).
1395 // When using compressed oops, this length field is kept in the
1396 // lower 32 bits of the erstwhile klass word and cannot be used
1397 // for the overflow chaining pointer (OCP below). As such the OCP
1398 // would itself need to be compressed into the top 32-bits in this
1399 // case. Unfortunately, see below, in the event that we have a
1400 // promotion failure, the node to be pushed on the list can be
1401 // outside of the Java heap, so the heap-based pointer compression
1402 // would not work (we would have potential aliasing between C-heap
1403 // and Java-heap pointers). For this reason, when using compressed
1404 // oops, we simply use a worker-thread-local, non-shared overflow
1405 // list in the form of a growable array, with a slightly different
1406 // overflow stack draining strategy. If/when we start using fat
1407 // stacks here, we can go back to using (fat) pointer chains
1408 // (although some performance comparisons would be useful since
1409 // single global lists have their own performance disadvantages
1410 // as we were made painfully aware not long ago, see 6786503).
1411 #define BUSY (oop(0x1aff1aff))
1412 void ParNewGeneration::push_on_overflow_list(oop from_space_obj, ParScanThreadState* par_scan_state) {
1413   assert(is_in_reserved(from_space_obj), "Should be from this generation");
1414   if (ParGCUseLocalOverflow) {
1415     // In the case of compressed oops, we use a private, not-shared
1416     // overflow stack.
1417     par_scan_state->push_on_overflow_stack(from_space_obj);
1418   } else {
1419     assert(!UseCompressedOops, "Error");
1420     // if the object has been forwarded to itself, then we cannot
1421     // use the klass pointer for the linked list.  Instead we have
1422     // to allocate an oopDesc in the C-Heap and use that for the linked list.
1423     // XXX This is horribly inefficient when a promotion failure occurs
1424     // and should be fixed. XXX FIX ME !!!
1425 #ifndef PRODUCT
1426     Atomic::inc_ptr(&_num_par_pushes);
1427     assert(_num_par_pushes > 0, "Tautology");
1428 #endif
1429     if (from_space_obj->forwardee() == from_space_obj) {
1430       oopDesc* listhead = NEW_C_HEAP_ARRAY(oopDesc, 1, mtGC);
1431       listhead->forward_to(from_space_obj);
1432       from_space_obj = listhead;
1433     }
1434     oop observed_overflow_list = _overflow_list;
1435     oop cur_overflow_list;
1436     do {
1437       cur_overflow_list = observed_overflow_list;
1438       if (cur_overflow_list != BUSY) {
1439         from_space_obj->set_klass_to_list_ptr(cur_overflow_list);
1440       } else {
1441         from_space_obj->set_klass_to_list_ptr(NULL);
1442       }
1443       observed_overflow_list =
1444         (oop)Atomic::cmpxchg_ptr(from_space_obj, &_overflow_list, cur_overflow_list);
1445     } while (cur_overflow_list != observed_overflow_list);
1446   }
1447 }
1448 
1449 bool ParNewGeneration::take_from_overflow_list(ParScanThreadState* par_scan_state) {
1450   bool res;
1451 
1452   if (ParGCUseLocalOverflow) {
1453     res = par_scan_state->take_from_overflow_stack();
1454   } else {
1455     assert(!UseCompressedOops, "Error");
1456     res = take_from_overflow_list_work(par_scan_state);
1457   }
1458   return res;
1459 }
1460 
1461 
1462 // *NOTE*: The overflow list manipulation code here and
1463 // in CMSCollector:: are very similar in shape,
1464 // except that in the CMS case we thread the objects
1465 // directly into the list via their mark word, and do
1466 // not need to deal with special cases below related
1467 // to chunking of object arrays and promotion failure
1468 // handling.
1469 // CR 6797058 has been filed to attempt consolidation of
1470 // the common code.
1471 // Because of the common code, if you make any changes in
1472 // the code below, please check the CMS version to see if
1473 // similar changes might be needed.
1474 // See CMSCollector::par_take_from_overflow_list() for
1475 // more extensive documentation comments.
1476 bool ParNewGeneration::take_from_overflow_list_work(ParScanThreadState* par_scan_state) {
1477   ObjToScanQueue* work_q = par_scan_state->work_queue();
1478   // How many to take?
1479   size_t objsFromOverflow = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
1480                                  (size_t)ParGCDesiredObjsFromOverflowList);
1481 
1482   assert(!UseCompressedOops, "Error");
1483   assert(par_scan_state->overflow_stack() == NULL, "Error");
1484   if (_overflow_list == NULL) return false;
1485 
1486   // Otherwise, there was something there; try claiming the list.
1487   oop prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
1488   // Trim off a prefix of at most objsFromOverflow items
1489   Thread* tid = Thread::current();
1490   size_t spin_count = (size_t)ParallelGCThreads;
1491   size_t sleep_time_millis = MAX2((size_t)1, objsFromOverflow/100);
1492   for (size_t spin = 0; prefix == BUSY && spin < spin_count; spin++) {
1493     // someone grabbed it before we did ...
1494     // ... we spin for a short while...
1495     os::sleep(tid, sleep_time_millis, false);
1496     if (_overflow_list == NULL) {
1497       // nothing left to take
1498       return false;
1499     } else if (_overflow_list != BUSY) {
1500      // try and grab the prefix
1501      prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
1502     }
1503   }
1504   if (prefix == NULL || prefix == BUSY) {
1505      // Nothing to take or waited long enough
1506      if (prefix == NULL) {
1507        // Write back the NULL in case we overwrote it with BUSY above
1508        // and it is still the same value.
1509        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
1510      }
1511      return false;
1512   }
1513   assert(prefix != NULL && prefix != BUSY, "Error");
1514   size_t i = 1;
1515   oop cur = prefix;
1516   while (i < objsFromOverflow && cur->klass_or_null() != NULL) {
1517     i++; cur = oop(cur->klass());
1518   }
1519 
1520   // Reattach remaining (suffix) to overflow list
1521   if (cur->klass_or_null() == NULL) {
1522     // Write back the NULL in lieu of the BUSY we wrote
1523     // above and it is still the same value.
1524     if (_overflow_list == BUSY) {
1525       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
1526     }
1527   } else {
1528     assert(cur->klass_or_null() != BUSY, "Error");
1529     oop suffix = oop(cur->klass());       // suffix will be put back on global list
1530     cur->set_klass_to_list_ptr(NULL);     // break off suffix
1531     // It's possible that the list is still in the empty(busy) state
1532     // we left it in a short while ago; in that case we may be
1533     // able to place back the suffix.
1534     oop observed_overflow_list = _overflow_list;
1535     oop cur_overflow_list = observed_overflow_list;
1536     bool attached = false;
1537     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
1538       observed_overflow_list =
1539         (oop) Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
1540       if (cur_overflow_list == observed_overflow_list) {
1541         attached = true;
1542         break;
1543       } else cur_overflow_list = observed_overflow_list;
1544     }
1545     if (!attached) {
1546       // Too bad, someone else got in in between; we'll need to do a splice.
1547       // Find the last item of suffix list
1548       oop last = suffix;
1549       while (last->klass_or_null() != NULL) {
1550         last = oop(last->klass());
1551       }
1552       // Atomically prepend suffix to current overflow list
1553       observed_overflow_list = _overflow_list;
1554       do {
1555         cur_overflow_list = observed_overflow_list;
1556         if (cur_overflow_list != BUSY) {
1557           // Do the splice ...
1558           last->set_klass_to_list_ptr(cur_overflow_list);
1559         } else { // cur_overflow_list == BUSY
1560           last->set_klass_to_list_ptr(NULL);
1561         }
1562         observed_overflow_list =
1563           (oop)Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
1564       } while (cur_overflow_list != observed_overflow_list);
1565     }
1566   }
1567 
1568   // Push objects on prefix list onto this thread's work queue
1569   assert(prefix != NULL && prefix != BUSY, "program logic");
1570   cur = prefix;
1571   ssize_t n = 0;
1572   while (cur != NULL) {
1573     oop obj_to_push = cur->forwardee();
1574     oop next        = oop(cur->klass_or_null());
1575     cur->set_klass(obj_to_push->klass());
1576     // This may be an array object that is self-forwarded. In that case, the list pointer
1577     // space, cur, is not in the Java heap, but rather in the C-heap and should be freed.
1578     if (!is_in_reserved(cur)) {
1579       // This can become a scaling bottleneck when there is work queue overflow coincident
1580       // with promotion failure.
1581       oopDesc* f = cur;
1582       FREE_C_HEAP_ARRAY(oopDesc, f, mtGC);
1583     } else if (par_scan_state->should_be_partially_scanned(obj_to_push, cur)) {
1584       assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
1585       obj_to_push = cur;
1586     }
1587     bool ok = work_q->push(obj_to_push);
1588     assert(ok, "Should have succeeded");
1589     cur = next;
1590     n++;
1591   }
1592   TASKQUEUE_STATS_ONLY(par_scan_state->note_overflow_refill(n));
1593 #ifndef PRODUCT
1594   assert(_num_par_pushes >= n, "Too many pops?");
1595   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
1596 #endif
1597   return true;
1598 }
1599 #undef BUSY
1600 
1601 void ParNewGeneration::ref_processor_init() {
1602   if (_ref_processor == NULL) {
1603     // Allocate and initialize a reference processor
1604     _ref_processor =
1605       new ReferenceProcessor(_reserved,                  // span
1606                              ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
1607                              (int) ParallelGCThreads,    // mt processing degree
1608                              refs_discovery_is_mt(),     // mt discovery
1609                              (int) ParallelGCThreads,    // mt discovery degree
1610                              refs_discovery_is_atomic(), // atomic_discovery
1611                              NULL,                       // is_alive_non_header
1612                              false);                     // write barrier for next field updates
1613   }
1614 }
1615 
1616 const char* ParNewGeneration::name() const {
1617   return "par new generation";
1618 }
1619 
1620 bool ParNewGeneration::in_use() {
1621   return UseParNewGC && ParallelGCThreads > 0;
1622 }