1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/codeCache.hpp"
  27 #include "code/icBuffer.hpp"
  28 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  29 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  30 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  31 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  32 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  33 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  34 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  35 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  36 #include "gc_implementation/g1/g1EvacFailure.hpp"
  37 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  38 #include "gc_implementation/g1/g1Log.hpp"
  39 #include "gc_implementation/g1/g1MarkSweep.hpp"
  40 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  41 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  42 #include "gc_implementation/g1/g1YCTypes.hpp"
  43 #include "gc_implementation/g1/heapRegion.inline.hpp"
  44 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  45 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  46 #include "gc_implementation/g1/vm_operations_g1.hpp"
  47 #include "gc_implementation/shared/gcHeapSummary.hpp"
  48 #include "gc_implementation/shared/gcTimer.hpp"
  49 #include "gc_implementation/shared/gcTrace.hpp"
  50 #include "gc_implementation/shared/gcTraceTime.hpp"
  51 #include "gc_implementation/shared/isGCActiveMark.hpp"
  52 #include "memory/gcLocker.inline.hpp"
  53 #include "memory/genOopClosures.inline.hpp"
  54 #include "memory/generationSpec.hpp"
  55 #include "memory/referenceProcessor.hpp"
  56 #include "oops/oop.inline.hpp"
  57 #include "oops/oop.pcgc.inline.hpp"
  58 #include "runtime/vmThread.hpp"
  59 
  60 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  61 
  62 // turn it on so that the contents of the young list (scan-only /
  63 // to-be-collected) are printed at "strategic" points before / during
  64 // / after the collection --- this is useful for debugging
  65 #define YOUNG_LIST_VERBOSE 0
  66 // CURRENT STATUS
  67 // This file is under construction.  Search for "FIXME".
  68 
  69 // INVARIANTS/NOTES
  70 //
  71 // All allocation activity covered by the G1CollectedHeap interface is
  72 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  73 // and allocate_new_tlab, which are the "entry" points to the
  74 // allocation code from the rest of the JVM.  (Note that this does not
  75 // apply to TLAB allocation, which is not part of this interface: it
  76 // is done by clients of this interface.)
  77 
  78 // Notes on implementation of parallelism in different tasks.
  79 //
  80 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
  81 // The number of GC workers is passed to heap_region_par_iterate_chunked().
  82 // It does use run_task() which sets _n_workers in the task.
  83 // G1ParTask executes g1_process_strong_roots() ->
  84 // SharedHeap::process_strong_roots() which calls eventually to
  85 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
  86 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
  87 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
  88 //
  89 
  90 // Local to this file.
  91 
  92 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  93   SuspendibleThreadSet* _sts;
  94   G1RemSet* _g1rs;
  95   ConcurrentG1Refine* _cg1r;
  96   bool _concurrent;
  97 public:
  98   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
  99                               G1RemSet* g1rs,
 100                               ConcurrentG1Refine* cg1r) :
 101     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
 102   {}
 103   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 104     bool oops_into_cset = _g1rs->refine_card(card_ptr, worker_i, false);
 105     // This path is executed by the concurrent refine or mutator threads,
 106     // concurrently, and so we do not care if card_ptr contains references
 107     // that point into the collection set.
 108     assert(!oops_into_cset, "should be");
 109 
 110     if (_concurrent && _sts->should_yield()) {
 111       // Caller will actually yield.
 112       return false;
 113     }
 114     // Otherwise, we finished successfully; return true.
 115     return true;
 116   }
 117   void set_concurrent(bool b) { _concurrent = b; }
 118 };
 119 
 120 
 121 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
 122   int _calls;
 123   G1CollectedHeap* _g1h;
 124   CardTableModRefBS* _ctbs;
 125   int _histo[256];
 126 public:
 127   ClearLoggedCardTableEntryClosure() :
 128     _calls(0), _g1h(G1CollectedHeap::heap()), _ctbs(_g1h->g1_barrier_set())
 129   {
 130     for (int i = 0; i < 256; i++) _histo[i] = 0;
 131   }
 132   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 133     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 134       _calls++;
 135       unsigned char* ujb = (unsigned char*)card_ptr;
 136       int ind = (int)(*ujb);
 137       _histo[ind]++;
 138       *card_ptr = -1;
 139     }
 140     return true;
 141   }
 142   int calls() { return _calls; }
 143   void print_histo() {
 144     gclog_or_tty->print_cr("Card table value histogram:");
 145     for (int i = 0; i < 256; i++) {
 146       if (_histo[i] != 0) {
 147         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 148       }
 149     }
 150   }
 151 };
 152 
 153 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
 154   int _calls;
 155   G1CollectedHeap* _g1h;
 156   CardTableModRefBS* _ctbs;
 157 public:
 158   RedirtyLoggedCardTableEntryClosure() :
 159     _calls(0), _g1h(G1CollectedHeap::heap()), _ctbs(_g1h->g1_barrier_set()) {}
 160 
 161   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 162     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 163       _calls++;
 164       *card_ptr = 0;
 165     }
 166     return true;
 167   }
 168   int calls() { return _calls; }
 169 };
 170 
 171 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
 172 public:
 173   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 174     *card_ptr = CardTableModRefBS::dirty_card_val();
 175     return true;
 176   }
 177 };
 178 
 179 YoungList::YoungList(G1CollectedHeap* g1h) :
 180     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 181     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 182   guarantee(check_list_empty(false), "just making sure...");
 183 }
 184 
 185 void YoungList::push_region(HeapRegion *hr) {
 186   assert(!hr->is_young(), "should not already be young");
 187   assert(hr->get_next_young_region() == NULL, "cause it should!");
 188 
 189   hr->set_next_young_region(_head);
 190   _head = hr;
 191 
 192   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 193   ++_length;
 194 }
 195 
 196 void YoungList::add_survivor_region(HeapRegion* hr) {
 197   assert(hr->is_survivor(), "should be flagged as survivor region");
 198   assert(hr->get_next_young_region() == NULL, "cause it should!");
 199 
 200   hr->set_next_young_region(_survivor_head);
 201   if (_survivor_head == NULL) {
 202     _survivor_tail = hr;
 203   }
 204   _survivor_head = hr;
 205   ++_survivor_length;
 206 }
 207 
 208 void YoungList::empty_list(HeapRegion* list) {
 209   while (list != NULL) {
 210     HeapRegion* next = list->get_next_young_region();
 211     list->set_next_young_region(NULL);
 212     list->uninstall_surv_rate_group();
 213     list->set_not_young();
 214     list = next;
 215   }
 216 }
 217 
 218 void YoungList::empty_list() {
 219   assert(check_list_well_formed(), "young list should be well formed");
 220 
 221   empty_list(_head);
 222   _head = NULL;
 223   _length = 0;
 224 
 225   empty_list(_survivor_head);
 226   _survivor_head = NULL;
 227   _survivor_tail = NULL;
 228   _survivor_length = 0;
 229 
 230   _last_sampled_rs_lengths = 0;
 231 
 232   assert(check_list_empty(false), "just making sure...");
 233 }
 234 
 235 bool YoungList::check_list_well_formed() {
 236   bool ret = true;
 237 
 238   uint length = 0;
 239   HeapRegion* curr = _head;
 240   HeapRegion* last = NULL;
 241   while (curr != NULL) {
 242     if (!curr->is_young()) {
 243       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 244                              "incorrectly tagged (y: %d, surv: %d)",
 245                              curr->bottom(), curr->end(),
 246                              curr->is_young(), curr->is_survivor());
 247       ret = false;
 248     }
 249     ++length;
 250     last = curr;
 251     curr = curr->get_next_young_region();
 252   }
 253   ret = ret && (length == _length);
 254 
 255   if (!ret) {
 256     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 257     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 258                            length, _length);
 259   }
 260 
 261   return ret;
 262 }
 263 
 264 bool YoungList::check_list_empty(bool check_sample) {
 265   bool ret = true;
 266 
 267   if (_length != 0) {
 268     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 269                   _length);
 270     ret = false;
 271   }
 272   if (check_sample && _last_sampled_rs_lengths != 0) {
 273     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 274     ret = false;
 275   }
 276   if (_head != NULL) {
 277     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 278     ret = false;
 279   }
 280   if (!ret) {
 281     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 282   }
 283 
 284   return ret;
 285 }
 286 
 287 void
 288 YoungList::rs_length_sampling_init() {
 289   _sampled_rs_lengths = 0;
 290   _curr               = _head;
 291 }
 292 
 293 bool
 294 YoungList::rs_length_sampling_more() {
 295   return _curr != NULL;
 296 }
 297 
 298 void
 299 YoungList::rs_length_sampling_next() {
 300   assert( _curr != NULL, "invariant" );
 301   size_t rs_length = _curr->rem_set()->occupied();
 302 
 303   _sampled_rs_lengths += rs_length;
 304 
 305   // The current region may not yet have been added to the
 306   // incremental collection set (it gets added when it is
 307   // retired as the current allocation region).
 308   if (_curr->in_collection_set()) {
 309     // Update the collection set policy information for this region
 310     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 311   }
 312 
 313   _curr = _curr->get_next_young_region();
 314   if (_curr == NULL) {
 315     _last_sampled_rs_lengths = _sampled_rs_lengths;
 316     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 317   }
 318 }
 319 
 320 void
 321 YoungList::reset_auxilary_lists() {
 322   guarantee( is_empty(), "young list should be empty" );
 323   assert(check_list_well_formed(), "young list should be well formed");
 324 
 325   // Add survivor regions to SurvRateGroup.
 326   _g1h->g1_policy()->note_start_adding_survivor_regions();
 327   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 328 
 329   int young_index_in_cset = 0;
 330   for (HeapRegion* curr = _survivor_head;
 331        curr != NULL;
 332        curr = curr->get_next_young_region()) {
 333     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 334 
 335     // The region is a non-empty survivor so let's add it to
 336     // the incremental collection set for the next evacuation
 337     // pause.
 338     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 339     young_index_in_cset += 1;
 340   }
 341   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 342   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 343 
 344   _head   = _survivor_head;
 345   _length = _survivor_length;
 346   if (_survivor_head != NULL) {
 347     assert(_survivor_tail != NULL, "cause it shouldn't be");
 348     assert(_survivor_length > 0, "invariant");
 349     _survivor_tail->set_next_young_region(NULL);
 350   }
 351 
 352   // Don't clear the survivor list handles until the start of
 353   // the next evacuation pause - we need it in order to re-tag
 354   // the survivor regions from this evacuation pause as 'young'
 355   // at the start of the next.
 356 
 357   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 358 
 359   assert(check_list_well_formed(), "young list should be well formed");
 360 }
 361 
 362 void YoungList::print() {
 363   HeapRegion* lists[] = {_head,   _survivor_head};
 364   const char* names[] = {"YOUNG", "SURVIVOR"};
 365 
 366   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 367     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 368     HeapRegion *curr = lists[list];
 369     if (curr == NULL)
 370       gclog_or_tty->print_cr("  empty");
 371     while (curr != NULL) {
 372       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
 373                              HR_FORMAT_PARAMS(curr),
 374                              curr->prev_top_at_mark_start(),
 375                              curr->next_top_at_mark_start(),
 376                              curr->age_in_surv_rate_group_cond());
 377       curr = curr->get_next_young_region();
 378     }
 379   }
 380 
 381   gclog_or_tty->print_cr("");
 382 }
 383 
 384 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 385 {
 386   // Claim the right to put the region on the dirty cards region list
 387   // by installing a self pointer.
 388   HeapRegion* next = hr->get_next_dirty_cards_region();
 389   if (next == NULL) {
 390     HeapRegion* res = (HeapRegion*)
 391       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 392                           NULL);
 393     if (res == NULL) {
 394       HeapRegion* head;
 395       do {
 396         // Put the region to the dirty cards region list.
 397         head = _dirty_cards_region_list;
 398         next = (HeapRegion*)
 399           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 400         if (next == head) {
 401           assert(hr->get_next_dirty_cards_region() == hr,
 402                  "hr->get_next_dirty_cards_region() != hr");
 403           if (next == NULL) {
 404             // The last region in the list points to itself.
 405             hr->set_next_dirty_cards_region(hr);
 406           } else {
 407             hr->set_next_dirty_cards_region(next);
 408           }
 409         }
 410       } while (next != head);
 411     }
 412   }
 413 }
 414 
 415 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 416 {
 417   HeapRegion* head;
 418   HeapRegion* hr;
 419   do {
 420     head = _dirty_cards_region_list;
 421     if (head == NULL) {
 422       return NULL;
 423     }
 424     HeapRegion* new_head = head->get_next_dirty_cards_region();
 425     if (head == new_head) {
 426       // The last region.
 427       new_head = NULL;
 428     }
 429     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 430                                           head);
 431   } while (hr != head);
 432   assert(hr != NULL, "invariant");
 433   hr->set_next_dirty_cards_region(NULL);
 434   return hr;
 435 }
 436 
 437 void G1CollectedHeap::stop_conc_gc_threads() {
 438   _cg1r->stop();
 439   _cmThread->stop();
 440 }
 441 
 442 #ifdef ASSERT
 443 // A region is added to the collection set as it is retired
 444 // so an address p can point to a region which will be in the
 445 // collection set but has not yet been retired.  This method
 446 // therefore is only accurate during a GC pause after all
 447 // regions have been retired.  It is used for debugging
 448 // to check if an nmethod has references to objects that can
 449 // be move during a partial collection.  Though it can be
 450 // inaccurate, it is sufficient for G1 because the conservative
 451 // implementation of is_scavengable() for G1 will indicate that
 452 // all nmethods must be scanned during a partial collection.
 453 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 454   HeapRegion* hr = heap_region_containing(p);
 455   return hr != NULL && hr->in_collection_set();
 456 }
 457 #endif
 458 
 459 // Returns true if the reference points to an object that
 460 // can move in an incremental collection.
 461 bool G1CollectedHeap::is_scavengable(const void* p) {
 462   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 463   G1CollectorPolicy* g1p = g1h->g1_policy();
 464   HeapRegion* hr = heap_region_containing(p);
 465   if (hr == NULL) {
 466      // null
 467      assert(p == NULL, err_msg("Not NULL " PTR_FORMAT ,p));
 468      return false;
 469   } else {
 470     return !hr->isHumongous();
 471   }
 472 }
 473 
 474 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 475   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 476   CardTableModRefBS* ct_bs = g1_barrier_set();
 477 
 478   // Count the dirty cards at the start.
 479   CountNonCleanMemRegionClosure count1(this);
 480   ct_bs->mod_card_iterate(&count1);
 481   int orig_count = count1.n();
 482 
 483   // First clear the logged cards.
 484   ClearLoggedCardTableEntryClosure clear;
 485   dcqs.set_closure(&clear);
 486   dcqs.apply_closure_to_all_completed_buffers();
 487   dcqs.iterate_closure_all_threads(false);
 488   clear.print_histo();
 489 
 490   // Now ensure that there's no dirty cards.
 491   CountNonCleanMemRegionClosure count2(this);
 492   ct_bs->mod_card_iterate(&count2);
 493   if (count2.n() != 0) {
 494     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 495                            count2.n(), orig_count);
 496   }
 497   guarantee(count2.n() == 0, "Card table should be clean.");
 498 
 499   RedirtyLoggedCardTableEntryClosure redirty;
 500   JavaThread::dirty_card_queue_set().set_closure(&redirty);
 501   dcqs.apply_closure_to_all_completed_buffers();
 502   dcqs.iterate_closure_all_threads(false);
 503   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 504                          clear.calls(), orig_count);
 505   guarantee(redirty.calls() == clear.calls(),
 506             "Or else mechanism is broken.");
 507 
 508   CountNonCleanMemRegionClosure count3(this);
 509   ct_bs->mod_card_iterate(&count3);
 510   if (count3.n() != orig_count) {
 511     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 512                            orig_count, count3.n());
 513     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 514   }
 515 
 516   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
 517 }
 518 
 519 // Private class members.
 520 
 521 G1CollectedHeap* G1CollectedHeap::_g1h;
 522 
 523 // Private methods.
 524 
 525 HeapRegion*
 526 G1CollectedHeap::new_region_try_secondary_free_list() {
 527   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 528   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 529     if (!_secondary_free_list.is_empty()) {
 530       if (G1ConcRegionFreeingVerbose) {
 531         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 532                                "secondary_free_list has %u entries",
 533                                _secondary_free_list.length());
 534       }
 535       // It looks as if there are free regions available on the
 536       // secondary_free_list. Let's move them to the free_list and try
 537       // again to allocate from it.
 538       append_secondary_free_list();
 539 
 540       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
 541              "empty we should have moved at least one entry to the free_list");
 542       HeapRegion* res = _free_list.remove_head();
 543       if (G1ConcRegionFreeingVerbose) {
 544         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 545                                "allocated "HR_FORMAT" from secondary_free_list",
 546                                HR_FORMAT_PARAMS(res));
 547       }
 548       return res;
 549     }
 550 
 551     // Wait here until we get notified either when (a) there are no
 552     // more free regions coming or (b) some regions have been moved on
 553     // the secondary_free_list.
 554     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 555   }
 556 
 557   if (G1ConcRegionFreeingVerbose) {
 558     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 559                            "could not allocate from secondary_free_list");
 560   }
 561   return NULL;
 562 }
 563 
 564 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
 565   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
 566          "the only time we use this to allocate a humongous region is "
 567          "when we are allocating a single humongous region");
 568 
 569   HeapRegion* res;
 570   if (G1StressConcRegionFreeing) {
 571     if (!_secondary_free_list.is_empty()) {
 572       if (G1ConcRegionFreeingVerbose) {
 573         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 574                                "forced to look at the secondary_free_list");
 575       }
 576       res = new_region_try_secondary_free_list();
 577       if (res != NULL) {
 578         return res;
 579       }
 580     }
 581   }
 582   res = _free_list.remove_head_or_null();
 583   if (res == NULL) {
 584     if (G1ConcRegionFreeingVerbose) {
 585       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 586                              "res == NULL, trying the secondary_free_list");
 587     }
 588     res = new_region_try_secondary_free_list();
 589   }
 590   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 591     // Currently, only attempts to allocate GC alloc regions set
 592     // do_expand to true. So, we should only reach here during a
 593     // safepoint. If this assumption changes we might have to
 594     // reconsider the use of _expand_heap_after_alloc_failure.
 595     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 596 
 597     ergo_verbose1(ErgoHeapSizing,
 598                   "attempt heap expansion",
 599                   ergo_format_reason("region allocation request failed")
 600                   ergo_format_byte("allocation request"),
 601                   word_size * HeapWordSize);
 602     if (expand(word_size * HeapWordSize)) {
 603       // Given that expand() succeeded in expanding the heap, and we
 604       // always expand the heap by an amount aligned to the heap
 605       // region size, the free list should in theory not be empty. So
 606       // it would probably be OK to use remove_head(). But the extra
 607       // check for NULL is unlikely to be a performance issue here (we
 608       // just expanded the heap!) so let's just be conservative and
 609       // use remove_head_or_null().
 610       res = _free_list.remove_head_or_null();
 611     } else {
 612       _expand_heap_after_alloc_failure = false;
 613     }
 614   }
 615   return res;
 616 }
 617 
 618 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
 619                                                         size_t word_size) {
 620   assert(isHumongous(word_size), "word_size should be humongous");
 621   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 622 
 623   uint first = G1_NULL_HRS_INDEX;
 624   if (num_regions == 1) {
 625     // Only one region to allocate, no need to go through the slower
 626     // path. The caller will attempt the expansion if this fails, so
 627     // let's not try to expand here too.
 628     HeapRegion* hr = new_region(word_size, false /* do_expand */);
 629     if (hr != NULL) {
 630       first = hr->hrs_index();
 631     } else {
 632       first = G1_NULL_HRS_INDEX;
 633     }
 634   } else {
 635     // We can't allocate humongous regions while cleanupComplete() is
 636     // running, since some of the regions we find to be empty might not
 637     // yet be added to the free list and it is not straightforward to
 638     // know which list they are on so that we can remove them. Note
 639     // that we only need to do this if we need to allocate more than
 640     // one region to satisfy the current humongous allocation
 641     // request. If we are only allocating one region we use the common
 642     // region allocation code (see above).
 643     wait_while_free_regions_coming();
 644     append_secondary_free_list_if_not_empty_with_lock();
 645 
 646     if (free_regions() >= num_regions) {
 647       first = _hrs.find_contiguous(num_regions);
 648       if (first != G1_NULL_HRS_INDEX) {
 649         for (uint i = first; i < first + num_regions; ++i) {
 650           HeapRegion* hr = region_at(i);
 651           assert(hr->is_empty(), "sanity");
 652           assert(is_on_master_free_list(hr), "sanity");
 653           hr->set_pending_removal(true);
 654         }
 655         _free_list.remove_all_pending(num_regions);
 656       }
 657     }
 658   }
 659   return first;
 660 }
 661 
 662 HeapWord*
 663 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 664                                                            uint num_regions,
 665                                                            size_t word_size) {
 666   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
 667   assert(isHumongous(word_size), "word_size should be humongous");
 668   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 669 
 670   // Index of last region in the series + 1.
 671   uint last = first + num_regions;
 672 
 673   // We need to initialize the region(s) we just discovered. This is
 674   // a bit tricky given that it can happen concurrently with
 675   // refinement threads refining cards on these regions and
 676   // potentially wanting to refine the BOT as they are scanning
 677   // those cards (this can happen shortly after a cleanup; see CR
 678   // 6991377). So we have to set up the region(s) carefully and in
 679   // a specific order.
 680 
 681   // The word size sum of all the regions we will allocate.
 682   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 683   assert(word_size <= word_size_sum, "sanity");
 684 
 685   // This will be the "starts humongous" region.
 686   HeapRegion* first_hr = region_at(first);
 687   // The header of the new object will be placed at the bottom of
 688   // the first region.
 689   HeapWord* new_obj = first_hr->bottom();
 690   // This will be the new end of the first region in the series that
 691   // should also match the end of the last region in the series.
 692   HeapWord* new_end = new_obj + word_size_sum;
 693   // This will be the new top of the first region that will reflect
 694   // this allocation.
 695   HeapWord* new_top = new_obj + word_size;
 696 
 697   // First, we need to zero the header of the space that we will be
 698   // allocating. When we update top further down, some refinement
 699   // threads might try to scan the region. By zeroing the header we
 700   // ensure that any thread that will try to scan the region will
 701   // come across the zero klass word and bail out.
 702   //
 703   // NOTE: It would not have been correct to have used
 704   // CollectedHeap::fill_with_object() and make the space look like
 705   // an int array. The thread that is doing the allocation will
 706   // later update the object header to a potentially different array
 707   // type and, for a very short period of time, the klass and length
 708   // fields will be inconsistent. This could cause a refinement
 709   // thread to calculate the object size incorrectly.
 710   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 711 
 712   // We will set up the first region as "starts humongous". This
 713   // will also update the BOT covering all the regions to reflect
 714   // that there is a single object that starts at the bottom of the
 715   // first region.
 716   first_hr->set_startsHumongous(new_top, new_end);
 717 
 718   // Then, if there are any, we will set up the "continues
 719   // humongous" regions.
 720   HeapRegion* hr = NULL;
 721   for (uint i = first + 1; i < last; ++i) {
 722     hr = region_at(i);
 723     hr->set_continuesHumongous(first_hr);
 724   }
 725   // If we have "continues humongous" regions (hr != NULL), then the
 726   // end of the last one should match new_end.
 727   assert(hr == NULL || hr->end() == new_end, "sanity");
 728 
 729   // Up to this point no concurrent thread would have been able to
 730   // do any scanning on any region in this series. All the top
 731   // fields still point to bottom, so the intersection between
 732   // [bottom,top] and [card_start,card_end] will be empty. Before we
 733   // update the top fields, we'll do a storestore to make sure that
 734   // no thread sees the update to top before the zeroing of the
 735   // object header and the BOT initialization.
 736   OrderAccess::storestore();
 737 
 738   // Now that the BOT and the object header have been initialized,
 739   // we can update top of the "starts humongous" region.
 740   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 741          "new_top should be in this region");
 742   first_hr->set_top(new_top);
 743   if (_hr_printer.is_active()) {
 744     HeapWord* bottom = first_hr->bottom();
 745     HeapWord* end = first_hr->orig_end();
 746     if ((first + 1) == last) {
 747       // the series has a single humongous region
 748       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 749     } else {
 750       // the series has more than one humongous regions
 751       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 752     }
 753   }
 754 
 755   // Now, we will update the top fields of the "continues humongous"
 756   // regions. The reason we need to do this is that, otherwise,
 757   // these regions would look empty and this will confuse parts of
 758   // G1. For example, the code that looks for a consecutive number
 759   // of empty regions will consider them empty and try to
 760   // re-allocate them. We can extend is_empty() to also include
 761   // !continuesHumongous(), but it is easier to just update the top
 762   // fields here. The way we set top for all regions (i.e., top ==
 763   // end for all regions but the last one, top == new_top for the
 764   // last one) is actually used when we will free up the humongous
 765   // region in free_humongous_region().
 766   hr = NULL;
 767   for (uint i = first + 1; i < last; ++i) {
 768     hr = region_at(i);
 769     if ((i + 1) == last) {
 770       // last continues humongous region
 771       assert(hr->bottom() < new_top && new_top <= hr->end(),
 772              "new_top should fall on this region");
 773       hr->set_top(new_top);
 774       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 775     } else {
 776       // not last one
 777       assert(new_top > hr->end(), "new_top should be above this region");
 778       hr->set_top(hr->end());
 779       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 780     }
 781   }
 782   // If we have continues humongous regions (hr != NULL), then the
 783   // end of the last one should match new_end and its top should
 784   // match new_top.
 785   assert(hr == NULL ||
 786          (hr->end() == new_end && hr->top() == new_top), "sanity");
 787 
 788   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 789   _summary_bytes_used += first_hr->used();
 790   _humongous_set.add(first_hr);
 791 
 792   return new_obj;
 793 }
 794 
 795 // If could fit into free regions w/o expansion, try.
 796 // Otherwise, if can expand, do so.
 797 // Otherwise, if using ex regions might help, try with ex given back.
 798 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 799   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 800 
 801   verify_region_sets_optional();
 802 
 803   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
 804   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
 805   uint x_num = expansion_regions();
 806   uint fs = _hrs.free_suffix();
 807   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
 808   if (first == G1_NULL_HRS_INDEX) {
 809     // The only thing we can do now is attempt expansion.
 810     if (fs + x_num >= num_regions) {
 811       // If the number of regions we're trying to allocate for this
 812       // object is at most the number of regions in the free suffix,
 813       // then the call to humongous_obj_allocate_find_first() above
 814       // should have succeeded and we wouldn't be here.
 815       //
 816       // We should only be trying to expand when the free suffix is
 817       // not sufficient for the object _and_ we have some expansion
 818       // room available.
 819       assert(num_regions > fs, "earlier allocation should have succeeded");
 820 
 821       ergo_verbose1(ErgoHeapSizing,
 822                     "attempt heap expansion",
 823                     ergo_format_reason("humongous allocation request failed")
 824                     ergo_format_byte("allocation request"),
 825                     word_size * HeapWordSize);
 826       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
 827         // Even though the heap was expanded, it might not have
 828         // reached the desired size. So, we cannot assume that the
 829         // allocation will succeed.
 830         first = humongous_obj_allocate_find_first(num_regions, word_size);
 831       }
 832     }
 833   }
 834 
 835   HeapWord* result = NULL;
 836   if (first != G1_NULL_HRS_INDEX) {
 837     result =
 838       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
 839     assert(result != NULL, "it should always return a valid result");
 840 
 841     // A successful humongous object allocation changes the used space
 842     // information of the old generation so we need to recalculate the
 843     // sizes and update the jstat counters here.
 844     g1mm()->update_sizes();
 845   }
 846 
 847   verify_region_sets_optional();
 848 
 849   return result;
 850 }
 851 
 852 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 853   assert_heap_not_locked_and_not_at_safepoint();
 854   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 855 
 856   unsigned int dummy_gc_count_before;
 857   int dummy_gclocker_retry_count = 0;
 858   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 859 }
 860 
 861 HeapWord*
 862 G1CollectedHeap::mem_allocate(size_t word_size,
 863                               bool*  gc_overhead_limit_was_exceeded) {
 864   assert_heap_not_locked_and_not_at_safepoint();
 865 
 866   // Loop until the allocation is satisfied, or unsatisfied after GC.
 867   for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 868     unsigned int gc_count_before;
 869 
 870     HeapWord* result = NULL;
 871     if (!isHumongous(word_size)) {
 872       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 873     } else {
 874       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 875     }
 876     if (result != NULL) {
 877       return result;
 878     }
 879 
 880     // Create the garbage collection operation...
 881     VM_G1CollectForAllocation op(gc_count_before, word_size);
 882     // ...and get the VM thread to execute it.
 883     VMThread::execute(&op);
 884 
 885     if (op.prologue_succeeded() && op.pause_succeeded()) {
 886       // If the operation was successful we'll return the result even
 887       // if it is NULL. If the allocation attempt failed immediately
 888       // after a Full GC, it's unlikely we'll be able to allocate now.
 889       HeapWord* result = op.result();
 890       if (result != NULL && !isHumongous(word_size)) {
 891         // Allocations that take place on VM operations do not do any
 892         // card dirtying and we have to do it here. We only have to do
 893         // this for non-humongous allocations, though.
 894         dirty_young_block(result, word_size);
 895       }
 896       return result;
 897     } else {
 898       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 899         return NULL;
 900       }
 901       assert(op.result() == NULL,
 902              "the result should be NULL if the VM op did not succeed");
 903     }
 904 
 905     // Give a warning if we seem to be looping forever.
 906     if ((QueuedAllocationWarningCount > 0) &&
 907         (try_count % QueuedAllocationWarningCount == 0)) {
 908       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 909     }
 910   }
 911 
 912   ShouldNotReachHere();
 913   return NULL;
 914 }
 915 
 916 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 917                                            unsigned int *gc_count_before_ret,
 918                                            int* gclocker_retry_count_ret) {
 919   // Make sure you read the note in attempt_allocation_humongous().
 920 
 921   assert_heap_not_locked_and_not_at_safepoint();
 922   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 923          "be called for humongous allocation requests");
 924 
 925   // We should only get here after the first-level allocation attempt
 926   // (attempt_allocation()) failed to allocate.
 927 
 928   // We will loop until a) we manage to successfully perform the
 929   // allocation or b) we successfully schedule a collection which
 930   // fails to perform the allocation. b) is the only case when we'll
 931   // return NULL.
 932   HeapWord* result = NULL;
 933   for (int try_count = 1; /* we'll return */; try_count += 1) {
 934     bool should_try_gc;
 935     unsigned int gc_count_before;
 936 
 937     {
 938       MutexLockerEx x(Heap_lock);
 939 
 940       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
 941                                                       false /* bot_updates */);
 942       if (result != NULL) {
 943         return result;
 944       }
 945 
 946       // If we reach here, attempt_allocation_locked() above failed to
 947       // allocate a new region. So the mutator alloc region should be NULL.
 948       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
 949 
 950       if (GC_locker::is_active_and_needs_gc()) {
 951         if (g1_policy()->can_expand_young_list()) {
 952           // No need for an ergo verbose message here,
 953           // can_expand_young_list() does this when it returns true.
 954           result = _mutator_alloc_region.attempt_allocation_force(word_size,
 955                                                       false /* bot_updates */);
 956           if (result != NULL) {
 957             return result;
 958           }
 959         }
 960         should_try_gc = false;
 961       } else {
 962         // The GCLocker may not be active but the GCLocker initiated
 963         // GC may not yet have been performed (GCLocker::needs_gc()
 964         // returns true). In this case we do not try this GC and
 965         // wait until the GCLocker initiated GC is performed, and
 966         // then retry the allocation.
 967         if (GC_locker::needs_gc()) {
 968           should_try_gc = false;
 969         } else {
 970           // Read the GC count while still holding the Heap_lock.
 971           gc_count_before = total_collections();
 972           should_try_gc = true;
 973         }
 974       }
 975     }
 976 
 977     if (should_try_gc) {
 978       bool succeeded;
 979       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 980           GCCause::_g1_inc_collection_pause);
 981       if (result != NULL) {
 982         assert(succeeded, "only way to get back a non-NULL result");
 983         return result;
 984       }
 985 
 986       if (succeeded) {
 987         // If we get here we successfully scheduled a collection which
 988         // failed to allocate. No point in trying to allocate
 989         // further. We'll just return NULL.
 990         MutexLockerEx x(Heap_lock);
 991         *gc_count_before_ret = total_collections();
 992         return NULL;
 993       }
 994     } else {
 995       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 996         MutexLockerEx x(Heap_lock);
 997         *gc_count_before_ret = total_collections();
 998         return NULL;
 999       }
1000       // The GCLocker is either active or the GCLocker initiated
1001       // GC has not yet been performed. Stall until it is and
1002       // then retry the allocation.
1003       GC_locker::stall_until_clear();
1004       (*gclocker_retry_count_ret) += 1;
1005     }
1006 
1007     // We can reach here if we were unsuccessful in scheduling a
1008     // collection (because another thread beat us to it) or if we were
1009     // stalled due to the GC locker. In either can we should retry the
1010     // allocation attempt in case another thread successfully
1011     // performed a collection and reclaimed enough space. We do the
1012     // first attempt (without holding the Heap_lock) here and the
1013     // follow-on attempt will be at the start of the next loop
1014     // iteration (after taking the Heap_lock).
1015     result = _mutator_alloc_region.attempt_allocation(word_size,
1016                                                       false /* bot_updates */);
1017     if (result != NULL) {
1018       return result;
1019     }
1020 
1021     // Give a warning if we seem to be looping forever.
1022     if ((QueuedAllocationWarningCount > 0) &&
1023         (try_count % QueuedAllocationWarningCount == 0)) {
1024       warning("G1CollectedHeap::attempt_allocation_slow() "
1025               "retries %d times", try_count);
1026     }
1027   }
1028 
1029   ShouldNotReachHere();
1030   return NULL;
1031 }
1032 
1033 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1034                                           unsigned int * gc_count_before_ret,
1035                                           int* gclocker_retry_count_ret) {
1036   // The structure of this method has a lot of similarities to
1037   // attempt_allocation_slow(). The reason these two were not merged
1038   // into a single one is that such a method would require several "if
1039   // allocation is not humongous do this, otherwise do that"
1040   // conditional paths which would obscure its flow. In fact, an early
1041   // version of this code did use a unified method which was harder to
1042   // follow and, as a result, it had subtle bugs that were hard to
1043   // track down. So keeping these two methods separate allows each to
1044   // be more readable. It will be good to keep these two in sync as
1045   // much as possible.
1046 
1047   assert_heap_not_locked_and_not_at_safepoint();
1048   assert(isHumongous(word_size), "attempt_allocation_humongous() "
1049          "should only be called for humongous allocations");
1050 
1051   // Humongous objects can exhaust the heap quickly, so we should check if we
1052   // need to start a marking cycle at each humongous object allocation. We do
1053   // the check before we do the actual allocation. The reason for doing it
1054   // before the allocation is that we avoid having to keep track of the newly
1055   // allocated memory while we do a GC.
1056   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1057                                            word_size)) {
1058     collect(GCCause::_g1_humongous_allocation);
1059   }
1060 
1061   // We will loop until a) we manage to successfully perform the
1062   // allocation or b) we successfully schedule a collection which
1063   // fails to perform the allocation. b) is the only case when we'll
1064   // return NULL.
1065   HeapWord* result = NULL;
1066   for (int try_count = 1; /* we'll return */; try_count += 1) {
1067     bool should_try_gc;
1068     unsigned int gc_count_before;
1069 
1070     {
1071       MutexLockerEx x(Heap_lock);
1072 
1073       // Given that humongous objects are not allocated in young
1074       // regions, we'll first try to do the allocation without doing a
1075       // collection hoping that there's enough space in the heap.
1076       result = humongous_obj_allocate(word_size);
1077       if (result != NULL) {
1078         return result;
1079       }
1080 
1081       if (GC_locker::is_active_and_needs_gc()) {
1082         should_try_gc = false;
1083       } else {
1084          // The GCLocker may not be active but the GCLocker initiated
1085         // GC may not yet have been performed (GCLocker::needs_gc()
1086         // returns true). In this case we do not try this GC and
1087         // wait until the GCLocker initiated GC is performed, and
1088         // then retry the allocation.
1089         if (GC_locker::needs_gc()) {
1090           should_try_gc = false;
1091         } else {
1092           // Read the GC count while still holding the Heap_lock.
1093           gc_count_before = total_collections();
1094           should_try_gc = true;
1095         }
1096       }
1097     }
1098 
1099     if (should_try_gc) {
1100       // If we failed to allocate the humongous object, we should try to
1101       // do a collection pause (if we're allowed) in case it reclaims
1102       // enough space for the allocation to succeed after the pause.
1103 
1104       bool succeeded;
1105       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1106           GCCause::_g1_humongous_allocation);
1107       if (result != NULL) {
1108         assert(succeeded, "only way to get back a non-NULL result");
1109         return result;
1110       }
1111 
1112       if (succeeded) {
1113         // If we get here we successfully scheduled a collection which
1114         // failed to allocate. No point in trying to allocate
1115         // further. We'll just return NULL.
1116         MutexLockerEx x(Heap_lock);
1117         *gc_count_before_ret = total_collections();
1118         return NULL;
1119       }
1120     } else {
1121       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1122         MutexLockerEx x(Heap_lock);
1123         *gc_count_before_ret = total_collections();
1124         return NULL;
1125       }
1126       // The GCLocker is either active or the GCLocker initiated
1127       // GC has not yet been performed. Stall until it is and
1128       // then retry the allocation.
1129       GC_locker::stall_until_clear();
1130       (*gclocker_retry_count_ret) += 1;
1131     }
1132 
1133     // We can reach here if we were unsuccessful in scheduling a
1134     // collection (because another thread beat us to it) or if we were
1135     // stalled due to the GC locker. In either can we should retry the
1136     // allocation attempt in case another thread successfully
1137     // performed a collection and reclaimed enough space.  Give a
1138     // warning if we seem to be looping forever.
1139 
1140     if ((QueuedAllocationWarningCount > 0) &&
1141         (try_count % QueuedAllocationWarningCount == 0)) {
1142       warning("G1CollectedHeap::attempt_allocation_humongous() "
1143               "retries %d times", try_count);
1144     }
1145   }
1146 
1147   ShouldNotReachHere();
1148   return NULL;
1149 }
1150 
1151 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1152                                        bool expect_null_mutator_alloc_region) {
1153   assert_at_safepoint(true /* should_be_vm_thread */);
1154   assert(_mutator_alloc_region.get() == NULL ||
1155                                              !expect_null_mutator_alloc_region,
1156          "the current alloc region was unexpectedly found to be non-NULL");
1157 
1158   if (!isHumongous(word_size)) {
1159     return _mutator_alloc_region.attempt_allocation_locked(word_size,
1160                                                       false /* bot_updates */);
1161   } else {
1162     HeapWord* result = humongous_obj_allocate(word_size);
1163     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1164       g1_policy()->set_initiate_conc_mark_if_possible();
1165     }
1166     return result;
1167   }
1168 
1169   ShouldNotReachHere();
1170 }
1171 
1172 class PostMCRemSetClearClosure: public HeapRegionClosure {
1173   G1CollectedHeap* _g1h;
1174   ModRefBarrierSet* _mr_bs;
1175 public:
1176   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1177     _g1h(g1h), _mr_bs(mr_bs) {}
1178 
1179   bool doHeapRegion(HeapRegion* r) {
1180     HeapRegionRemSet* hrrs = r->rem_set();
1181 
1182     if (r->continuesHumongous()) {
1183       // We'll assert that the strong code root list and RSet is empty
1184       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1185       assert(hrrs->occupied() == 0, "RSet should be empty");
1186       return false;
1187     }
1188 
1189     _g1h->reset_gc_time_stamps(r);
1190     hrrs->clear();
1191     // You might think here that we could clear just the cards
1192     // corresponding to the used region.  But no: if we leave a dirty card
1193     // in a region we might allocate into, then it would prevent that card
1194     // from being enqueued, and cause it to be missed.
1195     // Re: the performance cost: we shouldn't be doing full GC anyway!
1196     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1197 
1198     return false;
1199   }
1200 };
1201 
1202 void G1CollectedHeap::clear_rsets_post_compaction() {
1203   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1204   heap_region_iterate(&rs_clear);
1205 }
1206 
1207 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1208   G1CollectedHeap*   _g1h;
1209   UpdateRSOopClosure _cl;
1210   int                _worker_i;
1211 public:
1212   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1213     _cl(g1->g1_rem_set(), worker_i),
1214     _worker_i(worker_i),
1215     _g1h(g1)
1216   { }
1217 
1218   bool doHeapRegion(HeapRegion* r) {
1219     if (!r->continuesHumongous()) {
1220       _cl.set_from(r);
1221       r->oop_iterate(&_cl);
1222     }
1223     return false;
1224   }
1225 };
1226 
1227 class ParRebuildRSTask: public AbstractGangTask {
1228   G1CollectedHeap* _g1;
1229 public:
1230   ParRebuildRSTask(G1CollectedHeap* g1)
1231     : AbstractGangTask("ParRebuildRSTask"),
1232       _g1(g1)
1233   { }
1234 
1235   void work(uint worker_id) {
1236     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1237     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1238                                           _g1->workers()->active_workers(),
1239                                          HeapRegion::RebuildRSClaimValue);
1240   }
1241 };
1242 
1243 class PostCompactionPrinterClosure: public HeapRegionClosure {
1244 private:
1245   G1HRPrinter* _hr_printer;
1246 public:
1247   bool doHeapRegion(HeapRegion* hr) {
1248     assert(!hr->is_young(), "not expecting to find young regions");
1249     // We only generate output for non-empty regions.
1250     if (!hr->is_empty()) {
1251       if (!hr->isHumongous()) {
1252         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1253       } else if (hr->startsHumongous()) {
1254         if (hr->region_num() == 1) {
1255           // single humongous region
1256           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1257         } else {
1258           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1259         }
1260       } else {
1261         assert(hr->continuesHumongous(), "only way to get here");
1262         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1263       }
1264     }
1265     return false;
1266   }
1267 
1268   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1269     : _hr_printer(hr_printer) { }
1270 };
1271 
1272 void G1CollectedHeap::print_hrs_post_compaction() {
1273   PostCompactionPrinterClosure cl(hr_printer());
1274   heap_region_iterate(&cl);
1275 }
1276 
1277 bool G1CollectedHeap::do_collection(bool explicit_gc,
1278                                     bool clear_all_soft_refs,
1279                                     size_t word_size) {
1280   assert_at_safepoint(true /* should_be_vm_thread */);
1281 
1282   if (GC_locker::check_active_before_gc()) {
1283     return false;
1284   }
1285 
1286   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1287   gc_timer->register_gc_start(os::elapsed_counter());
1288 
1289   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1290   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1291 
1292   SvcGCMarker sgcm(SvcGCMarker::FULL);
1293   ResourceMark rm;
1294 
1295   print_heap_before_gc();
1296   trace_heap_before_gc(gc_tracer);
1297 
1298   size_t metadata_prev_used = MetaspaceAux::allocated_used_bytes();
1299 
1300   HRSPhaseSetter x(HRSPhaseFullGC);
1301   verify_region_sets_optional();
1302 
1303   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1304                            collector_policy()->should_clear_all_soft_refs();
1305 
1306   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1307 
1308   {
1309     IsGCActiveMark x;
1310 
1311     // Timing
1312     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1313     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
1314     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1315 
1316     {
1317       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL);
1318       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1319       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1320 
1321       double start = os::elapsedTime();
1322       g1_policy()->record_full_collection_start();
1323 
1324       // Note: When we have a more flexible GC logging framework that
1325       // allows us to add optional attributes to a GC log record we
1326       // could consider timing and reporting how long we wait in the
1327       // following two methods.
1328       wait_while_free_regions_coming();
1329       // If we start the compaction before the CM threads finish
1330       // scanning the root regions we might trip them over as we'll
1331       // be moving objects / updating references. So let's wait until
1332       // they are done. By telling them to abort, they should complete
1333       // early.
1334       _cm->root_regions()->abort();
1335       _cm->root_regions()->wait_until_scan_finished();
1336       append_secondary_free_list_if_not_empty_with_lock();
1337 
1338       gc_prologue(true);
1339       increment_total_collections(true /* full gc */);
1340       increment_old_marking_cycles_started();
1341 
1342       assert(used() == recalculate_used(), "Should be equal");
1343 
1344       verify_before_gc();
1345 
1346       pre_full_gc_dump(gc_timer);
1347 
1348       COMPILER2_PRESENT(DerivedPointerTable::clear());
1349 
1350       // Disable discovery and empty the discovered lists
1351       // for the CM ref processor.
1352       ref_processor_cm()->disable_discovery();
1353       ref_processor_cm()->abandon_partial_discovery();
1354       ref_processor_cm()->verify_no_references_recorded();
1355 
1356       // Abandon current iterations of concurrent marking and concurrent
1357       // refinement, if any are in progress. We have to do this before
1358       // wait_until_scan_finished() below.
1359       concurrent_mark()->abort();
1360 
1361       // Make sure we'll choose a new allocation region afterwards.
1362       release_mutator_alloc_region();
1363       abandon_gc_alloc_regions();
1364       g1_rem_set()->cleanupHRRS();
1365 
1366       // We should call this after we retire any currently active alloc
1367       // regions so that all the ALLOC / RETIRE events are generated
1368       // before the start GC event.
1369       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1370 
1371       // We may have added regions to the current incremental collection
1372       // set between the last GC or pause and now. We need to clear the
1373       // incremental collection set and then start rebuilding it afresh
1374       // after this full GC.
1375       abandon_collection_set(g1_policy()->inc_cset_head());
1376       g1_policy()->clear_incremental_cset();
1377       g1_policy()->stop_incremental_cset_building();
1378 
1379       tear_down_region_sets(false /* free_list_only */);
1380       g1_policy()->set_gcs_are_young(true);
1381 
1382       // See the comments in g1CollectedHeap.hpp and
1383       // G1CollectedHeap::ref_processing_init() about
1384       // how reference processing currently works in G1.
1385 
1386       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1387       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1388 
1389       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1390       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1391 
1392       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1393       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1394 
1395       // Do collection work
1396       {
1397         HandleMark hm;  // Discard invalid handles created during gc
1398         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1399       }
1400 
1401       assert(free_regions() == 0, "we should not have added any free regions");
1402       rebuild_region_sets(false /* free_list_only */);
1403 
1404       // Enqueue any discovered reference objects that have
1405       // not been removed from the discovered lists.
1406       ref_processor_stw()->enqueue_discovered_references();
1407 
1408       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1409 
1410       MemoryService::track_memory_usage();
1411 
1412       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1413       ref_processor_stw()->verify_no_references_recorded();
1414 
1415       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1416       ClassLoaderDataGraph::purge();
1417       MetaspaceAux::verify_metrics();
1418 
1419       // Note: since we've just done a full GC, concurrent
1420       // marking is no longer active. Therefore we need not
1421       // re-enable reference discovery for the CM ref processor.
1422       // That will be done at the start of the next marking cycle.
1423       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1424       ref_processor_cm()->verify_no_references_recorded();
1425 
1426       reset_gc_time_stamp();
1427       // Since everything potentially moved, we will clear all remembered
1428       // sets, and clear all cards.  Later we will rebuild remembered
1429       // sets. We will also reset the GC time stamps of the regions.
1430       clear_rsets_post_compaction();
1431       check_gc_time_stamps();
1432 
1433       // Resize the heap if necessary.
1434       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1435 
1436       if (_hr_printer.is_active()) {
1437         // We should do this after we potentially resize the heap so
1438         // that all the COMMIT / UNCOMMIT events are generated before
1439         // the end GC event.
1440 
1441         print_hrs_post_compaction();
1442         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1443       }
1444 
1445       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1446       if (hot_card_cache->use_cache()) {
1447         hot_card_cache->reset_card_counts();
1448         hot_card_cache->reset_hot_cache();
1449       }
1450 
1451       // Rebuild remembered sets of all regions.
1452       if (G1CollectedHeap::use_parallel_gc_threads()) {
1453         uint n_workers =
1454           AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1455                                                   workers()->active_workers(),
1456                                                   Threads::number_of_non_daemon_threads());
1457         assert(UseDynamicNumberOfGCThreads ||
1458                n_workers == workers()->total_workers(),
1459                "If not dynamic should be using all the  workers");
1460         workers()->set_active_workers(n_workers);
1461         // Set parallel threads in the heap (_n_par_threads) only
1462         // before a parallel phase and always reset it to 0 after
1463         // the phase so that the number of parallel threads does
1464         // no get carried forward to a serial phase where there
1465         // may be code that is "possibly_parallel".
1466         set_par_threads(n_workers);
1467 
1468         ParRebuildRSTask rebuild_rs_task(this);
1469         assert(check_heap_region_claim_values(
1470                HeapRegion::InitialClaimValue), "sanity check");
1471         assert(UseDynamicNumberOfGCThreads ||
1472                workers()->active_workers() == workers()->total_workers(),
1473                "Unless dynamic should use total workers");
1474         // Use the most recent number of  active workers
1475         assert(workers()->active_workers() > 0,
1476                "Active workers not properly set");
1477         set_par_threads(workers()->active_workers());
1478         workers()->run_task(&rebuild_rs_task);
1479         set_par_threads(0);
1480         assert(check_heap_region_claim_values(
1481                HeapRegion::RebuildRSClaimValue), "sanity check");
1482         reset_heap_region_claim_values();
1483       } else {
1484         RebuildRSOutOfRegionClosure rebuild_rs(this);
1485         heap_region_iterate(&rebuild_rs);
1486       }
1487 
1488       // Rebuild the strong code root lists for each region
1489       rebuild_strong_code_roots();
1490 
1491       if (true) { // FIXME
1492         MetaspaceGC::compute_new_size();
1493       }
1494 
1495 #ifdef TRACESPINNING
1496       ParallelTaskTerminator::print_termination_counts();
1497 #endif
1498 
1499       // Discard all rset updates
1500       JavaThread::dirty_card_queue_set().abandon_logs();
1501       assert(!G1DeferredRSUpdate
1502              || (G1DeferredRSUpdate &&
1503                 (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1504 
1505       _young_list->reset_sampled_info();
1506       // At this point there should be no regions in the
1507       // entire heap tagged as young.
1508       assert(check_young_list_empty(true /* check_heap */),
1509              "young list should be empty at this point");
1510 
1511       // Update the number of full collections that have been completed.
1512       increment_old_marking_cycles_completed(false /* concurrent */);
1513 
1514       _hrs.verify_optional();
1515       verify_region_sets_optional();
1516 
1517       verify_after_gc();
1518 
1519       // Start a new incremental collection set for the next pause
1520       assert(g1_policy()->collection_set() == NULL, "must be");
1521       g1_policy()->start_incremental_cset_building();
1522 
1523       // Clear the _cset_fast_test bitmap in anticipation of adding
1524       // regions to the incremental collection set for the next
1525       // evacuation pause.
1526       clear_cset_fast_test();
1527 
1528       init_mutator_alloc_region();
1529 
1530       double end = os::elapsedTime();
1531       g1_policy()->record_full_collection_end();
1532 
1533       if (G1Log::fine()) {
1534         g1_policy()->print_heap_transition();
1535       }
1536 
1537       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1538       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1539       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1540       // before any GC notifications are raised.
1541       g1mm()->update_sizes();
1542 
1543       gc_epilogue(true);
1544     }
1545 
1546     if (G1Log::finer()) {
1547       g1_policy()->print_detailed_heap_transition(true /* full */);
1548     }
1549 
1550     print_heap_after_gc();
1551     trace_heap_after_gc(gc_tracer);
1552 
1553     post_full_gc_dump(gc_timer);
1554 
1555     gc_timer->register_gc_end(os::elapsed_counter());
1556     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1557   }
1558 
1559   return true;
1560 }
1561 
1562 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1563   // do_collection() will return whether it succeeded in performing
1564   // the GC. Currently, there is no facility on the
1565   // do_full_collection() API to notify the caller than the collection
1566   // did not succeed (e.g., because it was locked out by the GC
1567   // locker). So, right now, we'll ignore the return value.
1568   bool dummy = do_collection(true,                /* explicit_gc */
1569                              clear_all_soft_refs,
1570                              0                    /* word_size */);
1571 }
1572 
1573 // This code is mostly copied from TenuredGeneration.
1574 void
1575 G1CollectedHeap::
1576 resize_if_necessary_after_full_collection(size_t word_size) {
1577   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
1578 
1579   // Include the current allocation, if any, and bytes that will be
1580   // pre-allocated to support collections, as "used".
1581   const size_t used_after_gc = used();
1582   const size_t capacity_after_gc = capacity();
1583   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1584 
1585   // This is enforced in arguments.cpp.
1586   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1587          "otherwise the code below doesn't make sense");
1588 
1589   // We don't have floating point command-line arguments
1590   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1591   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1592   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1593   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1594 
1595   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1596   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1597 
1598   // We have to be careful here as these two calculations can overflow
1599   // 32-bit size_t's.
1600   double used_after_gc_d = (double) used_after_gc;
1601   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1602   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1603 
1604   // Let's make sure that they are both under the max heap size, which
1605   // by default will make them fit into a size_t.
1606   double desired_capacity_upper_bound = (double) max_heap_size;
1607   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1608                                     desired_capacity_upper_bound);
1609   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1610                                     desired_capacity_upper_bound);
1611 
1612   // We can now safely turn them into size_t's.
1613   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1614   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1615 
1616   // This assert only makes sense here, before we adjust them
1617   // with respect to the min and max heap size.
1618   assert(minimum_desired_capacity <= maximum_desired_capacity,
1619          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1620                  "maximum_desired_capacity = "SIZE_FORMAT,
1621                  minimum_desired_capacity, maximum_desired_capacity));
1622 
1623   // Should not be greater than the heap max size. No need to adjust
1624   // it with respect to the heap min size as it's a lower bound (i.e.,
1625   // we'll try to make the capacity larger than it, not smaller).
1626   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1627   // Should not be less than the heap min size. No need to adjust it
1628   // with respect to the heap max size as it's an upper bound (i.e.,
1629   // we'll try to make the capacity smaller than it, not greater).
1630   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1631 
1632   if (capacity_after_gc < minimum_desired_capacity) {
1633     // Don't expand unless it's significant
1634     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1635     ergo_verbose4(ErgoHeapSizing,
1636                   "attempt heap expansion",
1637                   ergo_format_reason("capacity lower than "
1638                                      "min desired capacity after Full GC")
1639                   ergo_format_byte("capacity")
1640                   ergo_format_byte("occupancy")
1641                   ergo_format_byte_perc("min desired capacity"),
1642                   capacity_after_gc, used_after_gc,
1643                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1644     expand(expand_bytes);
1645 
1646     // No expansion, now see if we want to shrink
1647   } else if (capacity_after_gc > maximum_desired_capacity) {
1648     // Capacity too large, compute shrinking size
1649     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1650     ergo_verbose4(ErgoHeapSizing,
1651                   "attempt heap shrinking",
1652                   ergo_format_reason("capacity higher than "
1653                                      "max desired capacity after Full GC")
1654                   ergo_format_byte("capacity")
1655                   ergo_format_byte("occupancy")
1656                   ergo_format_byte_perc("max desired capacity"),
1657                   capacity_after_gc, used_after_gc,
1658                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1659     shrink(shrink_bytes);
1660   }
1661 }
1662 
1663 
1664 HeapWord*
1665 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1666                                            bool* succeeded) {
1667   assert_at_safepoint(true /* should_be_vm_thread */);
1668 
1669   *succeeded = true;
1670   // Let's attempt the allocation first.
1671   HeapWord* result =
1672     attempt_allocation_at_safepoint(word_size,
1673                                  false /* expect_null_mutator_alloc_region */);
1674   if (result != NULL) {
1675     assert(*succeeded, "sanity");
1676     return result;
1677   }
1678 
1679   // In a G1 heap, we're supposed to keep allocation from failing by
1680   // incremental pauses.  Therefore, at least for now, we'll favor
1681   // expansion over collection.  (This might change in the future if we can
1682   // do something smarter than full collection to satisfy a failed alloc.)
1683   result = expand_and_allocate(word_size);
1684   if (result != NULL) {
1685     assert(*succeeded, "sanity");
1686     return result;
1687   }
1688 
1689   // Expansion didn't work, we'll try to do a Full GC.
1690   bool gc_succeeded = do_collection(false, /* explicit_gc */
1691                                     false, /* clear_all_soft_refs */
1692                                     word_size);
1693   if (!gc_succeeded) {
1694     *succeeded = false;
1695     return NULL;
1696   }
1697 
1698   // Retry the allocation
1699   result = attempt_allocation_at_safepoint(word_size,
1700                                   true /* expect_null_mutator_alloc_region */);
1701   if (result != NULL) {
1702     assert(*succeeded, "sanity");
1703     return result;
1704   }
1705 
1706   // Then, try a Full GC that will collect all soft references.
1707   gc_succeeded = do_collection(false, /* explicit_gc */
1708                                true,  /* clear_all_soft_refs */
1709                                word_size);
1710   if (!gc_succeeded) {
1711     *succeeded = false;
1712     return NULL;
1713   }
1714 
1715   // Retry the allocation once more
1716   result = attempt_allocation_at_safepoint(word_size,
1717                                   true /* expect_null_mutator_alloc_region */);
1718   if (result != NULL) {
1719     assert(*succeeded, "sanity");
1720     return result;
1721   }
1722 
1723   assert(!collector_policy()->should_clear_all_soft_refs(),
1724          "Flag should have been handled and cleared prior to this point");
1725 
1726   // What else?  We might try synchronous finalization later.  If the total
1727   // space available is large enough for the allocation, then a more
1728   // complete compaction phase than we've tried so far might be
1729   // appropriate.
1730   assert(*succeeded, "sanity");
1731   return NULL;
1732 }
1733 
1734 // Attempting to expand the heap sufficiently
1735 // to support an allocation of the given "word_size".  If
1736 // successful, perform the allocation and return the address of the
1737 // allocated block, or else "NULL".
1738 
1739 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1740   assert_at_safepoint(true /* should_be_vm_thread */);
1741 
1742   verify_region_sets_optional();
1743 
1744   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1745   ergo_verbose1(ErgoHeapSizing,
1746                 "attempt heap expansion",
1747                 ergo_format_reason("allocation request failed")
1748                 ergo_format_byte("allocation request"),
1749                 word_size * HeapWordSize);
1750   if (expand(expand_bytes)) {
1751     _hrs.verify_optional();
1752     verify_region_sets_optional();
1753     return attempt_allocation_at_safepoint(word_size,
1754                                  false /* expect_null_mutator_alloc_region */);
1755   }
1756   return NULL;
1757 }
1758 
1759 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
1760                                              HeapWord* new_end) {
1761   assert(old_end != new_end, "don't call this otherwise");
1762   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
1763 
1764   // Update the committed mem region.
1765   _g1_committed.set_end(new_end);
1766   // Tell the card table about the update.
1767   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1768   // Tell the BOT about the update.
1769   _bot_shared->resize(_g1_committed.word_size());
1770   // Tell the hot card cache about the update
1771   _cg1r->hot_card_cache()->resize_card_counts(capacity());
1772 }
1773 
1774 bool G1CollectedHeap::expand(size_t expand_bytes) {
1775   size_t old_mem_size = _g1_storage.committed_size();
1776   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1777   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1778                                        HeapRegion::GrainBytes);
1779   ergo_verbose2(ErgoHeapSizing,
1780                 "expand the heap",
1781                 ergo_format_byte("requested expansion amount")
1782                 ergo_format_byte("attempted expansion amount"),
1783                 expand_bytes, aligned_expand_bytes);
1784 
1785   // First commit the memory.
1786   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1787   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
1788   if (successful) {
1789     // Then propagate this update to the necessary data structures.
1790     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1791     update_committed_space(old_end, new_end);
1792 
1793     FreeRegionList expansion_list("Local Expansion List");
1794     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
1795     assert(mr.start() == old_end, "post-condition");
1796     // mr might be a smaller region than what was requested if
1797     // expand_by() was unable to allocate the HeapRegion instances
1798     assert(mr.end() <= new_end, "post-condition");
1799 
1800     size_t actual_expand_bytes = mr.byte_size();
1801     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1802     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
1803            "post-condition");
1804     if (actual_expand_bytes < aligned_expand_bytes) {
1805       // We could not expand _hrs to the desired size. In this case we
1806       // need to shrink the committed space accordingly.
1807       assert(mr.end() < new_end, "invariant");
1808 
1809       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
1810       // First uncommit the memory.
1811       _g1_storage.shrink_by(diff_bytes);
1812       // Then propagate this update to the necessary data structures.
1813       update_committed_space(new_end, mr.end());
1814     }
1815     _free_list.add_as_tail(&expansion_list);
1816 
1817     if (_hr_printer.is_active()) {
1818       HeapWord* curr = mr.start();
1819       while (curr < mr.end()) {
1820         HeapWord* curr_end = curr + HeapRegion::GrainWords;
1821         _hr_printer.commit(curr, curr_end);
1822         curr = curr_end;
1823       }
1824       assert(curr == mr.end(), "post-condition");
1825     }
1826     g1_policy()->record_new_heap_size(n_regions());
1827   } else {
1828     ergo_verbose0(ErgoHeapSizing,
1829                   "did not expand the heap",
1830                   ergo_format_reason("heap expansion operation failed"));
1831     // The expansion of the virtual storage space was unsuccessful.
1832     // Let's see if it was because we ran out of swap.
1833     if (G1ExitOnExpansionFailure &&
1834         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
1835       // We had head room...
1836       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1837     }
1838   }
1839   return successful;
1840 }
1841 
1842 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1843   size_t old_mem_size = _g1_storage.committed_size();
1844   size_t aligned_shrink_bytes =
1845     ReservedSpace::page_align_size_down(shrink_bytes);
1846   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1847                                          HeapRegion::GrainBytes);
1848   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1849 
1850   uint num_regions_removed = _hrs.shrink_by(num_regions_to_remove);
1851   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1852   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1853 
1854   ergo_verbose3(ErgoHeapSizing,
1855                 "shrink the heap",
1856                 ergo_format_byte("requested shrinking amount")
1857                 ergo_format_byte("aligned shrinking amount")
1858                 ergo_format_byte("attempted shrinking amount"),
1859                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1860   if (num_regions_removed > 0) {
1861     _g1_storage.shrink_by(shrunk_bytes);
1862     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1863 
1864     if (_hr_printer.is_active()) {
1865       HeapWord* curr = old_end;
1866       while (curr > new_end) {
1867         HeapWord* curr_end = curr;
1868         curr -= HeapRegion::GrainWords;
1869         _hr_printer.uncommit(curr, curr_end);
1870       }
1871     }
1872 
1873     _expansion_regions += num_regions_removed;
1874     update_committed_space(old_end, new_end);
1875     HeapRegionRemSet::shrink_heap(n_regions());
1876     g1_policy()->record_new_heap_size(n_regions());
1877   } else {
1878     ergo_verbose0(ErgoHeapSizing,
1879                   "did not shrink the heap",
1880                   ergo_format_reason("heap shrinking operation failed"));
1881   }
1882 }
1883 
1884 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1885   verify_region_sets_optional();
1886 
1887   // We should only reach here at the end of a Full GC which means we
1888   // should not not be holding to any GC alloc regions. The method
1889   // below will make sure of that and do any remaining clean up.
1890   abandon_gc_alloc_regions();
1891 
1892   // Instead of tearing down / rebuilding the free lists here, we
1893   // could instead use the remove_all_pending() method on free_list to
1894   // remove only the ones that we need to remove.
1895   tear_down_region_sets(true /* free_list_only */);
1896   shrink_helper(shrink_bytes);
1897   rebuild_region_sets(true /* free_list_only */);
1898 
1899   _hrs.verify_optional();
1900   verify_region_sets_optional();
1901 }
1902 
1903 // Public methods.
1904 
1905 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1906 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1907 #endif // _MSC_VER
1908 
1909 
1910 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1911   SharedHeap(policy_),
1912   _g1_policy(policy_),
1913   _dirty_card_queue_set(false),
1914   _into_cset_dirty_card_queue_set(false),
1915   _is_alive_closure_cm(this),
1916   _is_alive_closure_stw(this),
1917   _ref_processor_cm(NULL),
1918   _ref_processor_stw(NULL),
1919   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1920   _bot_shared(NULL),
1921   _evac_failure_scan_stack(NULL),
1922   _mark_in_progress(false),
1923   _cg1r(NULL), _summary_bytes_used(0),
1924   _g1mm(NULL),
1925   _refine_cte_cl(NULL),
1926   _full_collection(false),
1927   _free_list("Master Free List"),
1928   _secondary_free_list("Secondary Free List"),
1929   _old_set("Old Set"),
1930   _humongous_set("Master Humongous Set"),
1931   _free_regions_coming(false),
1932   _young_list(new YoungList(this)),
1933   _gc_time_stamp(0),
1934   _retained_old_gc_alloc_region(NULL),
1935   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1936   _old_plab_stats(OldPLABSize, PLABWeight),
1937   _expand_heap_after_alloc_failure(true),
1938   _surviving_young_words(NULL),
1939   _old_marking_cycles_started(0),
1940   _old_marking_cycles_completed(0),
1941   _concurrent_cycle_started(false),
1942   _in_cset_fast_test(NULL),
1943   _in_cset_fast_test_base(NULL),
1944   _dirty_cards_region_list(NULL),
1945   _worker_cset_start_region(NULL),
1946   _worker_cset_start_region_time_stamp(NULL),
1947   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1948   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1949   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1950   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1951 
1952   _g1h = this;
1953   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1954     vm_exit_during_initialization("Failed necessary allocation.");
1955   }
1956 
1957   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1958 
1959   int n_queues = MAX2((int)ParallelGCThreads, 1);
1960   _task_queues = new RefToScanQueueSet(n_queues);
1961 
1962   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1963   assert(n_rem_sets > 0, "Invariant.");
1964 
1965   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1966   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
1967   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1968 
1969   for (int i = 0; i < n_queues; i++) {
1970     RefToScanQueue* q = new RefToScanQueue();
1971     q->initialize();
1972     _task_queues->register_queue(i, q);
1973     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1974   }
1975   clear_cset_start_regions();
1976 
1977   // Initialize the G1EvacuationFailureALot counters and flags.
1978   NOT_PRODUCT(reset_evacuation_should_fail();)
1979 
1980   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1981 }
1982 
1983 jint G1CollectedHeap::initialize() {
1984   CollectedHeap::pre_initialize();
1985   os::enable_vtime();
1986 
1987   G1Log::init();
1988 
1989   // Necessary to satisfy locking discipline assertions.
1990 
1991   MutexLocker x(Heap_lock);
1992 
1993   // We have to initialize the printer before committing the heap, as
1994   // it will be used then.
1995   _hr_printer.set_active(G1PrintHeapRegions);
1996 
1997   // While there are no constraints in the GC code that HeapWordSize
1998   // be any particular value, there are multiple other areas in the
1999   // system which believe this to be true (e.g. oop->object_size in some
2000   // cases incorrectly returns the size in wordSize units rather than
2001   // HeapWordSize).
2002   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
2003 
2004   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
2005   size_t max_byte_size = collector_policy()->max_heap_byte_size();
2006   size_t heap_alignment = collector_policy()->max_alignment();
2007 
2008   // Ensure that the sizes are properly aligned.
2009   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
2010   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2011   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
2012 
2013   _cg1r = new ConcurrentG1Refine(this);
2014 
2015   // Reserve the maximum.
2016 
2017   // When compressed oops are enabled, the preferred heap base
2018   // is calculated by subtracting the requested size from the
2019   // 32Gb boundary and using the result as the base address for
2020   // heap reservation. If the requested size is not aligned to
2021   // HeapRegion::GrainBytes (i.e. the alignment that is passed
2022   // into the ReservedHeapSpace constructor) then the actual
2023   // base of the reserved heap may end up differing from the
2024   // address that was requested (i.e. the preferred heap base).
2025   // If this happens then we could end up using a non-optimal
2026   // compressed oops mode.
2027 
2028   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
2029                                                  heap_alignment);
2030 
2031   // It is important to do this in a way such that concurrent readers can't
2032   // temporarily think something is in the heap.  (I've actually seen this
2033   // happen in asserts: DLD.)
2034   _reserved.set_word_size(0);
2035   _reserved.set_start((HeapWord*)heap_rs.base());
2036   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
2037 
2038   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
2039 
2040   // Create the gen rem set (and barrier set) for the entire reserved region.
2041   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
2042   set_barrier_set(rem_set()->bs());
2043   if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
2044     vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
2045     return JNI_ENOMEM;
2046   }
2047 
2048   // Also create a G1 rem set.
2049   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
2050 
2051   // Carve out the G1 part of the heap.
2052 
2053   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
2054   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
2055                            g1_rs.size()/HeapWordSize);
2056 
2057   _g1_storage.initialize(g1_rs, 0);
2058   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2059   _hrs.initialize((HeapWord*) _g1_reserved.start(),
2060                   (HeapWord*) _g1_reserved.end());
2061   assert(_hrs.max_length() == _expansion_regions,
2062          err_msg("max length: %u expansion regions: %u",
2063                  _hrs.max_length(), _expansion_regions));
2064 
2065   // Do later initialization work for concurrent refinement.
2066   _cg1r->init();
2067 
2068   // 6843694 - ensure that the maximum region index can fit
2069   // in the remembered set structures.
2070   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2071   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2072 
2073   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2074   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2075   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2076             "too many cards per region");
2077 
2078   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
2079 
2080   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
2081                                              heap_word_size(init_byte_size));
2082 
2083   _g1h = this;
2084 
2085   _in_cset_fast_test_length = max_regions();
2086   _in_cset_fast_test_base =
2087                    NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length, mtGC);
2088 
2089   // We're biasing _in_cset_fast_test to avoid subtracting the
2090   // beginning of the heap every time we want to index; basically
2091   // it's the same with what we do with the card table.
2092   _in_cset_fast_test = _in_cset_fast_test_base -
2093                ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
2094 
2095   // Clear the _cset_fast_test bitmap in anticipation of adding
2096   // regions to the incremental collection set for the first
2097   // evacuation pause.
2098   clear_cset_fast_test();
2099 
2100   // Create the ConcurrentMark data structure and thread.
2101   // (Must do this late, so that "max_regions" is defined.)
2102   _cm = new ConcurrentMark(this, heap_rs);
2103   if (_cm == NULL || !_cm->completed_initialization()) {
2104     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2105     return JNI_ENOMEM;
2106   }
2107   _cmThread = _cm->cmThread();
2108 
2109   // Initialize the from_card cache structure of HeapRegionRemSet.
2110   HeapRegionRemSet::init_heap(max_regions());
2111 
2112   // Now expand into the initial heap size.
2113   if (!expand(init_byte_size)) {
2114     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2115     return JNI_ENOMEM;
2116   }
2117 
2118   // Perform any initialization actions delegated to the policy.
2119   g1_policy()->init();
2120 
2121   _refine_cte_cl =
2122     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
2123                                     g1_rem_set(),
2124                                     concurrent_g1_refine());
2125   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
2126 
2127   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2128                                                SATB_Q_FL_lock,
2129                                                G1SATBProcessCompletedThreshold,
2130                                                Shared_SATB_Q_lock);
2131 
2132   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2133                                                 DirtyCardQ_FL_lock,
2134                                                 concurrent_g1_refine()->yellow_zone(),
2135                                                 concurrent_g1_refine()->red_zone(),
2136                                                 Shared_DirtyCardQ_lock);
2137 
2138   if (G1DeferredRSUpdate) {
2139     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2140                                       DirtyCardQ_FL_lock,
2141                                       -1, // never trigger processing
2142                                       -1, // no limit on length
2143                                       Shared_DirtyCardQ_lock,
2144                                       &JavaThread::dirty_card_queue_set());
2145   }
2146 
2147   // Initialize the card queue set used to hold cards containing
2148   // references into the collection set.
2149   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
2150                                              DirtyCardQ_FL_lock,
2151                                              -1, // never trigger processing
2152                                              -1, // no limit on length
2153                                              Shared_DirtyCardQ_lock,
2154                                              &JavaThread::dirty_card_queue_set());
2155 
2156   // In case we're keeping closure specialization stats, initialize those
2157   // counts and that mechanism.
2158   SpecializationStats::clear();
2159 
2160   // Here we allocate the dummy full region that is required by the
2161   // G1AllocRegion class. If we don't pass an address in the reserved
2162   // space here, lots of asserts fire.
2163 
2164   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
2165                                              _g1_reserved.start());
2166   // We'll re-use the same region whether the alloc region will
2167   // require BOT updates or not and, if it doesn't, then a non-young
2168   // region will complain that it cannot support allocations without
2169   // BOT updates. So we'll tag the dummy region as young to avoid that.
2170   dummy_region->set_young();
2171   // Make sure it's full.
2172   dummy_region->set_top(dummy_region->end());
2173   G1AllocRegion::setup(this, dummy_region);
2174 
2175   init_mutator_alloc_region();
2176 
2177   // Do create of the monitoring and management support so that
2178   // values in the heap have been properly initialized.
2179   _g1mm = new G1MonitoringSupport(this);
2180 
2181   return JNI_OK;
2182 }
2183 
2184 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2185   return HeapRegion::max_region_size();
2186 }
2187 
2188 void G1CollectedHeap::ref_processing_init() {
2189   // Reference processing in G1 currently works as follows:
2190   //
2191   // * There are two reference processor instances. One is
2192   //   used to record and process discovered references
2193   //   during concurrent marking; the other is used to
2194   //   record and process references during STW pauses
2195   //   (both full and incremental).
2196   // * Both ref processors need to 'span' the entire heap as
2197   //   the regions in the collection set may be dotted around.
2198   //
2199   // * For the concurrent marking ref processor:
2200   //   * Reference discovery is enabled at initial marking.
2201   //   * Reference discovery is disabled and the discovered
2202   //     references processed etc during remarking.
2203   //   * Reference discovery is MT (see below).
2204   //   * Reference discovery requires a barrier (see below).
2205   //   * Reference processing may or may not be MT
2206   //     (depending on the value of ParallelRefProcEnabled
2207   //     and ParallelGCThreads).
2208   //   * A full GC disables reference discovery by the CM
2209   //     ref processor and abandons any entries on it's
2210   //     discovered lists.
2211   //
2212   // * For the STW processor:
2213   //   * Non MT discovery is enabled at the start of a full GC.
2214   //   * Processing and enqueueing during a full GC is non-MT.
2215   //   * During a full GC, references are processed after marking.
2216   //
2217   //   * Discovery (may or may not be MT) is enabled at the start
2218   //     of an incremental evacuation pause.
2219   //   * References are processed near the end of a STW evacuation pause.
2220   //   * For both types of GC:
2221   //     * Discovery is atomic - i.e. not concurrent.
2222   //     * Reference discovery will not need a barrier.
2223 
2224   SharedHeap::ref_processing_init();
2225   MemRegion mr = reserved_region();
2226 
2227   // Concurrent Mark ref processor
2228   _ref_processor_cm =
2229     new ReferenceProcessor(mr,    // span
2230                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2231                                 // mt processing
2232                            (int) ParallelGCThreads,
2233                                 // degree of mt processing
2234                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2235                                 // mt discovery
2236                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2237                                 // degree of mt discovery
2238                            false,
2239                                 // Reference discovery is not atomic
2240                            &_is_alive_closure_cm,
2241                                 // is alive closure
2242                                 // (for efficiency/performance)
2243                            true);
2244                                 // Setting next fields of discovered
2245                                 // lists requires a barrier.
2246 
2247   // STW ref processor
2248   _ref_processor_stw =
2249     new ReferenceProcessor(mr,    // span
2250                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2251                                 // mt processing
2252                            MAX2((int)ParallelGCThreads, 1),
2253                                 // degree of mt processing
2254                            (ParallelGCThreads > 1),
2255                                 // mt discovery
2256                            MAX2((int)ParallelGCThreads, 1),
2257                                 // degree of mt discovery
2258                            true,
2259                                 // Reference discovery is atomic
2260                            &_is_alive_closure_stw,
2261                                 // is alive closure
2262                                 // (for efficiency/performance)
2263                            false);
2264                                 // Setting next fields of discovered
2265                                 // lists requires a barrier.
2266 }
2267 
2268 size_t G1CollectedHeap::capacity() const {
2269   return _g1_committed.byte_size();
2270 }
2271 
2272 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2273   assert(!hr->continuesHumongous(), "pre-condition");
2274   hr->reset_gc_time_stamp();
2275   if (hr->startsHumongous()) {
2276     uint first_index = hr->hrs_index() + 1;
2277     uint last_index = hr->last_hc_index();
2278     for (uint i = first_index; i < last_index; i += 1) {
2279       HeapRegion* chr = region_at(i);
2280       assert(chr->continuesHumongous(), "sanity");
2281       chr->reset_gc_time_stamp();
2282     }
2283   }
2284 }
2285 
2286 #ifndef PRODUCT
2287 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2288 private:
2289   unsigned _gc_time_stamp;
2290   bool _failures;
2291 
2292 public:
2293   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2294     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2295 
2296   virtual bool doHeapRegion(HeapRegion* hr) {
2297     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2298     if (_gc_time_stamp != region_gc_time_stamp) {
2299       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2300                              "expected %d", HR_FORMAT_PARAMS(hr),
2301                              region_gc_time_stamp, _gc_time_stamp);
2302       _failures = true;
2303     }
2304     return false;
2305   }
2306 
2307   bool failures() { return _failures; }
2308 };
2309 
2310 void G1CollectedHeap::check_gc_time_stamps() {
2311   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2312   heap_region_iterate(&cl);
2313   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2314 }
2315 #endif // PRODUCT
2316 
2317 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2318                                                  DirtyCardQueue* into_cset_dcq,
2319                                                  bool concurrent,
2320                                                  int worker_i) {
2321   // Clean cards in the hot card cache
2322   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2323   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2324 
2325   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2326   int n_completed_buffers = 0;
2327   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2328     n_completed_buffers++;
2329   }
2330   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2331   dcqs.clear_n_completed_buffers();
2332   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2333 }
2334 
2335 
2336 // Computes the sum of the storage used by the various regions.
2337 
2338 size_t G1CollectedHeap::used() const {
2339   assert(Heap_lock->owner() != NULL,
2340          "Should be owned on this thread's behalf.");
2341   size_t result = _summary_bytes_used;
2342   // Read only once in case it is set to NULL concurrently
2343   HeapRegion* hr = _mutator_alloc_region.get();
2344   if (hr != NULL)
2345     result += hr->used();
2346   return result;
2347 }
2348 
2349 size_t G1CollectedHeap::used_unlocked() const {
2350   size_t result = _summary_bytes_used;
2351   return result;
2352 }
2353 
2354 class SumUsedClosure: public HeapRegionClosure {
2355   size_t _used;
2356 public:
2357   SumUsedClosure() : _used(0) {}
2358   bool doHeapRegion(HeapRegion* r) {
2359     if (!r->continuesHumongous()) {
2360       _used += r->used();
2361     }
2362     return false;
2363   }
2364   size_t result() { return _used; }
2365 };
2366 
2367 size_t G1CollectedHeap::recalculate_used() const {
2368   SumUsedClosure blk;
2369   heap_region_iterate(&blk);
2370   return blk.result();
2371 }
2372 
2373 size_t G1CollectedHeap::unsafe_max_alloc() {
2374   if (free_regions() > 0) return HeapRegion::GrainBytes;
2375   // otherwise, is there space in the current allocation region?
2376 
2377   // We need to store the current allocation region in a local variable
2378   // here. The problem is that this method doesn't take any locks and
2379   // there may be other threads which overwrite the current allocation
2380   // region field. attempt_allocation(), for example, sets it to NULL
2381   // and this can happen *after* the NULL check here but before the call
2382   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
2383   // to be a problem in the optimized build, since the two loads of the
2384   // current allocation region field are optimized away.
2385   HeapRegion* hr = _mutator_alloc_region.get();
2386   if (hr == NULL) {
2387     return 0;
2388   }
2389   return hr->free();
2390 }
2391 
2392 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2393   switch (cause) {
2394     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2395     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2396     case GCCause::_g1_humongous_allocation: return true;
2397     default:                                return false;
2398   }
2399 }
2400 
2401 #ifndef PRODUCT
2402 void G1CollectedHeap::allocate_dummy_regions() {
2403   // Let's fill up most of the region
2404   size_t word_size = HeapRegion::GrainWords - 1024;
2405   // And as a result the region we'll allocate will be humongous.
2406   guarantee(isHumongous(word_size), "sanity");
2407 
2408   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2409     // Let's use the existing mechanism for the allocation
2410     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2411     if (dummy_obj != NULL) {
2412       MemRegion mr(dummy_obj, word_size);
2413       CollectedHeap::fill_with_object(mr);
2414     } else {
2415       // If we can't allocate once, we probably cannot allocate
2416       // again. Let's get out of the loop.
2417       break;
2418     }
2419   }
2420 }
2421 #endif // !PRODUCT
2422 
2423 void G1CollectedHeap::increment_old_marking_cycles_started() {
2424   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2425     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2426     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2427     _old_marking_cycles_started, _old_marking_cycles_completed));
2428 
2429   _old_marking_cycles_started++;
2430 }
2431 
2432 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2433   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2434 
2435   // We assume that if concurrent == true, then the caller is a
2436   // concurrent thread that was joined the Suspendible Thread
2437   // Set. If there's ever a cheap way to check this, we should add an
2438   // assert here.
2439 
2440   // Given that this method is called at the end of a Full GC or of a
2441   // concurrent cycle, and those can be nested (i.e., a Full GC can
2442   // interrupt a concurrent cycle), the number of full collections
2443   // completed should be either one (in the case where there was no
2444   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2445   // behind the number of full collections started.
2446 
2447   // This is the case for the inner caller, i.e. a Full GC.
2448   assert(concurrent ||
2449          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2450          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2451          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2452                  "is inconsistent with _old_marking_cycles_completed = %u",
2453                  _old_marking_cycles_started, _old_marking_cycles_completed));
2454 
2455   // This is the case for the outer caller, i.e. the concurrent cycle.
2456   assert(!concurrent ||
2457          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2458          err_msg("for outer caller (concurrent cycle): "
2459                  "_old_marking_cycles_started = %u "
2460                  "is inconsistent with _old_marking_cycles_completed = %u",
2461                  _old_marking_cycles_started, _old_marking_cycles_completed));
2462 
2463   _old_marking_cycles_completed += 1;
2464 
2465   // We need to clear the "in_progress" flag in the CM thread before
2466   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2467   // is set) so that if a waiter requests another System.gc() it doesn't
2468   // incorrectly see that a marking cycle is still in progress.
2469   if (concurrent) {
2470     _cmThread->clear_in_progress();
2471   }
2472 
2473   // This notify_all() will ensure that a thread that called
2474   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2475   // and it's waiting for a full GC to finish will be woken up. It is
2476   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2477   FullGCCount_lock->notify_all();
2478 }
2479 
2480 void G1CollectedHeap::register_concurrent_cycle_start(jlong start_time) {
2481   _concurrent_cycle_started = true;
2482   _gc_timer_cm->register_gc_start(start_time);
2483 
2484   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2485   trace_heap_before_gc(_gc_tracer_cm);
2486 }
2487 
2488 void G1CollectedHeap::register_concurrent_cycle_end() {
2489   if (_concurrent_cycle_started) {
2490     if (_cm->has_aborted()) {
2491       _gc_tracer_cm->report_concurrent_mode_failure();
2492     }
2493 
2494     _gc_timer_cm->register_gc_end(os::elapsed_counter());
2495     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2496 
2497     _concurrent_cycle_started = false;
2498   }
2499 }
2500 
2501 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2502   if (_concurrent_cycle_started) {
2503     trace_heap_after_gc(_gc_tracer_cm);
2504   }
2505 }
2506 
2507 G1YCType G1CollectedHeap::yc_type() {
2508   bool is_young = g1_policy()->gcs_are_young();
2509   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2510   bool is_during_mark = mark_in_progress();
2511 
2512   if (is_initial_mark) {
2513     return InitialMark;
2514   } else if (is_during_mark) {
2515     return DuringMark;
2516   } else if (is_young) {
2517     return Normal;
2518   } else {
2519     return Mixed;
2520   }
2521 }
2522 
2523 void G1CollectedHeap::collect(GCCause::Cause cause) {
2524   assert_heap_not_locked();
2525 
2526   unsigned int gc_count_before;
2527   unsigned int old_marking_count_before;
2528   bool retry_gc;
2529 
2530   do {
2531     retry_gc = false;
2532 
2533     {
2534       MutexLocker ml(Heap_lock);
2535 
2536       // Read the GC count while holding the Heap_lock
2537       gc_count_before = total_collections();
2538       old_marking_count_before = _old_marking_cycles_started;
2539     }
2540 
2541     if (should_do_concurrent_full_gc(cause)) {
2542       // Schedule an initial-mark evacuation pause that will start a
2543       // concurrent cycle. We're setting word_size to 0 which means that
2544       // we are not requesting a post-GC allocation.
2545       VM_G1IncCollectionPause op(gc_count_before,
2546                                  0,     /* word_size */
2547                                  true,  /* should_initiate_conc_mark */
2548                                  g1_policy()->max_pause_time_ms(),
2549                                  cause);
2550 
2551       VMThread::execute(&op);
2552       if (!op.pause_succeeded()) {
2553         if (old_marking_count_before == _old_marking_cycles_started) {
2554           retry_gc = op.should_retry_gc();
2555         } else {
2556           // A Full GC happened while we were trying to schedule the
2557           // initial-mark GC. No point in starting a new cycle given
2558           // that the whole heap was collected anyway.
2559         }
2560 
2561         if (retry_gc) {
2562           if (GC_locker::is_active_and_needs_gc()) {
2563             GC_locker::stall_until_clear();
2564           }
2565         }
2566       }
2567     } else {
2568       if (cause == GCCause::_gc_locker
2569           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2570 
2571         // Schedule a standard evacuation pause. We're setting word_size
2572         // to 0 which means that we are not requesting a post-GC allocation.
2573         VM_G1IncCollectionPause op(gc_count_before,
2574                                    0,     /* word_size */
2575                                    false, /* should_initiate_conc_mark */
2576                                    g1_policy()->max_pause_time_ms(),
2577                                    cause);
2578         VMThread::execute(&op);
2579       } else {
2580         // Schedule a Full GC.
2581         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
2582         VMThread::execute(&op);
2583       }
2584     }
2585   } while (retry_gc);
2586 }
2587 
2588 bool G1CollectedHeap::is_in(const void* p) const {
2589   if (_g1_committed.contains(p)) {
2590     // Given that we know that p is in the committed space,
2591     // heap_region_containing_raw() should successfully
2592     // return the containing region.
2593     HeapRegion* hr = heap_region_containing_raw(p);
2594     return hr->is_in(p);
2595   } else {
2596     return false;
2597   }
2598 }
2599 
2600 // Iteration functions.
2601 
2602 // Iterates an OopClosure over all ref-containing fields of objects
2603 // within a HeapRegion.
2604 
2605 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2606   MemRegion _mr;
2607   ExtendedOopClosure* _cl;
2608 public:
2609   IterateOopClosureRegionClosure(MemRegion mr, ExtendedOopClosure* cl)
2610     : _mr(mr), _cl(cl) {}
2611   bool doHeapRegion(HeapRegion* r) {
2612     if (!r->continuesHumongous()) {
2613       r->oop_iterate(_cl);
2614     }
2615     return false;
2616   }
2617 };
2618 
2619 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2620   IterateOopClosureRegionClosure blk(_g1_committed, cl);
2621   heap_region_iterate(&blk);
2622 }
2623 
2624 void G1CollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
2625   IterateOopClosureRegionClosure blk(mr, cl);
2626   heap_region_iterate(&blk);
2627 }
2628 
2629 // Iterates an ObjectClosure over all objects within a HeapRegion.
2630 
2631 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2632   ObjectClosure* _cl;
2633 public:
2634   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2635   bool doHeapRegion(HeapRegion* r) {
2636     if (! r->continuesHumongous()) {
2637       r->object_iterate(_cl);
2638     }
2639     return false;
2640   }
2641 };
2642 
2643 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2644   IterateObjectClosureRegionClosure blk(cl);
2645   heap_region_iterate(&blk);
2646 }
2647 
2648 // Calls a SpaceClosure on a HeapRegion.
2649 
2650 class SpaceClosureRegionClosure: public HeapRegionClosure {
2651   SpaceClosure* _cl;
2652 public:
2653   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2654   bool doHeapRegion(HeapRegion* r) {
2655     _cl->do_space(r);
2656     return false;
2657   }
2658 };
2659 
2660 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2661   SpaceClosureRegionClosure blk(cl);
2662   heap_region_iterate(&blk);
2663 }
2664 
2665 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2666   _hrs.iterate(cl);
2667 }
2668 
2669 void
2670 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2671                                                  uint worker_id,
2672                                                  uint no_of_par_workers,
2673                                                  jint claim_value) {
2674   const uint regions = n_regions();
2675   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
2676                              no_of_par_workers :
2677                              1);
2678   assert(UseDynamicNumberOfGCThreads ||
2679          no_of_par_workers == workers()->total_workers(),
2680          "Non dynamic should use fixed number of workers");
2681   // try to spread out the starting points of the workers
2682   const HeapRegion* start_hr =
2683                         start_region_for_worker(worker_id, no_of_par_workers);
2684   const uint start_index = start_hr->hrs_index();
2685 
2686   // each worker will actually look at all regions
2687   for (uint count = 0; count < regions; ++count) {
2688     const uint index = (start_index + count) % regions;
2689     assert(0 <= index && index < regions, "sanity");
2690     HeapRegion* r = region_at(index);
2691     // we'll ignore "continues humongous" regions (we'll process them
2692     // when we come across their corresponding "start humongous"
2693     // region) and regions already claimed
2694     if (r->claim_value() == claim_value || r->continuesHumongous()) {
2695       continue;
2696     }
2697     // OK, try to claim it
2698     if (r->claimHeapRegion(claim_value)) {
2699       // success!
2700       assert(!r->continuesHumongous(), "sanity");
2701       if (r->startsHumongous()) {
2702         // If the region is "starts humongous" we'll iterate over its
2703         // "continues humongous" first; in fact we'll do them
2704         // first. The order is important. In on case, calling the
2705         // closure on the "starts humongous" region might de-allocate
2706         // and clear all its "continues humongous" regions and, as a
2707         // result, we might end up processing them twice. So, we'll do
2708         // them first (notice: most closures will ignore them anyway) and
2709         // then we'll do the "starts humongous" region.
2710         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
2711           HeapRegion* chr = region_at(ch_index);
2712 
2713           // if the region has already been claimed or it's not
2714           // "continues humongous" we're done
2715           if (chr->claim_value() == claim_value ||
2716               !chr->continuesHumongous()) {
2717             break;
2718           }
2719 
2720           // No one should have claimed it directly. We can given
2721           // that we claimed its "starts humongous" region.
2722           assert(chr->claim_value() != claim_value, "sanity");
2723           assert(chr->humongous_start_region() == r, "sanity");
2724 
2725           if (chr->claimHeapRegion(claim_value)) {
2726             // we should always be able to claim it; no one else should
2727             // be trying to claim this region
2728 
2729             bool res2 = cl->doHeapRegion(chr);
2730             assert(!res2, "Should not abort");
2731 
2732             // Right now, this holds (i.e., no closure that actually
2733             // does something with "continues humongous" regions
2734             // clears them). We might have to weaken it in the future,
2735             // but let's leave these two asserts here for extra safety.
2736             assert(chr->continuesHumongous(), "should still be the case");
2737             assert(chr->humongous_start_region() == r, "sanity");
2738           } else {
2739             guarantee(false, "we should not reach here");
2740           }
2741         }
2742       }
2743 
2744       assert(!r->continuesHumongous(), "sanity");
2745       bool res = cl->doHeapRegion(r);
2746       assert(!res, "Should not abort");
2747     }
2748   }
2749 }
2750 
2751 class ResetClaimValuesClosure: public HeapRegionClosure {
2752 public:
2753   bool doHeapRegion(HeapRegion* r) {
2754     r->set_claim_value(HeapRegion::InitialClaimValue);
2755     return false;
2756   }
2757 };
2758 
2759 void G1CollectedHeap::reset_heap_region_claim_values() {
2760   ResetClaimValuesClosure blk;
2761   heap_region_iterate(&blk);
2762 }
2763 
2764 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
2765   ResetClaimValuesClosure blk;
2766   collection_set_iterate(&blk);
2767 }
2768 
2769 #ifdef ASSERT
2770 // This checks whether all regions in the heap have the correct claim
2771 // value. I also piggy-backed on this a check to ensure that the
2772 // humongous_start_region() information on "continues humongous"
2773 // regions is correct.
2774 
2775 class CheckClaimValuesClosure : public HeapRegionClosure {
2776 private:
2777   jint _claim_value;
2778   uint _failures;
2779   HeapRegion* _sh_region;
2780 
2781 public:
2782   CheckClaimValuesClosure(jint claim_value) :
2783     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2784   bool doHeapRegion(HeapRegion* r) {
2785     if (r->claim_value() != _claim_value) {
2786       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2787                              "claim value = %d, should be %d",
2788                              HR_FORMAT_PARAMS(r),
2789                              r->claim_value(), _claim_value);
2790       ++_failures;
2791     }
2792     if (!r->isHumongous()) {
2793       _sh_region = NULL;
2794     } else if (r->startsHumongous()) {
2795       _sh_region = r;
2796     } else if (r->continuesHumongous()) {
2797       if (r->humongous_start_region() != _sh_region) {
2798         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2799                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2800                                HR_FORMAT_PARAMS(r),
2801                                r->humongous_start_region(),
2802                                _sh_region);
2803         ++_failures;
2804       }
2805     }
2806     return false;
2807   }
2808   uint failures() { return _failures; }
2809 };
2810 
2811 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2812   CheckClaimValuesClosure cl(claim_value);
2813   heap_region_iterate(&cl);
2814   return cl.failures() == 0;
2815 }
2816 
2817 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2818 private:
2819   jint _claim_value;
2820   uint _failures;
2821 
2822 public:
2823   CheckClaimValuesInCSetHRClosure(jint claim_value) :
2824     _claim_value(claim_value), _failures(0) { }
2825 
2826   uint failures() { return _failures; }
2827 
2828   bool doHeapRegion(HeapRegion* hr) {
2829     assert(hr->in_collection_set(), "how?");
2830     assert(!hr->isHumongous(), "H-region in CSet");
2831     if (hr->claim_value() != _claim_value) {
2832       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
2833                              "claim value = %d, should be %d",
2834                              HR_FORMAT_PARAMS(hr),
2835                              hr->claim_value(), _claim_value);
2836       _failures += 1;
2837     }
2838     return false;
2839   }
2840 };
2841 
2842 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
2843   CheckClaimValuesInCSetHRClosure cl(claim_value);
2844   collection_set_iterate(&cl);
2845   return cl.failures() == 0;
2846 }
2847 #endif // ASSERT
2848 
2849 // Clear the cached CSet starting regions and (more importantly)
2850 // the time stamps. Called when we reset the GC time stamp.
2851 void G1CollectedHeap::clear_cset_start_regions() {
2852   assert(_worker_cset_start_region != NULL, "sanity");
2853   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2854 
2855   int n_queues = MAX2((int)ParallelGCThreads, 1);
2856   for (int i = 0; i < n_queues; i++) {
2857     _worker_cset_start_region[i] = NULL;
2858     _worker_cset_start_region_time_stamp[i] = 0;
2859   }
2860 }
2861 
2862 // Given the id of a worker, obtain or calculate a suitable
2863 // starting region for iterating over the current collection set.
2864 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
2865   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2866 
2867   HeapRegion* result = NULL;
2868   unsigned gc_time_stamp = get_gc_time_stamp();
2869 
2870   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2871     // Cached starting region for current worker was set
2872     // during the current pause - so it's valid.
2873     // Note: the cached starting heap region may be NULL
2874     // (when the collection set is empty).
2875     result = _worker_cset_start_region[worker_i];
2876     assert(result == NULL || result->in_collection_set(), "sanity");
2877     return result;
2878   }
2879 
2880   // The cached entry was not valid so let's calculate
2881   // a suitable starting heap region for this worker.
2882 
2883   // We want the parallel threads to start their collection
2884   // set iteration at different collection set regions to
2885   // avoid contention.
2886   // If we have:
2887   //          n collection set regions
2888   //          p threads
2889   // Then thread t will start at region floor ((t * n) / p)
2890 
2891   result = g1_policy()->collection_set();
2892   if (G1CollectedHeap::use_parallel_gc_threads()) {
2893     uint cs_size = g1_policy()->cset_region_length();
2894     uint active_workers = workers()->active_workers();
2895     assert(UseDynamicNumberOfGCThreads ||
2896              active_workers == workers()->total_workers(),
2897              "Unless dynamic should use total workers");
2898 
2899     uint end_ind   = (cs_size * worker_i) / active_workers;
2900     uint start_ind = 0;
2901 
2902     if (worker_i > 0 &&
2903         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2904       // Previous workers starting region is valid
2905       // so let's iterate from there
2906       start_ind = (cs_size * (worker_i - 1)) / active_workers;
2907       result = _worker_cset_start_region[worker_i - 1];
2908     }
2909 
2910     for (uint i = start_ind; i < end_ind; i++) {
2911       result = result->next_in_collection_set();
2912     }
2913   }
2914 
2915   // Note: the calculated starting heap region may be NULL
2916   // (when the collection set is empty).
2917   assert(result == NULL || result->in_collection_set(), "sanity");
2918   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2919          "should be updated only once per pause");
2920   _worker_cset_start_region[worker_i] = result;
2921   OrderAccess::storestore();
2922   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2923   return result;
2924 }
2925 
2926 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
2927                                                      uint no_of_par_workers) {
2928   uint worker_num =
2929            G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
2930   assert(UseDynamicNumberOfGCThreads ||
2931          no_of_par_workers == workers()->total_workers(),
2932          "Non dynamic should use fixed number of workers");
2933   const uint start_index = n_regions() * worker_i / worker_num;
2934   return region_at(start_index);
2935 }
2936 
2937 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2938   HeapRegion* r = g1_policy()->collection_set();
2939   while (r != NULL) {
2940     HeapRegion* next = r->next_in_collection_set();
2941     if (cl->doHeapRegion(r)) {
2942       cl->incomplete();
2943       return;
2944     }
2945     r = next;
2946   }
2947 }
2948 
2949 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2950                                                   HeapRegionClosure *cl) {
2951   if (r == NULL) {
2952     // The CSet is empty so there's nothing to do.
2953     return;
2954   }
2955 
2956   assert(r->in_collection_set(),
2957          "Start region must be a member of the collection set.");
2958   HeapRegion* cur = r;
2959   while (cur != NULL) {
2960     HeapRegion* next = cur->next_in_collection_set();
2961     if (cl->doHeapRegion(cur) && false) {
2962       cl->incomplete();
2963       return;
2964     }
2965     cur = next;
2966   }
2967   cur = g1_policy()->collection_set();
2968   while (cur != r) {
2969     HeapRegion* next = cur->next_in_collection_set();
2970     if (cl->doHeapRegion(cur) && false) {
2971       cl->incomplete();
2972       return;
2973     }
2974     cur = next;
2975   }
2976 }
2977 
2978 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2979   return n_regions() > 0 ? region_at(0) : NULL;
2980 }
2981 
2982 
2983 Space* G1CollectedHeap::space_containing(const void* addr) const {
2984   Space* res = heap_region_containing(addr);
2985   return res;
2986 }
2987 
2988 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2989   Space* sp = space_containing(addr);
2990   if (sp != NULL) {
2991     return sp->block_start(addr);
2992   }
2993   return NULL;
2994 }
2995 
2996 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2997   Space* sp = space_containing(addr);
2998   assert(sp != NULL, "block_size of address outside of heap");
2999   return sp->block_size(addr);
3000 }
3001 
3002 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
3003   Space* sp = space_containing(addr);
3004   return sp->block_is_obj(addr);
3005 }
3006 
3007 bool G1CollectedHeap::supports_tlab_allocation() const {
3008   return true;
3009 }
3010 
3011 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
3012   return HeapRegion::GrainBytes;
3013 }
3014 
3015 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
3016   // Return the remaining space in the cur alloc region, but not less than
3017   // the min TLAB size.
3018 
3019   // Also, this value can be at most the humongous object threshold,
3020   // since we can't allow tlabs to grow big enough to accommodate
3021   // humongous objects.
3022 
3023   HeapRegion* hr = _mutator_alloc_region.get();
3024   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
3025   if (hr == NULL) {
3026     return max_tlab_size;
3027   } else {
3028     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
3029   }
3030 }
3031 
3032 size_t G1CollectedHeap::max_capacity() const {
3033   return _g1_reserved.byte_size();
3034 }
3035 
3036 jlong G1CollectedHeap::millis_since_last_gc() {
3037   // assert(false, "NYI");
3038   return 0;
3039 }
3040 
3041 void G1CollectedHeap::prepare_for_verify() {
3042   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
3043     ensure_parsability(false);
3044   }
3045   g1_rem_set()->prepare_for_verify();
3046 }
3047 
3048 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
3049                                               VerifyOption vo) {
3050   switch (vo) {
3051   case VerifyOption_G1UsePrevMarking:
3052     return hr->obj_allocated_since_prev_marking(obj);
3053   case VerifyOption_G1UseNextMarking:
3054     return hr->obj_allocated_since_next_marking(obj);
3055   case VerifyOption_G1UseMarkWord:
3056     return false;
3057   default:
3058     ShouldNotReachHere();
3059   }
3060   return false; // keep some compilers happy
3061 }
3062 
3063 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
3064   switch (vo) {
3065   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
3066   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
3067   case VerifyOption_G1UseMarkWord:    return NULL;
3068   default:                            ShouldNotReachHere();
3069   }
3070   return NULL; // keep some compilers happy
3071 }
3072 
3073 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
3074   switch (vo) {
3075   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
3076   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
3077   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
3078   default:                            ShouldNotReachHere();
3079   }
3080   return false; // keep some compilers happy
3081 }
3082 
3083 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
3084   switch (vo) {
3085   case VerifyOption_G1UsePrevMarking: return "PTAMS";
3086   case VerifyOption_G1UseNextMarking: return "NTAMS";
3087   case VerifyOption_G1UseMarkWord:    return "NONE";
3088   default:                            ShouldNotReachHere();
3089   }
3090   return NULL; // keep some compilers happy
3091 }
3092 
3093 // TODO: VerifyRootsClosure extends OopsInGenClosure so that we can
3094 //       pass it as the perm_blk to SharedHeap::process_strong_roots.
3095 //       When process_strong_roots stop calling perm_blk->younger_refs_iterate
3096 //       we can change this closure to extend the simpler OopClosure.
3097 class VerifyRootsClosure: public OopsInGenClosure {
3098 private:
3099   G1CollectedHeap* _g1h;
3100   VerifyOption     _vo;
3101   bool             _failures;
3102 public:
3103   // _vo == UsePrevMarking -> use "prev" marking information,
3104   // _vo == UseNextMarking -> use "next" marking information,
3105   // _vo == UseMarkWord    -> use mark word from object header.
3106   VerifyRootsClosure(VerifyOption vo) :
3107     _g1h(G1CollectedHeap::heap()),
3108     _vo(vo),
3109     _failures(false) { }
3110 
3111   bool failures() { return _failures; }
3112 
3113   template <class T> void do_oop_nv(T* p) {
3114     T heap_oop = oopDesc::load_heap_oop(p);
3115     if (!oopDesc::is_null(heap_oop)) {
3116       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3117       if (_g1h->is_obj_dead_cond(obj, _vo)) {
3118         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
3119                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
3120         if (_vo == VerifyOption_G1UseMarkWord) {
3121           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
3122         }
3123         obj->print_on(gclog_or_tty);
3124         _failures = true;
3125       }
3126     }
3127   }
3128 
3129   void do_oop(oop* p)       { do_oop_nv(p); }
3130   void do_oop(narrowOop* p) { do_oop_nv(p); }
3131 };
3132 
3133 class G1VerifyCodeRootOopClosure: public OopsInGenClosure {
3134   G1CollectedHeap* _g1h;
3135   OopClosure* _root_cl;
3136   nmethod* _nm;
3137   VerifyOption _vo;
3138   bool _failures;
3139 
3140   template <class T> void do_oop_work(T* p) {
3141     // First verify that this root is live
3142     _root_cl->do_oop(p);
3143 
3144     if (!G1VerifyHeapRegionCodeRoots) {
3145       // We're not verifying the code roots attached to heap region.
3146       return;
3147     }
3148 
3149     // Don't check the code roots during marking verification in a full GC
3150     if (_vo == VerifyOption_G1UseMarkWord) {
3151       return;
3152     }
3153 
3154     // Now verify that the current nmethod (which contains p) is
3155     // in the code root list of the heap region containing the
3156     // object referenced by p.
3157 
3158     T heap_oop = oopDesc::load_heap_oop(p);
3159     if (!oopDesc::is_null(heap_oop)) {
3160       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3161 
3162       // Now fetch the region containing the object
3163       HeapRegion* hr = _g1h->heap_region_containing(obj);
3164       HeapRegionRemSet* hrrs = hr->rem_set();
3165       // Verify that the strong code root list for this region
3166       // contains the nmethod
3167       if (!hrrs->strong_code_roots_list_contains(_nm)) {
3168         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
3169                               "from nmethod "PTR_FORMAT" not in strong "
3170                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
3171                               p, _nm, hr->bottom(), hr->end());
3172         _failures = true;
3173       }
3174     }
3175   }
3176 
3177 public:
3178   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
3179     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
3180 
3181   void do_oop(oop* p) { do_oop_work(p); }
3182   void do_oop(narrowOop* p) { do_oop_work(p); }
3183 
3184   void set_nmethod(nmethod* nm) { _nm = nm; }
3185   bool failures() { return _failures; }
3186 };
3187 
3188 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
3189   G1VerifyCodeRootOopClosure* _oop_cl;
3190 
3191 public:
3192   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
3193     _oop_cl(oop_cl) {}
3194 
3195   void do_code_blob(CodeBlob* cb) {
3196     nmethod* nm = cb->as_nmethod_or_null();
3197     if (nm != NULL) {
3198       _oop_cl->set_nmethod(nm);
3199       nm->oops_do(_oop_cl);
3200     }
3201   }
3202 };
3203 
3204 class YoungRefCounterClosure : public OopClosure {
3205   G1CollectedHeap* _g1h;
3206   int              _count;
3207  public:
3208   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
3209   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
3210   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3211 
3212   int count() { return _count; }
3213   void reset_count() { _count = 0; };
3214 };
3215 
3216 class VerifyKlassClosure: public KlassClosure {
3217   YoungRefCounterClosure _young_ref_counter_closure;
3218   OopClosure *_oop_closure;
3219  public:
3220   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3221   void do_klass(Klass* k) {
3222     k->oops_do(_oop_closure);
3223 
3224     _young_ref_counter_closure.reset_count();
3225     k->oops_do(&_young_ref_counter_closure);
3226     if (_young_ref_counter_closure.count() > 0) {
3227       guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
3228     }
3229   }
3230 };
3231 
3232 class VerifyLivenessOopClosure: public OopClosure {
3233   G1CollectedHeap* _g1h;
3234   VerifyOption _vo;
3235 public:
3236   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3237     _g1h(g1h), _vo(vo)
3238   { }
3239   void do_oop(narrowOop *p) { do_oop_work(p); }
3240   void do_oop(      oop *p) { do_oop_work(p); }
3241 
3242   template <class T> void do_oop_work(T *p) {
3243     oop obj = oopDesc::load_decode_heap_oop(p);
3244     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3245               "Dead object referenced by a not dead object");
3246   }
3247 };
3248 
3249 class VerifyObjsInRegionClosure: public ObjectClosure {
3250 private:
3251   G1CollectedHeap* _g1h;
3252   size_t _live_bytes;
3253   HeapRegion *_hr;
3254   VerifyOption _vo;
3255 public:
3256   // _vo == UsePrevMarking -> use "prev" marking information,
3257   // _vo == UseNextMarking -> use "next" marking information,
3258   // _vo == UseMarkWord    -> use mark word from object header.
3259   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3260     : _live_bytes(0), _hr(hr), _vo(vo) {
3261     _g1h = G1CollectedHeap::heap();
3262   }
3263   void do_object(oop o) {
3264     VerifyLivenessOopClosure isLive(_g1h, _vo);
3265     assert(o != NULL, "Huh?");
3266     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3267       // If the object is alive according to the mark word,
3268       // then verify that the marking information agrees.
3269       // Note we can't verify the contra-positive of the
3270       // above: if the object is dead (according to the mark
3271       // word), it may not be marked, or may have been marked
3272       // but has since became dead, or may have been allocated
3273       // since the last marking.
3274       if (_vo == VerifyOption_G1UseMarkWord) {
3275         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3276       }
3277 
3278       o->oop_iterate_no_header(&isLive);
3279       if (!_hr->obj_allocated_since_prev_marking(o)) {
3280         size_t obj_size = o->size();    // Make sure we don't overflow
3281         _live_bytes += (obj_size * HeapWordSize);
3282       }
3283     }
3284   }
3285   size_t live_bytes() { return _live_bytes; }
3286 };
3287 
3288 class PrintObjsInRegionClosure : public ObjectClosure {
3289   HeapRegion *_hr;
3290   G1CollectedHeap *_g1;
3291 public:
3292   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
3293     _g1 = G1CollectedHeap::heap();
3294   };
3295 
3296   void do_object(oop o) {
3297     if (o != NULL) {
3298       HeapWord *start = (HeapWord *) o;
3299       size_t word_sz = o->size();
3300       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
3301                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3302                           (void*) o, word_sz,
3303                           _g1->isMarkedPrev(o),
3304                           _g1->isMarkedNext(o),
3305                           _hr->obj_allocated_since_prev_marking(o));
3306       HeapWord *end = start + word_sz;
3307       HeapWord *cur;
3308       int *val;
3309       for (cur = start; cur < end; cur++) {
3310         val = (int *) cur;
3311         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
3312       }
3313     }
3314   }
3315 };
3316 
3317 class VerifyRegionClosure: public HeapRegionClosure {
3318 private:
3319   bool             _par;
3320   VerifyOption     _vo;
3321   bool             _failures;
3322 public:
3323   // _vo == UsePrevMarking -> use "prev" marking information,
3324   // _vo == UseNextMarking -> use "next" marking information,
3325   // _vo == UseMarkWord    -> use mark word from object header.
3326   VerifyRegionClosure(bool par, VerifyOption vo)
3327     : _par(par),
3328       _vo(vo),
3329       _failures(false) {}
3330 
3331   bool failures() {
3332     return _failures;
3333   }
3334 
3335   bool doHeapRegion(HeapRegion* r) {
3336     if (!r->continuesHumongous()) {
3337       bool failures = false;
3338       r->verify(_vo, &failures);
3339       if (failures) {
3340         _failures = true;
3341       } else {
3342         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3343         r->object_iterate(&not_dead_yet_cl);
3344         if (_vo != VerifyOption_G1UseNextMarking) {
3345           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3346             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3347                                    "max_live_bytes "SIZE_FORMAT" "
3348                                    "< calculated "SIZE_FORMAT,
3349                                    r->bottom(), r->end(),
3350                                    r->max_live_bytes(),
3351                                  not_dead_yet_cl.live_bytes());
3352             _failures = true;
3353           }
3354         } else {
3355           // When vo == UseNextMarking we cannot currently do a sanity
3356           // check on the live bytes as the calculation has not been
3357           // finalized yet.
3358         }
3359       }
3360     }
3361     return false; // stop the region iteration if we hit a failure
3362   }
3363 };
3364 
3365 // This is the task used for parallel verification of the heap regions
3366 
3367 class G1ParVerifyTask: public AbstractGangTask {
3368 private:
3369   G1CollectedHeap* _g1h;
3370   VerifyOption     _vo;
3371   bool             _failures;
3372 
3373 public:
3374   // _vo == UsePrevMarking -> use "prev" marking information,
3375   // _vo == UseNextMarking -> use "next" marking information,
3376   // _vo == UseMarkWord    -> use mark word from object header.
3377   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3378     AbstractGangTask("Parallel verify task"),
3379     _g1h(g1h),
3380     _vo(vo),
3381     _failures(false) { }
3382 
3383   bool failures() {
3384     return _failures;
3385   }
3386 
3387   void work(uint worker_id) {
3388     HandleMark hm;
3389     VerifyRegionClosure blk(true, _vo);
3390     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3391                                           _g1h->workers()->active_workers(),
3392                                           HeapRegion::ParVerifyClaimValue);
3393     if (blk.failures()) {
3394       _failures = true;
3395     }
3396   }
3397 };
3398 
3399 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3400   if (SafepointSynchronize::is_at_safepoint()) {
3401     assert(Thread::current()->is_VM_thread(),
3402            "Expected to be executed serially by the VM thread at this point");
3403 
3404     if (!silent) { gclog_or_tty->print("Roots "); }
3405     VerifyRootsClosure rootsCl(vo);
3406     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3407     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3408     VerifyKlassClosure klassCl(this, &rootsCl);
3409 
3410     // We apply the relevant closures to all the oops in the
3411     // system dictionary, the string table and the code cache.
3412     const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
3413 
3414     // Need cleared claim bits for the strong roots processing
3415     ClassLoaderDataGraph::clear_claimed_marks();
3416 
3417     process_strong_roots(true,      // activate StrongRootsScope
3418                          false,     // we set "is scavenging" to false,
3419                                     // so we don't reset the dirty cards.
3420                          ScanningOption(so),  // roots scanning options
3421                          &rootsCl,
3422                          &blobsCl,
3423                          &klassCl
3424                          );
3425 
3426     bool failures = rootsCl.failures() || codeRootsCl.failures();
3427 
3428     if (vo != VerifyOption_G1UseMarkWord) {
3429       // If we're verifying during a full GC then the region sets
3430       // will have been torn down at the start of the GC. Therefore
3431       // verifying the region sets will fail. So we only verify
3432       // the region sets when not in a full GC.
3433       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3434       verify_region_sets();
3435     }
3436 
3437     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3438     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3439       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3440              "sanity check");
3441 
3442       G1ParVerifyTask task(this, vo);
3443       assert(UseDynamicNumberOfGCThreads ||
3444         workers()->active_workers() == workers()->total_workers(),
3445         "If not dynamic should be using all the workers");
3446       int n_workers = workers()->active_workers();
3447       set_par_threads(n_workers);
3448       workers()->run_task(&task);
3449       set_par_threads(0);
3450       if (task.failures()) {
3451         failures = true;
3452       }
3453 
3454       // Checks that the expected amount of parallel work was done.
3455       // The implication is that n_workers is > 0.
3456       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
3457              "sanity check");
3458 
3459       reset_heap_region_claim_values();
3460 
3461       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3462              "sanity check");
3463     } else {
3464       VerifyRegionClosure blk(false, vo);
3465       heap_region_iterate(&blk);
3466       if (blk.failures()) {
3467         failures = true;
3468       }
3469     }
3470     if (!silent) gclog_or_tty->print("RemSet ");
3471     rem_set()->verify();
3472 
3473     if (failures) {
3474       gclog_or_tty->print_cr("Heap:");
3475       // It helps to have the per-region information in the output to
3476       // help us track down what went wrong. This is why we call
3477       // print_extended_on() instead of print_on().
3478       print_extended_on(gclog_or_tty);
3479       gclog_or_tty->print_cr("");
3480 #ifndef PRODUCT
3481       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3482         concurrent_mark()->print_reachable("at-verification-failure",
3483                                            vo, false /* all */);
3484       }
3485 #endif
3486       gclog_or_tty->flush();
3487     }
3488     guarantee(!failures, "there should not have been any failures");
3489   } else {
3490     if (!silent)
3491       gclog_or_tty->print("(SKIPPING roots, heapRegionSets, heapRegions, remset) ");
3492   }
3493 }
3494 
3495 void G1CollectedHeap::verify(bool silent) {
3496   verify(silent, VerifyOption_G1UsePrevMarking);
3497 }
3498 
3499 double G1CollectedHeap::verify(bool guard, const char* msg) {
3500   double verify_time_ms = 0.0;
3501 
3502   if (guard && total_collections() >= VerifyGCStartAt) {
3503     double verify_start = os::elapsedTime();
3504     HandleMark hm;  // Discard invalid handles created during verification
3505     prepare_for_verify();
3506     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3507     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3508   }
3509 
3510   return verify_time_ms;
3511 }
3512 
3513 void G1CollectedHeap::verify_before_gc() {
3514   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3515   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3516 }
3517 
3518 void G1CollectedHeap::verify_after_gc() {
3519   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3520   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3521 }
3522 
3523 class PrintRegionClosure: public HeapRegionClosure {
3524   outputStream* _st;
3525 public:
3526   PrintRegionClosure(outputStream* st) : _st(st) {}
3527   bool doHeapRegion(HeapRegion* r) {
3528     r->print_on(_st);
3529     return false;
3530   }
3531 };
3532 
3533 void G1CollectedHeap::print_on(outputStream* st) const {
3534   st->print(" %-20s", "garbage-first heap");
3535   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3536             capacity()/K, used_unlocked()/K);
3537   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3538             _g1_storage.low_boundary(),
3539             _g1_storage.high(),
3540             _g1_storage.high_boundary());
3541   st->cr();
3542   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3543   uint young_regions = _young_list->length();
3544   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3545             (size_t) young_regions * HeapRegion::GrainBytes / K);
3546   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3547   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3548             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3549   st->cr();
3550   MetaspaceAux::print_on(st);
3551 }
3552 
3553 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3554   print_on(st);
3555 
3556   // Print the per-region information.
3557   st->cr();
3558   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3559                "HS=humongous(starts), HC=humongous(continues), "
3560                "CS=collection set, F=free, TS=gc time stamp, "
3561                "PTAMS=previous top-at-mark-start, "
3562                "NTAMS=next top-at-mark-start)");
3563   PrintRegionClosure blk(st);
3564   heap_region_iterate(&blk);
3565 }
3566 
3567 void G1CollectedHeap::print_on_error(outputStream* st) const {
3568   this->CollectedHeap::print_on_error(st);
3569 
3570   if (_cm != NULL) {
3571     st->cr();
3572     _cm->print_on_error(st);
3573   }
3574 }
3575 
3576 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3577   if (G1CollectedHeap::use_parallel_gc_threads()) {
3578     workers()->print_worker_threads_on(st);
3579   }
3580   _cmThread->print_on(st);
3581   st->cr();
3582   _cm->print_worker_threads_on(st);
3583   _cg1r->print_worker_threads_on(st);
3584 }
3585 
3586 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3587   if (G1CollectedHeap::use_parallel_gc_threads()) {
3588     workers()->threads_do(tc);
3589   }
3590   tc->do_thread(_cmThread);
3591   _cg1r->threads_do(tc);
3592 }
3593 
3594 void G1CollectedHeap::print_tracing_info() const {
3595   // We'll overload this to mean "trace GC pause statistics."
3596   if (TraceGen0Time || TraceGen1Time) {
3597     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3598     // to that.
3599     g1_policy()->print_tracing_info();
3600   }
3601   if (G1SummarizeRSetStats) {
3602     g1_rem_set()->print_summary_info();
3603   }
3604   if (G1SummarizeConcMark) {
3605     concurrent_mark()->print_summary_info();
3606   }
3607   g1_policy()->print_yg_surv_rate_info();
3608   SpecializationStats::print();
3609 }
3610 
3611 #ifndef PRODUCT
3612 // Helpful for debugging RSet issues.
3613 
3614 class PrintRSetsClosure : public HeapRegionClosure {
3615 private:
3616   const char* _msg;
3617   size_t _occupied_sum;
3618 
3619 public:
3620   bool doHeapRegion(HeapRegion* r) {
3621     HeapRegionRemSet* hrrs = r->rem_set();
3622     size_t occupied = hrrs->occupied();
3623     _occupied_sum += occupied;
3624 
3625     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3626                            HR_FORMAT_PARAMS(r));
3627     if (occupied == 0) {
3628       gclog_or_tty->print_cr("  RSet is empty");
3629     } else {
3630       hrrs->print();
3631     }
3632     gclog_or_tty->print_cr("----------");
3633     return false;
3634   }
3635 
3636   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3637     gclog_or_tty->cr();
3638     gclog_or_tty->print_cr("========================================");
3639     gclog_or_tty->print_cr(msg);
3640     gclog_or_tty->cr();
3641   }
3642 
3643   ~PrintRSetsClosure() {
3644     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3645     gclog_or_tty->print_cr("========================================");
3646     gclog_or_tty->cr();
3647   }
3648 };
3649 
3650 void G1CollectedHeap::print_cset_rsets() {
3651   PrintRSetsClosure cl("Printing CSet RSets");
3652   collection_set_iterate(&cl);
3653 }
3654 
3655 void G1CollectedHeap::print_all_rsets() {
3656   PrintRSetsClosure cl("Printing All RSets");;
3657   heap_region_iterate(&cl);
3658 }
3659 #endif // PRODUCT
3660 
3661 G1CollectedHeap* G1CollectedHeap::heap() {
3662   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3663          "not a garbage-first heap");
3664   return _g1h;
3665 }
3666 
3667 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3668   // always_do_update_barrier = false;
3669   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3670   // Fill TLAB's and such
3671   ensure_parsability(true);
3672 
3673   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3674       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3675     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3676   }
3677 }
3678 
3679 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3680 
3681   if (G1SummarizeRSetStats &&
3682       (G1SummarizeRSetStatsPeriod > 0) &&
3683       // we are at the end of the GC. Total collections has already been increased.
3684       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3685     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3686   }
3687 
3688   // FIXME: what is this about?
3689   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3690   // is set.
3691   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3692                         "derived pointer present"));
3693   // always_do_update_barrier = true;
3694 
3695   // We have just completed a GC. Update the soft reference
3696   // policy with the new heap occupancy
3697   Universe::update_heap_info_at_gc();
3698 }
3699 
3700 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3701                                                unsigned int gc_count_before,
3702                                                bool* succeeded,
3703                                                GCCause::Cause gc_cause) {
3704   assert_heap_not_locked_and_not_at_safepoint();
3705   g1_policy()->record_stop_world_start();
3706   VM_G1IncCollectionPause op(gc_count_before,
3707                              word_size,
3708                              false, /* should_initiate_conc_mark */
3709                              g1_policy()->max_pause_time_ms(),
3710                              gc_cause);
3711   VMThread::execute(&op);
3712 
3713   HeapWord* result = op.result();
3714   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3715   assert(result == NULL || ret_succeeded,
3716          "the result should be NULL if the VM did not succeed");
3717   *succeeded = ret_succeeded;
3718 
3719   assert_heap_not_locked();
3720   return result;
3721 }
3722 
3723 void
3724 G1CollectedHeap::doConcurrentMark() {
3725   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3726   if (!_cmThread->in_progress()) {
3727     _cmThread->set_started();
3728     CGC_lock->notify();
3729   }
3730 }
3731 
3732 size_t G1CollectedHeap::pending_card_num() {
3733   size_t extra_cards = 0;
3734   JavaThread *curr = Threads::first();
3735   while (curr != NULL) {
3736     DirtyCardQueue& dcq = curr->dirty_card_queue();
3737     extra_cards += dcq.size();
3738     curr = curr->next();
3739   }
3740   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3741   size_t buffer_size = dcqs.buffer_size();
3742   size_t buffer_num = dcqs.completed_buffers_num();
3743 
3744   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3745   // in bytes - not the number of 'entries'. We need to convert
3746   // into a number of cards.
3747   return (buffer_size * buffer_num + extra_cards) / oopSize;
3748 }
3749 
3750 size_t G1CollectedHeap::cards_scanned() {
3751   return g1_rem_set()->cardsScanned();
3752 }
3753 
3754 void
3755 G1CollectedHeap::setup_surviving_young_words() {
3756   assert(_surviving_young_words == NULL, "pre-condition");
3757   uint array_length = g1_policy()->young_cset_region_length();
3758   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3759   if (_surviving_young_words == NULL) {
3760     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3761                           "Not enough space for young surv words summary.");
3762   }
3763   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3764 #ifdef ASSERT
3765   for (uint i = 0;  i < array_length; ++i) {
3766     assert( _surviving_young_words[i] == 0, "memset above" );
3767   }
3768 #endif // !ASSERT
3769 }
3770 
3771 void
3772 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3773   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3774   uint array_length = g1_policy()->young_cset_region_length();
3775   for (uint i = 0; i < array_length; ++i) {
3776     _surviving_young_words[i] += surv_young_words[i];
3777   }
3778 }
3779 
3780 void
3781 G1CollectedHeap::cleanup_surviving_young_words() {
3782   guarantee( _surviving_young_words != NULL, "pre-condition" );
3783   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3784   _surviving_young_words = NULL;
3785 }
3786 
3787 #ifdef ASSERT
3788 class VerifyCSetClosure: public HeapRegionClosure {
3789 public:
3790   bool doHeapRegion(HeapRegion* hr) {
3791     // Here we check that the CSet region's RSet is ready for parallel
3792     // iteration. The fields that we'll verify are only manipulated
3793     // when the region is part of a CSet and is collected. Afterwards,
3794     // we reset these fields when we clear the region's RSet (when the
3795     // region is freed) so they are ready when the region is
3796     // re-allocated. The only exception to this is if there's an
3797     // evacuation failure and instead of freeing the region we leave
3798     // it in the heap. In that case, we reset these fields during
3799     // evacuation failure handling.
3800     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3801 
3802     // Here's a good place to add any other checks we'd like to
3803     // perform on CSet regions.
3804     return false;
3805   }
3806 };
3807 #endif // ASSERT
3808 
3809 #if TASKQUEUE_STATS
3810 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3811   st->print_raw_cr("GC Task Stats");
3812   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3813   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3814 }
3815 
3816 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3817   print_taskqueue_stats_hdr(st);
3818 
3819   TaskQueueStats totals;
3820   const int n = workers() != NULL ? workers()->total_workers() : 1;
3821   for (int i = 0; i < n; ++i) {
3822     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3823     totals += task_queue(i)->stats;
3824   }
3825   st->print_raw("tot "); totals.print(st); st->cr();
3826 
3827   DEBUG_ONLY(totals.verify());
3828 }
3829 
3830 void G1CollectedHeap::reset_taskqueue_stats() {
3831   const int n = workers() != NULL ? workers()->total_workers() : 1;
3832   for (int i = 0; i < n; ++i) {
3833     task_queue(i)->stats.reset();
3834   }
3835 }
3836 #endif // TASKQUEUE_STATS
3837 
3838 void G1CollectedHeap::log_gc_header() {
3839   if (!G1Log::fine()) {
3840     return;
3841   }
3842 
3843   gclog_or_tty->date_stamp(PrintGCDateStamps);
3844   gclog_or_tty->stamp(PrintGCTimeStamps);
3845 
3846   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3847     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3848     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3849 
3850   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3851 }
3852 
3853 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3854   if (!G1Log::fine()) {
3855     return;
3856   }
3857 
3858   if (G1Log::finer()) {
3859     if (evacuation_failed()) {
3860       gclog_or_tty->print(" (to-space exhausted)");
3861     }
3862     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3863     g1_policy()->phase_times()->note_gc_end();
3864     g1_policy()->phase_times()->print(pause_time_sec);
3865     g1_policy()->print_detailed_heap_transition();
3866   } else {
3867     if (evacuation_failed()) {
3868       gclog_or_tty->print("--");
3869     }
3870     g1_policy()->print_heap_transition();
3871     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3872   }
3873   gclog_or_tty->flush();
3874 }
3875 
3876 bool
3877 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3878   assert_at_safepoint(true /* should_be_vm_thread */);
3879   guarantee(!is_gc_active(), "collection is not reentrant");
3880 
3881   if (GC_locker::check_active_before_gc()) {
3882     return false;
3883   }
3884 
3885   _gc_timer_stw->register_gc_start(os::elapsed_counter());
3886 
3887   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3888 
3889   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3890   ResourceMark rm;
3891 
3892   print_heap_before_gc();
3893   trace_heap_before_gc(_gc_tracer_stw);
3894 
3895   HRSPhaseSetter x(HRSPhaseEvacuation);
3896   verify_region_sets_optional();
3897   verify_dirty_young_regions();
3898 
3899   // This call will decide whether this pause is an initial-mark
3900   // pause. If it is, during_initial_mark_pause() will return true
3901   // for the duration of this pause.
3902   g1_policy()->decide_on_conc_mark_initiation();
3903 
3904   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3905   assert(!g1_policy()->during_initial_mark_pause() ||
3906           g1_policy()->gcs_are_young(), "sanity");
3907 
3908   // We also do not allow mixed GCs during marking.
3909   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3910 
3911   // Record whether this pause is an initial mark. When the current
3912   // thread has completed its logging output and it's safe to signal
3913   // the CM thread, the flag's value in the policy has been reset.
3914   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3915 
3916   // Inner scope for scope based logging, timers, and stats collection
3917   {
3918     EvacuationInfo evacuation_info;
3919 
3920     if (g1_policy()->during_initial_mark_pause()) {
3921       // We are about to start a marking cycle, so we increment the
3922       // full collection counter.
3923       increment_old_marking_cycles_started();
3924       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3925     }
3926 
3927     _gc_tracer_stw->report_yc_type(yc_type());
3928 
3929     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3930 
3931     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3932                                 workers()->active_workers() : 1);
3933     double pause_start_sec = os::elapsedTime();
3934     g1_policy()->phase_times()->note_gc_start(active_workers);
3935     log_gc_header();
3936 
3937     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3938     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3939 
3940     // If the secondary_free_list is not empty, append it to the
3941     // free_list. No need to wait for the cleanup operation to finish;
3942     // the region allocation code will check the secondary_free_list
3943     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3944     // set, skip this step so that the region allocation code has to
3945     // get entries from the secondary_free_list.
3946     if (!G1StressConcRegionFreeing) {
3947       append_secondary_free_list_if_not_empty_with_lock();
3948     }
3949 
3950     assert(check_young_list_well_formed(), "young list should be well formed");
3951     assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3952            "sanity check");
3953 
3954     // Don't dynamically change the number of GC threads this early.  A value of
3955     // 0 is used to indicate serial work.  When parallel work is done,
3956     // it will be set.
3957 
3958     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3959       IsGCActiveMark x;
3960 
3961       gc_prologue(false);
3962       increment_total_collections(false /* full gc */);
3963       increment_gc_time_stamp();
3964 
3965       verify_before_gc();
3966 
3967       COMPILER2_PRESENT(DerivedPointerTable::clear());
3968 
3969       // Please see comment in g1CollectedHeap.hpp and
3970       // G1CollectedHeap::ref_processing_init() to see how
3971       // reference processing currently works in G1.
3972 
3973       // Enable discovery in the STW reference processor
3974       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
3975                                             true /*verify_no_refs*/);
3976 
3977       {
3978         // We want to temporarily turn off discovery by the
3979         // CM ref processor, if necessary, and turn it back on
3980         // on again later if we do. Using a scoped
3981         // NoRefDiscovery object will do this.
3982         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3983 
3984         // Forget the current alloc region (we might even choose it to be part
3985         // of the collection set!).
3986         release_mutator_alloc_region();
3987 
3988         // We should call this after we retire the mutator alloc
3989         // region(s) so that all the ALLOC / RETIRE events are generated
3990         // before the start GC event.
3991         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3992 
3993         // This timing is only used by the ergonomics to handle our pause target.
3994         // It is unclear why this should not include the full pause. We will
3995         // investigate this in CR 7178365.
3996         //
3997         // Preserving the old comment here if that helps the investigation:
3998         //
3999         // The elapsed time induced by the start time below deliberately elides
4000         // the possible verification above.
4001         double sample_start_time_sec = os::elapsedTime();
4002 
4003 #if YOUNG_LIST_VERBOSE
4004         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
4005         _young_list->print();
4006         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4007 #endif // YOUNG_LIST_VERBOSE
4008 
4009         g1_policy()->record_collection_pause_start(sample_start_time_sec);
4010 
4011         double scan_wait_start = os::elapsedTime();
4012         // We have to wait until the CM threads finish scanning the
4013         // root regions as it's the only way to ensure that all the
4014         // objects on them have been correctly scanned before we start
4015         // moving them during the GC.
4016         bool waited = _cm->root_regions()->wait_until_scan_finished();
4017         double wait_time_ms = 0.0;
4018         if (waited) {
4019           double scan_wait_end = os::elapsedTime();
4020           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
4021         }
4022         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
4023 
4024 #if YOUNG_LIST_VERBOSE
4025         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
4026         _young_list->print();
4027 #endif // YOUNG_LIST_VERBOSE
4028 
4029         if (g1_policy()->during_initial_mark_pause()) {
4030           concurrent_mark()->checkpointRootsInitialPre();
4031         }
4032 
4033 #if YOUNG_LIST_VERBOSE
4034         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
4035         _young_list->print();
4036         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4037 #endif // YOUNG_LIST_VERBOSE
4038 
4039         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
4040 
4041         _cm->note_start_of_gc();
4042         // We should not verify the per-thread SATB buffers given that
4043         // we have not filtered them yet (we'll do so during the
4044         // GC). We also call this after finalize_cset() to
4045         // ensure that the CSet has been finalized.
4046         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4047                                  true  /* verify_enqueued_buffers */,
4048                                  false /* verify_thread_buffers */,
4049                                  true  /* verify_fingers */);
4050 
4051         if (_hr_printer.is_active()) {
4052           HeapRegion* hr = g1_policy()->collection_set();
4053           while (hr != NULL) {
4054             G1HRPrinter::RegionType type;
4055             if (!hr->is_young()) {
4056               type = G1HRPrinter::Old;
4057             } else if (hr->is_survivor()) {
4058               type = G1HRPrinter::Survivor;
4059             } else {
4060               type = G1HRPrinter::Eden;
4061             }
4062             _hr_printer.cset(hr);
4063             hr = hr->next_in_collection_set();
4064           }
4065         }
4066 
4067 #ifdef ASSERT
4068         VerifyCSetClosure cl;
4069         collection_set_iterate(&cl);
4070 #endif // ASSERT
4071 
4072         setup_surviving_young_words();
4073 
4074         // Initialize the GC alloc regions.
4075         init_gc_alloc_regions(evacuation_info);
4076 
4077         // Actually do the work...
4078         evacuate_collection_set(evacuation_info);
4079 
4080         // We do this to mainly verify the per-thread SATB buffers
4081         // (which have been filtered by now) since we didn't verify
4082         // them earlier. No point in re-checking the stacks / enqueued
4083         // buffers given that the CSet has not changed since last time
4084         // we checked.
4085         _cm->verify_no_cset_oops(false /* verify_stacks */,
4086                                  false /* verify_enqueued_buffers */,
4087                                  true  /* verify_thread_buffers */,
4088                                  true  /* verify_fingers */);
4089 
4090         free_collection_set(g1_policy()->collection_set(), evacuation_info);
4091         g1_policy()->clear_collection_set();
4092 
4093         cleanup_surviving_young_words();
4094 
4095         // Start a new incremental collection set for the next pause.
4096         g1_policy()->start_incremental_cset_building();
4097 
4098         // Clear the _cset_fast_test bitmap in anticipation of adding
4099         // regions to the incremental collection set for the next
4100         // evacuation pause.
4101         clear_cset_fast_test();
4102 
4103         _young_list->reset_sampled_info();
4104 
4105         // Don't check the whole heap at this point as the
4106         // GC alloc regions from this pause have been tagged
4107         // as survivors and moved on to the survivor list.
4108         // Survivor regions will fail the !is_young() check.
4109         assert(check_young_list_empty(false /* check_heap */),
4110           "young list should be empty");
4111 
4112 #if YOUNG_LIST_VERBOSE
4113         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
4114         _young_list->print();
4115 #endif // YOUNG_LIST_VERBOSE
4116 
4117         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
4118                                              _young_list->first_survivor_region(),
4119                                              _young_list->last_survivor_region());
4120 
4121         _young_list->reset_auxilary_lists();
4122 
4123         if (evacuation_failed()) {
4124           _summary_bytes_used = recalculate_used();
4125           uint n_queues = MAX2((int)ParallelGCThreads, 1);
4126           for (uint i = 0; i < n_queues; i++) {
4127             if (_evacuation_failed_info_array[i].has_failed()) {
4128               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4129             }
4130           }
4131         } else {
4132           // The "used" of the the collection set have already been subtracted
4133           // when they were freed.  Add in the bytes evacuated.
4134           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
4135         }
4136 
4137         if (g1_policy()->during_initial_mark_pause()) {
4138           // We have to do this before we notify the CM threads that
4139           // they can start working to make sure that all the
4140           // appropriate initialization is done on the CM object.
4141           concurrent_mark()->checkpointRootsInitialPost();
4142           set_marking_started();
4143           // Note that we don't actually trigger the CM thread at
4144           // this point. We do that later when we're sure that
4145           // the current thread has completed its logging output.
4146         }
4147 
4148         allocate_dummy_regions();
4149 
4150 #if YOUNG_LIST_VERBOSE
4151         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
4152         _young_list->print();
4153         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4154 #endif // YOUNG_LIST_VERBOSE
4155 
4156         init_mutator_alloc_region();
4157 
4158         {
4159           size_t expand_bytes = g1_policy()->expansion_amount();
4160           if (expand_bytes > 0) {
4161             size_t bytes_before = capacity();
4162             // No need for an ergo verbose message here,
4163             // expansion_amount() does this when it returns a value > 0.
4164             if (!expand(expand_bytes)) {
4165               // We failed to expand the heap so let's verify that
4166               // committed/uncommitted amount match the backing store
4167               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
4168               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
4169             }
4170           }
4171         }
4172 
4173         // We redo the verification but now wrt to the new CSet which
4174         // has just got initialized after the previous CSet was freed.
4175         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4176                                  true  /* verify_enqueued_buffers */,
4177                                  true  /* verify_thread_buffers */,
4178                                  true  /* verify_fingers */);
4179         _cm->note_end_of_gc();
4180 
4181         // This timing is only used by the ergonomics to handle our pause target.
4182         // It is unclear why this should not include the full pause. We will
4183         // investigate this in CR 7178365.
4184         double sample_end_time_sec = os::elapsedTime();
4185         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4186         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4187 
4188         MemoryService::track_memory_usage();
4189 
4190         // In prepare_for_verify() below we'll need to scan the deferred
4191         // update buffers to bring the RSets up-to-date if
4192         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4193         // the update buffers we'll probably need to scan cards on the
4194         // regions we just allocated to (i.e., the GC alloc
4195         // regions). However, during the last GC we called
4196         // set_saved_mark() on all the GC alloc regions, so card
4197         // scanning might skip the [saved_mark_word()...top()] area of
4198         // those regions (i.e., the area we allocated objects into
4199         // during the last GC). But it shouldn't. Given that
4200         // saved_mark_word() is conditional on whether the GC time stamp
4201         // on the region is current or not, by incrementing the GC time
4202         // stamp here we invalidate all the GC time stamps on all the
4203         // regions and saved_mark_word() will simply return top() for
4204         // all the regions. This is a nicer way of ensuring this rather
4205         // than iterating over the regions and fixing them. In fact, the
4206         // GC time stamp increment here also ensures that
4207         // saved_mark_word() will return top() between pauses, i.e.,
4208         // during concurrent refinement. So we don't need the
4209         // is_gc_active() check to decided which top to use when
4210         // scanning cards (see CR 7039627).
4211         increment_gc_time_stamp();
4212 
4213         verify_after_gc();
4214 
4215         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4216         ref_processor_stw()->verify_no_references_recorded();
4217 
4218         // CM reference discovery will be re-enabled if necessary.
4219       }
4220 
4221       // We should do this after we potentially expand the heap so
4222       // that all the COMMIT events are generated before the end GC
4223       // event, and after we retire the GC alloc regions so that all
4224       // RETIRE events are generated before the end GC event.
4225       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4226 
4227       if (mark_in_progress()) {
4228         concurrent_mark()->update_g1_committed();
4229       }
4230 
4231 #ifdef TRACESPINNING
4232       ParallelTaskTerminator::print_termination_counts();
4233 #endif
4234 
4235       gc_epilogue(false);
4236     }
4237 
4238     // Print the remainder of the GC log output.
4239     log_gc_footer(os::elapsedTime() - pause_start_sec);
4240 
4241     // It is not yet to safe to tell the concurrent mark to
4242     // start as we have some optional output below. We don't want the
4243     // output from the concurrent mark thread interfering with this
4244     // logging output either.
4245 
4246     _hrs.verify_optional();
4247     verify_region_sets_optional();
4248 
4249     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
4250     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4251 
4252     print_heap_after_gc();
4253     trace_heap_after_gc(_gc_tracer_stw);
4254 
4255     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4256     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4257     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4258     // before any GC notifications are raised.
4259     g1mm()->update_sizes();
4260 
4261     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4262     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4263     _gc_timer_stw->register_gc_end(os::elapsed_counter());
4264     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4265   }
4266   // It should now be safe to tell the concurrent mark thread to start
4267   // without its logging output interfering with the logging output
4268   // that came from the pause.
4269 
4270   if (should_start_conc_mark) {
4271     // CAUTION: after the doConcurrentMark() call below,
4272     // the concurrent marking thread(s) could be running
4273     // concurrently with us. Make sure that anything after
4274     // this point does not assume that we are the only GC thread
4275     // running. Note: of course, the actual marking work will
4276     // not start until the safepoint itself is released in
4277     // ConcurrentGCThread::safepoint_desynchronize().
4278     doConcurrentMark();
4279   }
4280 
4281   return true;
4282 }
4283 
4284 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
4285 {
4286   size_t gclab_word_size;
4287   switch (purpose) {
4288     case GCAllocForSurvived:
4289       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4290       break;
4291     case GCAllocForTenured:
4292       gclab_word_size = _old_plab_stats.desired_plab_sz();
4293       break;
4294     default:
4295       assert(false, "unknown GCAllocPurpose");
4296       gclab_word_size = _old_plab_stats.desired_plab_sz();
4297       break;
4298   }
4299 
4300   // Prevent humongous PLAB sizes for two reasons:
4301   // * PLABs are allocated using a similar paths as oops, but should
4302   //   never be in a humongous region
4303   // * Allowing humongous PLABs needlessly churns the region free lists
4304   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4305 }
4306 
4307 void G1CollectedHeap::init_mutator_alloc_region() {
4308   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
4309   _mutator_alloc_region.init();
4310 }
4311 
4312 void G1CollectedHeap::release_mutator_alloc_region() {
4313   _mutator_alloc_region.release();
4314   assert(_mutator_alloc_region.get() == NULL, "post-condition");
4315 }
4316 
4317 void G1CollectedHeap::init_gc_alloc_regions(EvacuationInfo& evacuation_info) {
4318   assert_at_safepoint(true /* should_be_vm_thread */);
4319 
4320   _survivor_gc_alloc_region.init();
4321   _old_gc_alloc_region.init();
4322   HeapRegion* retained_region = _retained_old_gc_alloc_region;
4323   _retained_old_gc_alloc_region = NULL;
4324 
4325   // We will discard the current GC alloc region if:
4326   // a) it's in the collection set (it can happen!),
4327   // b) it's already full (no point in using it),
4328   // c) it's empty (this means that it was emptied during
4329   // a cleanup and it should be on the free list now), or
4330   // d) it's humongous (this means that it was emptied
4331   // during a cleanup and was added to the free list, but
4332   // has been subsequently used to allocate a humongous
4333   // object that may be less than the region size).
4334   if (retained_region != NULL &&
4335       !retained_region->in_collection_set() &&
4336       !(retained_region->top() == retained_region->end()) &&
4337       !retained_region->is_empty() &&
4338       !retained_region->isHumongous()) {
4339     retained_region->set_saved_mark();
4340     // The retained region was added to the old region set when it was
4341     // retired. We have to remove it now, since we don't allow regions
4342     // we allocate to in the region sets. We'll re-add it later, when
4343     // it's retired again.
4344     _old_set.remove(retained_region);
4345     bool during_im = g1_policy()->during_initial_mark_pause();
4346     retained_region->note_start_of_copying(during_im);
4347     _old_gc_alloc_region.set(retained_region);
4348     _hr_printer.reuse(retained_region);
4349     evacuation_info.set_alloc_regions_used_before(retained_region->used());
4350   }
4351 }
4352 
4353 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info) {
4354   evacuation_info.set_allocation_regions(_survivor_gc_alloc_region.count() +
4355                                          _old_gc_alloc_region.count());
4356   _survivor_gc_alloc_region.release();
4357   // If we have an old GC alloc region to release, we'll save it in
4358   // _retained_old_gc_alloc_region. If we don't
4359   // _retained_old_gc_alloc_region will become NULL. This is what we
4360   // want either way so no reason to check explicitly for either
4361   // condition.
4362   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
4363 
4364   if (ResizePLAB) {
4365     _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4366     _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4367   }
4368 }
4369 
4370 void G1CollectedHeap::abandon_gc_alloc_regions() {
4371   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
4372   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
4373   _retained_old_gc_alloc_region = NULL;
4374 }
4375 
4376 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4377   _drain_in_progress = false;
4378   set_evac_failure_closure(cl);
4379   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4380 }
4381 
4382 void G1CollectedHeap::finalize_for_evac_failure() {
4383   assert(_evac_failure_scan_stack != NULL &&
4384          _evac_failure_scan_stack->length() == 0,
4385          "Postcondition");
4386   assert(!_drain_in_progress, "Postcondition");
4387   delete _evac_failure_scan_stack;
4388   _evac_failure_scan_stack = NULL;
4389 }
4390 
4391 void G1CollectedHeap::remove_self_forwarding_pointers() {
4392   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4393 
4394   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4395 
4396   if (G1CollectedHeap::use_parallel_gc_threads()) {
4397     set_par_threads();
4398     workers()->run_task(&rsfp_task);
4399     set_par_threads(0);
4400   } else {
4401     rsfp_task.work(0);
4402   }
4403 
4404   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
4405 
4406   // Reset the claim values in the regions in the collection set.
4407   reset_cset_heap_region_claim_values();
4408 
4409   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4410 
4411   // Now restore saved marks, if any.
4412   assert(_objs_with_preserved_marks.size() ==
4413             _preserved_marks_of_objs.size(), "Both or none.");
4414   while (!_objs_with_preserved_marks.is_empty()) {
4415     oop obj = _objs_with_preserved_marks.pop();
4416     markOop m = _preserved_marks_of_objs.pop();
4417     obj->set_mark(m);
4418   }
4419   _objs_with_preserved_marks.clear(true);
4420   _preserved_marks_of_objs.clear(true);
4421 }
4422 
4423 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4424   _evac_failure_scan_stack->push(obj);
4425 }
4426 
4427 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4428   assert(_evac_failure_scan_stack != NULL, "precondition");
4429 
4430   while (_evac_failure_scan_stack->length() > 0) {
4431      oop obj = _evac_failure_scan_stack->pop();
4432      _evac_failure_closure->set_region(heap_region_containing(obj));
4433      obj->oop_iterate_backwards(_evac_failure_closure);
4434   }
4435 }
4436 
4437 oop
4438 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4439                                                oop old) {
4440   assert(obj_in_cs(old),
4441          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4442                  (HeapWord*) old));
4443   markOop m = old->mark();
4444   oop forward_ptr = old->forward_to_atomic(old);
4445   if (forward_ptr == NULL) {
4446     // Forward-to-self succeeded.
4447     assert(_par_scan_state != NULL, "par scan state");
4448     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4449     uint queue_num = _par_scan_state->queue_num();
4450 
4451     _evacuation_failed = true;
4452     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4453     if (_evac_failure_closure != cl) {
4454       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4455       assert(!_drain_in_progress,
4456              "Should only be true while someone holds the lock.");
4457       // Set the global evac-failure closure to the current thread's.
4458       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4459       set_evac_failure_closure(cl);
4460       // Now do the common part.
4461       handle_evacuation_failure_common(old, m);
4462       // Reset to NULL.
4463       set_evac_failure_closure(NULL);
4464     } else {
4465       // The lock is already held, and this is recursive.
4466       assert(_drain_in_progress, "This should only be the recursive case.");
4467       handle_evacuation_failure_common(old, m);
4468     }
4469     return old;
4470   } else {
4471     // Forward-to-self failed. Either someone else managed to allocate
4472     // space for this object (old != forward_ptr) or they beat us in
4473     // self-forwarding it (old == forward_ptr).
4474     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4475            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4476                    "should not be in the CSet",
4477                    (HeapWord*) old, (HeapWord*) forward_ptr));
4478     return forward_ptr;
4479   }
4480 }
4481 
4482 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4483   preserve_mark_if_necessary(old, m);
4484 
4485   HeapRegion* r = heap_region_containing(old);
4486   if (!r->evacuation_failed()) {
4487     r->set_evacuation_failed(true);
4488     _hr_printer.evac_failure(r);
4489   }
4490 
4491   push_on_evac_failure_scan_stack(old);
4492 
4493   if (!_drain_in_progress) {
4494     // prevent recursion in copy_to_survivor_space()
4495     _drain_in_progress = true;
4496     drain_evac_failure_scan_stack();
4497     _drain_in_progress = false;
4498   }
4499 }
4500 
4501 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4502   assert(evacuation_failed(), "Oversaving!");
4503   // We want to call the "for_promotion_failure" version only in the
4504   // case of a promotion failure.
4505   if (m->must_be_preserved_for_promotion_failure(obj)) {
4506     _objs_with_preserved_marks.push(obj);
4507     _preserved_marks_of_objs.push(m);
4508   }
4509 }
4510 
4511 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4512                                                   size_t word_size) {
4513   if (purpose == GCAllocForSurvived) {
4514     HeapWord* result = survivor_attempt_allocation(word_size);
4515     if (result != NULL) {
4516       return result;
4517     } else {
4518       // Let's try to allocate in the old gen in case we can fit the
4519       // object there.
4520       return old_attempt_allocation(word_size);
4521     }
4522   } else {
4523     assert(purpose ==  GCAllocForTenured, "sanity");
4524     HeapWord* result = old_attempt_allocation(word_size);
4525     if (result != NULL) {
4526       return result;
4527     } else {
4528       // Let's try to allocate in the survivors in case we can fit the
4529       // object there.
4530       return survivor_attempt_allocation(word_size);
4531     }
4532   }
4533 
4534   ShouldNotReachHere();
4535   // Trying to keep some compilers happy.
4536   return NULL;
4537 }
4538 
4539 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4540   ParGCAllocBuffer(gclab_word_size), _retired(false) { }
4541 
4542 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num)
4543   : _g1h(g1h),
4544     _refs(g1h->task_queue(queue_num)),
4545     _dcq(&g1h->dirty_card_queue_set()),
4546     _ct_bs(g1h->g1_barrier_set()),
4547     _g1_rem(g1h->g1_rem_set()),
4548     _hash_seed(17), _queue_num(queue_num),
4549     _term_attempts(0),
4550     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
4551     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4552     _age_table(false),
4553     _strong_roots_time(0), _term_time(0),
4554     _alloc_buffer_waste(0), _undo_waste(0) {
4555   // we allocate G1YoungSurvRateNumRegions plus one entries, since
4556   // we "sacrifice" entry 0 to keep track of surviving bytes for
4557   // non-young regions (where the age is -1)
4558   // We also add a few elements at the beginning and at the end in
4559   // an attempt to eliminate cache contention
4560   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
4561   uint array_length = PADDING_ELEM_NUM +
4562                       real_length +
4563                       PADDING_ELEM_NUM;
4564   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
4565   if (_surviving_young_words_base == NULL)
4566     vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
4567                           "Not enough space for young surv histo.");
4568   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4569   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
4570 
4571   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
4572   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
4573 
4574   _start = os::elapsedTime();
4575 }
4576 
4577 void
4578 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
4579 {
4580   st->print_raw_cr("GC Termination Stats");
4581   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
4582                    " ------waste (KiB)------");
4583   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
4584                    "  total   alloc    undo");
4585   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
4586                    " ------- ------- -------");
4587 }
4588 
4589 void
4590 G1ParScanThreadState::print_termination_stats(int i,
4591                                               outputStream* const st) const
4592 {
4593   const double elapsed_ms = elapsed_time() * 1000.0;
4594   const double s_roots_ms = strong_roots_time() * 1000.0;
4595   const double term_ms    = term_time() * 1000.0;
4596   st->print_cr("%3d %9.2f %9.2f %6.2f "
4597                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4598                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4599                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
4600                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
4601                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
4602                alloc_buffer_waste() * HeapWordSize / K,
4603                undo_waste() * HeapWordSize / K);
4604 }
4605 
4606 #ifdef ASSERT
4607 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
4608   assert(ref != NULL, "invariant");
4609   assert(UseCompressedOops, "sanity");
4610   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
4611   oop p = oopDesc::load_decode_heap_oop(ref);
4612   assert(_g1h->is_in_g1_reserved(p),
4613          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4614   return true;
4615 }
4616 
4617 bool G1ParScanThreadState::verify_ref(oop* ref) const {
4618   assert(ref != NULL, "invariant");
4619   if (has_partial_array_mask(ref)) {
4620     // Must be in the collection set--it's already been copied.
4621     oop p = clear_partial_array_mask(ref);
4622     assert(_g1h->obj_in_cs(p),
4623            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4624   } else {
4625     oop p = oopDesc::load_decode_heap_oop(ref);
4626     assert(_g1h->is_in_g1_reserved(p),
4627            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4628   }
4629   return true;
4630 }
4631 
4632 bool G1ParScanThreadState::verify_task(StarTask ref) const {
4633   if (ref.is_narrow()) {
4634     return verify_ref((narrowOop*) ref);
4635   } else {
4636     return verify_ref((oop*) ref);
4637   }
4638 }
4639 #endif // ASSERT
4640 
4641 void G1ParScanThreadState::trim_queue() {
4642   assert(_evac_cl != NULL, "not set");
4643   assert(_evac_failure_cl != NULL, "not set");
4644   assert(_partial_scan_cl != NULL, "not set");
4645 
4646   StarTask ref;
4647   do {
4648     // Drain the overflow stack first, so other threads can steal.
4649     while (refs()->pop_overflow(ref)) {
4650       deal_with_reference(ref);
4651     }
4652 
4653     while (refs()->pop_local(ref)) {
4654       deal_with_reference(ref);
4655     }
4656   } while (!refs()->is_empty());
4657 }
4658 
4659 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
4660                                      G1ParScanThreadState* par_scan_state) :
4661   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
4662   _par_scan_state(par_scan_state),
4663   _worker_id(par_scan_state->queue_num()),
4664   _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
4665   _mark_in_progress(_g1->mark_in_progress()) { }
4666 
4667 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4668 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>::mark_object(oop obj) {
4669 #ifdef ASSERT
4670   HeapRegion* hr = _g1->heap_region_containing(obj);
4671   assert(hr != NULL, "sanity");
4672   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
4673 #endif // ASSERT
4674 
4675   // We know that the object is not moving so it's safe to read its size.
4676   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4677 }
4678 
4679 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4680 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4681   ::mark_forwarded_object(oop from_obj, oop to_obj) {
4682 #ifdef ASSERT
4683   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4684   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4685   assert(from_obj != to_obj, "should not be self-forwarded");
4686 
4687   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
4688   assert(from_hr != NULL, "sanity");
4689   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
4690 
4691   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
4692   assert(to_hr != NULL, "sanity");
4693   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
4694 #endif // ASSERT
4695 
4696   // The object might be in the process of being copied by another
4697   // worker so we cannot trust that its to-space image is
4698   // well-formed. So we have to read its size from its from-space
4699   // image which we know should not be changing.
4700   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4701 }
4702 
4703 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4704 oop G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4705   ::copy_to_survivor_space(oop old) {
4706   size_t word_sz = old->size();
4707   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
4708   // +1 to make the -1 indexes valid...
4709   int       young_index = from_region->young_index_in_cset()+1;
4710   assert( (from_region->is_young() && young_index >  0) ||
4711          (!from_region->is_young() && young_index == 0), "invariant" );
4712   G1CollectorPolicy* g1p = _g1->g1_policy();
4713   markOop m = old->mark();
4714   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
4715                                            : m->age();
4716   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4717                                                              word_sz);
4718   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
4719 #ifndef PRODUCT
4720   // Should this evacuation fail?
4721   if (_g1->evacuation_should_fail()) {
4722     if (obj_ptr != NULL) {
4723       _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4724       obj_ptr = NULL;
4725     }
4726   }
4727 #endif // !PRODUCT
4728 
4729   if (obj_ptr == NULL) {
4730     // This will either forward-to-self, or detect that someone else has
4731     // installed a forwarding pointer.
4732     return _g1->handle_evacuation_failure_par(_par_scan_state, old);
4733   }
4734 
4735   oop obj = oop(obj_ptr);
4736 
4737   // We're going to allocate linearly, so might as well prefetch ahead.
4738   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
4739 
4740   oop forward_ptr = old->forward_to_atomic(obj);
4741   if (forward_ptr == NULL) {
4742     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4743     if (g1p->track_object_age(alloc_purpose)) {
4744       // We could simply do obj->incr_age(). However, this causes a
4745       // performance issue. obj->incr_age() will first check whether
4746       // the object has a displaced mark by checking its mark word;
4747       // getting the mark word from the new location of the object
4748       // stalls. So, given that we already have the mark word and we
4749       // are about to install it anyway, it's better to increase the
4750       // age on the mark word, when the object does not have a
4751       // displaced mark word. We're not expecting many objects to have
4752       // a displaced marked word, so that case is not optimized
4753       // further (it could be...) and we simply call obj->incr_age().
4754 
4755       if (m->has_displaced_mark_helper()) {
4756         // in this case, we have to install the mark word first,
4757         // otherwise obj looks to be forwarded (the old mark word,
4758         // which contains the forward pointer, was copied)
4759         obj->set_mark(m);
4760         obj->incr_age();
4761       } else {
4762         m = m->incr_age();
4763         obj->set_mark(m);
4764       }
4765       _par_scan_state->age_table()->add(obj, word_sz);
4766     } else {
4767       obj->set_mark(m);
4768     }
4769 
4770     size_t* surv_young_words = _par_scan_state->surviving_young_words();
4771     surv_young_words[young_index] += word_sz;
4772 
4773     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4774       // We keep track of the next start index in the length field of
4775       // the to-space object. The actual length can be found in the
4776       // length field of the from-space object.
4777       arrayOop(obj)->set_length(0);
4778       oop* old_p = set_partial_array_mask(old);
4779       _par_scan_state->push_on_queue(old_p);
4780     } else {
4781       // No point in using the slower heap_region_containing() method,
4782       // given that we know obj is in the heap.
4783       _scanner.set_region(_g1->heap_region_containing_raw(obj));
4784       obj->oop_iterate_backwards(&_scanner);
4785     }
4786   } else {
4787     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4788     obj = forward_ptr;
4789   }
4790   return obj;
4791 }
4792 
4793 template <class T>
4794 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4795   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4796     _scanned_klass->record_modified_oops();
4797   }
4798 }
4799 
4800 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4801 template <class T>
4802 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4803 ::do_oop_work(T* p) {
4804   oop obj = oopDesc::load_decode_heap_oop(p);
4805   assert(barrier != G1BarrierRS || obj != NULL,
4806          "Precondition: G1BarrierRS implies obj is non-NULL");
4807 
4808   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4809 
4810   // here the null check is implicit in the cset_fast_test() test
4811   if (_g1->in_cset_fast_test(obj)) {
4812     oop forwardee;
4813     if (obj->is_forwarded()) {
4814       forwardee = obj->forwardee();
4815     } else {
4816       forwardee = copy_to_survivor_space(obj);
4817     }
4818     assert(forwardee != NULL, "forwardee should not be NULL");
4819     oopDesc::encode_store_heap_oop(p, forwardee);
4820     if (do_mark_object && forwardee != obj) {
4821       // If the object is self-forwarded we don't need to explicitly
4822       // mark it, the evacuation failure protocol will do so.
4823       mark_forwarded_object(obj, forwardee);
4824     }
4825 
4826     // When scanning the RS, we only care about objs in CS.
4827     if (barrier == G1BarrierRS) {
4828       _par_scan_state->update_rs(_from, p, _worker_id);
4829     } else if (barrier == G1BarrierKlass) {
4830       do_klass_barrier(p, forwardee);
4831     }
4832   } else {
4833     // The object is not in collection set. If we're a root scanning
4834     // closure during an initial mark pause (i.e. do_mark_object will
4835     // be true) then attempt to mark the object.
4836     if (do_mark_object && _g1->is_in_g1_reserved(obj)) {
4837       mark_object(obj);
4838     }
4839   }
4840 
4841   if (barrier == G1BarrierEvac && obj != NULL) {
4842     _par_scan_state->update_rs(_from, p, _worker_id);
4843   }
4844 
4845   if (do_gen_barrier && obj != NULL) {
4846     par_do_barrier(p);
4847   }
4848 }
4849 
4850 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
4851 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4852 
4853 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4854   assert(has_partial_array_mask(p), "invariant");
4855   oop from_obj = clear_partial_array_mask(p);
4856 
4857   assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
4858   assert(from_obj->is_objArray(), "must be obj array");
4859   objArrayOop from_obj_array = objArrayOop(from_obj);
4860   // The from-space object contains the real length.
4861   int length                 = from_obj_array->length();
4862 
4863   assert(from_obj->is_forwarded(), "must be forwarded");
4864   oop to_obj                 = from_obj->forwardee();
4865   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
4866   objArrayOop to_obj_array   = objArrayOop(to_obj);
4867   // We keep track of the next start index in the length field of the
4868   // to-space object.
4869   int next_index             = to_obj_array->length();
4870   assert(0 <= next_index && next_index < length,
4871          err_msg("invariant, next index: %d, length: %d", next_index, length));
4872 
4873   int start                  = next_index;
4874   int end                    = length;
4875   int remainder              = end - start;
4876   // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
4877   if (remainder > 2 * ParGCArrayScanChunk) {
4878     end = start + ParGCArrayScanChunk;
4879     to_obj_array->set_length(end);
4880     // Push the remainder before we process the range in case another
4881     // worker has run out of things to do and can steal it.
4882     oop* from_obj_p = set_partial_array_mask(from_obj);
4883     _par_scan_state->push_on_queue(from_obj_p);
4884   } else {
4885     assert(length == end, "sanity");
4886     // We'll process the final range for this object. Restore the length
4887     // so that the heap remains parsable in case of evacuation failure.
4888     to_obj_array->set_length(end);
4889   }
4890   _scanner.set_region(_g1->heap_region_containing_raw(to_obj));
4891   // Process indexes [start,end). It will also process the header
4892   // along with the first chunk (i.e., the chunk with start == 0).
4893   // Note that at this point the length field of to_obj_array is not
4894   // correct given that we are using it to keep track of the next
4895   // start index. oop_iterate_range() (thankfully!) ignores the length
4896   // field and only relies on the start / end parameters.  It does
4897   // however return the size of the object which will be incorrect. So
4898   // we have to ignore it even if we wanted to use it.
4899   to_obj_array->oop_iterate_range(&_scanner, start, end);
4900 }
4901 
4902 class G1ParEvacuateFollowersClosure : public VoidClosure {
4903 protected:
4904   G1CollectedHeap*              _g1h;
4905   G1ParScanThreadState*         _par_scan_state;
4906   RefToScanQueueSet*            _queues;
4907   ParallelTaskTerminator*       _terminator;
4908 
4909   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4910   RefToScanQueueSet*      queues()         { return _queues; }
4911   ParallelTaskTerminator* terminator()     { return _terminator; }
4912 
4913 public:
4914   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4915                                 G1ParScanThreadState* par_scan_state,
4916                                 RefToScanQueueSet* queues,
4917                                 ParallelTaskTerminator* terminator)
4918     : _g1h(g1h), _par_scan_state(par_scan_state),
4919       _queues(queues), _terminator(terminator) {}
4920 
4921   void do_void();
4922 
4923 private:
4924   inline bool offer_termination();
4925 };
4926 
4927 bool G1ParEvacuateFollowersClosure::offer_termination() {
4928   G1ParScanThreadState* const pss = par_scan_state();
4929   pss->start_term_time();
4930   const bool res = terminator()->offer_termination();
4931   pss->end_term_time();
4932   return res;
4933 }
4934 
4935 void G1ParEvacuateFollowersClosure::do_void() {
4936   StarTask stolen_task;
4937   G1ParScanThreadState* const pss = par_scan_state();
4938   pss->trim_queue();
4939 
4940   do {
4941     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
4942       assert(pss->verify_task(stolen_task), "sanity");
4943       if (stolen_task.is_narrow()) {
4944         pss->deal_with_reference((narrowOop*) stolen_task);
4945       } else {
4946         pss->deal_with_reference((oop*) stolen_task);
4947       }
4948 
4949       // We've just processed a reference and we might have made
4950       // available new entries on the queues. So we have to make sure
4951       // we drain the queues as necessary.
4952       pss->trim_queue();
4953     }
4954   } while (!offer_termination());
4955 
4956   pss->retire_alloc_buffers();
4957 }
4958 
4959 class G1KlassScanClosure : public KlassClosure {
4960  G1ParCopyHelper* _closure;
4961  bool             _process_only_dirty;
4962  int              _count;
4963  public:
4964   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4965       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4966   void do_klass(Klass* klass) {
4967     // If the klass has not been dirtied we know that there's
4968     // no references into  the young gen and we can skip it.
4969    if (!_process_only_dirty || klass->has_modified_oops()) {
4970       // Clean the klass since we're going to scavenge all the metadata.
4971       klass->clear_modified_oops();
4972 
4973       // Tell the closure that this klass is the Klass to scavenge
4974       // and is the one to dirty if oops are left pointing into the young gen.
4975       _closure->set_scanned_klass(klass);
4976 
4977       klass->oops_do(_closure);
4978 
4979       _closure->set_scanned_klass(NULL);
4980     }
4981     _count++;
4982   }
4983 };
4984 
4985 class G1ParTask : public AbstractGangTask {
4986 protected:
4987   G1CollectedHeap*       _g1h;
4988   RefToScanQueueSet      *_queues;
4989   ParallelTaskTerminator _terminator;
4990   uint _n_workers;
4991 
4992   Mutex _stats_lock;
4993   Mutex* stats_lock() { return &_stats_lock; }
4994 
4995   size_t getNCards() {
4996     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
4997       / G1BlockOffsetSharedArray::N_bytes;
4998   }
4999 
5000 public:
5001   G1ParTask(G1CollectedHeap* g1h,
5002             RefToScanQueueSet *task_queues)
5003     : AbstractGangTask("G1 collection"),
5004       _g1h(g1h),
5005       _queues(task_queues),
5006       _terminator(0, _queues),
5007       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
5008   {}
5009 
5010   RefToScanQueueSet* queues() { return _queues; }
5011 
5012   RefToScanQueue *work_queue(int i) {
5013     return queues()->queue(i);
5014   }
5015 
5016   ParallelTaskTerminator* terminator() { return &_terminator; }
5017 
5018   virtual void set_for_termination(int active_workers) {
5019     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
5020     // in the young space (_par_seq_tasks) in the G1 heap
5021     // for SequentialSubTasksDone.
5022     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
5023     // both of which need setting by set_n_termination().
5024     _g1h->SharedHeap::set_n_termination(active_workers);
5025     _g1h->set_n_termination(active_workers);
5026     terminator()->reset_for_reuse(active_workers);
5027     _n_workers = active_workers;
5028   }
5029 
5030   void work(uint worker_id) {
5031     if (worker_id >= _n_workers) return;  // no work needed this round
5032 
5033     double start_time_ms = os::elapsedTime() * 1000.0;
5034     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
5035 
5036     {
5037       ResourceMark rm;
5038       HandleMark   hm;
5039 
5040       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
5041 
5042       G1ParScanThreadState            pss(_g1h, worker_id);
5043       G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
5044       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
5045       G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
5046 
5047       pss.set_evac_closure(&scan_evac_cl);
5048       pss.set_evac_failure_closure(&evac_failure_cl);
5049       pss.set_partial_scan_closure(&partial_scan_cl);
5050 
5051       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
5052       G1ParScanMetadataClosure       only_scan_metadata_cl(_g1h, &pss, rp);
5053 
5054       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
5055       G1ParScanAndMarkMetadataClosure scan_mark_metadata_cl(_g1h, &pss, rp);
5056 
5057       bool only_young                 = _g1h->g1_policy()->gcs_are_young();
5058       G1KlassScanClosure              scan_mark_klasses_cl_s(&scan_mark_metadata_cl, false);
5059       G1KlassScanClosure              only_scan_klasses_cl_s(&only_scan_metadata_cl, only_young);
5060 
5061       OopClosure*                    scan_root_cl = &only_scan_root_cl;
5062       G1KlassScanClosure*            scan_klasses_cl = &only_scan_klasses_cl_s;
5063 
5064       if (_g1h->g1_policy()->during_initial_mark_pause()) {
5065         // We also need to mark copied objects.
5066         scan_root_cl = &scan_mark_root_cl;
5067         scan_klasses_cl = &scan_mark_klasses_cl_s;
5068       }
5069 
5070       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
5071 
5072       // Don't scan the scavengable methods in the code cache as part
5073       // of strong root scanning. The code roots that point into a
5074       // region in the collection set are scanned when we scan the
5075       // region's RSet.
5076       int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings;
5077 
5078       pss.start_strong_roots();
5079       _g1h->g1_process_strong_roots(/* is scavenging */ true,
5080                                     SharedHeap::ScanningOption(so),
5081                                     scan_root_cl,
5082                                     &push_heap_rs_cl,
5083                                     scan_klasses_cl,
5084                                     worker_id);
5085       pss.end_strong_roots();
5086 
5087       {
5088         double start = os::elapsedTime();
5089         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
5090         evac.do_void();
5091         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
5092         double term_ms = pss.term_time()*1000.0;
5093         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
5094         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
5095       }
5096       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
5097       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
5098 
5099       if (ParallelGCVerbose) {
5100         MutexLocker x(stats_lock());
5101         pss.print_termination_stats(worker_id);
5102       }
5103 
5104       assert(pss.refs()->is_empty(), "should be empty");
5105 
5106       // Close the inner scope so that the ResourceMark and HandleMark
5107       // destructors are executed here and are included as part of the
5108       // "GC Worker Time".
5109     }
5110 
5111     double end_time_ms = os::elapsedTime() * 1000.0;
5112     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
5113   }
5114 };
5115 
5116 // *** Common G1 Evacuation Stuff
5117 
5118 // This method is run in a GC worker.
5119 
5120 void
5121 G1CollectedHeap::
5122 g1_process_strong_roots(bool is_scavenging,
5123                         ScanningOption so,
5124                         OopClosure* scan_non_heap_roots,
5125                         OopsInHeapRegionClosure* scan_rs,
5126                         G1KlassScanClosure* scan_klasses,
5127                         int worker_i) {
5128 
5129   // First scan the strong roots
5130   double ext_roots_start = os::elapsedTime();
5131   double closure_app_time_sec = 0.0;
5132 
5133   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
5134 
5135   assert(so & SO_CodeCache || scan_rs != NULL, "must scan code roots somehow");
5136   // Walk the code cache/strong code roots w/o buffering, because StarTask
5137   // cannot handle unaligned oop locations.
5138   CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, true /* do_marking */);
5139 
5140   process_strong_roots(false, // no scoping; this is parallel code
5141                        is_scavenging, so,
5142                        &buf_scan_non_heap_roots,
5143                        &eager_scan_code_roots,
5144                        scan_klasses
5145                        );
5146 
5147   // Now the CM ref_processor roots.
5148   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
5149     // We need to treat the discovered reference lists of the
5150     // concurrent mark ref processor as roots and keep entries
5151     // (which are added by the marking threads) on them live
5152     // until they can be processed at the end of marking.
5153     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
5154   }
5155 
5156   // Finish up any enqueued closure apps (attributed as object copy time).
5157   buf_scan_non_heap_roots.done();
5158 
5159   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds();
5160 
5161   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
5162 
5163   double ext_root_time_ms =
5164     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
5165 
5166   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
5167 
5168   // During conc marking we have to filter the per-thread SATB buffers
5169   // to make sure we remove any oops into the CSet (which will show up
5170   // as implicitly live).
5171   double satb_filtering_ms = 0.0;
5172   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
5173     if (mark_in_progress()) {
5174       double satb_filter_start = os::elapsedTime();
5175 
5176       JavaThread::satb_mark_queue_set().filter_thread_buffers();
5177 
5178       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
5179     }
5180   }
5181   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
5182 
5183   // If this is an initial mark pause, and we're not scanning
5184   // the entire code cache, we need to mark the oops in the
5185   // strong code root lists for the regions that are not in
5186   // the collection set.
5187   // Note all threads participate in this set of root tasks.
5188   double mark_strong_code_roots_ms = 0.0;
5189   if (g1_policy()->during_initial_mark_pause() && !(so & SO_CodeCache)) {
5190     double mark_strong_roots_start = os::elapsedTime();
5191     mark_strong_code_roots(worker_i);
5192     mark_strong_code_roots_ms = (os::elapsedTime() - mark_strong_roots_start) * 1000.0;
5193   }
5194   g1_policy()->phase_times()->record_strong_code_root_mark_time(worker_i, mark_strong_code_roots_ms);
5195 
5196   // Now scan the complement of the collection set.
5197   if (scan_rs != NULL) {
5198     g1_rem_set()->oops_into_collection_set_do(scan_rs, &eager_scan_code_roots, worker_i);
5199   }
5200   _process_strong_tasks->all_tasks_completed();
5201 }
5202 
5203 void
5204 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure) {
5205   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
5206   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs);
5207 }
5208 
5209 // Weak Reference Processing support
5210 
5211 // An always "is_alive" closure that is used to preserve referents.
5212 // If the object is non-null then it's alive.  Used in the preservation
5213 // of referent objects that are pointed to by reference objects
5214 // discovered by the CM ref processor.
5215 class G1AlwaysAliveClosure: public BoolObjectClosure {
5216   G1CollectedHeap* _g1;
5217 public:
5218   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5219   bool do_object_b(oop p) {
5220     if (p != NULL) {
5221       return true;
5222     }
5223     return false;
5224   }
5225 };
5226 
5227 bool G1STWIsAliveClosure::do_object_b(oop p) {
5228   // An object is reachable if it is outside the collection set,
5229   // or is inside and copied.
5230   return !_g1->obj_in_cs(p) || p->is_forwarded();
5231 }
5232 
5233 // Non Copying Keep Alive closure
5234 class G1KeepAliveClosure: public OopClosure {
5235   G1CollectedHeap* _g1;
5236 public:
5237   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5238   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5239   void do_oop(      oop* p) {
5240     oop obj = *p;
5241 
5242     if (_g1->obj_in_cs(obj)) {
5243       assert( obj->is_forwarded(), "invariant" );
5244       *p = obj->forwardee();
5245     }
5246   }
5247 };
5248 
5249 // Copying Keep Alive closure - can be called from both
5250 // serial and parallel code as long as different worker
5251 // threads utilize different G1ParScanThreadState instances
5252 // and different queues.
5253 
5254 class G1CopyingKeepAliveClosure: public OopClosure {
5255   G1CollectedHeap*         _g1h;
5256   OopClosure*              _copy_non_heap_obj_cl;
5257   OopsInHeapRegionClosure* _copy_metadata_obj_cl;
5258   G1ParScanThreadState*    _par_scan_state;
5259 
5260 public:
5261   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5262                             OopClosure* non_heap_obj_cl,
5263                             OopsInHeapRegionClosure* metadata_obj_cl,
5264                             G1ParScanThreadState* pss):
5265     _g1h(g1h),
5266     _copy_non_heap_obj_cl(non_heap_obj_cl),
5267     _copy_metadata_obj_cl(metadata_obj_cl),
5268     _par_scan_state(pss)
5269   {}
5270 
5271   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5272   virtual void do_oop(      oop* p) { do_oop_work(p); }
5273 
5274   template <class T> void do_oop_work(T* p) {
5275     oop obj = oopDesc::load_decode_heap_oop(p);
5276 
5277     if (_g1h->obj_in_cs(obj)) {
5278       // If the referent object has been forwarded (either copied
5279       // to a new location or to itself in the event of an
5280       // evacuation failure) then we need to update the reference
5281       // field and, if both reference and referent are in the G1
5282       // heap, update the RSet for the referent.
5283       //
5284       // If the referent has not been forwarded then we have to keep
5285       // it alive by policy. Therefore we have copy the referent.
5286       //
5287       // If the reference field is in the G1 heap then we can push
5288       // on the PSS queue. When the queue is drained (after each
5289       // phase of reference processing) the object and it's followers
5290       // will be copied, the reference field set to point to the
5291       // new location, and the RSet updated. Otherwise we need to
5292       // use the the non-heap or metadata closures directly to copy
5293       // the referent object and update the pointer, while avoiding
5294       // updating the RSet.
5295 
5296       if (_g1h->is_in_g1_reserved(p)) {
5297         _par_scan_state->push_on_queue(p);
5298       } else {
5299         assert(!ClassLoaderDataGraph::contains((address)p),
5300                err_msg("Otherwise need to call _copy_metadata_obj_cl->do_oop(p) "
5301                               PTR_FORMAT, p));
5302           _copy_non_heap_obj_cl->do_oop(p);
5303         }
5304       }
5305     }
5306 };
5307 
5308 // Serial drain queue closure. Called as the 'complete_gc'
5309 // closure for each discovered list in some of the
5310 // reference processing phases.
5311 
5312 class G1STWDrainQueueClosure: public VoidClosure {
5313 protected:
5314   G1CollectedHeap* _g1h;
5315   G1ParScanThreadState* _par_scan_state;
5316 
5317   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5318 
5319 public:
5320   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5321     _g1h(g1h),
5322     _par_scan_state(pss)
5323   { }
5324 
5325   void do_void() {
5326     G1ParScanThreadState* const pss = par_scan_state();
5327     pss->trim_queue();
5328   }
5329 };
5330 
5331 // Parallel Reference Processing closures
5332 
5333 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5334 // processing during G1 evacuation pauses.
5335 
5336 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5337 private:
5338   G1CollectedHeap*   _g1h;
5339   RefToScanQueueSet* _queues;
5340   FlexibleWorkGang*  _workers;
5341   int                _active_workers;
5342 
5343 public:
5344   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5345                         FlexibleWorkGang* workers,
5346                         RefToScanQueueSet *task_queues,
5347                         int n_workers) :
5348     _g1h(g1h),
5349     _queues(task_queues),
5350     _workers(workers),
5351     _active_workers(n_workers)
5352   {
5353     assert(n_workers > 0, "shouldn't call this otherwise");
5354   }
5355 
5356   // Executes the given task using concurrent marking worker threads.
5357   virtual void execute(ProcessTask& task);
5358   virtual void execute(EnqueueTask& task);
5359 };
5360 
5361 // Gang task for possibly parallel reference processing
5362 
5363 class G1STWRefProcTaskProxy: public AbstractGangTask {
5364   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5365   ProcessTask&     _proc_task;
5366   G1CollectedHeap* _g1h;
5367   RefToScanQueueSet *_task_queues;
5368   ParallelTaskTerminator* _terminator;
5369 
5370 public:
5371   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5372                      G1CollectedHeap* g1h,
5373                      RefToScanQueueSet *task_queues,
5374                      ParallelTaskTerminator* terminator) :
5375     AbstractGangTask("Process reference objects in parallel"),
5376     _proc_task(proc_task),
5377     _g1h(g1h),
5378     _task_queues(task_queues),
5379     _terminator(terminator)
5380   {}
5381 
5382   virtual void work(uint worker_id) {
5383     // The reference processing task executed by a single worker.
5384     ResourceMark rm;
5385     HandleMark   hm;
5386 
5387     G1STWIsAliveClosure is_alive(_g1h);
5388 
5389     G1ParScanThreadState pss(_g1h, worker_id);
5390 
5391     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5392     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5393     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5394 
5395     pss.set_evac_closure(&scan_evac_cl);
5396     pss.set_evac_failure_closure(&evac_failure_cl);
5397     pss.set_partial_scan_closure(&partial_scan_cl);
5398 
5399     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5400     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5401 
5402     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5403     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5404 
5405     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5406     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5407 
5408     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5409       // We also need to mark copied objects.
5410       copy_non_heap_cl = &copy_mark_non_heap_cl;
5411       copy_metadata_cl = &copy_mark_metadata_cl;
5412     }
5413 
5414     // Keep alive closure.
5415     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5416 
5417     // Complete GC closure
5418     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5419 
5420     // Call the reference processing task's work routine.
5421     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5422 
5423     // Note we cannot assert that the refs array is empty here as not all
5424     // of the processing tasks (specifically phase2 - pp2_work) execute
5425     // the complete_gc closure (which ordinarily would drain the queue) so
5426     // the queue may not be empty.
5427   }
5428 };
5429 
5430 // Driver routine for parallel reference processing.
5431 // Creates an instance of the ref processing gang
5432 // task and has the worker threads execute it.
5433 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5434   assert(_workers != NULL, "Need parallel worker threads.");
5435 
5436   ParallelTaskTerminator terminator(_active_workers, _queues);
5437   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5438 
5439   _g1h->set_par_threads(_active_workers);
5440   _workers->run_task(&proc_task_proxy);
5441   _g1h->set_par_threads(0);
5442 }
5443 
5444 // Gang task for parallel reference enqueueing.
5445 
5446 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5447   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5448   EnqueueTask& _enq_task;
5449 
5450 public:
5451   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5452     AbstractGangTask("Enqueue reference objects in parallel"),
5453     _enq_task(enq_task)
5454   { }
5455 
5456   virtual void work(uint worker_id) {
5457     _enq_task.work(worker_id);
5458   }
5459 };
5460 
5461 // Driver routine for parallel reference enqueueing.
5462 // Creates an instance of the ref enqueueing gang
5463 // task and has the worker threads execute it.
5464 
5465 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5466   assert(_workers != NULL, "Need parallel worker threads.");
5467 
5468   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5469 
5470   _g1h->set_par_threads(_active_workers);
5471   _workers->run_task(&enq_task_proxy);
5472   _g1h->set_par_threads(0);
5473 }
5474 
5475 // End of weak reference support closures
5476 
5477 // Abstract task used to preserve (i.e. copy) any referent objects
5478 // that are in the collection set and are pointed to by reference
5479 // objects discovered by the CM ref processor.
5480 
5481 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5482 protected:
5483   G1CollectedHeap* _g1h;
5484   RefToScanQueueSet      *_queues;
5485   ParallelTaskTerminator _terminator;
5486   uint _n_workers;
5487 
5488 public:
5489   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5490     AbstractGangTask("ParPreserveCMReferents"),
5491     _g1h(g1h),
5492     _queues(task_queues),
5493     _terminator(workers, _queues),
5494     _n_workers(workers)
5495   { }
5496 
5497   void work(uint worker_id) {
5498     ResourceMark rm;
5499     HandleMark   hm;
5500 
5501     G1ParScanThreadState            pss(_g1h, worker_id);
5502     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5503     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5504     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5505 
5506     pss.set_evac_closure(&scan_evac_cl);
5507     pss.set_evac_failure_closure(&evac_failure_cl);
5508     pss.set_partial_scan_closure(&partial_scan_cl);
5509 
5510     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5511 
5512 
5513     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5514     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5515 
5516     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5517     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5518 
5519     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5520     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5521 
5522     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5523       // We also need to mark copied objects.
5524       copy_non_heap_cl = &copy_mark_non_heap_cl;
5525       copy_metadata_cl = &copy_mark_metadata_cl;
5526     }
5527 
5528     // Is alive closure
5529     G1AlwaysAliveClosure always_alive(_g1h);
5530 
5531     // Copying keep alive closure. Applied to referent objects that need
5532     // to be copied.
5533     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5534 
5535     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5536 
5537     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5538     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5539 
5540     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5541     // So this must be true - but assert just in case someone decides to
5542     // change the worker ids.
5543     assert(0 <= worker_id && worker_id < limit, "sanity");
5544     assert(!rp->discovery_is_atomic(), "check this code");
5545 
5546     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5547     for (uint idx = worker_id; idx < limit; idx += stride) {
5548       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5549 
5550       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5551       while (iter.has_next()) {
5552         // Since discovery is not atomic for the CM ref processor, we
5553         // can see some null referent objects.
5554         iter.load_ptrs(DEBUG_ONLY(true));
5555         oop ref = iter.obj();
5556 
5557         // This will filter nulls.
5558         if (iter.is_referent_alive()) {
5559           iter.make_referent_alive();
5560         }
5561         iter.move_to_next();
5562       }
5563     }
5564 
5565     // Drain the queue - which may cause stealing
5566     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5567     drain_queue.do_void();
5568     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5569     assert(pss.refs()->is_empty(), "should be");
5570   }
5571 };
5572 
5573 // Weak Reference processing during an evacuation pause (part 1).
5574 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5575   double ref_proc_start = os::elapsedTime();
5576 
5577   ReferenceProcessor* rp = _ref_processor_stw;
5578   assert(rp->discovery_enabled(), "should have been enabled");
5579 
5580   // Any reference objects, in the collection set, that were 'discovered'
5581   // by the CM ref processor should have already been copied (either by
5582   // applying the external root copy closure to the discovered lists, or
5583   // by following an RSet entry).
5584   //
5585   // But some of the referents, that are in the collection set, that these
5586   // reference objects point to may not have been copied: the STW ref
5587   // processor would have seen that the reference object had already
5588   // been 'discovered' and would have skipped discovering the reference,
5589   // but would not have treated the reference object as a regular oop.
5590   // As a result the copy closure would not have been applied to the
5591   // referent object.
5592   //
5593   // We need to explicitly copy these referent objects - the references
5594   // will be processed at the end of remarking.
5595   //
5596   // We also need to do this copying before we process the reference
5597   // objects discovered by the STW ref processor in case one of these
5598   // referents points to another object which is also referenced by an
5599   // object discovered by the STW ref processor.
5600 
5601   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
5602            no_of_gc_workers == workers()->active_workers(),
5603            "Need to reset active GC workers");
5604 
5605   set_par_threads(no_of_gc_workers);
5606   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5607                                                  no_of_gc_workers,
5608                                                  _task_queues);
5609 
5610   if (G1CollectedHeap::use_parallel_gc_threads()) {
5611     workers()->run_task(&keep_cm_referents);
5612   } else {
5613     keep_cm_referents.work(0);
5614   }
5615 
5616   set_par_threads(0);
5617 
5618   // Closure to test whether a referent is alive.
5619   G1STWIsAliveClosure is_alive(this);
5620 
5621   // Even when parallel reference processing is enabled, the processing
5622   // of JNI refs is serial and performed serially by the current thread
5623   // rather than by a worker. The following PSS will be used for processing
5624   // JNI refs.
5625 
5626   // Use only a single queue for this PSS.
5627   G1ParScanThreadState pss(this, 0);
5628 
5629   // We do not embed a reference processor in the copying/scanning
5630   // closures while we're actually processing the discovered
5631   // reference objects.
5632   G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
5633   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5634   G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);
5635 
5636   pss.set_evac_closure(&scan_evac_cl);
5637   pss.set_evac_failure_closure(&evac_failure_cl);
5638   pss.set_partial_scan_closure(&partial_scan_cl);
5639 
5640   assert(pss.refs()->is_empty(), "pre-condition");
5641 
5642   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5643   G1ParScanMetadataClosure       only_copy_metadata_cl(this, &pss, NULL);
5644 
5645   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5646   G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(this, &pss, NULL);
5647 
5648   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5649   OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5650 
5651   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5652     // We also need to mark copied objects.
5653     copy_non_heap_cl = &copy_mark_non_heap_cl;
5654     copy_metadata_cl = &copy_mark_metadata_cl;
5655   }
5656 
5657   // Keep alive closure.
5658   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_metadata_cl, &pss);
5659 
5660   // Serial Complete GC closure
5661   G1STWDrainQueueClosure drain_queue(this, &pss);
5662 
5663   // Setup the soft refs policy...
5664   rp->setup_policy(false);
5665 
5666   ReferenceProcessorStats stats;
5667   if (!rp->processing_is_mt()) {
5668     // Serial reference processing...
5669     stats = rp->process_discovered_references(&is_alive,
5670                                               &keep_alive,
5671                                               &drain_queue,
5672                                               NULL,
5673                                               _gc_timer_stw);
5674   } else {
5675     // Parallel reference processing
5676     assert(rp->num_q() == no_of_gc_workers, "sanity");
5677     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5678 
5679     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5680     stats = rp->process_discovered_references(&is_alive,
5681                                               &keep_alive,
5682                                               &drain_queue,
5683                                               &par_task_executor,
5684                                               _gc_timer_stw);
5685   }
5686 
5687   _gc_tracer_stw->report_gc_reference_stats(stats);
5688   // We have completed copying any necessary live referent objects
5689   // (that were not copied during the actual pause) so we can
5690   // retire any active alloc buffers
5691   pss.retire_alloc_buffers();
5692   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5693 
5694   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5695   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5696 }
5697 
5698 // Weak Reference processing during an evacuation pause (part 2).
5699 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5700   double ref_enq_start = os::elapsedTime();
5701 
5702   ReferenceProcessor* rp = _ref_processor_stw;
5703   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5704 
5705   // Now enqueue any remaining on the discovered lists on to
5706   // the pending list.
5707   if (!rp->processing_is_mt()) {
5708     // Serial reference processing...
5709     rp->enqueue_discovered_references();
5710   } else {
5711     // Parallel reference enqueueing
5712 
5713     assert(no_of_gc_workers == workers()->active_workers(),
5714            "Need to reset active workers");
5715     assert(rp->num_q() == no_of_gc_workers, "sanity");
5716     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5717 
5718     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5719     rp->enqueue_discovered_references(&par_task_executor);
5720   }
5721 
5722   rp->verify_no_references_recorded();
5723   assert(!rp->discovery_enabled(), "should have been disabled");
5724 
5725   // FIXME
5726   // CM's reference processing also cleans up the string and symbol tables.
5727   // Should we do that here also? We could, but it is a serial operation
5728   // and could significantly increase the pause time.
5729 
5730   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5731   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5732 }
5733 
5734 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5735   _expand_heap_after_alloc_failure = true;
5736   _evacuation_failed = false;
5737 
5738   // Should G1EvacuationFailureALot be in effect for this GC?
5739   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5740 
5741   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5742 
5743   // Disable the hot card cache.
5744   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5745   hot_card_cache->reset_hot_cache_claimed_index();
5746   hot_card_cache->set_use_cache(false);
5747 
5748   uint n_workers;
5749   if (G1CollectedHeap::use_parallel_gc_threads()) {
5750     n_workers =
5751       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5752                                      workers()->active_workers(),
5753                                      Threads::number_of_non_daemon_threads());
5754     assert(UseDynamicNumberOfGCThreads ||
5755            n_workers == workers()->total_workers(),
5756            "If not dynamic should be using all the  workers");
5757     workers()->set_active_workers(n_workers);
5758     set_par_threads(n_workers);
5759   } else {
5760     assert(n_par_threads() == 0,
5761            "Should be the original non-parallel value");
5762     n_workers = 1;
5763   }
5764 
5765   G1ParTask g1_par_task(this, _task_queues);
5766 
5767   init_for_evac_failure(NULL);
5768 
5769   rem_set()->prepare_for_younger_refs_iterate(true);
5770 
5771   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5772   double start_par_time_sec = os::elapsedTime();
5773   double end_par_time_sec;
5774 
5775   {
5776     StrongRootsScope srs(this);
5777 
5778     if (G1CollectedHeap::use_parallel_gc_threads()) {
5779       // The individual threads will set their evac-failure closures.
5780       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5781       // These tasks use ShareHeap::_process_strong_tasks
5782       assert(UseDynamicNumberOfGCThreads ||
5783              workers()->active_workers() == workers()->total_workers(),
5784              "If not dynamic should be using all the  workers");
5785       workers()->run_task(&g1_par_task);
5786     } else {
5787       g1_par_task.set_for_termination(n_workers);
5788       g1_par_task.work(0);
5789     }
5790     end_par_time_sec = os::elapsedTime();
5791 
5792     // Closing the inner scope will execute the destructor
5793     // for the StrongRootsScope object. We record the current
5794     // elapsed time before closing the scope so that time
5795     // taken for the SRS destructor is NOT included in the
5796     // reported parallel time.
5797   }
5798 
5799   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5800   g1_policy()->phase_times()->record_par_time(par_time_ms);
5801 
5802   double code_root_fixup_time_ms =
5803         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5804   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5805 
5806   set_par_threads(0);
5807 
5808   // Process any discovered reference objects - we have
5809   // to do this _before_ we retire the GC alloc regions
5810   // as we may have to copy some 'reachable' referent
5811   // objects (and their reachable sub-graphs) that were
5812   // not copied during the pause.
5813   process_discovered_references(n_workers);
5814 
5815   // Weak root processing.
5816   {
5817     G1STWIsAliveClosure is_alive(this);
5818     G1KeepAliveClosure keep_alive(this);
5819     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
5820   }
5821 
5822   release_gc_alloc_regions(n_workers, evacuation_info);
5823   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5824 
5825   // Reset and re-enable the hot card cache.
5826   // Note the counts for the cards in the regions in the
5827   // collection set are reset when the collection set is freed.
5828   hot_card_cache->reset_hot_cache();
5829   hot_card_cache->set_use_cache(true);
5830 
5831   // Migrate the strong code roots attached to each region in
5832   // the collection set. Ideally we would like to do this
5833   // after we have finished the scanning/evacuation of the
5834   // strong code roots for a particular heap region.
5835   migrate_strong_code_roots();
5836 
5837   if (g1_policy()->during_initial_mark_pause()) {
5838     // Reset the claim values set during marking the strong code roots
5839     reset_heap_region_claim_values();
5840   }
5841 
5842   finalize_for_evac_failure();
5843 
5844   if (evacuation_failed()) {
5845     remove_self_forwarding_pointers();
5846 
5847     // Reset the G1EvacuationFailureALot counters and flags
5848     // Note: the values are reset only when an actual
5849     // evacuation failure occurs.
5850     NOT_PRODUCT(reset_evacuation_should_fail();)
5851   }
5852 
5853   // Enqueue any remaining references remaining on the STW
5854   // reference processor's discovered lists. We need to do
5855   // this after the card table is cleaned (and verified) as
5856   // the act of enqueueing entries on to the pending list
5857   // will log these updates (and dirty their associated
5858   // cards). We need these updates logged to update any
5859   // RSets.
5860   enqueue_discovered_references(n_workers);
5861 
5862   if (G1DeferredRSUpdate) {
5863     RedirtyLoggedCardTableEntryFastClosure redirty;
5864     dirty_card_queue_set().set_closure(&redirty);
5865     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
5866 
5867     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5868     dcq.merge_bufferlists(&dirty_card_queue_set());
5869     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5870   }
5871   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5872 }
5873 
5874 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
5875                                      size_t* pre_used,
5876                                      FreeRegionList* free_list,
5877                                      OldRegionSet* old_proxy_set,
5878                                      HumongousRegionSet* humongous_proxy_set,
5879                                      HRRSCleanupTask* hrrs_cleanup_task,
5880                                      bool par) {
5881   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
5882     if (hr->isHumongous()) {
5883       assert(hr->startsHumongous(), "we should only see starts humongous");
5884       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
5885     } else {
5886       _old_set.remove_with_proxy(hr, old_proxy_set);
5887       free_region(hr, pre_used, free_list, par);
5888     }
5889   } else {
5890     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
5891   }
5892 }
5893 
5894 void G1CollectedHeap::free_region(HeapRegion* hr,
5895                                   size_t* pre_used,
5896                                   FreeRegionList* free_list,
5897                                   bool par) {
5898   assert(!hr->isHumongous(), "this is only for non-humongous regions");
5899   assert(!hr->is_empty(), "the region should not be empty");
5900   assert(free_list != NULL, "pre-condition");
5901 
5902   // Clear the card counts for this region.
5903   // Note: we only need to do this if the region is not young
5904   // (since we don't refine cards in young regions).
5905   if (!hr->is_young()) {
5906     _cg1r->hot_card_cache()->reset_card_counts(hr);
5907   }
5908   *pre_used += hr->used();
5909   hr->hr_clear(par, true /* clear_space */);
5910   free_list->add_as_head(hr);
5911 }
5912 
5913 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5914                                      size_t* pre_used,
5915                                      FreeRegionList* free_list,
5916                                      HumongousRegionSet* humongous_proxy_set,
5917                                      bool par) {
5918   assert(hr->startsHumongous(), "this is only for starts humongous regions");
5919   assert(free_list != NULL, "pre-condition");
5920   assert(humongous_proxy_set != NULL, "pre-condition");
5921 
5922   size_t hr_used = hr->used();
5923   size_t hr_capacity = hr->capacity();
5924   size_t hr_pre_used = 0;
5925   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
5926   // We need to read this before we make the region non-humongous,
5927   // otherwise the information will be gone.
5928   uint last_index = hr->last_hc_index();
5929   hr->set_notHumongous();
5930   free_region(hr, &hr_pre_used, free_list, par);
5931 
5932   uint i = hr->hrs_index() + 1;
5933   while (i < last_index) {
5934     HeapRegion* curr_hr = region_at(i);
5935     assert(curr_hr->continuesHumongous(), "invariant");
5936     curr_hr->set_notHumongous();
5937     free_region(curr_hr, &hr_pre_used, free_list, par);
5938     i += 1;
5939   }
5940   assert(hr_pre_used == hr_used,
5941          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
5942                  "should be the same", hr_pre_used, hr_used));
5943   *pre_used += hr_pre_used;
5944 }
5945 
5946 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
5947                                        FreeRegionList* free_list,
5948                                        OldRegionSet* old_proxy_set,
5949                                        HumongousRegionSet* humongous_proxy_set,
5950                                        bool par) {
5951   if (pre_used > 0) {
5952     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
5953     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
5954     assert(_summary_bytes_used >= pre_used,
5955            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
5956                    "should be >= pre_used: "SIZE_FORMAT,
5957                    _summary_bytes_used, pre_used));
5958     _summary_bytes_used -= pre_used;
5959   }
5960   if (free_list != NULL && !free_list->is_empty()) {
5961     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5962     _free_list.add_as_head(free_list);
5963   }
5964   if (old_proxy_set != NULL && !old_proxy_set->is_empty()) {
5965     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5966     _old_set.update_from_proxy(old_proxy_set);
5967   }
5968   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
5969     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5970     _humongous_set.update_from_proxy(humongous_proxy_set);
5971   }
5972 }
5973 
5974 class G1ParCleanupCTTask : public AbstractGangTask {
5975   G1SATBCardTableModRefBS* _ct_bs;
5976   G1CollectedHeap* _g1h;
5977   HeapRegion* volatile _su_head;
5978 public:
5979   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5980                      G1CollectedHeap* g1h) :
5981     AbstractGangTask("G1 Par Cleanup CT Task"),
5982     _ct_bs(ct_bs), _g1h(g1h) { }
5983 
5984   void work(uint worker_id) {
5985     HeapRegion* r;
5986     while (r = _g1h->pop_dirty_cards_region()) {
5987       clear_cards(r);
5988     }
5989   }
5990 
5991   void clear_cards(HeapRegion* r) {
5992     // Cards of the survivors should have already been dirtied.
5993     if (!r->is_survivor()) {
5994       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5995     }
5996   }
5997 };
5998 
5999 #ifndef PRODUCT
6000 class G1VerifyCardTableCleanup: public HeapRegionClosure {
6001   G1CollectedHeap* _g1h;
6002   G1SATBCardTableModRefBS* _ct_bs;
6003 public:
6004   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
6005     : _g1h(g1h), _ct_bs(ct_bs) { }
6006   virtual bool doHeapRegion(HeapRegion* r) {
6007     if (r->is_survivor()) {
6008       _g1h->verify_dirty_region(r);
6009     } else {
6010       _g1h->verify_not_dirty_region(r);
6011     }
6012     return false;
6013   }
6014 };
6015 
6016 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
6017   // All of the region should be clean.
6018   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6019   MemRegion mr(hr->bottom(), hr->end());
6020   ct_bs->verify_not_dirty_region(mr);
6021 }
6022 
6023 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
6024   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
6025   // dirty allocated blocks as they allocate them. The thread that
6026   // retires each region and replaces it with a new one will do a
6027   // maximal allocation to fill in [pre_dummy_top(),end()] but will
6028   // not dirty that area (one less thing to have to do while holding
6029   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
6030   // is dirty.
6031   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6032   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
6033   ct_bs->verify_dirty_region(mr);
6034 }
6035 
6036 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
6037   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6038   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
6039     verify_dirty_region(hr);
6040   }
6041 }
6042 
6043 void G1CollectedHeap::verify_dirty_young_regions() {
6044   verify_dirty_young_list(_young_list->first_region());
6045 }
6046 #endif
6047 
6048 void G1CollectedHeap::cleanUpCardTable() {
6049   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6050   double start = os::elapsedTime();
6051 
6052   {
6053     // Iterate over the dirty cards region list.
6054     G1ParCleanupCTTask cleanup_task(ct_bs, this);
6055 
6056     if (G1CollectedHeap::use_parallel_gc_threads()) {
6057       set_par_threads();
6058       workers()->run_task(&cleanup_task);
6059       set_par_threads(0);
6060     } else {
6061       while (_dirty_cards_region_list) {
6062         HeapRegion* r = _dirty_cards_region_list;
6063         cleanup_task.clear_cards(r);
6064         _dirty_cards_region_list = r->get_next_dirty_cards_region();
6065         if (_dirty_cards_region_list == r) {
6066           // The last region.
6067           _dirty_cards_region_list = NULL;
6068         }
6069         r->set_next_dirty_cards_region(NULL);
6070       }
6071     }
6072 #ifndef PRODUCT
6073     if (G1VerifyCTCleanup || VerifyAfterGC) {
6074       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
6075       heap_region_iterate(&cleanup_verifier);
6076     }
6077 #endif
6078   }
6079 
6080   double elapsed = os::elapsedTime() - start;
6081   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6082 }
6083 
6084 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6085   size_t pre_used = 0;
6086   FreeRegionList local_free_list("Local List for CSet Freeing");
6087 
6088   double young_time_ms     = 0.0;
6089   double non_young_time_ms = 0.0;
6090 
6091   // Since the collection set is a superset of the the young list,
6092   // all we need to do to clear the young list is clear its
6093   // head and length, and unlink any young regions in the code below
6094   _young_list->clear();
6095 
6096   G1CollectorPolicy* policy = g1_policy();
6097 
6098   double start_sec = os::elapsedTime();
6099   bool non_young = true;
6100 
6101   HeapRegion* cur = cs_head;
6102   int age_bound = -1;
6103   size_t rs_lengths = 0;
6104 
6105   while (cur != NULL) {
6106     assert(!is_on_master_free_list(cur), "sanity");
6107     if (non_young) {
6108       if (cur->is_young()) {
6109         double end_sec = os::elapsedTime();
6110         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6111         non_young_time_ms += elapsed_ms;
6112 
6113         start_sec = os::elapsedTime();
6114         non_young = false;
6115       }
6116     } else {
6117       if (!cur->is_young()) {
6118         double end_sec = os::elapsedTime();
6119         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6120         young_time_ms += elapsed_ms;
6121 
6122         start_sec = os::elapsedTime();
6123         non_young = true;
6124       }
6125     }
6126 
6127     rs_lengths += cur->rem_set()->occupied();
6128 
6129     HeapRegion* next = cur->next_in_collection_set();
6130     assert(cur->in_collection_set(), "bad CS");
6131     cur->set_next_in_collection_set(NULL);
6132     cur->set_in_collection_set(false);
6133 
6134     if (cur->is_young()) {
6135       int index = cur->young_index_in_cset();
6136       assert(index != -1, "invariant");
6137       assert((uint) index < policy->young_cset_region_length(), "invariant");
6138       size_t words_survived = _surviving_young_words[index];
6139       cur->record_surv_words_in_group(words_survived);
6140 
6141       // At this point the we have 'popped' cur from the collection set
6142       // (linked via next_in_collection_set()) but it is still in the
6143       // young list (linked via next_young_region()). Clear the
6144       // _next_young_region field.
6145       cur->set_next_young_region(NULL);
6146     } else {
6147       int index = cur->young_index_in_cset();
6148       assert(index == -1, "invariant");
6149     }
6150 
6151     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6152             (!cur->is_young() && cur->young_index_in_cset() == -1),
6153             "invariant" );
6154 
6155     if (!cur->evacuation_failed()) {
6156       MemRegion used_mr = cur->used_region();
6157 
6158       // And the region is empty.
6159       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6160       free_region(cur, &pre_used, &local_free_list, false /* par */);
6161     } else {
6162       cur->uninstall_surv_rate_group();
6163       if (cur->is_young()) {
6164         cur->set_young_index_in_cset(-1);
6165       }
6166       cur->set_not_young();
6167       cur->set_evacuation_failed(false);
6168       // The region is now considered to be old.
6169       _old_set.add(cur);
6170       evacuation_info.increment_collectionset_used_after(cur->used());
6171     }
6172     cur = next;
6173   }
6174 
6175   evacuation_info.set_regions_freed(local_free_list.length());
6176   policy->record_max_rs_lengths(rs_lengths);
6177   policy->cset_regions_freed();
6178 
6179   double end_sec = os::elapsedTime();
6180   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6181 
6182   if (non_young) {
6183     non_young_time_ms += elapsed_ms;
6184   } else {
6185     young_time_ms += elapsed_ms;
6186   }
6187 
6188   update_sets_after_freeing_regions(pre_used, &local_free_list,
6189                                     NULL /* old_proxy_set */,
6190                                     NULL /* humongous_proxy_set */,
6191                                     false /* par */);
6192   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6193   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6194 }
6195 
6196 // This routine is similar to the above but does not record
6197 // any policy statistics or update free lists; we are abandoning
6198 // the current incremental collection set in preparation of a
6199 // full collection. After the full GC we will start to build up
6200 // the incremental collection set again.
6201 // This is only called when we're doing a full collection
6202 // and is immediately followed by the tearing down of the young list.
6203 
6204 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6205   HeapRegion* cur = cs_head;
6206 
6207   while (cur != NULL) {
6208     HeapRegion* next = cur->next_in_collection_set();
6209     assert(cur->in_collection_set(), "bad CS");
6210     cur->set_next_in_collection_set(NULL);
6211     cur->set_in_collection_set(false);
6212     cur->set_young_index_in_cset(-1);
6213     cur = next;
6214   }
6215 }
6216 
6217 void G1CollectedHeap::set_free_regions_coming() {
6218   if (G1ConcRegionFreeingVerbose) {
6219     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6220                            "setting free regions coming");
6221   }
6222 
6223   assert(!free_regions_coming(), "pre-condition");
6224   _free_regions_coming = true;
6225 }
6226 
6227 void G1CollectedHeap::reset_free_regions_coming() {
6228   assert(free_regions_coming(), "pre-condition");
6229 
6230   {
6231     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6232     _free_regions_coming = false;
6233     SecondaryFreeList_lock->notify_all();
6234   }
6235 
6236   if (G1ConcRegionFreeingVerbose) {
6237     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6238                            "reset free regions coming");
6239   }
6240 }
6241 
6242 void G1CollectedHeap::wait_while_free_regions_coming() {
6243   // Most of the time we won't have to wait, so let's do a quick test
6244   // first before we take the lock.
6245   if (!free_regions_coming()) {
6246     return;
6247   }
6248 
6249   if (G1ConcRegionFreeingVerbose) {
6250     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6251                            "waiting for free regions");
6252   }
6253 
6254   {
6255     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6256     while (free_regions_coming()) {
6257       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6258     }
6259   }
6260 
6261   if (G1ConcRegionFreeingVerbose) {
6262     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6263                            "done waiting for free regions");
6264   }
6265 }
6266 
6267 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6268   assert(heap_lock_held_for_gc(),
6269               "the heap lock should already be held by or for this thread");
6270   _young_list->push_region(hr);
6271 }
6272 
6273 class NoYoungRegionsClosure: public HeapRegionClosure {
6274 private:
6275   bool _success;
6276 public:
6277   NoYoungRegionsClosure() : _success(true) { }
6278   bool doHeapRegion(HeapRegion* r) {
6279     if (r->is_young()) {
6280       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6281                              r->bottom(), r->end());
6282       _success = false;
6283     }
6284     return false;
6285   }
6286   bool success() { return _success; }
6287 };
6288 
6289 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6290   bool ret = _young_list->check_list_empty(check_sample);
6291 
6292   if (check_heap) {
6293     NoYoungRegionsClosure closure;
6294     heap_region_iterate(&closure);
6295     ret = ret && closure.success();
6296   }
6297 
6298   return ret;
6299 }
6300 
6301 class TearDownRegionSetsClosure : public HeapRegionClosure {
6302 private:
6303   OldRegionSet *_old_set;
6304 
6305 public:
6306   TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { }
6307 
6308   bool doHeapRegion(HeapRegion* r) {
6309     if (r->is_empty()) {
6310       // We ignore empty regions, we'll empty the free list afterwards
6311     } else if (r->is_young()) {
6312       // We ignore young regions, we'll empty the young list afterwards
6313     } else if (r->isHumongous()) {
6314       // We ignore humongous regions, we're not tearing down the
6315       // humongous region set
6316     } else {
6317       // The rest should be old
6318       _old_set->remove(r);
6319     }
6320     return false;
6321   }
6322 
6323   ~TearDownRegionSetsClosure() {
6324     assert(_old_set->is_empty(), "post-condition");
6325   }
6326 };
6327 
6328 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6329   assert_at_safepoint(true /* should_be_vm_thread */);
6330 
6331   if (!free_list_only) {
6332     TearDownRegionSetsClosure cl(&_old_set);
6333     heap_region_iterate(&cl);
6334 
6335     // Need to do this after the heap iteration to be able to
6336     // recognize the young regions and ignore them during the iteration.
6337     _young_list->empty_list();
6338   }
6339   _free_list.remove_all();
6340 }
6341 
6342 class RebuildRegionSetsClosure : public HeapRegionClosure {
6343 private:
6344   bool            _free_list_only;
6345   OldRegionSet*   _old_set;
6346   FreeRegionList* _free_list;
6347   size_t          _total_used;
6348 
6349 public:
6350   RebuildRegionSetsClosure(bool free_list_only,
6351                            OldRegionSet* old_set, FreeRegionList* free_list) :
6352     _free_list_only(free_list_only),
6353     _old_set(old_set), _free_list(free_list), _total_used(0) {
6354     assert(_free_list->is_empty(), "pre-condition");
6355     if (!free_list_only) {
6356       assert(_old_set->is_empty(), "pre-condition");
6357     }
6358   }
6359 
6360   bool doHeapRegion(HeapRegion* r) {
6361     if (r->continuesHumongous()) {
6362       return false;
6363     }
6364 
6365     if (r->is_empty()) {
6366       // Add free regions to the free list
6367       _free_list->add_as_tail(r);
6368     } else if (!_free_list_only) {
6369       assert(!r->is_young(), "we should not come across young regions");
6370 
6371       if (r->isHumongous()) {
6372         // We ignore humongous regions, we left the humongous set unchanged
6373       } else {
6374         // The rest should be old, add them to the old set
6375         _old_set->add(r);
6376       }
6377       _total_used += r->used();
6378     }
6379 
6380     return false;
6381   }
6382 
6383   size_t total_used() {
6384     return _total_used;
6385   }
6386 };
6387 
6388 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6389   assert_at_safepoint(true /* should_be_vm_thread */);
6390 
6391   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
6392   heap_region_iterate(&cl);
6393 
6394   if (!free_list_only) {
6395     _summary_bytes_used = cl.total_used();
6396   }
6397   assert(_summary_bytes_used == recalculate_used(),
6398          err_msg("inconsistent _summary_bytes_used, "
6399                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6400                  _summary_bytes_used, recalculate_used()));
6401 }
6402 
6403 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6404   _refine_cte_cl->set_concurrent(concurrent);
6405 }
6406 
6407 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6408   HeapRegion* hr = heap_region_containing(p);
6409   if (hr == NULL) {
6410     return false;
6411   } else {
6412     return hr->is_in(p);
6413   }
6414 }
6415 
6416 // Methods for the mutator alloc region
6417 
6418 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6419                                                       bool force) {
6420   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6421   assert(!force || g1_policy()->can_expand_young_list(),
6422          "if force is true we should be able to expand the young list");
6423   bool young_list_full = g1_policy()->is_young_list_full();
6424   if (force || !young_list_full) {
6425     HeapRegion* new_alloc_region = new_region(word_size,
6426                                               false /* do_expand */);
6427     if (new_alloc_region != NULL) {
6428       set_region_short_lived_locked(new_alloc_region);
6429       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6430       return new_alloc_region;
6431     }
6432   }
6433   return NULL;
6434 }
6435 
6436 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6437                                                   size_t allocated_bytes) {
6438   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6439   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
6440 
6441   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6442   _summary_bytes_used += allocated_bytes;
6443   _hr_printer.retire(alloc_region);
6444   // We update the eden sizes here, when the region is retired,
6445   // instead of when it's allocated, since this is the point that its
6446   // used space has been recored in _summary_bytes_used.
6447   g1mm()->update_eden_size();
6448 }
6449 
6450 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
6451                                                     bool force) {
6452   return _g1h->new_mutator_alloc_region(word_size, force);
6453 }
6454 
6455 void G1CollectedHeap::set_par_threads() {
6456   // Don't change the number of workers.  Use the value previously set
6457   // in the workgroup.
6458   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6459   uint n_workers = workers()->active_workers();
6460   assert(UseDynamicNumberOfGCThreads ||
6461            n_workers == workers()->total_workers(),
6462       "Otherwise should be using the total number of workers");
6463   if (n_workers == 0) {
6464     assert(false, "Should have been set in prior evacuation pause.");
6465     n_workers = ParallelGCThreads;
6466     workers()->set_active_workers(n_workers);
6467   }
6468   set_par_threads(n_workers);
6469 }
6470 
6471 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
6472                                        size_t allocated_bytes) {
6473   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
6474 }
6475 
6476 // Methods for the GC alloc regions
6477 
6478 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6479                                                  uint count,
6480                                                  GCAllocPurpose ap) {
6481   assert(FreeList_lock->owned_by_self(), "pre-condition");
6482 
6483   if (count < g1_policy()->max_regions(ap)) {
6484     HeapRegion* new_alloc_region = new_region(word_size,
6485                                               true /* do_expand */);
6486     if (new_alloc_region != NULL) {
6487       // We really only need to do this for old regions given that we
6488       // should never scan survivors. But it doesn't hurt to do it
6489       // for survivors too.
6490       new_alloc_region->set_saved_mark();
6491       if (ap == GCAllocForSurvived) {
6492         new_alloc_region->set_survivor();
6493         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6494       } else {
6495         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6496       }
6497       bool during_im = g1_policy()->during_initial_mark_pause();
6498       new_alloc_region->note_start_of_copying(during_im);
6499       return new_alloc_region;
6500     } else {
6501       g1_policy()->note_alloc_region_limit_reached(ap);
6502     }
6503   }
6504   return NULL;
6505 }
6506 
6507 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6508                                              size_t allocated_bytes,
6509                                              GCAllocPurpose ap) {
6510   bool during_im = g1_policy()->during_initial_mark_pause();
6511   alloc_region->note_end_of_copying(during_im);
6512   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6513   if (ap == GCAllocForSurvived) {
6514     young_list()->add_survivor_region(alloc_region);
6515   } else {
6516     _old_set.add(alloc_region);
6517   }
6518   _hr_printer.retire(alloc_region);
6519 }
6520 
6521 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
6522                                                        bool force) {
6523   assert(!force, "not supported for GC alloc regions");
6524   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
6525 }
6526 
6527 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
6528                                           size_t allocated_bytes) {
6529   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6530                                GCAllocForSurvived);
6531 }
6532 
6533 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
6534                                                   bool force) {
6535   assert(!force, "not supported for GC alloc regions");
6536   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
6537 }
6538 
6539 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
6540                                      size_t allocated_bytes) {
6541   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6542                                GCAllocForTenured);
6543 }
6544 // Heap region set verification
6545 
6546 class VerifyRegionListsClosure : public HeapRegionClosure {
6547 private:
6548   FreeRegionList*     _free_list;
6549   OldRegionSet*       _old_set;
6550   HumongousRegionSet* _humongous_set;
6551   uint                _region_count;
6552 
6553 public:
6554   VerifyRegionListsClosure(OldRegionSet* old_set,
6555                            HumongousRegionSet* humongous_set,
6556                            FreeRegionList* free_list) :
6557     _old_set(old_set), _humongous_set(humongous_set),
6558     _free_list(free_list), _region_count(0) { }
6559 
6560   uint region_count() { return _region_count; }
6561 
6562   bool doHeapRegion(HeapRegion* hr) {
6563     _region_count += 1;
6564 
6565     if (hr->continuesHumongous()) {
6566       return false;
6567     }
6568 
6569     if (hr->is_young()) {
6570       // TODO
6571     } else if (hr->startsHumongous()) {
6572       _humongous_set->verify_next_region(hr);
6573     } else if (hr->is_empty()) {
6574       _free_list->verify_next_region(hr);
6575     } else {
6576       _old_set->verify_next_region(hr);
6577     }
6578     return false;
6579   }
6580 };
6581 
6582 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
6583                                              HeapWord* bottom) {
6584   HeapWord* end = bottom + HeapRegion::GrainWords;
6585   MemRegion mr(bottom, end);
6586   assert(_g1_reserved.contains(mr), "invariant");
6587   // This might return NULL if the allocation fails
6588   return new HeapRegion(hrs_index, _bot_shared, mr);
6589 }
6590 
6591 void G1CollectedHeap::verify_region_sets() {
6592   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6593 
6594   // First, check the explicit lists.
6595   _free_list.verify();
6596   {
6597     // Given that a concurrent operation might be adding regions to
6598     // the secondary free list we have to take the lock before
6599     // verifying it.
6600     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6601     _secondary_free_list.verify();
6602   }
6603   _old_set.verify();
6604   _humongous_set.verify();
6605 
6606   // If a concurrent region freeing operation is in progress it will
6607   // be difficult to correctly attributed any free regions we come
6608   // across to the correct free list given that they might belong to
6609   // one of several (free_list, secondary_free_list, any local lists,
6610   // etc.). So, if that's the case we will skip the rest of the
6611   // verification operation. Alternatively, waiting for the concurrent
6612   // operation to complete will have a non-trivial effect on the GC's
6613   // operation (no concurrent operation will last longer than the
6614   // interval between two calls to verification) and it might hide
6615   // any issues that we would like to catch during testing.
6616   if (free_regions_coming()) {
6617     return;
6618   }
6619 
6620   // Make sure we append the secondary_free_list on the free_list so
6621   // that all free regions we will come across can be safely
6622   // attributed to the free_list.
6623   append_secondary_free_list_if_not_empty_with_lock();
6624 
6625   // Finally, make sure that the region accounting in the lists is
6626   // consistent with what we see in the heap.
6627   _old_set.verify_start();
6628   _humongous_set.verify_start();
6629   _free_list.verify_start();
6630 
6631   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6632   heap_region_iterate(&cl);
6633 
6634   _old_set.verify_end();
6635   _humongous_set.verify_end();
6636   _free_list.verify_end();
6637 }
6638 
6639 // Optimized nmethod scanning
6640 
6641 class RegisterNMethodOopClosure: public OopClosure {
6642   G1CollectedHeap* _g1h;
6643   nmethod* _nm;
6644 
6645   template <class T> void do_oop_work(T* p) {
6646     T heap_oop = oopDesc::load_heap_oop(p);
6647     if (!oopDesc::is_null(heap_oop)) {
6648       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6649       HeapRegion* hr = _g1h->heap_region_containing(obj);
6650       assert(!hr->isHumongous(), "code root in humongous region?");
6651 
6652       // HeapRegion::add_strong_code_root() avoids adding duplicate
6653       // entries but having duplicates is  OK since we "mark" nmethods
6654       // as visited when we scan the strong code root lists during the GC.
6655       hr->add_strong_code_root(_nm);
6656       assert(hr->rem_set()->strong_code_roots_list_contains(_nm), "add failed?");
6657     }
6658   }
6659 
6660 public:
6661   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6662     _g1h(g1h), _nm(nm) {}
6663 
6664   void do_oop(oop* p)       { do_oop_work(p); }
6665   void do_oop(narrowOop* p) { do_oop_work(p); }
6666 };
6667 
6668 class UnregisterNMethodOopClosure: public OopClosure {
6669   G1CollectedHeap* _g1h;
6670   nmethod* _nm;
6671 
6672   template <class T> void do_oop_work(T* p) {
6673     T heap_oop = oopDesc::load_heap_oop(p);
6674     if (!oopDesc::is_null(heap_oop)) {
6675       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6676       HeapRegion* hr = _g1h->heap_region_containing(obj);
6677       assert(!hr->isHumongous(), "code root in humongous region?");
6678       hr->remove_strong_code_root(_nm);
6679       assert(!hr->rem_set()->strong_code_roots_list_contains(_nm), "remove failed?");
6680     }
6681   }
6682 
6683 public:
6684   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6685     _g1h(g1h), _nm(nm) {}
6686 
6687   void do_oop(oop* p)       { do_oop_work(p); }
6688   void do_oop(narrowOop* p) { do_oop_work(p); }
6689 };
6690 
6691 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6692   CollectedHeap::register_nmethod(nm);
6693 
6694   guarantee(nm != NULL, "sanity");
6695   RegisterNMethodOopClosure reg_cl(this, nm);
6696   nm->oops_do(&reg_cl);
6697 }
6698 
6699 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6700   CollectedHeap::unregister_nmethod(nm);
6701 
6702   guarantee(nm != NULL, "sanity");
6703   UnregisterNMethodOopClosure reg_cl(this, nm);
6704   nm->oops_do(&reg_cl, true);
6705 }
6706 
6707 class MigrateCodeRootsHeapRegionClosure: public HeapRegionClosure {
6708 public:
6709   bool doHeapRegion(HeapRegion *hr) {
6710     assert(!hr->isHumongous(), "humongous region in collection set?");
6711     hr->migrate_strong_code_roots();
6712     return false;
6713   }
6714 };
6715 
6716 void G1CollectedHeap::migrate_strong_code_roots() {
6717   MigrateCodeRootsHeapRegionClosure cl;
6718   double migrate_start = os::elapsedTime();
6719   collection_set_iterate(&cl);
6720   double migration_time_ms = (os::elapsedTime() - migrate_start) * 1000.0;
6721   g1_policy()->phase_times()->record_strong_code_root_migration_time(migration_time_ms);
6722 }
6723 
6724 // Mark all the code roots that point into regions *not* in the
6725 // collection set.
6726 //
6727 // Note we do not want to use a "marking" CodeBlobToOopClosure while
6728 // walking the the code roots lists of regions not in the collection
6729 // set. Suppose we have an nmethod (M) that points to objects in two
6730 // separate regions - one in the collection set (R1) and one not (R2).
6731 // Using a "marking" CodeBlobToOopClosure here would result in "marking"
6732 // nmethod M when walking the code roots for R1. When we come to scan
6733 // the code roots for R2, we would see that M is already marked and it
6734 // would be skipped and the objects in R2 that are referenced from M
6735 // would not be evacuated.
6736 
6737 class MarkStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
6738 
6739   class MarkStrongCodeRootOopClosure: public OopClosure {
6740     ConcurrentMark* _cm;
6741     HeapRegion* _hr;
6742     uint _worker_id;
6743 
6744     template <class T> void do_oop_work(T* p) {
6745       T heap_oop = oopDesc::load_heap_oop(p);
6746       if (!oopDesc::is_null(heap_oop)) {
6747         oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6748         // Only mark objects in the region (which is assumed
6749         // to be not in the collection set).
6750         if (_hr->is_in(obj)) {
6751           _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
6752         }
6753       }
6754     }
6755 
6756   public:
6757     MarkStrongCodeRootOopClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id) :
6758       _cm(cm), _hr(hr), _worker_id(worker_id) {
6759       assert(!_hr->in_collection_set(), "sanity");
6760     }
6761 
6762     void do_oop(narrowOop* p) { do_oop_work(p); }
6763     void do_oop(oop* p)       { do_oop_work(p); }
6764   };
6765 
6766   MarkStrongCodeRootOopClosure _oop_cl;
6767 
6768 public:
6769   MarkStrongCodeRootCodeBlobClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id):
6770     _oop_cl(cm, hr, worker_id) {}
6771 
6772   void do_code_blob(CodeBlob* cb) {
6773     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
6774     if (nm != NULL) {
6775       nm->oops_do(&_oop_cl);
6776     }
6777   }
6778 };
6779 
6780 class MarkStrongCodeRootsHRClosure: public HeapRegionClosure {
6781   G1CollectedHeap* _g1h;
6782   uint _worker_id;
6783 
6784 public:
6785   MarkStrongCodeRootsHRClosure(G1CollectedHeap* g1h, uint worker_id) :
6786     _g1h(g1h), _worker_id(worker_id) {}
6787 
6788   bool doHeapRegion(HeapRegion *hr) {
6789     HeapRegionRemSet* hrrs = hr->rem_set();
6790     if (hr->isHumongous()) {
6791       // Code roots should never be attached to a humongous region
6792       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
6793       return false;
6794     }
6795 
6796     if (hr->in_collection_set()) {
6797       // Don't mark code roots into regions in the collection set here.
6798       // They will be marked when we scan them.
6799       return false;
6800     }
6801 
6802     MarkStrongCodeRootCodeBlobClosure cb_cl(_g1h->concurrent_mark(), hr, _worker_id);
6803     hr->strong_code_roots_do(&cb_cl);
6804     return false;
6805   }
6806 };
6807 
6808 void G1CollectedHeap::mark_strong_code_roots(uint worker_id) {
6809   MarkStrongCodeRootsHRClosure cl(this, worker_id);
6810   if (G1CollectedHeap::use_parallel_gc_threads()) {
6811     heap_region_par_iterate_chunked(&cl,
6812                                     worker_id,
6813                                     workers()->active_workers(),
6814                                     HeapRegion::ParMarkRootClaimValue);
6815   } else {
6816     heap_region_iterate(&cl);
6817   }
6818 }
6819 
6820 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6821   G1CollectedHeap* _g1h;
6822 
6823 public:
6824   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6825     _g1h(g1h) {}
6826 
6827   void do_code_blob(CodeBlob* cb) {
6828     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6829     if (nm == NULL) {
6830       return;
6831     }
6832 
6833     if (ScavengeRootsInCode && nm->detect_scavenge_root_oops()) {
6834       _g1h->register_nmethod(nm);
6835     }
6836   }
6837 };
6838 
6839 void G1CollectedHeap::rebuild_strong_code_roots() {
6840   RebuildStrongCodeRootClosure blob_cl(this);
6841   CodeCache::blobs_do(&blob_cl);
6842 }