1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.hpp"
  27 #include "gc_implementation/parNew/parNewGeneration.hpp"
  28 #include "gc_implementation/parNew/parOopClosures.inline.hpp"
  29 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  30 #include "gc_implementation/shared/ageTable.hpp"
  31 #include "gc_implementation/shared/parGCAllocBuffer.hpp"
  32 #include "gc_implementation/shared/gcHeapSummary.hpp"
  33 #include "gc_implementation/shared/gcTimer.hpp"
  34 #include "gc_implementation/shared/gcTrace.hpp"
  35 #include "gc_implementation/shared/gcTraceTime.hpp"
  36 #include "gc_implementation/shared/promotionFailedInfo.hpp"
  37 #include "gc_implementation/shared/spaceDecorator.hpp"
  38 #include "memory/defNewGeneration.inline.hpp"
  39 #include "memory/genCollectedHeap.hpp"
  40 #include "memory/genOopClosures.inline.hpp"
  41 #include "memory/generation.hpp"
  42 #include "memory/generation.inline.hpp"
  43 #include "memory/referencePolicy.hpp"
  44 #include "memory/resourceArea.hpp"
  45 #include "memory/sharedHeap.hpp"
  46 #include "memory/space.hpp"
  47 #include "oops/objArrayOop.hpp"
  48 #include "oops/oop.inline.hpp"
  49 #include "oops/oop.pcgc.inline.hpp"
  50 #include "runtime/handles.hpp"
  51 #include "runtime/handles.inline.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/thread.hpp"
  54 #include "utilities/copy.hpp"
  55 #include "utilities/globalDefinitions.hpp"
  56 #include "utilities/workgroup.hpp"
  57 
  58 #ifdef _MSC_VER
  59 #pragma warning( push )
  60 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  61 #endif
  62 ParScanThreadState::ParScanThreadState(Space* to_space_,
  63                                        ParNewGeneration* gen_,
  64                                        Generation* old_gen_,
  65                                        int thread_num_,
  66                                        ObjToScanQueueSet* work_queue_set_,
  67                                        Stack<oop, mtGC>* overflow_stacks_,
  68                                        size_t desired_plab_sz_,
  69                                        ParallelTaskTerminator& term_) :
  70   _to_space(to_space_), _old_gen(old_gen_), _young_gen(gen_), _thread_num(thread_num_),
  71   _work_queue(work_queue_set_->queue(thread_num_)), _to_space_full(false),
  72   _overflow_stack(overflow_stacks_ ? overflow_stacks_ + thread_num_ : NULL),
  73   _ageTable(false), // false ==> not the global age table, no perf data.
  74   _to_space_alloc_buffer(desired_plab_sz_),
  75   _to_space_closure(gen_, this), _old_gen_closure(gen_, this),
  76   _to_space_root_closure(gen_, this), _old_gen_root_closure(gen_, this),
  77   _older_gen_closure(gen_, this),
  78   _evacuate_followers(this, &_to_space_closure, &_old_gen_closure,
  79                       &_to_space_root_closure, gen_, &_old_gen_root_closure,
  80                       work_queue_set_, &term_),
  81   _is_alive_closure(gen_), _scan_weak_ref_closure(gen_, this),
  82   _keep_alive_closure(&_scan_weak_ref_closure),
  83   _strong_roots_time(0.0), _term_time(0.0)
  84 {
  85   #if TASKQUEUE_STATS
  86   _term_attempts = 0;
  87   _overflow_refills = 0;
  88   _overflow_refill_objs = 0;
  89   #endif // TASKQUEUE_STATS
  90 
  91   _survivor_chunk_array =
  92     (ChunkArray*) old_gen()->get_data_recorder(thread_num());
  93   _hash_seed = 17;  // Might want to take time-based random value.
  94   _start = os::elapsedTime();
  95   _old_gen_closure.set_generation(old_gen_);
  96   _old_gen_root_closure.set_generation(old_gen_);
  97 }
  98 #ifdef _MSC_VER
  99 #pragma warning( pop )
 100 #endif
 101 
 102 void ParScanThreadState::record_survivor_plab(HeapWord* plab_start,
 103                                               size_t plab_word_size) {
 104   ChunkArray* sca = survivor_chunk_array();
 105   if (sca != NULL) {
 106     // A non-null SCA implies that we want the PLAB data recorded.
 107     sca->record_sample(plab_start, plab_word_size);
 108   }
 109 }
 110 
 111 bool ParScanThreadState::should_be_partially_scanned(oop new_obj, oop old_obj) const {
 112   return new_obj->is_objArray() &&
 113          arrayOop(new_obj)->length() > ParGCArrayScanChunk &&
 114          new_obj != old_obj;
 115 }
 116 
 117 void ParScanThreadState::scan_partial_array_and_push_remainder(oop old) {
 118   assert(old->is_objArray(), "must be obj array");
 119   assert(old->is_forwarded(), "must be forwarded");
 120   assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
 121   assert(!old_gen()->is_in(old), "must be in young generation.");
 122 
 123   objArrayOop obj = objArrayOop(old->forwardee());
 124   // Process ParGCArrayScanChunk elements now
 125   // and push the remainder back onto queue
 126   int start     = arrayOop(old)->length();
 127   int end       = obj->length();
 128   int remainder = end - start;
 129   assert(start <= end, "just checking");
 130   if (remainder > 2 * ParGCArrayScanChunk) {
 131     // Test above combines last partial chunk with a full chunk
 132     end = start + ParGCArrayScanChunk;
 133     arrayOop(old)->set_length(end);
 134     // Push remainder.
 135     bool ok = work_queue()->push(old);
 136     assert(ok, "just popped, push must be okay");
 137   } else {
 138     // Restore length so that it can be used if there
 139     // is a promotion failure and forwarding pointers
 140     // must be removed.
 141     arrayOop(old)->set_length(end);
 142   }
 143 
 144   // process our set of indices (include header in first chunk)
 145   // should make sure end is even (aligned to HeapWord in case of compressed oops)
 146   if ((HeapWord *)obj < young_old_boundary()) {
 147     // object is in to_space
 148     obj->oop_iterate_range(&_to_space_closure, start, end);
 149   } else {
 150     // object is in old generation
 151     obj->oop_iterate_range(&_old_gen_closure, start, end);
 152   }
 153 }
 154 
 155 
 156 void ParScanThreadState::trim_queues(int max_size) {
 157   ObjToScanQueue* queue = work_queue();
 158   do {
 159     while (queue->size() > (juint)max_size) {
 160       oop obj_to_scan;
 161       if (queue->pop_local(obj_to_scan)) {
 162         if ((HeapWord *)obj_to_scan < young_old_boundary()) {
 163           if (obj_to_scan->is_objArray() &&
 164               obj_to_scan->is_forwarded() &&
 165               obj_to_scan->forwardee() != obj_to_scan) {
 166             scan_partial_array_and_push_remainder(obj_to_scan);
 167           } else {
 168             // object is in to_space
 169             obj_to_scan->oop_iterate(&_to_space_closure);
 170           }
 171         } else {
 172           // object is in old generation
 173           obj_to_scan->oop_iterate(&_old_gen_closure);
 174         }
 175       }
 176     }
 177     // For the  case of compressed oops, we have a private, non-shared
 178     // overflow stack, so we eagerly drain it so as to more evenly
 179     // distribute load early. Note: this may be good to do in
 180     // general rather than delay for the final stealing phase.
 181     // If applicable, we'll transfer a set of objects over to our
 182     // work queue, allowing them to be stolen and draining our
 183     // private overflow stack.
 184   } while (ParGCTrimOverflow && young_gen()->take_from_overflow_list(this));
 185 }
 186 
 187 bool ParScanThreadState::take_from_overflow_stack() {
 188   assert(ParGCUseLocalOverflow, "Else should not call");
 189   assert(young_gen()->overflow_list() == NULL, "Error");
 190   ObjToScanQueue* queue = work_queue();
 191   Stack<oop, mtGC>* const of_stack = overflow_stack();
 192   const size_t num_overflow_elems = of_stack->size();
 193   const size_t space_available = queue->max_elems() - queue->size();
 194   const size_t num_take_elems = MIN3(space_available / 4,
 195                                      ParGCDesiredObjsFromOverflowList,
 196                                      num_overflow_elems);
 197   // Transfer the most recent num_take_elems from the overflow
 198   // stack to our work queue.
 199   for (size_t i = 0; i != num_take_elems; i++) {
 200     oop cur = of_stack->pop();
 201     oop obj_to_push = cur->forwardee();
 202     assert(Universe::heap()->is_in_reserved(cur), "Should be in heap");
 203     assert(!old_gen()->is_in_reserved(cur), "Should be in young gen");
 204     assert(Universe::heap()->is_in_reserved(obj_to_push), "Should be in heap");
 205     if (should_be_partially_scanned(obj_to_push, cur)) {
 206       assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
 207       obj_to_push = cur;
 208     }
 209     bool ok = queue->push(obj_to_push);
 210     assert(ok, "Should have succeeded");
 211   }
 212   assert(young_gen()->overflow_list() == NULL, "Error");
 213   return num_take_elems > 0;  // was something transferred?
 214 }
 215 
 216 void ParScanThreadState::push_on_overflow_stack(oop p) {
 217   assert(ParGCUseLocalOverflow, "Else should not call");
 218   overflow_stack()->push(p);
 219   assert(young_gen()->overflow_list() == NULL, "Error");
 220 }
 221 
 222 HeapWord* ParScanThreadState::alloc_in_to_space_slow(size_t word_sz) {
 223 
 224   // Otherwise, if the object is small enough, try to reallocate the
 225   // buffer.
 226   HeapWord* obj = NULL;
 227   if (!_to_space_full) {
 228     ParGCAllocBuffer* const plab = to_space_alloc_buffer();
 229     Space*            const sp   = to_space();
 230     if (word_sz * 100 <
 231         ParallelGCBufferWastePct * plab->word_sz()) {
 232       // Is small enough; abandon this buffer and start a new one.
 233       plab->retire(false, false);
 234       size_t buf_size = plab->word_sz();
 235       HeapWord* buf_space = sp->par_allocate(buf_size);
 236       if (buf_space == NULL) {
 237         const size_t min_bytes =
 238           ParGCAllocBuffer::min_size() << LogHeapWordSize;
 239         size_t free_bytes = sp->free();
 240         while(buf_space == NULL && free_bytes >= min_bytes) {
 241           buf_size = free_bytes >> LogHeapWordSize;
 242           assert(buf_size == (size_t)align_object_size(buf_size),
 243                  "Invariant");
 244           buf_space  = sp->par_allocate(buf_size);
 245           free_bytes = sp->free();
 246         }
 247       }
 248       if (buf_space != NULL) {
 249         plab->set_word_size(buf_size);
 250         plab->set_buf(buf_space);
 251         record_survivor_plab(buf_space, buf_size);
 252         obj = plab->allocate(word_sz);
 253         // Note that we cannot compare buf_size < word_sz below
 254         // because of AlignmentReserve (see ParGCAllocBuffer::allocate()).
 255         assert(obj != NULL || plab->words_remaining() < word_sz,
 256                "Else should have been able to allocate");
 257         // It's conceivable that we may be able to use the
 258         // buffer we just grabbed for subsequent small requests
 259         // even if not for this one.
 260       } else {
 261         // We're used up.
 262         _to_space_full = true;
 263       }
 264 
 265     } else {
 266       // Too large; allocate the object individually.
 267       obj = sp->par_allocate(word_sz);
 268     }
 269   }
 270   return obj;
 271 }
 272 
 273 
 274 void ParScanThreadState::undo_alloc_in_to_space(HeapWord* obj,
 275                                                 size_t word_sz) {
 276   // Is the alloc in the current alloc buffer?
 277   if (to_space_alloc_buffer()->contains(obj)) {
 278     assert(to_space_alloc_buffer()->contains(obj + word_sz - 1),
 279            "Should contain whole object.");
 280     to_space_alloc_buffer()->undo_allocation(obj, word_sz);
 281   } else {
 282     CollectedHeap::fill_with_object(obj, word_sz);
 283   }
 284 }
 285 
 286 void ParScanThreadState::print_promotion_failure_size() {
 287   if (_promotion_failed_info.promotion_failed() && PrintPromotionFailure) {
 288     gclog_or_tty->print(" (%d: promotion failure size = " SIZE_FORMAT ") ",
 289                         _thread_num, _promotion_failed_info.first_size());
 290   }
 291 }
 292 
 293 class ParScanThreadStateSet: private ResourceArray {
 294 public:
 295   // Initializes states for the specified number of threads;
 296   ParScanThreadStateSet(int                     num_threads,
 297                         Space&                  to_space,
 298                         ParNewGeneration&       gen,
 299                         Generation&             old_gen,
 300                         ObjToScanQueueSet&      queue_set,
 301                         Stack<oop, mtGC>*       overflow_stacks_,
 302                         size_t                  desired_plab_sz,
 303                         ParallelTaskTerminator& term);
 304 
 305   ~ParScanThreadStateSet() { TASKQUEUE_STATS_ONLY(reset_stats()); }
 306 
 307   inline ParScanThreadState& thread_state(int i);
 308 
 309   void trace_promotion_failed(YoungGCTracer& gc_tracer);
 310   void reset(int active_workers, bool promotion_failed);
 311   void flush();
 312 
 313   #if TASKQUEUE_STATS
 314   static void
 315     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
 316   void print_termination_stats(outputStream* const st = gclog_or_tty);
 317   static void
 318     print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
 319   void print_taskqueue_stats(outputStream* const st = gclog_or_tty);
 320   void reset_stats();
 321   #endif // TASKQUEUE_STATS
 322 
 323 private:
 324   ParallelTaskTerminator& _term;
 325   ParNewGeneration&       _gen;
 326   Generation&             _next_gen;
 327  public:
 328   bool is_valid(int id) const { return id < length(); }
 329   ParallelTaskTerminator* terminator() { return &_term; }
 330 };
 331 
 332 
 333 ParScanThreadStateSet::ParScanThreadStateSet(
 334   int num_threads, Space& to_space, ParNewGeneration& gen,
 335   Generation& old_gen, ObjToScanQueueSet& queue_set,
 336   Stack<oop, mtGC>* overflow_stacks,
 337   size_t desired_plab_sz, ParallelTaskTerminator& term)
 338   : ResourceArray(sizeof(ParScanThreadState), num_threads),
 339     _gen(gen), _next_gen(old_gen), _term(term)
 340 {
 341   assert(num_threads > 0, "sanity check!");
 342   assert(ParGCUseLocalOverflow == (overflow_stacks != NULL),
 343          "overflow_stack allocation mismatch");
 344   // Initialize states.
 345   for (int i = 0; i < num_threads; ++i) {
 346     new ((ParScanThreadState*)_data + i)
 347         ParScanThreadState(&to_space, &gen, &old_gen, i, &queue_set,
 348                            overflow_stacks, desired_plab_sz, term);
 349   }
 350 }
 351 
 352 inline ParScanThreadState& ParScanThreadStateSet::thread_state(int i)
 353 {
 354   assert(i >= 0 && i < length(), "sanity check!");
 355   return ((ParScanThreadState*)_data)[i];
 356 }
 357 
 358 void ParScanThreadStateSet::trace_promotion_failed(YoungGCTracer& gc_tracer) {
 359   for (int i = 0; i < length(); ++i) {
 360     if (thread_state(i).promotion_failed()) {
 361       gc_tracer.report_promotion_failed(thread_state(i).promotion_failed_info());
 362       thread_state(i).promotion_failed_info().reset();
 363     }
 364   }
 365 }
 366 
 367 void ParScanThreadStateSet::reset(int active_threads, bool promotion_failed)
 368 {
 369   _term.reset_for_reuse(active_threads);
 370   if (promotion_failed) {
 371     for (int i = 0; i < length(); ++i) {
 372       thread_state(i).print_promotion_failure_size();
 373     }
 374   }
 375 }
 376 
 377 #if TASKQUEUE_STATS
 378 void
 379 ParScanThreadState::reset_stats()
 380 {
 381   taskqueue_stats().reset();
 382   _term_attempts = 0;
 383   _overflow_refills = 0;
 384   _overflow_refill_objs = 0;
 385 }
 386 
 387 void ParScanThreadStateSet::reset_stats()
 388 {
 389   for (int i = 0; i < length(); ++i) {
 390     thread_state(i).reset_stats();
 391   }
 392 }
 393 
 394 void
 395 ParScanThreadStateSet::print_termination_stats_hdr(outputStream* const st)
 396 {
 397   st->print_raw_cr("GC Termination Stats");
 398   st->print_raw_cr("     elapsed  --strong roots-- "
 399                    "-------termination-------");
 400   st->print_raw_cr("thr     ms        ms       %   "
 401                    "    ms       %   attempts");
 402   st->print_raw_cr("--- --------- --------- ------ "
 403                    "--------- ------ --------");
 404 }
 405 
 406 void ParScanThreadStateSet::print_termination_stats(outputStream* const st)
 407 {
 408   print_termination_stats_hdr(st);
 409 
 410   for (int i = 0; i < length(); ++i) {
 411     const ParScanThreadState & pss = thread_state(i);
 412     const double elapsed_ms = pss.elapsed_time() * 1000.0;
 413     const double s_roots_ms = pss.strong_roots_time() * 1000.0;
 414     const double term_ms = pss.term_time() * 1000.0;
 415     st->print_cr("%3d %9.2f %9.2f %6.2f "
 416                  "%9.2f %6.2f " SIZE_FORMAT_W(8),
 417                  i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
 418                  term_ms, term_ms * 100 / elapsed_ms, pss.term_attempts());
 419   }
 420 }
 421 
 422 // Print stats related to work queue activity.
 423 void ParScanThreadStateSet::print_taskqueue_stats_hdr(outputStream* const st)
 424 {
 425   st->print_raw_cr("GC Task Stats");
 426   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
 427   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
 428 }
 429 
 430 void ParScanThreadStateSet::print_taskqueue_stats(outputStream* const st)
 431 {
 432   print_taskqueue_stats_hdr(st);
 433 
 434   TaskQueueStats totals;
 435   for (int i = 0; i < length(); ++i) {
 436     const ParScanThreadState & pss = thread_state(i);
 437     const TaskQueueStats & stats = pss.taskqueue_stats();
 438     st->print("%3d ", i); stats.print(st); st->cr();
 439     totals += stats;
 440 
 441     if (pss.overflow_refills() > 0) {
 442       st->print_cr("    " SIZE_FORMAT_W(10) " overflow refills    "
 443                    SIZE_FORMAT_W(10) " overflow objects",
 444                    pss.overflow_refills(), pss.overflow_refill_objs());
 445     }
 446   }
 447   st->print("tot "); totals.print(st); st->cr();
 448 
 449   DEBUG_ONLY(totals.verify());
 450 }
 451 #endif // TASKQUEUE_STATS
 452 
 453 void ParScanThreadStateSet::flush()
 454 {
 455   // Work in this loop should be kept as lightweight as
 456   // possible since this might otherwise become a bottleneck
 457   // to scaling. Should we add heavy-weight work into this
 458   // loop, consider parallelizing the loop into the worker threads.
 459   for (int i = 0; i < length(); ++i) {
 460     ParScanThreadState& par_scan_state = thread_state(i);
 461 
 462     // Flush stats related to To-space PLAB activity and
 463     // retire the last buffer.
 464     par_scan_state.to_space_alloc_buffer()->
 465       flush_stats_and_retire(_gen.plab_stats(),
 466                              true /* end_of_gc */,
 467                              false /* retain */);
 468 
 469     // Every thread has its own age table.  We need to merge
 470     // them all into one.
 471     ageTable *local_table = par_scan_state.age_table();
 472     _gen.age_table()->merge(local_table);
 473 
 474     // Inform old gen that we're done.
 475     _next_gen.par_promote_alloc_done(i);
 476     _next_gen.par_oop_since_save_marks_iterate_done(i);
 477   }
 478 
 479   if (UseConcMarkSweepGC && ParallelGCThreads > 0) {
 480     // We need to call this even when ResizeOldPLAB is disabled
 481     // so as to avoid breaking some asserts. While we may be able
 482     // to avoid this by reorganizing the code a bit, I am loathe
 483     // to do that unless we find cases where ergo leads to bad
 484     // performance.
 485     CFLS_LAB::compute_desired_plab_size();
 486   }
 487 }
 488 
 489 ParScanClosure::ParScanClosure(ParNewGeneration* g,
 490                                ParScanThreadState* par_scan_state) :
 491   OopsInGenClosure(g), _par_scan_state(par_scan_state), _g(g)
 492 {
 493   assert(_g->level() == 0, "Optimized for youngest generation");
 494   _boundary = _g->reserved().end();
 495 }
 496 
 497 void ParScanWithBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, false); }
 498 void ParScanWithBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, false); }
 499 
 500 void ParScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, false); }
 501 void ParScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, false); }
 502 
 503 void ParRootScanWithBarrierTwoGensClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, true); }
 504 void ParRootScanWithBarrierTwoGensClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, true); }
 505 
 506 void ParRootScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, true); }
 507 void ParRootScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, true); }
 508 
 509 ParScanWeakRefClosure::ParScanWeakRefClosure(ParNewGeneration* g,
 510                                              ParScanThreadState* par_scan_state)
 511   : ScanWeakRefClosure(g), _par_scan_state(par_scan_state)
 512 {}
 513 
 514 void ParScanWeakRefClosure::do_oop(oop* p)       { ParScanWeakRefClosure::do_oop_work(p); }
 515 void ParScanWeakRefClosure::do_oop(narrowOop* p) { ParScanWeakRefClosure::do_oop_work(p); }
 516 
 517 #ifdef WIN32
 518 #pragma warning(disable: 4786) /* identifier was truncated to '255' characters in the browser information */
 519 #endif
 520 
 521 ParEvacuateFollowersClosure::ParEvacuateFollowersClosure(
 522     ParScanThreadState* par_scan_state_,
 523     ParScanWithoutBarrierClosure* to_space_closure_,
 524     ParScanWithBarrierClosure* old_gen_closure_,
 525     ParRootScanWithoutBarrierClosure* to_space_root_closure_,
 526     ParNewGeneration* par_gen_,
 527     ParRootScanWithBarrierTwoGensClosure* old_gen_root_closure_,
 528     ObjToScanQueueSet* task_queues_,
 529     ParallelTaskTerminator* terminator_) :
 530 
 531     _par_scan_state(par_scan_state_),
 532     _to_space_closure(to_space_closure_),
 533     _old_gen_closure(old_gen_closure_),
 534     _to_space_root_closure(to_space_root_closure_),
 535     _old_gen_root_closure(old_gen_root_closure_),
 536     _par_gen(par_gen_),
 537     _task_queues(task_queues_),
 538     _terminator(terminator_)
 539 {}
 540 
 541 void ParEvacuateFollowersClosure::do_void() {
 542   ObjToScanQueue* work_q = par_scan_state()->work_queue();
 543 
 544   while (true) {
 545 
 546     // Scan to-space and old-gen objs until we run out of both.
 547     oop obj_to_scan;
 548     par_scan_state()->trim_queues(0);
 549 
 550     // We have no local work, attempt to steal from other threads.
 551 
 552     // attempt to steal work from promoted.
 553     if (task_queues()->steal(par_scan_state()->thread_num(),
 554                              par_scan_state()->hash_seed(),
 555                              obj_to_scan)) {
 556       bool res = work_q->push(obj_to_scan);
 557       assert(res, "Empty queue should have room for a push.");
 558 
 559       //   if successful, goto Start.
 560       continue;
 561 
 562       // try global overflow list.
 563     } else if (par_gen()->take_from_overflow_list(par_scan_state())) {
 564       continue;
 565     }
 566 
 567     // Otherwise, offer termination.
 568     par_scan_state()->start_term_time();
 569     if (terminator()->offer_termination()) break;
 570     par_scan_state()->end_term_time();
 571   }
 572   assert(par_gen()->_overflow_list == NULL && par_gen()->_num_par_pushes == 0,
 573          "Broken overflow list?");
 574   // Finish the last termination pause.
 575   par_scan_state()->end_term_time();
 576 }
 577 
 578 ParNewGenTask::ParNewGenTask(ParNewGeneration* gen, Generation* next_gen,
 579                 HeapWord* young_old_boundary, ParScanThreadStateSet* state_set) :
 580     AbstractGangTask("ParNewGeneration collection"),
 581     _gen(gen), _next_gen(next_gen),
 582     _young_old_boundary(young_old_boundary),
 583     _state_set(state_set)
 584   {}
 585 
 586 // Reset the terminator for the given number of
 587 // active threads.
 588 void ParNewGenTask::set_for_termination(int active_workers) {
 589   _state_set->reset(active_workers, _gen->promotion_failed());
 590   // Should the heap be passed in?  There's only 1 for now so
 591   // grab it instead.
 592   GenCollectedHeap* gch = GenCollectedHeap::heap();
 593   gch->set_n_termination(active_workers);
 594 }
 595 
 596 // The "i" passed to this method is the part of the work for
 597 // this thread.  It is not the worker ID.  The "i" is derived
 598 // from _started_workers which is incremented in internal_note_start()
 599 // called in GangWorker loop() and which is called under the
 600 // which is  called under the protection of the gang monitor and is
 601 // called after a task is started.  So "i" is based on
 602 // first-come-first-served.
 603 
 604 void ParNewGenTask::work(uint worker_id) {
 605   GenCollectedHeap* gch = GenCollectedHeap::heap();
 606   // Since this is being done in a separate thread, need new resource
 607   // and handle marks.
 608   ResourceMark rm;
 609   HandleMark hm;
 610   // We would need multiple old-gen queues otherwise.
 611   assert(gch->n_gens() == 2, "Par young collection currently only works with one older gen.");
 612 
 613   Generation* old_gen = gch->next_gen(_gen);
 614 
 615   ParScanThreadState& par_scan_state = _state_set->thread_state(worker_id);
 616   assert(_state_set->is_valid(worker_id), "Should not have been called");
 617 
 618   par_scan_state.set_young_old_boundary(_young_old_boundary);
 619 
 620   par_scan_state.start_strong_roots();
 621   gch->gen_process_strong_roots(_gen->level(),
 622                                 true,  // Process younger gens, if any,
 623                                        // as strong roots.
 624                                 false, // no scope; this is parallel code
 625                                 false, // not collecting perm generation.
 626                                 SharedHeap::SO_AllClasses,
 627                                 &par_scan_state.to_space_root_closure(),
 628                                 true,   // walk *all* scavengable nmethods
 629                                 &par_scan_state.older_gen_closure());
 630   par_scan_state.end_strong_roots();
 631 
 632   // "evacuate followers".
 633   par_scan_state.evacuate_followers_closure().do_void();
 634 }
 635 
 636 #ifdef _MSC_VER
 637 #pragma warning( push )
 638 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 639 #endif
 640 ParNewGeneration::
 641 ParNewGeneration(ReservedSpace rs, size_t initial_byte_size, int level)
 642   : DefNewGeneration(rs, initial_byte_size, level, "PCopy"),
 643   _overflow_list(NULL),
 644   _is_alive_closure(this),
 645   _plab_stats(YoungPLABSize, PLABWeight)
 646 {
 647   NOT_PRODUCT(_overflow_counter = ParGCWorkQueueOverflowInterval;)
 648   NOT_PRODUCT(_num_par_pushes = 0;)
 649   _task_queues = new ObjToScanQueueSet(ParallelGCThreads);
 650   guarantee(_task_queues != NULL, "task_queues allocation failure.");
 651 
 652   for (uint i1 = 0; i1 < ParallelGCThreads; i1++) {
 653     ObjToScanQueue *q = new ObjToScanQueue();
 654     guarantee(q != NULL, "work_queue Allocation failure.");
 655     _task_queues->register_queue(i1, q);
 656   }
 657 
 658   for (uint i2 = 0; i2 < ParallelGCThreads; i2++)
 659     _task_queues->queue(i2)->initialize();
 660 
 661   _overflow_stacks = NULL;
 662   if (ParGCUseLocalOverflow) {
 663 
 664     // typedef to workaround NEW_C_HEAP_ARRAY macro, which can not deal
 665     // with ','
 666     typedef Stack<oop, mtGC> GCOopStack;
 667 
 668     _overflow_stacks = NEW_C_HEAP_ARRAY(GCOopStack, ParallelGCThreads, mtGC);
 669     for (size_t i = 0; i < ParallelGCThreads; ++i) {
 670       new (_overflow_stacks + i) Stack<oop, mtGC>();
 671     }
 672   }
 673 
 674   if (UsePerfData) {
 675     EXCEPTION_MARK;
 676     ResourceMark rm;
 677 
 678     const char* cname =
 679          PerfDataManager::counter_name(_gen_counters->name_space(), "threads");
 680     PerfDataManager::create_constant(SUN_GC, cname, PerfData::U_None,
 681                                      ParallelGCThreads, CHECK);
 682   }
 683 }
 684 #ifdef _MSC_VER
 685 #pragma warning( pop )
 686 #endif
 687 
 688 // ParNewGeneration::
 689 ParKeepAliveClosure::ParKeepAliveClosure(ParScanWeakRefClosure* cl) :
 690   DefNewGeneration::KeepAliveClosure(cl), _par_cl(cl) {}
 691 
 692 template <class T>
 693 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop_work(T* p) {
 694 #ifdef ASSERT
 695   {
 696     assert(!oopDesc::is_null(*p), "expected non-null ref");
 697     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 698     // We never expect to see a null reference being processed
 699     // as a weak reference.
 700     assert(obj->is_oop(), "expected an oop while scanning weak refs");
 701   }
 702 #endif // ASSERT
 703 
 704   _par_cl->do_oop_nv(p);
 705 
 706   if (Universe::heap()->is_in_reserved(p)) {
 707     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 708     _rs->write_ref_field_gc_par(p, obj);
 709   }
 710 }
 711 
 712 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(oop* p)       { ParKeepAliveClosure::do_oop_work(p); }
 713 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(narrowOop* p) { ParKeepAliveClosure::do_oop_work(p); }
 714 
 715 // ParNewGeneration::
 716 KeepAliveClosure::KeepAliveClosure(ScanWeakRefClosure* cl) :
 717   DefNewGeneration::KeepAliveClosure(cl) {}
 718 
 719 template <class T>
 720 void /*ParNewGeneration::*/KeepAliveClosure::do_oop_work(T* p) {
 721 #ifdef ASSERT
 722   {
 723     assert(!oopDesc::is_null(*p), "expected non-null ref");
 724     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 725     // We never expect to see a null reference being processed
 726     // as a weak reference.
 727     assert(obj->is_oop(), "expected an oop while scanning weak refs");
 728   }
 729 #endif // ASSERT
 730 
 731   _cl->do_oop_nv(p);
 732 
 733   if (Universe::heap()->is_in_reserved(p)) {
 734     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 735     _rs->write_ref_field_gc_par(p, obj);
 736   }
 737 }
 738 
 739 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(oop* p)       { KeepAliveClosure::do_oop_work(p); }
 740 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(narrowOop* p) { KeepAliveClosure::do_oop_work(p); }
 741 
 742 template <class T> void ScanClosureWithParBarrier::do_oop_work(T* p) {
 743   T heap_oop = oopDesc::load_heap_oop(p);
 744   if (!oopDesc::is_null(heap_oop)) {
 745     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 746     if ((HeapWord*)obj < _boundary) {
 747       assert(!_g->to()->is_in_reserved(obj), "Scanning field twice?");
 748       oop new_obj = obj->is_forwarded()
 749                       ? obj->forwardee()
 750                       : _g->DefNewGeneration::copy_to_survivor_space(obj);
 751       oopDesc::encode_store_heap_oop_not_null(p, new_obj);
 752     }
 753     if (_gc_barrier) {
 754       // If p points to a younger generation, mark the card.
 755       if ((HeapWord*)obj < _gen_boundary) {
 756         _rs->write_ref_field_gc_par(p, obj);
 757       }
 758     }
 759   }
 760 }
 761 
 762 void ScanClosureWithParBarrier::do_oop(oop* p)       { ScanClosureWithParBarrier::do_oop_work(p); }
 763 void ScanClosureWithParBarrier::do_oop(narrowOop* p) { ScanClosureWithParBarrier::do_oop_work(p); }
 764 
 765 class ParNewRefProcTaskProxy: public AbstractGangTask {
 766   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
 767 public:
 768   ParNewRefProcTaskProxy(ProcessTask& task, ParNewGeneration& gen,
 769                          Generation& next_gen,
 770                          HeapWord* young_old_boundary,
 771                          ParScanThreadStateSet& state_set);
 772 
 773 private:
 774   virtual void work(uint worker_id);
 775   virtual void set_for_termination(int active_workers) {
 776     _state_set.terminator()->reset_for_reuse(active_workers);
 777   }
 778 private:
 779   ParNewGeneration&      _gen;
 780   ProcessTask&           _task;
 781   Generation&            _next_gen;
 782   HeapWord*              _young_old_boundary;
 783   ParScanThreadStateSet& _state_set;
 784 };
 785 
 786 ParNewRefProcTaskProxy::ParNewRefProcTaskProxy(
 787     ProcessTask& task, ParNewGeneration& gen,
 788     Generation& next_gen,
 789     HeapWord* young_old_boundary,
 790     ParScanThreadStateSet& state_set)
 791   : AbstractGangTask("ParNewGeneration parallel reference processing"),
 792     _gen(gen),
 793     _task(task),
 794     _next_gen(next_gen),
 795     _young_old_boundary(young_old_boundary),
 796     _state_set(state_set)
 797 {
 798 }
 799 
 800 void ParNewRefProcTaskProxy::work(uint worker_id)
 801 {
 802   ResourceMark rm;
 803   HandleMark hm;
 804   ParScanThreadState& par_scan_state = _state_set.thread_state(worker_id);
 805   par_scan_state.set_young_old_boundary(_young_old_boundary);
 806   _task.work(worker_id, par_scan_state.is_alive_closure(),
 807              par_scan_state.keep_alive_closure(),
 808              par_scan_state.evacuate_followers_closure());
 809 }
 810 
 811 class ParNewRefEnqueueTaskProxy: public AbstractGangTask {
 812   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
 813   EnqueueTask& _task;
 814 
 815 public:
 816   ParNewRefEnqueueTaskProxy(EnqueueTask& task)
 817     : AbstractGangTask("ParNewGeneration parallel reference enqueue"),
 818       _task(task)
 819   { }
 820 
 821   virtual void work(uint worker_id)
 822   {
 823     _task.work(worker_id);
 824   }
 825 };
 826 
 827 
 828 void ParNewRefProcTaskExecutor::execute(ProcessTask& task)
 829 {
 830   GenCollectedHeap* gch = GenCollectedHeap::heap();
 831   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
 832          "not a generational heap");
 833   FlexibleWorkGang* workers = gch->workers();
 834   assert(workers != NULL, "Need parallel worker threads.");
 835   _state_set.reset(workers->active_workers(), _generation.promotion_failed());
 836   ParNewRefProcTaskProxy rp_task(task, _generation, *_generation.next_gen(),
 837                                  _generation.reserved().end(), _state_set);
 838   workers->run_task(&rp_task);
 839   _state_set.reset(0 /* bad value in debug if not reset */,
 840                    _generation.promotion_failed());
 841 }
 842 
 843 void ParNewRefProcTaskExecutor::execute(EnqueueTask& task)
 844 {
 845   GenCollectedHeap* gch = GenCollectedHeap::heap();
 846   FlexibleWorkGang* workers = gch->workers();
 847   assert(workers != NULL, "Need parallel worker threads.");
 848   ParNewRefEnqueueTaskProxy enq_task(task);
 849   workers->run_task(&enq_task);
 850 }
 851 
 852 void ParNewRefProcTaskExecutor::set_single_threaded_mode()
 853 {
 854   _state_set.flush();
 855   GenCollectedHeap* gch = GenCollectedHeap::heap();
 856   gch->set_par_threads(0);  // 0 ==> non-parallel.
 857   gch->save_marks();
 858 }
 859 
 860 ScanClosureWithParBarrier::
 861 ScanClosureWithParBarrier(ParNewGeneration* g, bool gc_barrier) :
 862   ScanClosure(g, gc_barrier) {}
 863 
 864 EvacuateFollowersClosureGeneral::
 865 EvacuateFollowersClosureGeneral(GenCollectedHeap* gch, int level,
 866                                 OopsInGenClosure* cur,
 867                                 OopsInGenClosure* older) :
 868   _gch(gch), _level(level),
 869   _scan_cur_or_nonheap(cur), _scan_older(older)
 870 {}
 871 
 872 void EvacuateFollowersClosureGeneral::do_void() {
 873   do {
 874     // Beware: this call will lead to closure applications via virtual
 875     // calls.
 876     _gch->oop_since_save_marks_iterate(_level,
 877                                        _scan_cur_or_nonheap,
 878                                        _scan_older);
 879   } while (!_gch->no_allocs_since_save_marks(_level));
 880 }
 881 
 882 
 883 // A Generation that does parallel young-gen collection.
 884 
 885 bool ParNewGeneration::_avoid_promotion_undo = false;
 886 
 887 void ParNewGeneration::adjust_desired_tenuring_threshold() {
 888   // Set the desired survivor size to half the real survivor space
 889   _tenuring_threshold =
 890     age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
 891 }
 892 
 893 void ParNewGeneration::handle_promotion_failed(GenCollectedHeap* gch, ParScanThreadStateSet& thread_state_set, ParNewTracer& gc_tracer) {
 894   assert(_promo_failure_scan_stack.is_empty(), "post condition");
 895   _promo_failure_scan_stack.clear(true); // Clear cached segments.
 896 
 897   remove_forwarding_pointers();
 898   if (PrintGCDetails) {
 899     gclog_or_tty->print(" (promotion failed)");
 900   }
 901   // All the spaces are in play for mark-sweep.
 902   swap_spaces();  // Make life simpler for CMS || rescan; see 6483690.
 903   from()->set_next_compaction_space(to());
 904   gch->set_incremental_collection_failed();
 905   // Inform the next generation that a promotion failure occurred.
 906   _next_gen->promotion_failure_occurred();
 907 
 908   // Trace promotion failure in the parallel GC threads
 909   thread_state_set.trace_promotion_failed(gc_tracer);
 910   // Single threaded code may have reported promotion failure to the global state
 911   if (_promotion_failed_info.promotion_failed()) {
 912     gc_tracer.report_promotion_failed(_promotion_failed_info);
 913   }
 914   // Reset the PromotionFailureALot counters.
 915   NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
 916 }
 917 
 918 void ParNewGeneration::collect(bool   full,
 919                                bool   clear_all_soft_refs,
 920                                size_t size,
 921                                bool   is_tlab) {
 922   assert(full || size > 0, "otherwise we don't want to collect");
 923 
 924   GenCollectedHeap* gch = GenCollectedHeap::heap();
 925 
 926   _gc_timer->register_gc_start(os::elapsed_counter());
 927 
 928   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
 929     "not a CMS generational heap");
 930   AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
 931   FlexibleWorkGang* workers = gch->workers();
 932   assert(workers != NULL, "Need workgang for parallel work");
 933   int active_workers =
 934       AdaptiveSizePolicy::calc_active_workers(workers->total_workers(),
 935                                    workers->active_workers(),
 936                                    Threads::number_of_non_daemon_threads());
 937   workers->set_active_workers(active_workers);
 938   _next_gen = gch->next_gen(this);
 939   assert(_next_gen != NULL,
 940     "This must be the youngest gen, and not the only gen");
 941   assert(gch->n_gens() == 2,
 942          "Par collection currently only works with single older gen.");
 943   // Do we have to avoid promotion_undo?
 944   if (gch->collector_policy()->is_concurrent_mark_sweep_policy()) {
 945     set_avoid_promotion_undo(true);
 946   }
 947 
 948   // If the next generation is too full to accommodate worst-case promotion
 949   // from this generation, pass on collection; let the next generation
 950   // do it.
 951   if (!collection_attempt_is_safe()) {
 952     gch->set_incremental_collection_failed();  // slight lie, in that we did not even attempt one
 953     return;
 954   }
 955   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
 956 
 957   ParNewTracer gc_tracer;
 958   gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
 959   gch->trace_heap_before_gc(&gc_tracer);
 960 
 961   init_assuming_no_promotion_failure();
 962 
 963   if (UseAdaptiveSizePolicy) {
 964     set_survivor_overflow(false);
 965     size_policy->minor_collection_begin();
 966   }
 967 
 968   GCTraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, NULL);
 969   // Capture heap used before collection (for printing).
 970   size_t gch_prev_used = gch->used();
 971 
 972   SpecializationStats::clear();
 973 
 974   age_table()->clear();
 975   to()->clear(SpaceDecorator::Mangle);
 976 
 977   gch->save_marks();
 978   assert(workers != NULL, "Need parallel worker threads.");
 979   int n_workers = active_workers;
 980 
 981   // Set the correct parallelism (number of queues) in the reference processor
 982   ref_processor()->set_active_mt_degree(n_workers);
 983 
 984   // Always set the terminator for the active number of workers
 985   // because only those workers go through the termination protocol.
 986   ParallelTaskTerminator _term(n_workers, task_queues());
 987   ParScanThreadStateSet thread_state_set(workers->active_workers(),
 988                                          *to(), *this, *_next_gen, *task_queues(),
 989                                          _overflow_stacks, desired_plab_sz(), _term);
 990 
 991   ParNewGenTask tsk(this, _next_gen, reserved().end(), &thread_state_set);
 992   gch->set_par_threads(n_workers);
 993   gch->rem_set()->prepare_for_younger_refs_iterate(true);
 994   // It turns out that even when we're using 1 thread, doing the work in a
 995   // separate thread causes wide variance in run times.  We can't help this
 996   // in the multi-threaded case, but we special-case n=1 here to get
 997   // repeatable measurements of the 1-thread overhead of the parallel code.
 998   if (n_workers > 1) {
 999     GenCollectedHeap::StrongRootsScope srs(gch);
1000     workers->run_task(&tsk);
1001   } else {
1002     GenCollectedHeap::StrongRootsScope srs(gch);
1003     tsk.work(0);
1004   }
1005   thread_state_set.reset(0 /* Bad value in debug if not reset */,
1006                          promotion_failed());
1007 
1008   // Process (weak) reference objects found during scavenge.
1009   ReferenceProcessor* rp = ref_processor();
1010   IsAliveClosure is_alive(this);
1011   ScanWeakRefClosure scan_weak_ref(this);
1012   KeepAliveClosure keep_alive(&scan_weak_ref);
1013   ScanClosure               scan_without_gc_barrier(this, false);
1014   ScanClosureWithParBarrier scan_with_gc_barrier(this, true);
1015   set_promo_failure_scan_stack_closure(&scan_without_gc_barrier);
1016   EvacuateFollowersClosureGeneral evacuate_followers(gch, _level,
1017     &scan_without_gc_barrier, &scan_with_gc_barrier);
1018   rp->setup_policy(clear_all_soft_refs);
1019   // Can  the mt_degree be set later (at run_task() time would be best)?
1020   rp->set_active_mt_degree(active_workers);
1021   ReferenceProcessorStats stats;
1022   if (rp->processing_is_mt()) {
1023     ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
1024     stats = rp->process_discovered_references(&is_alive, &keep_alive,
1025                                               &evacuate_followers, &task_executor,
1026                                               _gc_timer);
1027   } else {
1028     thread_state_set.flush();
1029     gch->set_par_threads(0);  // 0 ==> non-parallel.
1030     gch->save_marks();
1031     stats = rp->process_discovered_references(&is_alive, &keep_alive,
1032                                               &evacuate_followers, NULL,
1033                                               _gc_timer);
1034   }
1035   gc_tracer.report_gc_reference_stats(stats);
1036   if (!promotion_failed()) {
1037     // Swap the survivor spaces.
1038     eden()->clear(SpaceDecorator::Mangle);
1039     from()->clear(SpaceDecorator::Mangle);
1040     if (ZapUnusedHeapArea) {
1041       // This is now done here because of the piece-meal mangling which
1042       // can check for valid mangling at intermediate points in the
1043       // collection(s).  When a minor collection fails to collect
1044       // sufficient space resizing of the young generation can occur
1045       // an redistribute the spaces in the young generation.  Mangle
1046       // here so that unzapped regions don't get distributed to
1047       // other spaces.
1048       to()->mangle_unused_area();
1049     }
1050     swap_spaces();
1051 
1052     // A successful scavenge should restart the GC time limit count which is
1053     // for full GC's.
1054     size_policy->reset_gc_overhead_limit_count();
1055 
1056     assert(to()->is_empty(), "to space should be empty now");
1057   } else {
1058     handle_promotion_failed(gch, thread_state_set, gc_tracer);
1059   }
1060   // set new iteration safe limit for the survivor spaces
1061   from()->set_concurrent_iteration_safe_limit(from()->top());
1062   to()->set_concurrent_iteration_safe_limit(to()->top());
1063 
1064   adjust_desired_tenuring_threshold();
1065   if (ResizePLAB) {
1066     plab_stats()->adjust_desired_plab_sz(n_workers);
1067   }
1068 
1069   if (PrintGC && !PrintGCDetails) {
1070     gch->print_heap_change(gch_prev_used);
1071   }
1072 
1073   if (PrintGCDetails && ParallelGCVerbose) {
1074     TASKQUEUE_STATS_ONLY(thread_state_set.print_termination_stats());
1075     TASKQUEUE_STATS_ONLY(thread_state_set.print_taskqueue_stats());
1076   }
1077 
1078   if (UseAdaptiveSizePolicy) {
1079     size_policy->minor_collection_end(gch->gc_cause());
1080     size_policy->avg_survived()->sample(from()->used());
1081   }
1082 
1083   // We need to use a monotonically non-deccreasing time in ms
1084   // or we will see time-warp warnings and os::javaTimeMillis()
1085   // does not guarantee monotonicity.
1086   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1087   update_time_of_last_gc(now);
1088 
1089   SpecializationStats::print();
1090 
1091   rp->set_enqueuing_is_done(true);
1092   if (rp->processing_is_mt()) {
1093     ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
1094     rp->enqueue_discovered_references(&task_executor);
1095   } else {
1096     rp->enqueue_discovered_references(NULL);
1097   }
1098   rp->verify_no_references_recorded();
1099 
1100   gch->trace_heap_after_gc(&gc_tracer);
1101 
1102   _gc_timer->register_gc_end(os::elapsed_counter());
1103 
1104   gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
1105 }
1106 
1107 static int sum;
1108 void ParNewGeneration::waste_some_time() {
1109   for (int i = 0; i < 100; i++) {
1110     sum += i;
1111   }
1112 }
1113 
1114 static const oop ClaimedForwardPtr = oop(0x4);
1115 
1116 // Because of concurrency, there are times where an object for which
1117 // "is_forwarded()" is true contains an "interim" forwarding pointer
1118 // value.  Such a value will soon be overwritten with a real value.
1119 // This method requires "obj" to have a forwarding pointer, and waits, if
1120 // necessary for a real one to be inserted, and returns it.
1121 
1122 oop ParNewGeneration::real_forwardee(oop obj) {
1123   oop forward_ptr = obj->forwardee();
1124   if (forward_ptr != ClaimedForwardPtr) {
1125     return forward_ptr;
1126   } else {
1127     return real_forwardee_slow(obj);
1128   }
1129 }
1130 
1131 oop ParNewGeneration::real_forwardee_slow(oop obj) {
1132   // Spin-read if it is claimed but not yet written by another thread.
1133   oop forward_ptr = obj->forwardee();
1134   while (forward_ptr == ClaimedForwardPtr) {
1135     waste_some_time();
1136     assert(obj->is_forwarded(), "precondition");
1137     forward_ptr = obj->forwardee();
1138   }
1139   return forward_ptr;
1140 }
1141 
1142 #ifdef ASSERT
1143 bool ParNewGeneration::is_legal_forward_ptr(oop p) {
1144   return
1145     (_avoid_promotion_undo && p == ClaimedForwardPtr)
1146     || Universe::heap()->is_in_reserved(p);
1147 }
1148 #endif
1149 
1150 void ParNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
1151   if (m->must_be_preserved_for_promotion_failure(obj)) {
1152     // We should really have separate per-worker stacks, rather
1153     // than use locking of a common pair of stacks.
1154     MutexLocker ml(ParGCRareEvent_lock);
1155     preserve_mark(obj, m);
1156   }
1157 }
1158 
1159 // Multiple GC threads may try to promote an object.  If the object
1160 // is successfully promoted, a forwarding pointer will be installed in
1161 // the object in the young generation.  This method claims the right
1162 // to install the forwarding pointer before it copies the object,
1163 // thus avoiding the need to undo the copy as in
1164 // copy_to_survivor_space_avoiding_with_undo.
1165 
1166 oop ParNewGeneration::copy_to_survivor_space_avoiding_promotion_undo(
1167         ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
1168   // In the sequential version, this assert also says that the object is
1169   // not forwarded.  That might not be the case here.  It is the case that
1170   // the caller observed it to be not forwarded at some time in the past.
1171   assert(is_in_reserved(old), "shouldn't be scavenging this oop");
1172 
1173   // The sequential code read "old->age()" below.  That doesn't work here,
1174   // since the age is in the mark word, and that might be overwritten with
1175   // a forwarding pointer by a parallel thread.  So we must save the mark
1176   // word in a local and then analyze it.
1177   oopDesc dummyOld;
1178   dummyOld.set_mark(m);
1179   assert(!dummyOld.is_forwarded(),
1180          "should not be called with forwarding pointer mark word.");
1181 
1182   oop new_obj = NULL;
1183   oop forward_ptr;
1184 
1185   // Try allocating obj in to-space (unless too old)
1186   if (dummyOld.age() < tenuring_threshold()) {
1187     new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
1188     if (new_obj == NULL) {
1189       set_survivor_overflow(true);
1190     }
1191   }
1192 
1193   if (new_obj == NULL) {
1194     // Either to-space is full or we decided to promote
1195     // try allocating obj tenured
1196 
1197     // Attempt to install a null forwarding pointer (atomically),
1198     // to claim the right to install the real forwarding pointer.
1199     forward_ptr = old->forward_to_atomic(ClaimedForwardPtr);
1200     if (forward_ptr != NULL) {
1201       // someone else beat us to it.
1202         return real_forwardee(old);
1203     }
1204 
1205     new_obj = _next_gen->par_promote(par_scan_state->thread_num(),
1206                                        old, m, sz);
1207 
1208     if (new_obj == NULL) {
1209       // promotion failed, forward to self
1210       _promotion_failed = true;
1211       new_obj = old;
1212 
1213       preserve_mark_if_necessary(old, m);
1214       par_scan_state->register_promotion_failure(sz);
1215     }
1216 
1217     old->forward_to(new_obj);
1218     forward_ptr = NULL;
1219   } else {
1220     // Is in to-space; do copying ourselves.
1221     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
1222     forward_ptr = old->forward_to_atomic(new_obj);
1223     // Restore the mark word copied above.
1224     new_obj->set_mark(m);
1225     // Increment age if obj still in new generation
1226     new_obj->incr_age();
1227     par_scan_state->age_table()->add(new_obj, sz);
1228   }
1229   assert(new_obj != NULL, "just checking");
1230 
1231   if (forward_ptr == NULL) {
1232     oop obj_to_push = new_obj;
1233     if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
1234       // Length field used as index of next element to be scanned.
1235       // Real length can be obtained from real_forwardee()
1236       arrayOop(old)->set_length(0);
1237       obj_to_push = old;
1238       assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
1239              "push forwarded object");
1240     }
1241     // Push it on one of the queues of to-be-scanned objects.
1242     bool simulate_overflow = false;
1243     NOT_PRODUCT(
1244       if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
1245         // simulate a stack overflow
1246         simulate_overflow = true;
1247       }
1248     )
1249     if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
1250       // Add stats for overflow pushes.
1251       if (Verbose && PrintGCDetails) {
1252         gclog_or_tty->print("queue overflow!\n");
1253       }
1254       push_on_overflow_list(old, par_scan_state);
1255       TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
1256     }
1257 
1258     return new_obj;
1259   }
1260 
1261   // Oops.  Someone beat us to it.  Undo the allocation.  Where did we
1262   // allocate it?
1263   if (is_in_reserved(new_obj)) {
1264     // Must be in to_space.
1265     assert(to()->is_in_reserved(new_obj), "Checking");
1266     if (forward_ptr == ClaimedForwardPtr) {
1267       // Wait to get the real forwarding pointer value.
1268       forward_ptr = real_forwardee(old);
1269     }
1270     par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
1271   }
1272 
1273   return forward_ptr;
1274 }
1275 
1276 
1277 // Multiple GC threads may try to promote the same object.  If two
1278 // or more GC threads copy the object, only one wins the race to install
1279 // the forwarding pointer.  The other threads have to undo their copy.
1280 
1281 oop ParNewGeneration::copy_to_survivor_space_with_undo(
1282         ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
1283 
1284   // In the sequential version, this assert also says that the object is
1285   // not forwarded.  That might not be the case here.  It is the case that
1286   // the caller observed it to be not forwarded at some time in the past.
1287   assert(is_in_reserved(old), "shouldn't be scavenging this oop");
1288 
1289   // The sequential code read "old->age()" below.  That doesn't work here,
1290   // since the age is in the mark word, and that might be overwritten with
1291   // a forwarding pointer by a parallel thread.  So we must save the mark
1292   // word here, install it in a local oopDesc, and then analyze it.
1293   oopDesc dummyOld;
1294   dummyOld.set_mark(m);
1295   assert(!dummyOld.is_forwarded(),
1296          "should not be called with forwarding pointer mark word.");
1297 
1298   bool failed_to_promote = false;
1299   oop new_obj = NULL;
1300   oop forward_ptr;
1301 
1302   // Try allocating obj in to-space (unless too old)
1303   if (dummyOld.age() < tenuring_threshold()) {
1304     new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
1305     if (new_obj == NULL) {
1306       set_survivor_overflow(true);
1307     }
1308   }
1309 
1310   if (new_obj == NULL) {
1311     // Either to-space is full or we decided to promote
1312     // try allocating obj tenured
1313     new_obj = _next_gen->par_promote(par_scan_state->thread_num(),
1314                                        old, m, sz);
1315 
1316     if (new_obj == NULL) {
1317       // promotion failed, forward to self
1318       forward_ptr = old->forward_to_atomic(old);
1319       new_obj = old;
1320 
1321       if (forward_ptr != NULL) {
1322         return forward_ptr;   // someone else succeeded
1323       }
1324 
1325       _promotion_failed = true;
1326       failed_to_promote = true;
1327 
1328       preserve_mark_if_necessary(old, m);
1329       par_scan_state->register_promotion_failure(sz);
1330     }
1331   } else {
1332     // Is in to-space; do copying ourselves.
1333     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
1334     // Restore the mark word copied above.
1335     new_obj->set_mark(m);
1336     // Increment age if new_obj still in new generation
1337     new_obj->incr_age();
1338     par_scan_state->age_table()->add(new_obj, sz);
1339   }
1340   assert(new_obj != NULL, "just checking");
1341 
1342   // Now attempt to install the forwarding pointer (atomically).
1343   // We have to copy the mark word before overwriting with forwarding
1344   // ptr, so we can restore it below in the copy.
1345   if (!failed_to_promote) {
1346     forward_ptr = old->forward_to_atomic(new_obj);
1347   }
1348 
1349   if (forward_ptr == NULL) {
1350     oop obj_to_push = new_obj;
1351     if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
1352       // Length field used as index of next element to be scanned.
1353       // Real length can be obtained from real_forwardee()
1354       arrayOop(old)->set_length(0);
1355       obj_to_push = old;
1356       assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
1357              "push forwarded object");
1358     }
1359     // Push it on one of the queues of to-be-scanned objects.
1360     bool simulate_overflow = false;
1361     NOT_PRODUCT(
1362       if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
1363         // simulate a stack overflow
1364         simulate_overflow = true;
1365       }
1366     )
1367     if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
1368       // Add stats for overflow pushes.
1369       push_on_overflow_list(old, par_scan_state);
1370       TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
1371     }
1372 
1373     return new_obj;
1374   }
1375 
1376   // Oops.  Someone beat us to it.  Undo the allocation.  Where did we
1377   // allocate it?
1378   if (is_in_reserved(new_obj)) {
1379     // Must be in to_space.
1380     assert(to()->is_in_reserved(new_obj), "Checking");
1381     par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
1382   } else {
1383     assert(!_avoid_promotion_undo, "Should not be here if avoiding.");
1384     _next_gen->par_promote_alloc_undo(par_scan_state->thread_num(),
1385                                       (HeapWord*)new_obj, sz);
1386   }
1387 
1388   return forward_ptr;
1389 }
1390 
1391 #ifndef PRODUCT
1392 // It's OK to call this multi-threaded;  the worst thing
1393 // that can happen is that we'll get a bunch of closely
1394 // spaced simulated oveflows, but that's OK, in fact
1395 // probably good as it would exercise the overflow code
1396 // under contention.
1397 bool ParNewGeneration::should_simulate_overflow() {
1398   if (_overflow_counter-- <= 0) { // just being defensive
1399     _overflow_counter = ParGCWorkQueueOverflowInterval;
1400     return true;
1401   } else {
1402     return false;
1403   }
1404 }
1405 #endif
1406 
1407 // In case we are using compressed oops, we need to be careful.
1408 // If the object being pushed is an object array, then its length
1409 // field keeps track of the "grey boundary" at which the next
1410 // incremental scan will be done (see ParGCArrayScanChunk).
1411 // When using compressed oops, this length field is kept in the
1412 // lower 32 bits of the erstwhile klass word and cannot be used
1413 // for the overflow chaining pointer (OCP below). As such the OCP
1414 // would itself need to be compressed into the top 32-bits in this
1415 // case. Unfortunately, see below, in the event that we have a
1416 // promotion failure, the node to be pushed on the list can be
1417 // outside of the Java heap, so the heap-based pointer compression
1418 // would not work (we would have potential aliasing between C-heap
1419 // and Java-heap pointers). For this reason, when using compressed
1420 // oops, we simply use a worker-thread-local, non-shared overflow
1421 // list in the form of a growable array, with a slightly different
1422 // overflow stack draining strategy. If/when we start using fat
1423 // stacks here, we can go back to using (fat) pointer chains
1424 // (although some performance comparisons would be useful since
1425 // single global lists have their own performance disadvantages
1426 // as we were made painfully aware not long ago, see 6786503).
1427 #define BUSY (oop(0x1aff1aff))
1428 void ParNewGeneration::push_on_overflow_list(oop from_space_obj, ParScanThreadState* par_scan_state) {
1429   assert(is_in_reserved(from_space_obj), "Should be from this generation");
1430   if (ParGCUseLocalOverflow) {
1431     // In the case of compressed oops, we use a private, not-shared
1432     // overflow stack.
1433     par_scan_state->push_on_overflow_stack(from_space_obj);
1434   } else {
1435     assert(!UseCompressedOops, "Error");
1436     // if the object has been forwarded to itself, then we cannot
1437     // use the klass pointer for the linked list.  Instead we have
1438     // to allocate an oopDesc in the C-Heap and use that for the linked list.
1439     // XXX This is horribly inefficient when a promotion failure occurs
1440     // and should be fixed. XXX FIX ME !!!
1441 #ifndef PRODUCT
1442     Atomic::inc_ptr(&_num_par_pushes);
1443     assert(_num_par_pushes > 0, "Tautology");
1444 #endif
1445     if (from_space_obj->forwardee() == from_space_obj) {
1446       oopDesc* listhead = NEW_C_HEAP_ARRAY(oopDesc, 1, mtGC);
1447       listhead->forward_to(from_space_obj);
1448       from_space_obj = listhead;
1449     }
1450     oop observed_overflow_list = _overflow_list;
1451     oop cur_overflow_list;
1452     do {
1453       cur_overflow_list = observed_overflow_list;
1454       if (cur_overflow_list != BUSY) {
1455         from_space_obj->set_klass_to_list_ptr(cur_overflow_list);
1456       } else {
1457         from_space_obj->set_klass_to_list_ptr(NULL);
1458       }
1459       observed_overflow_list =
1460         (oop)Atomic::cmpxchg_ptr(from_space_obj, &_overflow_list, cur_overflow_list);
1461     } while (cur_overflow_list != observed_overflow_list);
1462   }
1463 }
1464 
1465 bool ParNewGeneration::take_from_overflow_list(ParScanThreadState* par_scan_state) {
1466   bool res;
1467 
1468   if (ParGCUseLocalOverflow) {
1469     res = par_scan_state->take_from_overflow_stack();
1470   } else {
1471     assert(!UseCompressedOops, "Error");
1472     res = take_from_overflow_list_work(par_scan_state);
1473   }
1474   return res;
1475 }
1476 
1477 
1478 // *NOTE*: The overflow list manipulation code here and
1479 // in CMSCollector:: are very similar in shape,
1480 // except that in the CMS case we thread the objects
1481 // directly into the list via their mark word, and do
1482 // not need to deal with special cases below related
1483 // to chunking of object arrays and promotion failure
1484 // handling.
1485 // CR 6797058 has been filed to attempt consolidation of
1486 // the common code.
1487 // Because of the common code, if you make any changes in
1488 // the code below, please check the CMS version to see if
1489 // similar changes might be needed.
1490 // See CMSCollector::par_take_from_overflow_list() for
1491 // more extensive documentation comments.
1492 bool ParNewGeneration::take_from_overflow_list_work(ParScanThreadState* par_scan_state) {
1493   ObjToScanQueue* work_q = par_scan_state->work_queue();
1494   // How many to take?
1495   size_t objsFromOverflow = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
1496                                  (size_t)ParGCDesiredObjsFromOverflowList);
1497 
1498   assert(!UseCompressedOops, "Error");
1499   assert(par_scan_state->overflow_stack() == NULL, "Error");
1500   if (_overflow_list == NULL) return false;
1501 
1502   // Otherwise, there was something there; try claiming the list.
1503   oop prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
1504   // Trim off a prefix of at most objsFromOverflow items
1505   Thread* tid = Thread::current();
1506   size_t spin_count = (size_t)ParallelGCThreads;
1507   size_t sleep_time_millis = MAX2((size_t)1, objsFromOverflow/100);
1508   for (size_t spin = 0; prefix == BUSY && spin < spin_count; spin++) {
1509     // someone grabbed it before we did ...
1510     // ... we spin for a short while...
1511     os::sleep(tid, sleep_time_millis, false);
1512     if (_overflow_list == NULL) {
1513       // nothing left to take
1514       return false;
1515     } else if (_overflow_list != BUSY) {
1516      // try and grab the prefix
1517      prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
1518     }
1519   }
1520   if (prefix == NULL || prefix == BUSY) {
1521      // Nothing to take or waited long enough
1522      if (prefix == NULL) {
1523        // Write back the NULL in case we overwrote it with BUSY above
1524        // and it is still the same value.
1525        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
1526      }
1527      return false;
1528   }
1529   assert(prefix != NULL && prefix != BUSY, "Error");
1530   size_t i = 1;
1531   oop cur = prefix;
1532   while (i < objsFromOverflow && cur->klass_or_null() != NULL) {
1533     i++; cur = oop(cur->klass());
1534   }
1535 
1536   // Reattach remaining (suffix) to overflow list
1537   if (cur->klass_or_null() == NULL) {
1538     // Write back the NULL in lieu of the BUSY we wrote
1539     // above and it is still the same value.
1540     if (_overflow_list == BUSY) {
1541       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
1542     }
1543   } else {
1544     assert(cur->klass_or_null() != BUSY, "Error");
1545     oop suffix = oop(cur->klass());       // suffix will be put back on global list
1546     cur->set_klass_to_list_ptr(NULL);     // break off suffix
1547     // It's possible that the list is still in the empty(busy) state
1548     // we left it in a short while ago; in that case we may be
1549     // able to place back the suffix.
1550     oop observed_overflow_list = _overflow_list;
1551     oop cur_overflow_list = observed_overflow_list;
1552     bool attached = false;
1553     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
1554       observed_overflow_list =
1555         (oop) Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
1556       if (cur_overflow_list == observed_overflow_list) {
1557         attached = true;
1558         break;
1559       } else cur_overflow_list = observed_overflow_list;
1560     }
1561     if (!attached) {
1562       // Too bad, someone else got in in between; we'll need to do a splice.
1563       // Find the last item of suffix list
1564       oop last = suffix;
1565       while (last->klass_or_null() != NULL) {
1566         last = oop(last->klass());
1567       }
1568       // Atomically prepend suffix to current overflow list
1569       observed_overflow_list = _overflow_list;
1570       do {
1571         cur_overflow_list = observed_overflow_list;
1572         if (cur_overflow_list != BUSY) {
1573           // Do the splice ...
1574           last->set_klass_to_list_ptr(cur_overflow_list);
1575         } else { // cur_overflow_list == BUSY
1576           last->set_klass_to_list_ptr(NULL);
1577         }
1578         observed_overflow_list =
1579           (oop)Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
1580       } while (cur_overflow_list != observed_overflow_list);
1581     }
1582   }
1583 
1584   // Push objects on prefix list onto this thread's work queue
1585   assert(prefix != NULL && prefix != BUSY, "program logic");
1586   cur = prefix;
1587   ssize_t n = 0;
1588   while (cur != NULL) {
1589     oop obj_to_push = cur->forwardee();
1590     oop next        = oop(cur->klass_or_null());
1591     cur->set_klass(obj_to_push->klass());
1592     // This may be an array object that is self-forwarded. In that case, the list pointer
1593     // space, cur, is not in the Java heap, but rather in the C-heap and should be freed.
1594     if (!is_in_reserved(cur)) {
1595       // This can become a scaling bottleneck when there is work queue overflow coincident
1596       // with promotion failure.
1597       oopDesc* f = cur;
1598       FREE_C_HEAP_ARRAY(oopDesc, f, mtGC);
1599     } else if (par_scan_state->should_be_partially_scanned(obj_to_push, cur)) {
1600       assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
1601       obj_to_push = cur;
1602     }
1603     bool ok = work_q->push(obj_to_push);
1604     assert(ok, "Should have succeeded");
1605     cur = next;
1606     n++;
1607   }
1608   TASKQUEUE_STATS_ONLY(par_scan_state->note_overflow_refill(n));
1609 #ifndef PRODUCT
1610   assert(_num_par_pushes >= n, "Too many pops?");
1611   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
1612 #endif
1613   return true;
1614 }
1615 #undef BUSY
1616 
1617 void ParNewGeneration::ref_processor_init() {
1618   if (_ref_processor == NULL) {
1619     // Allocate and initialize a reference processor
1620     _ref_processor =
1621       new ReferenceProcessor(_reserved,                  // span
1622                              ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
1623                              (int) ParallelGCThreads,    // mt processing degree
1624                              refs_discovery_is_mt(),     // mt discovery
1625                              (int) ParallelGCThreads,    // mt discovery degree
1626                              refs_discovery_is_atomic(), // atomic_discovery
1627                              NULL,                       // is_alive_non_header
1628                              false);                     // write barrier for next field updates
1629   }
1630 }
1631 
1632 const char* ParNewGeneration::name() const {
1633   return "par new generation";
1634 }
1635 
1636 bool ParNewGeneration::in_use() {
1637   return UseParNewGC && ParallelGCThreads > 0;
1638 }