1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
  27 
  28 #include "gc_implementation/g1/collectionSetChooser.hpp"
  29 #include "gc_implementation/g1/g1MMUTracker.hpp"
  30 #include "memory/collectorPolicy.hpp"
  31 
  32 // A G1CollectorPolicy makes policy decisions that determine the
  33 // characteristics of the collector.  Examples include:
  34 //   * choice of collection set.
  35 //   * when to collect.
  36 
  37 class HeapRegion;
  38 class CollectionSetChooser;
  39 class G1GCPhaseTimes;
  40 
  41 // TraceGen0Time collects data on _both_ young and mixed evacuation pauses
  42 // (the latter may contain non-young regions - i.e. regions that are
  43 // technically in Gen1) while TraceGen1Time collects data about full GCs.
  44 class TraceGen0TimeData : public CHeapObj<mtGC> {
  45  private:
  46   unsigned  _young_pause_num;
  47   unsigned  _mixed_pause_num;
  48 
  49   NumberSeq _all_stop_world_times_ms;
  50   NumberSeq _all_yield_times_ms;
  51 
  52   NumberSeq _total;
  53   NumberSeq _other;
  54   NumberSeq _root_region_scan_wait;
  55   NumberSeq _parallel;
  56   NumberSeq _ext_root_scan;
  57   NumberSeq _satb_filtering;
  58   NumberSeq _update_rs;
  59   NumberSeq _scan_rs;
  60   NumberSeq _obj_copy;
  61   NumberSeq _termination;
  62   NumberSeq _parallel_other;
  63   NumberSeq _clear_ct;
  64 
  65   void print_summary(const char* str, const NumberSeq* seq) const;
  66   void print_summary_sd(const char* str, const NumberSeq* seq) const;
  67 
  68 public:
  69    TraceGen0TimeData() : _young_pause_num(0), _mixed_pause_num(0) {};
  70   void record_start_collection(double time_to_stop_the_world_ms);
  71   void record_yield_time(double yield_time_ms);
  72   void record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times);
  73   void increment_young_collection_count();
  74   void increment_mixed_collection_count();
  75   void print() const;
  76 };
  77 
  78 class TraceGen1TimeData : public CHeapObj<mtGC> {
  79  private:
  80   NumberSeq _all_full_gc_times;
  81 
  82  public:
  83   void record_full_collection(double full_gc_time_ms);
  84   void print() const;
  85 };
  86 
  87 // There are three command line options related to the young gen size:
  88 // NewSize, MaxNewSize and NewRatio (There is also -Xmn, but that is
  89 // just a short form for NewSize==MaxNewSize). G1 will use its internal
  90 // heuristics to calculate the actual young gen size, so these options
  91 // basically only limit the range within which G1 can pick a young gen
  92 // size. Also, these are general options taking byte sizes. G1 will
  93 // internally work with a number of regions instead. So, some rounding
  94 // will occur.
  95 //
  96 // If nothing related to the the young gen size is set on the command
  97 // line we should allow the young gen to be between G1NewSizePercent
  98 // and G1MaxNewSizePercent of the heap size. This means that every time
  99 // the heap size changes, the limits for the young gen size will be
 100 // recalculated.
 101 //
 102 // If only -XX:NewSize is set we should use the specified value as the
 103 // minimum size for young gen. Still using G1MaxNewSizePercent of the
 104 // heap as maximum.
 105 //
 106 // If only -XX:MaxNewSize is set we should use the specified value as the
 107 // maximum size for young gen. Still using G1NewSizePercent of the heap
 108 // as minimum.
 109 //
 110 // If -XX:NewSize and -XX:MaxNewSize are both specified we use these values.
 111 // No updates when the heap size changes. There is a special case when
 112 // NewSize==MaxNewSize. This is interpreted as "fixed" and will use a
 113 // different heuristic for calculating the collection set when we do mixed
 114 // collection.
 115 //
 116 // If only -XX:NewRatio is set we should use the specified ratio of the heap
 117 // as both min and max. This will be interpreted as "fixed" just like the
 118 // NewSize==MaxNewSize case above. But we will update the min and max
 119 // every time the heap size changes.
 120 //
 121 // NewSize and MaxNewSize override NewRatio. So, NewRatio is ignored if it is
 122 // combined with either NewSize or MaxNewSize. (A warning message is printed.)
 123 class G1YoungGenSizer : public CHeapObj<mtGC> {
 124 private:
 125   enum SizerKind {
 126     SizerDefaults,
 127     SizerNewSizeOnly,
 128     SizerMaxNewSizeOnly,
 129     SizerMaxAndNewSize,
 130     SizerNewRatio
 131   };
 132   SizerKind _sizer_kind;
 133   uint _min_desired_young_length;
 134   uint _max_desired_young_length;
 135   bool _adaptive_size;
 136   uint calculate_default_min_length(uint new_number_of_heap_regions);
 137   uint calculate_default_max_length(uint new_number_of_heap_regions);
 138 
 139   // Update the given values for minimum and maximum young gen length in regions
 140   // given the number of heap regions depending on the kind of sizing algorithm.
 141   void recalculate_min_max_young_length(uint number_of_heap_regions, uint* min_young_length, uint* max_young_length);
 142 
 143 public:
 144   G1YoungGenSizer();
 145   // Calculate the maximum length of the young gen given the number of regions
 146   // depending on the sizing algorithm.
 147   uint max_young_length(uint number_of_heap_regions);
 148 
 149   void heap_size_changed(uint new_number_of_heap_regions);
 150   uint min_desired_young_length() {
 151     return _min_desired_young_length;
 152   }
 153   uint max_desired_young_length() {
 154     return _max_desired_young_length;
 155   }
 156   bool adaptive_young_list_length() {
 157     return _adaptive_size;
 158   }
 159 };
 160 
 161 class G1CollectorPolicy: public CollectorPolicy {
 162 private:
 163   // either equal to the number of parallel threads, if ParallelGCThreads
 164   // has been set, or 1 otherwise
 165   int _parallel_gc_threads;
 166 
 167   // The number of GC threads currently active.
 168   uintx _no_of_gc_threads;
 169 
 170   enum SomePrivateConstants {
 171     NumPrevPausesForHeuristics = 10
 172   };
 173 
 174   G1MMUTracker* _mmu_tracker;
 175 
 176   void initialize_flags();
 177 
 178   CollectionSetChooser* _collectionSetChooser;
 179 
 180   double _full_collection_start_sec;
 181   uint   _cur_collection_pause_used_regions_at_start;
 182 
 183   // These exclude marking times.
 184   TruncatedSeq* _recent_gc_times_ms;
 185 
 186   TruncatedSeq* _concurrent_mark_remark_times_ms;
 187   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
 188 
 189   TraceGen0TimeData _trace_gen0_time_data;
 190   TraceGen1TimeData _trace_gen1_time_data;
 191 
 192   double _stop_world_start;
 193 
 194   // indicates whether we are in young or mixed GC mode
 195   bool _gcs_are_young;
 196 
 197   uint _young_list_target_length;
 198   uint _young_list_fixed_length;
 199 
 200   // The max number of regions we can extend the eden by while the GC
 201   // locker is active. This should be >= _young_list_target_length;
 202   uint _young_list_max_length;
 203 
 204   bool                  _last_gc_was_young;
 205 
 206   bool                  _during_marking;
 207   bool                  _in_marking_window;
 208   bool                  _in_marking_window_im;
 209 
 210   SurvRateGroup*        _short_lived_surv_rate_group;
 211   SurvRateGroup*        _survivor_surv_rate_group;
 212   // add here any more surv rate groups
 213 
 214   double                _gc_overhead_perc;
 215 
 216   double _reserve_factor;
 217   uint _reserve_regions;
 218 
 219   bool during_marking() {
 220     return _during_marking;
 221   }
 222 
 223   enum PredictionConstants {
 224     TruncatedSeqLength = 10
 225   };
 226 
 227   TruncatedSeq* _alloc_rate_ms_seq;
 228   double        _prev_collection_pause_end_ms;
 229 
 230   TruncatedSeq* _rs_length_diff_seq;
 231   TruncatedSeq* _cost_per_card_ms_seq;
 232   TruncatedSeq* _young_cards_per_entry_ratio_seq;
 233   TruncatedSeq* _mixed_cards_per_entry_ratio_seq;
 234   TruncatedSeq* _cost_per_entry_ms_seq;
 235   TruncatedSeq* _mixed_cost_per_entry_ms_seq;
 236   TruncatedSeq* _cost_per_byte_ms_seq;
 237   TruncatedSeq* _constant_other_time_ms_seq;
 238   TruncatedSeq* _young_other_cost_per_region_ms_seq;
 239   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
 240 
 241   TruncatedSeq* _pending_cards_seq;
 242   TruncatedSeq* _rs_lengths_seq;
 243 
 244   TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
 245 
 246   G1YoungGenSizer* _young_gen_sizer;
 247 
 248   uint _eden_cset_region_length;
 249   uint _survivor_cset_region_length;
 250   uint _old_cset_region_length;
 251 
 252   void init_cset_region_lengths(uint eden_cset_region_length,
 253                                 uint survivor_cset_region_length);
 254 
 255   uint eden_cset_region_length()     { return _eden_cset_region_length;     }
 256   uint survivor_cset_region_length() { return _survivor_cset_region_length; }
 257   uint old_cset_region_length()      { return _old_cset_region_length;      }
 258 
 259   uint _free_regions_at_end_of_collection;
 260 
 261   size_t _recorded_rs_lengths;
 262   size_t _max_rs_lengths;
 263   double _sigma;
 264 
 265   size_t _rs_lengths_prediction;
 266 
 267   double sigma() { return _sigma; }
 268 
 269   // A function that prevents us putting too much stock in small sample
 270   // sets.  Returns a number between 2.0 and 1.0, depending on the number
 271   // of samples.  5 or more samples yields one; fewer scales linearly from
 272   // 2.0 at 1 sample to 1.0 at 5.
 273   double confidence_factor(int samples) {
 274     if (samples > 4) return 1.0;
 275     else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
 276   }
 277 
 278   double get_new_neg_prediction(TruncatedSeq* seq) {
 279     return seq->davg() - sigma() * seq->dsd();
 280   }
 281 
 282 #ifndef PRODUCT
 283   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
 284 #endif // PRODUCT
 285 
 286   void adjust_concurrent_refinement(double update_rs_time,
 287                                     double update_rs_processed_buffers,
 288                                     double goal_ms);
 289 
 290   uintx no_of_gc_threads() { return _no_of_gc_threads; }
 291   void set_no_of_gc_threads(uintx v) { _no_of_gc_threads = v; }
 292 
 293   double _pause_time_target_ms;
 294 
 295   size_t _pending_cards;
 296 
 297 public:
 298   // Accessors
 299 
 300   void set_region_eden(HeapRegion* hr, int young_index_in_cset) {
 301     hr->set_young();
 302     hr->install_surv_rate_group(_short_lived_surv_rate_group);
 303     hr->set_young_index_in_cset(young_index_in_cset);
 304   }
 305 
 306   void set_region_survivor(HeapRegion* hr, int young_index_in_cset) {
 307     assert(hr->is_young() && hr->is_survivor(), "pre-condition");
 308     hr->install_surv_rate_group(_survivor_surv_rate_group);
 309     hr->set_young_index_in_cset(young_index_in_cset);
 310   }
 311 
 312 #ifndef PRODUCT
 313   bool verify_young_ages();
 314 #endif // PRODUCT
 315 
 316   double get_new_prediction(TruncatedSeq* seq) {
 317     return MAX2(seq->davg() + sigma() * seq->dsd(),
 318                 seq->davg() * confidence_factor(seq->num()));
 319   }
 320 
 321   void record_max_rs_lengths(size_t rs_lengths) {
 322     _max_rs_lengths = rs_lengths;
 323   }
 324 
 325   size_t predict_rs_length_diff() {
 326     return (size_t) get_new_prediction(_rs_length_diff_seq);
 327   }
 328 
 329   double predict_alloc_rate_ms() {
 330     return get_new_prediction(_alloc_rate_ms_seq);
 331   }
 332 
 333   double predict_cost_per_card_ms() {
 334     return get_new_prediction(_cost_per_card_ms_seq);
 335   }
 336 
 337   double predict_rs_update_time_ms(size_t pending_cards) {
 338     return (double) pending_cards * predict_cost_per_card_ms();
 339   }
 340 
 341   double predict_young_cards_per_entry_ratio() {
 342     return get_new_prediction(_young_cards_per_entry_ratio_seq);
 343   }
 344 
 345   double predict_mixed_cards_per_entry_ratio() {
 346     if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
 347       return predict_young_cards_per_entry_ratio();
 348     } else {
 349       return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
 350     }
 351   }
 352 
 353   size_t predict_young_card_num(size_t rs_length) {
 354     return (size_t) ((double) rs_length *
 355                      predict_young_cards_per_entry_ratio());
 356   }
 357 
 358   size_t predict_non_young_card_num(size_t rs_length) {
 359     return (size_t) ((double) rs_length *
 360                      predict_mixed_cards_per_entry_ratio());
 361   }
 362 
 363   double predict_rs_scan_time_ms(size_t card_num) {
 364     if (gcs_are_young()) {
 365       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
 366     } else {
 367       return predict_mixed_rs_scan_time_ms(card_num);
 368     }
 369   }
 370 
 371   double predict_mixed_rs_scan_time_ms(size_t card_num) {
 372     if (_mixed_cost_per_entry_ms_seq->num() < 3) {
 373       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
 374     } else {
 375       return (double) (card_num *
 376                        get_new_prediction(_mixed_cost_per_entry_ms_seq));
 377     }
 378   }
 379 
 380   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
 381     if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
 382       return (1.1 * (double) bytes_to_copy) *
 383               get_new_prediction(_cost_per_byte_ms_seq);
 384     } else {
 385       return (double) bytes_to_copy *
 386              get_new_prediction(_cost_per_byte_ms_during_cm_seq);
 387     }
 388   }
 389 
 390   double predict_object_copy_time_ms(size_t bytes_to_copy) {
 391     if (_in_marking_window && !_in_marking_window_im) {
 392       return predict_object_copy_time_ms_during_cm(bytes_to_copy);
 393     } else {
 394       return (double) bytes_to_copy *
 395               get_new_prediction(_cost_per_byte_ms_seq);
 396     }
 397   }
 398 
 399   double predict_constant_other_time_ms() {
 400     return get_new_prediction(_constant_other_time_ms_seq);
 401   }
 402 
 403   double predict_young_other_time_ms(size_t young_num) {
 404     return (double) young_num *
 405            get_new_prediction(_young_other_cost_per_region_ms_seq);
 406   }
 407 
 408   double predict_non_young_other_time_ms(size_t non_young_num) {
 409     return (double) non_young_num *
 410            get_new_prediction(_non_young_other_cost_per_region_ms_seq);
 411   }
 412 
 413   double predict_base_elapsed_time_ms(size_t pending_cards);
 414   double predict_base_elapsed_time_ms(size_t pending_cards,
 415                                       size_t scanned_cards);
 416   size_t predict_bytes_to_copy(HeapRegion* hr);
 417   double predict_region_elapsed_time_ms(HeapRegion* hr, bool for_young_gc);
 418 
 419   void set_recorded_rs_lengths(size_t rs_lengths);
 420 
 421   uint cset_region_length()       { return young_cset_region_length() +
 422                                            old_cset_region_length(); }
 423   uint young_cset_region_length() { return eden_cset_region_length() +
 424                                            survivor_cset_region_length(); }
 425 
 426   double predict_survivor_regions_evac_time();
 427 
 428   void cset_regions_freed() {
 429     bool propagate = _last_gc_was_young && !_in_marking_window;
 430     _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
 431     _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
 432     // also call it on any more surv rate groups
 433   }
 434 
 435   G1MMUTracker* mmu_tracker() {
 436     return _mmu_tracker;
 437   }
 438 
 439   double max_pause_time_ms() {
 440     return _mmu_tracker->max_gc_time() * 1000.0;
 441   }
 442 
 443   double predict_remark_time_ms() {
 444     return get_new_prediction(_concurrent_mark_remark_times_ms);
 445   }
 446 
 447   double predict_cleanup_time_ms() {
 448     return get_new_prediction(_concurrent_mark_cleanup_times_ms);
 449   }
 450 
 451   // Returns an estimate of the survival rate of the region at yg-age
 452   // "yg_age".
 453   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
 454     TruncatedSeq* seq = surv_rate_group->get_seq(age);
 455     if (seq->num() == 0)
 456       gclog_or_tty->print("BARF! age is %d", age);
 457     guarantee( seq->num() > 0, "invariant" );
 458     double pred = get_new_prediction(seq);
 459     if (pred > 1.0)
 460       pred = 1.0;
 461     return pred;
 462   }
 463 
 464   double predict_yg_surv_rate(int age) {
 465     return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
 466   }
 467 
 468   double accum_yg_surv_rate_pred(int age) {
 469     return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
 470   }
 471 
 472 private:
 473   // Statistics kept per GC stoppage, pause or full.
 474   TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
 475 
 476   // Add a new GC of the given duration and end time to the record.
 477   void update_recent_gc_times(double end_time_sec, double elapsed_ms);
 478 
 479   // The head of the list (via "next_in_collection_set()") representing the
 480   // current collection set. Set from the incrementally built collection
 481   // set at the start of the pause.
 482   HeapRegion* _collection_set;
 483 
 484   // The number of bytes in the collection set before the pause. Set from
 485   // the incrementally built collection set at the start of an evacuation
 486   // pause, and incremented in finalize_cset() when adding old regions
 487   // (if any) to the collection set.
 488   size_t _collection_set_bytes_used_before;
 489 
 490   // The number of bytes copied during the GC.
 491   size_t _bytes_copied_during_gc;
 492 
 493   // The associated information that is maintained while the incremental
 494   // collection set is being built with young regions. Used to populate
 495   // the recorded info for the evacuation pause.
 496 
 497   enum CSetBuildType {
 498     Active,             // We are actively building the collection set
 499     Inactive            // We are not actively building the collection set
 500   };
 501 
 502   CSetBuildType _inc_cset_build_state;
 503 
 504   // The head of the incrementally built collection set.
 505   HeapRegion* _inc_cset_head;
 506 
 507   // The tail of the incrementally built collection set.
 508   HeapRegion* _inc_cset_tail;
 509 
 510   // The number of bytes in the incrementally built collection set.
 511   // Used to set _collection_set_bytes_used_before at the start of
 512   // an evacuation pause.
 513   size_t _inc_cset_bytes_used_before;
 514 
 515   // Used to record the highest end of heap region in collection set
 516   HeapWord* _inc_cset_max_finger;
 517 
 518   // The RSet lengths recorded for regions in the CSet. It is updated
 519   // by the thread that adds a new region to the CSet. We assume that
 520   // only one thread can be allocating a new CSet region (currently,
 521   // it does so after taking the Heap_lock) hence no need to
 522   // synchronize updates to this field.
 523   size_t _inc_cset_recorded_rs_lengths;
 524 
 525   // A concurrent refinement thread periodcially samples the young
 526   // region RSets and needs to update _inc_cset_recorded_rs_lengths as
 527   // the RSets grow. Instead of having to syncronize updates to that
 528   // field we accumulate them in this field and add it to
 529   // _inc_cset_recorded_rs_lengths_diffs at the start of a GC.
 530   ssize_t _inc_cset_recorded_rs_lengths_diffs;
 531 
 532   // The predicted elapsed time it will take to collect the regions in
 533   // the CSet. This is updated by the thread that adds a new region to
 534   // the CSet. See the comment for _inc_cset_recorded_rs_lengths about
 535   // MT-safety assumptions.
 536   double _inc_cset_predicted_elapsed_time_ms;
 537 
 538   // See the comment for _inc_cset_recorded_rs_lengths_diffs.
 539   double _inc_cset_predicted_elapsed_time_ms_diffs;
 540 
 541   // Stash a pointer to the g1 heap.
 542   G1CollectedHeap* _g1;
 543 
 544   G1GCPhaseTimes* _phase_times;
 545 
 546   // The ratio of gc time to elapsed time, computed over recent pauses.
 547   double _recent_avg_pause_time_ratio;
 548 
 549   double recent_avg_pause_time_ratio() {
 550     return _recent_avg_pause_time_ratio;
 551   }
 552 
 553   // At the end of a pause we check the heap occupancy and we decide
 554   // whether we will start a marking cycle during the next pause. If
 555   // we decide that we want to do that, we will set this parameter to
 556   // true. So, this parameter will stay true between the end of a
 557   // pause and the beginning of a subsequent pause (not necessarily
 558   // the next one, see the comments on the next field) when we decide
 559   // that we will indeed start a marking cycle and do the initial-mark
 560   // work.
 561   volatile bool _initiate_conc_mark_if_possible;
 562 
 563   // If initiate_conc_mark_if_possible() is set at the beginning of a
 564   // pause, it is a suggestion that the pause should start a marking
 565   // cycle by doing the initial-mark work. However, it is possible
 566   // that the concurrent marking thread is still finishing up the
 567   // previous marking cycle (e.g., clearing the next marking
 568   // bitmap). If that is the case we cannot start a new cycle and
 569   // we'll have to wait for the concurrent marking thread to finish
 570   // what it is doing. In this case we will postpone the marking cycle
 571   // initiation decision for the next pause. When we eventually decide
 572   // to start a cycle, we will set _during_initial_mark_pause which
 573   // will stay true until the end of the initial-mark pause and it's
 574   // the condition that indicates that a pause is doing the
 575   // initial-mark work.
 576   volatile bool _during_initial_mark_pause;
 577 
 578   bool _last_young_gc;
 579 
 580   // This set of variables tracks the collector efficiency, in order to
 581   // determine whether we should initiate a new marking.
 582   double _cur_mark_stop_world_time_ms;
 583   double _mark_remark_start_sec;
 584   double _mark_cleanup_start_sec;
 585 
 586   // Update the young list target length either by setting it to the
 587   // desired fixed value or by calculating it using G1's pause
 588   // prediction model. If no rs_lengths parameter is passed, predict
 589   // the RS lengths using the prediction model, otherwise use the
 590   // given rs_lengths as the prediction.
 591   void update_young_list_target_length(size_t rs_lengths = (size_t) -1);
 592 
 593   // Calculate and return the minimum desired young list target
 594   // length. This is the minimum desired young list length according
 595   // to the user's inputs.
 596   uint calculate_young_list_desired_min_length(uint base_min_length);
 597 
 598   // Calculate and return the maximum desired young list target
 599   // length. This is the maximum desired young list length according
 600   // to the user's inputs.
 601   uint calculate_young_list_desired_max_length();
 602 
 603   // Calculate and return the maximum young list target length that
 604   // can fit into the pause time goal. The parameters are: rs_lengths
 605   // represent the prediction of how large the young RSet lengths will
 606   // be, base_min_length is the alreay existing number of regions in
 607   // the young list, min_length and max_length are the desired min and
 608   // max young list length according to the user's inputs.
 609   uint calculate_young_list_target_length(size_t rs_lengths,
 610                                           uint base_min_length,
 611                                           uint desired_min_length,
 612                                           uint desired_max_length);
 613 
 614   // Check whether a given young length (young_length) fits into the
 615   // given target pause time and whether the prediction for the amount
 616   // of objects to be copied for the given length will fit into the
 617   // given free space (expressed by base_free_regions).  It is used by
 618   // calculate_young_list_target_length().
 619   bool predict_will_fit(uint young_length, double base_time_ms,
 620                         uint base_free_regions, double target_pause_time_ms);
 621 
 622   // Calculate the minimum number of old regions we'll add to the CSet
 623   // during a mixed GC.
 624   uint calc_min_old_cset_length();
 625 
 626   // Calculate the maximum number of old regions we'll add to the CSet
 627   // during a mixed GC.
 628   uint calc_max_old_cset_length();
 629 
 630   // Returns the given amount of uncollected reclaimable space
 631   // as a percentage of the current heap capacity.
 632   double reclaimable_bytes_perc(size_t reclaimable_bytes);
 633 
 634 public:
 635 
 636   G1CollectorPolicy();
 637 
 638   virtual G1CollectorPolicy* as_g1_policy() { return this; }
 639 
 640   virtual CollectorPolicy::Name kind() {
 641     return CollectorPolicy::G1CollectorPolicyKind;
 642   }
 643 
 644   G1GCPhaseTimes* phase_times() const { return _phase_times; }
 645 
 646   // Check the current value of the young list RSet lengths and
 647   // compare it against the last prediction. If the current value is
 648   // higher, recalculate the young list target length prediction.
 649   void revise_young_list_target_length_if_necessary();
 650 
 651   // This should be called after the heap is resized.
 652   void record_new_heap_size(uint new_number_of_regions);
 653 
 654   void init();
 655 
 656   // Create jstat counters for the policy.
 657   virtual void initialize_gc_policy_counters();
 658 
 659   virtual HeapWord* mem_allocate_work(size_t size,
 660                                       bool is_tlab,
 661                                       bool* gc_overhead_limit_was_exceeded);
 662 
 663   // This method controls how a collector handles one or more
 664   // of its generations being fully allocated.
 665   virtual HeapWord* satisfy_failed_allocation(size_t size,
 666                                               bool is_tlab);
 667 
 668   BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
 669 
 670   GenRemSet::Name  rem_set_name()     { return GenRemSet::CardTable; }
 671 
 672   bool need_to_start_conc_mark(const char* source, size_t alloc_word_size = 0);
 673 
 674   // Record the start and end of an evacuation pause.
 675   void record_collection_pause_start(double start_time_sec);
 676   void record_collection_pause_end(double pause_time_ms, EvacuationInfo& evacuation_info);
 677 
 678   // Record the start and end of a full collection.
 679   void record_full_collection_start();
 680   void record_full_collection_end();
 681 
 682   // Must currently be called while the world is stopped.
 683   void record_concurrent_mark_init_end(double mark_init_elapsed_time_ms);
 684 
 685   // Record start and end of remark.
 686   void record_concurrent_mark_remark_start();
 687   void record_concurrent_mark_remark_end();
 688 
 689   // Record start, end, and completion of cleanup.
 690   void record_concurrent_mark_cleanup_start();
 691   void record_concurrent_mark_cleanup_end(int no_of_gc_threads);
 692   void record_concurrent_mark_cleanup_completed();
 693 
 694   // Records the information about the heap size for reporting in
 695   // print_detailed_heap_transition
 696   void record_heap_size_info_at_start(bool full);
 697 
 698   // Print heap sizing transition (with less and more detail).
 699   void print_heap_transition();
 700   void print_detailed_heap_transition(bool full = false);
 701 
 702   void record_stop_world_start();
 703   void record_concurrent_pause();
 704 
 705   // Record how much space we copied during a GC. This is typically
 706   // called when a GC alloc region is being retired.
 707   void record_bytes_copied_during_gc(size_t bytes) {
 708     _bytes_copied_during_gc += bytes;
 709   }
 710 
 711   // The amount of space we copied during a GC.
 712   size_t bytes_copied_during_gc() {
 713     return _bytes_copied_during_gc;
 714   }
 715 
 716   // Determine whether there are candidate regions so that the
 717   // next GC should be mixed. The two action strings are used
 718   // in the ergo output when the method returns true or false.
 719   bool next_gc_should_be_mixed(const char* true_action_str,
 720                                const char* false_action_str);
 721 
 722   // Choose a new collection set.  Marks the chosen regions as being
 723   // "in_collection_set", and links them together.  The head and number of
 724   // the collection set are available via access methods.
 725   void finalize_cset(double target_pause_time_ms, EvacuationInfo& evacuation_info);
 726 
 727   // The head of the list (via "next_in_collection_set()") representing the
 728   // current collection set.
 729   HeapRegion* collection_set() { return _collection_set; }
 730 
 731   void clear_collection_set() { _collection_set = NULL; }
 732 
 733   // Add old region "hr" to the CSet.
 734   void add_old_region_to_cset(HeapRegion* hr);
 735 
 736   // Incremental CSet Support
 737 
 738   // The head of the incrementally built collection set.
 739   HeapRegion* inc_cset_head() { return _inc_cset_head; }
 740 
 741   // The tail of the incrementally built collection set.
 742   HeapRegion* inc_set_tail() { return _inc_cset_tail; }
 743 
 744   // Initialize incremental collection set info.
 745   void start_incremental_cset_building();
 746 
 747   // Perform any final calculations on the incremental CSet fields
 748   // before we can use them.
 749   void finalize_incremental_cset_building();
 750 
 751   void clear_incremental_cset() {
 752     _inc_cset_head = NULL;
 753     _inc_cset_tail = NULL;
 754   }
 755 
 756   // Stop adding regions to the incremental collection set
 757   void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
 758 
 759   // Add information about hr to the aggregated information for the
 760   // incrementally built collection set.
 761   void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
 762 
 763   // Update information about hr in the aggregated information for
 764   // the incrementally built collection set.
 765   void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
 766 
 767 private:
 768   // Update the incremental cset information when adding a region
 769   // (should not be called directly).
 770   void add_region_to_incremental_cset_common(HeapRegion* hr);
 771 
 772 public:
 773   // Add hr to the LHS of the incremental collection set.
 774   void add_region_to_incremental_cset_lhs(HeapRegion* hr);
 775 
 776   // Add hr to the RHS of the incremental collection set.
 777   void add_region_to_incremental_cset_rhs(HeapRegion* hr);
 778 
 779 #ifndef PRODUCT
 780   void print_collection_set(HeapRegion* list_head, outputStream* st);
 781 #endif // !PRODUCT
 782 
 783   bool initiate_conc_mark_if_possible()       { return _initiate_conc_mark_if_possible;  }
 784   void set_initiate_conc_mark_if_possible()   { _initiate_conc_mark_if_possible = true;  }
 785   void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
 786 
 787   bool during_initial_mark_pause()      { return _during_initial_mark_pause;  }
 788   void set_during_initial_mark_pause()  { _during_initial_mark_pause = true;  }
 789   void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
 790 
 791   // This sets the initiate_conc_mark_if_possible() flag to start a
 792   // new cycle, as long as we are not already in one. It's best if it
 793   // is called during a safepoint when the test whether a cycle is in
 794   // progress or not is stable.
 795   bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
 796 
 797   // This is called at the very beginning of an evacuation pause (it
 798   // has to be the first thing that the pause does). If
 799   // initiate_conc_mark_if_possible() is true, and the concurrent
 800   // marking thread has completed its work during the previous cycle,
 801   // it will set during_initial_mark_pause() to so that the pause does
 802   // the initial-mark work and start a marking cycle.
 803   void decide_on_conc_mark_initiation();
 804 
 805   // If an expansion would be appropriate, because recent GC overhead had
 806   // exceeded the desired limit, return an amount to expand by.
 807   size_t expansion_amount();
 808 
 809   // Print tracing information.
 810   void print_tracing_info() const;
 811 
 812   // Print stats on young survival ratio
 813   void print_yg_surv_rate_info() const;
 814 
 815   void finished_recalculating_age_indexes(bool is_survivors) {
 816     if (is_survivors) {
 817       _survivor_surv_rate_group->finished_recalculating_age_indexes();
 818     } else {
 819       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
 820     }
 821     // do that for any other surv rate groups
 822   }
 823 
 824   bool is_young_list_full() {
 825     uint young_list_length = _g1->young_list()->length();
 826     uint young_list_target_length = _young_list_target_length;
 827     return young_list_length >= young_list_target_length;
 828   }
 829 
 830   bool can_expand_young_list() {
 831     uint young_list_length = _g1->young_list()->length();
 832     uint young_list_max_length = _young_list_max_length;
 833     return young_list_length < young_list_max_length;
 834   }
 835 
 836   uint young_list_max_length() {
 837     return _young_list_max_length;
 838   }
 839 
 840   bool gcs_are_young() {
 841     return _gcs_are_young;
 842   }
 843   void set_gcs_are_young(bool gcs_are_young) {
 844     _gcs_are_young = gcs_are_young;
 845   }
 846 
 847   bool adaptive_young_list_length() {
 848     return _young_gen_sizer->adaptive_young_list_length();
 849   }
 850 
 851 private:
 852   //
 853   // Survivor regions policy.
 854   //
 855 
 856   // Current tenuring threshold, set to 0 if the collector reaches the
 857   // maximum amount of survivors regions.
 858   uint _tenuring_threshold;
 859 
 860   // The limit on the number of regions allocated for survivors.
 861   uint _max_survivor_regions;
 862 
 863   // For reporting purposes.
 864   // The value of _heap_bytes_before_gc is also used to calculate
 865   // the cost of copying.
 866 
 867   size_t _eden_used_bytes_before_gc;         // Eden occupancy before GC
 868   size_t _survivor_used_bytes_before_gc;     // Survivor occupancy before GC
 869   size_t _heap_used_bytes_before_gc;         // Heap occupancy before GC
 870   size_t _metaspace_used_bytes_before_gc;    // Metaspace occupancy before GC
 871 
 872   size_t _eden_capacity_bytes_before_gc;     // Eden capacity before GC
 873   size_t _heap_capacity_bytes_before_gc;     // Heap capacity before GC
 874 
 875   // The amount of survivor regions after a collection.
 876   uint _recorded_survivor_regions;
 877   // List of survivor regions.
 878   HeapRegion* _recorded_survivor_head;
 879   HeapRegion* _recorded_survivor_tail;
 880 
 881   ageTable _survivors_age_table;
 882 
 883 public:
 884   uint tenuring_threshold() const { return _tenuring_threshold; }
 885 
 886   inline GCAllocPurpose
 887     evacuation_destination(HeapRegion* src_region, uint age, size_t word_sz) {
 888       if (age < _tenuring_threshold && src_region->is_young()) {
 889         return GCAllocForSurvived;
 890       } else {
 891         return GCAllocForTenured;
 892       }
 893   }
 894 
 895   inline bool track_object_age(GCAllocPurpose purpose) {
 896     return purpose == GCAllocForSurvived;
 897   }
 898 
 899   static const uint REGIONS_UNLIMITED = (uint) -1;
 900 
 901   uint max_regions(int purpose);
 902 
 903   // The limit on regions for a particular purpose is reached.
 904   void note_alloc_region_limit_reached(int purpose) {
 905     if (purpose == GCAllocForSurvived) {
 906       _tenuring_threshold = 0;
 907     }
 908   }
 909 
 910   void note_start_adding_survivor_regions() {
 911     _survivor_surv_rate_group->start_adding_regions();
 912   }
 913 
 914   void note_stop_adding_survivor_regions() {
 915     _survivor_surv_rate_group->stop_adding_regions();
 916   }
 917 
 918   void record_survivor_regions(uint regions,
 919                                HeapRegion* head,
 920                                HeapRegion* tail) {
 921     _recorded_survivor_regions = regions;
 922     _recorded_survivor_head    = head;
 923     _recorded_survivor_tail    = tail;
 924   }
 925 
 926   uint recorded_survivor_regions() {
 927     return _recorded_survivor_regions;
 928   }
 929 
 930   void record_thread_age_table(ageTable* age_table) {
 931     _survivors_age_table.merge_par(age_table);
 932   }
 933 
 934   void update_max_gc_locker_expansion();
 935 
 936   // Calculates survivor space parameters.
 937   void update_survivors_policy();
 938 
 939   virtual void post_heap_initialize();
 940 };
 941 
 942 // This should move to some place more general...
 943 
 944 // If we have "n" measurements, and we've kept track of their "sum" and the
 945 // "sum_of_squares" of the measurements, this returns the variance of the
 946 // sequence.
 947 inline double variance(int n, double sum_of_squares, double sum) {
 948   double n_d = (double)n;
 949   double avg = sum/n_d;
 950   return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
 951 }
 952 
 953 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP