1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/parallelScavenge/adjoiningGenerations.hpp"
  27 #include "gc_implementation/parallelScavenge/adjoiningVirtualSpaces.hpp"
  28 #include "gc_implementation/parallelScavenge/cardTableExtension.hpp"
  29 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
  30 #include "gc_implementation/parallelScavenge/generationSizer.hpp"
  31 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.inline.hpp"
  32 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
  33 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
  34 #include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
  35 #include "gc_implementation/parallelScavenge/psPromotionManager.hpp"
  36 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
  37 #include "gc_implementation/parallelScavenge/vmPSOperations.hpp"
  38 #include "gc_implementation/shared/gcHeapSummary.hpp"
  39 #include "gc_implementation/shared/gcWhen.hpp"
  40 #include "memory/gcLocker.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "runtime/handles.inline.hpp"
  43 #include "runtime/java.hpp"
  44 #include "runtime/vmThread.hpp"
  45 #include "services/memTracker.hpp"
  46 #include "utilities/vmError.hpp"
  47 
  48 PSYoungGen*  ParallelScavengeHeap::_young_gen = NULL;
  49 PSOldGen*    ParallelScavengeHeap::_old_gen = NULL;
  50 PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = NULL;
  51 PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = NULL;
  52 ParallelScavengeHeap* ParallelScavengeHeap::_psh = NULL;
  53 GCTaskManager* ParallelScavengeHeap::_gc_task_manager = NULL;
  54 
  55 static void trace_gen_sizes(const char* const str,
  56                             size_t og_min, size_t og_max,
  57                             size_t yg_min, size_t yg_max)
  58 {
  59   if (TracePageSizes) {
  60     tty->print_cr("%s:  " SIZE_FORMAT "," SIZE_FORMAT " "
  61                   SIZE_FORMAT "," SIZE_FORMAT " "
  62                   SIZE_FORMAT,
  63                   str,
  64                   og_min / K, og_max / K,
  65                   yg_min / K, yg_max / K,
  66                   (og_max + yg_max) / K);
  67   }
  68 }
  69 
  70 jint ParallelScavengeHeap::initialize() {
  71   CollectedHeap::pre_initialize();
  72 
  73   // Cannot be initialized until after the flags are parsed
  74   // GenerationSizer flag_parser;
  75   _collector_policy = new GenerationSizer();
  76 
  77   size_t yg_min_size = _collector_policy->min_young_gen_size();
  78   size_t yg_max_size = _collector_policy->max_young_gen_size();
  79   size_t og_min_size = _collector_policy->min_old_gen_size();
  80   size_t og_max_size = _collector_policy->max_old_gen_size();
  81 
  82   trace_gen_sizes("ps heap raw",
  83                   og_min_size, og_max_size,
  84                   yg_min_size, yg_max_size);
  85 
  86   const size_t og_page_sz = os::page_size_for_region(yg_min_size + og_min_size,
  87                                                      yg_max_size + og_max_size,
  88                                                      8);
  89 
  90   const size_t og_align = set_alignment(_old_gen_alignment,   og_page_sz);
  91   const size_t yg_align = set_alignment(_young_gen_alignment, og_page_sz);
  92 
  93   // Update sizes to reflect the selected page size(s).
  94   //
  95   // NEEDS_CLEANUP.  The default TwoGenerationCollectorPolicy uses NewRatio; it
  96   // should check UseAdaptiveSizePolicy.  Changes from generationSizer could
  97   // move to the common code.
  98   yg_min_size = align_size_up(yg_min_size, yg_align);
  99   yg_max_size = align_size_up(yg_max_size, yg_align);
 100   size_t yg_cur_size =
 101     align_size_up(_collector_policy->young_gen_size(), yg_align);
 102   yg_cur_size = MAX2(yg_cur_size, yg_min_size);
 103 
 104   og_min_size = align_size_up(og_min_size, og_align);
 105   // Align old gen size down to preserve specified heap size.
 106   assert(og_align == yg_align, "sanity");
 107   og_max_size = align_size_down(og_max_size, og_align);
 108   og_max_size = MAX2(og_max_size, og_min_size);
 109   size_t og_cur_size =
 110     align_size_down(_collector_policy->old_gen_size(), og_align);
 111   og_cur_size = MAX2(og_cur_size, og_min_size);
 112 
 113   trace_gen_sizes("ps heap rnd",
 114                   og_min_size, og_max_size,
 115                   yg_min_size, yg_max_size);
 116 
 117   const size_t heap_size = og_max_size + yg_max_size;
 118 
 119   ReservedSpace heap_rs = Universe::reserve_heap(heap_size, og_align);
 120 
 121   MemTracker::record_virtual_memory_type((address)heap_rs.base(), mtJavaHeap);
 122 
 123   os::trace_page_sizes("ps main", og_min_size + yg_min_size,
 124                        og_max_size + yg_max_size, og_page_sz,
 125                        heap_rs.base(),
 126                        heap_rs.size());
 127   if (!heap_rs.is_reserved()) {
 128     vm_shutdown_during_initialization(
 129       "Could not reserve enough space for object heap");
 130     return JNI_ENOMEM;
 131   }
 132 
 133   _reserved = MemRegion((HeapWord*)heap_rs.base(),
 134                         (HeapWord*)(heap_rs.base() + heap_rs.size()));
 135 
 136   CardTableExtension* const barrier_set = new CardTableExtension(_reserved, 3);
 137   _barrier_set = barrier_set;
 138   oopDesc::set_bs(_barrier_set);
 139   if (_barrier_set == NULL) {
 140     vm_shutdown_during_initialization(
 141       "Could not reserve enough space for barrier set");
 142     return JNI_ENOMEM;
 143   }
 144 
 145   // Initial young gen size is 4 Mb
 146   //
 147   // XXX - what about flag_parser.young_gen_size()?
 148   const size_t init_young_size = align_size_up(4 * M, yg_align);
 149   yg_cur_size = MAX2(MIN2(init_young_size, yg_max_size), yg_cur_size);
 150 
 151   // Make up the generations
 152   // Calculate the maximum size that a generation can grow.  This
 153   // includes growth into the other generation.  Note that the
 154   // parameter _max_gen_size is kept as the maximum
 155   // size of the generation as the boundaries currently stand.
 156   // _max_gen_size is still used as that value.
 157   double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
 158   double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
 159 
 160   _gens = new AdjoiningGenerations(heap_rs,
 161                                    og_cur_size,
 162                                    og_min_size,
 163                                    og_max_size,
 164                                    yg_cur_size,
 165                                    yg_min_size,
 166                                    yg_max_size,
 167                                    yg_align);
 168 
 169   _old_gen = _gens->old_gen();
 170   _young_gen = _gens->young_gen();
 171 
 172   const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
 173   const size_t old_capacity = _old_gen->capacity_in_bytes();
 174   const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
 175   _size_policy =
 176     new PSAdaptiveSizePolicy(eden_capacity,
 177                              initial_promo_size,
 178                              young_gen()->to_space()->capacity_in_bytes(),
 179                              intra_heap_alignment(),
 180                              max_gc_pause_sec,
 181                              max_gc_minor_pause_sec,
 182                              GCTimeRatio
 183                              );
 184 
 185   assert(!UseAdaptiveGCBoundary ||
 186     (old_gen()->virtual_space()->high_boundary() ==
 187      young_gen()->virtual_space()->low_boundary()),
 188     "Boundaries must meet");
 189   // initialize the policy counters - 2 collectors, 3 generations
 190   _gc_policy_counters =
 191     new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 3, _size_policy);
 192   _psh = this;
 193 
 194   // Set up the GCTaskManager
 195   _gc_task_manager = GCTaskManager::create(ParallelGCThreads);
 196 
 197   if (UseParallelOldGC && !PSParallelCompact::initialize()) {
 198     return JNI_ENOMEM;
 199   }
 200 
 201   return JNI_OK;
 202 }
 203 
 204 void ParallelScavengeHeap::post_initialize() {
 205   // Need to init the tenuring threshold
 206   PSScavenge::initialize();
 207   if (UseParallelOldGC) {
 208     PSParallelCompact::post_initialize();
 209   } else {
 210     PSMarkSweep::initialize();
 211   }
 212   PSPromotionManager::initialize();
 213 }
 214 
 215 void ParallelScavengeHeap::update_counters() {
 216   young_gen()->update_counters();
 217   old_gen()->update_counters();
 218   MetaspaceCounters::update_performance_counters();
 219   CompressedClassSpaceCounters::update_performance_counters();
 220 }
 221 
 222 size_t ParallelScavengeHeap::capacity() const {
 223   size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
 224   return value;
 225 }
 226 
 227 size_t ParallelScavengeHeap::used() const {
 228   size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();
 229   return value;
 230 }
 231 
 232 bool ParallelScavengeHeap::is_maximal_no_gc() const {
 233   return old_gen()->is_maximal_no_gc() && young_gen()->is_maximal_no_gc();
 234 }
 235 
 236 
 237 size_t ParallelScavengeHeap::max_capacity() const {
 238   size_t estimated = reserved_region().byte_size();
 239   if (UseAdaptiveSizePolicy) {
 240     estimated -= _size_policy->max_survivor_size(young_gen()->max_size());
 241   } else {
 242     estimated -= young_gen()->to_space()->capacity_in_bytes();
 243   }
 244   return MAX2(estimated, capacity());
 245 }
 246 
 247 bool ParallelScavengeHeap::is_in(const void* p) const {
 248   if (young_gen()->is_in(p)) {
 249     return true;
 250   }
 251 
 252   if (old_gen()->is_in(p)) {
 253     return true;
 254   }
 255 
 256   return false;
 257 }
 258 
 259 bool ParallelScavengeHeap::is_in_reserved(const void* p) const {
 260   if (young_gen()->is_in_reserved(p)) {
 261     return true;
 262   }
 263 
 264   if (old_gen()->is_in_reserved(p)) {
 265     return true;
 266   }
 267 
 268   return false;
 269 }
 270 
 271 bool ParallelScavengeHeap::is_scavengable(const void* addr) {
 272   return is_in_young((oop)addr);
 273 }
 274 
 275 #ifdef ASSERT
 276 // Don't implement this by using is_in_young().  This method is used
 277 // in some cases to check that is_in_young() is correct.
 278 bool ParallelScavengeHeap::is_in_partial_collection(const void *p) {
 279   assert(is_in_reserved(p) || p == NULL,
 280     "Does not work if address is non-null and outside of the heap");
 281   // The order of the generations is old (low addr), young (high addr)
 282   return p >= old_gen()->reserved().end();
 283 }
 284 #endif
 285 
 286 // There are two levels of allocation policy here.
 287 //
 288 // When an allocation request fails, the requesting thread must invoke a VM
 289 // operation, transfer control to the VM thread, and await the results of a
 290 // garbage collection. That is quite expensive, and we should avoid doing it
 291 // multiple times if possible.
 292 //
 293 // To accomplish this, we have a basic allocation policy, and also a
 294 // failed allocation policy.
 295 //
 296 // The basic allocation policy controls how you allocate memory without
 297 // attempting garbage collection. It is okay to grab locks and
 298 // expand the heap, if that can be done without coming to a safepoint.
 299 // It is likely that the basic allocation policy will not be very
 300 // aggressive.
 301 //
 302 // The failed allocation policy is invoked from the VM thread after
 303 // the basic allocation policy is unable to satisfy a mem_allocate
 304 // request. This policy needs to cover the entire range of collection,
 305 // heap expansion, and out-of-memory conditions. It should make every
 306 // attempt to allocate the requested memory.
 307 
 308 // Basic allocation policy. Should never be called at a safepoint, or
 309 // from the VM thread.
 310 //
 311 // This method must handle cases where many mem_allocate requests fail
 312 // simultaneously. When that happens, only one VM operation will succeed,
 313 // and the rest will not be executed. For that reason, this method loops
 314 // during failed allocation attempts. If the java heap becomes exhausted,
 315 // we rely on the size_policy object to force a bail out.
 316 HeapWord* ParallelScavengeHeap::mem_allocate(
 317                                      size_t size,
 318                                      bool* gc_overhead_limit_was_exceeded) {
 319   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
 320   assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
 321   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 322 
 323   // In general gc_overhead_limit_was_exceeded should be false so
 324   // set it so here and reset it to true only if the gc time
 325   // limit is being exceeded as checked below.
 326   *gc_overhead_limit_was_exceeded = false;
 327 
 328   HeapWord* result = young_gen()->allocate(size);
 329 
 330   uint loop_count = 0;
 331   uint gc_count = 0;
 332   int gclocker_stalled_count = 0;
 333 
 334   while (result == NULL) {
 335     // We don't want to have multiple collections for a single filled generation.
 336     // To prevent this, each thread tracks the total_collections() value, and if
 337     // the count has changed, does not do a new collection.
 338     //
 339     // The collection count must be read only while holding the heap lock. VM
 340     // operations also hold the heap lock during collections. There is a lock
 341     // contention case where thread A blocks waiting on the Heap_lock, while
 342     // thread B is holding it doing a collection. When thread A gets the lock,
 343     // the collection count has already changed. To prevent duplicate collections,
 344     // The policy MUST attempt allocations during the same period it reads the
 345     // total_collections() value!
 346     {
 347       MutexLocker ml(Heap_lock);
 348       gc_count = Universe::heap()->total_collections();
 349 
 350       result = young_gen()->allocate(size);
 351       if (result != NULL) {
 352         return result;
 353       }
 354 
 355       // If certain conditions hold, try allocating from the old gen.
 356       result = mem_allocate_old_gen(size);
 357       if (result != NULL) {
 358         return result;
 359       }
 360 
 361       if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 362         return NULL;
 363       }
 364 
 365       // Failed to allocate without a gc.
 366       if (GC_locker::is_active_and_needs_gc()) {
 367         // If this thread is not in a jni critical section, we stall
 368         // the requestor until the critical section has cleared and
 369         // GC allowed. When the critical section clears, a GC is
 370         // initiated by the last thread exiting the critical section; so
 371         // we retry the allocation sequence from the beginning of the loop,
 372         // rather than causing more, now probably unnecessary, GC attempts.
 373         JavaThread* jthr = JavaThread::current();
 374         if (!jthr->in_critical()) {
 375           MutexUnlocker mul(Heap_lock);
 376           GC_locker::stall_until_clear();
 377           gclocker_stalled_count += 1;
 378           continue;
 379         } else {
 380           if (CheckJNICalls) {
 381             fatal("Possible deadlock due to allocating while"
 382                   " in jni critical section");
 383           }
 384           return NULL;
 385         }
 386       }
 387     }
 388 
 389     if (result == NULL) {
 390       // Generate a VM operation
 391       VM_ParallelGCFailedAllocation op(size, gc_count);
 392       VMThread::execute(&op);
 393 
 394       // Did the VM operation execute? If so, return the result directly.
 395       // This prevents us from looping until time out on requests that can
 396       // not be satisfied.
 397       if (op.prologue_succeeded()) {
 398         assert(Universe::heap()->is_in_or_null(op.result()),
 399           "result not in heap");
 400 
 401         // If GC was locked out during VM operation then retry allocation
 402         // and/or stall as necessary.
 403         if (op.gc_locked()) {
 404           assert(op.result() == NULL, "must be NULL if gc_locked() is true");
 405           continue;  // retry and/or stall as necessary
 406         }
 407 
 408         // Exit the loop if the gc time limit has been exceeded.
 409         // The allocation must have failed above ("result" guarding
 410         // this path is NULL) and the most recent collection has exceeded the
 411         // gc overhead limit (although enough may have been collected to
 412         // satisfy the allocation).  Exit the loop so that an out-of-memory
 413         // will be thrown (return a NULL ignoring the contents of
 414         // op.result()),
 415         // but clear gc_overhead_limit_exceeded so that the next collection
 416         // starts with a clean slate (i.e., forgets about previous overhead
 417         // excesses).  Fill op.result() with a filler object so that the
 418         // heap remains parsable.
 419         const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 420         const bool softrefs_clear = collector_policy()->all_soft_refs_clear();
 421 
 422         if (limit_exceeded && softrefs_clear) {
 423           *gc_overhead_limit_was_exceeded = true;
 424           size_policy()->set_gc_overhead_limit_exceeded(false);
 425           if (PrintGCDetails && Verbose) {
 426             gclog_or_tty->print_cr("ParallelScavengeHeap::mem_allocate: "
 427               "return NULL because gc_overhead_limit_exceeded is set");
 428           }
 429           if (op.result() != NULL) {
 430             CollectedHeap::fill_with_object(op.result(), size);
 431           }
 432           return NULL;
 433         }
 434 
 435         return op.result();
 436       }
 437     }
 438 
 439     // The policy object will prevent us from looping forever. If the
 440     // time spent in gc crosses a threshold, we will bail out.
 441     loop_count++;
 442     if ((result == NULL) && (QueuedAllocationWarningCount > 0) &&
 443         (loop_count % QueuedAllocationWarningCount == 0)) {
 444       warning("ParallelScavengeHeap::mem_allocate retries %d times \n\t"
 445               " size=%d", loop_count, size);
 446     }
 447   }
 448 
 449   return result;
 450 }
 451 
 452 // A "death march" is a series of ultra-slow allocations in which a full gc is
 453 // done before each allocation, and after the full gc the allocation still
 454 // cannot be satisfied from the young gen.  This routine detects that condition;
 455 // it should be called after a full gc has been done and the allocation
 456 // attempted from the young gen. The parameter 'addr' should be the result of
 457 // that young gen allocation attempt.
 458 void
 459 ParallelScavengeHeap::death_march_check(HeapWord* const addr, size_t size) {
 460   if (addr != NULL) {
 461     _death_march_count = 0;  // death march has ended
 462   } else if (_death_march_count == 0) {
 463     if (should_alloc_in_eden(size)) {
 464       _death_march_count = 1;    // death march has started
 465     }
 466   }
 467 }
 468 
 469 HeapWord* ParallelScavengeHeap::mem_allocate_old_gen(size_t size) {
 470   if (!should_alloc_in_eden(size) || GC_locker::is_active_and_needs_gc()) {
 471     // Size is too big for eden, or gc is locked out.
 472     return old_gen()->allocate(size);
 473   }
 474 
 475   // If a "death march" is in progress, allocate from the old gen a limited
 476   // number of times before doing a GC.
 477   if (_death_march_count > 0) {
 478     if (_death_march_count < 64) {
 479       ++_death_march_count;
 480       return old_gen()->allocate(size);
 481     } else {
 482       _death_march_count = 0;
 483     }
 484   }
 485   return NULL;
 486 }
 487 
 488 void ParallelScavengeHeap::do_full_collection(bool clear_all_soft_refs) {
 489   if (UseParallelOldGC) {
 490     // The do_full_collection() parameter clear_all_soft_refs
 491     // is interpreted here as maximum_compaction which will
 492     // cause SoftRefs to be cleared.
 493     bool maximum_compaction = clear_all_soft_refs;
 494     PSParallelCompact::invoke(maximum_compaction);
 495   } else {
 496     PSMarkSweep::invoke(clear_all_soft_refs);
 497   }
 498 }
 499 
 500 // Failed allocation policy. Must be called from the VM thread, and
 501 // only at a safepoint! Note that this method has policy for allocation
 502 // flow, and NOT collection policy. So we do not check for gc collection
 503 // time over limit here, that is the responsibility of the heap specific
 504 // collection methods. This method decides where to attempt allocations,
 505 // and when to attempt collections, but no collection specific policy.
 506 HeapWord* ParallelScavengeHeap::failed_mem_allocate(size_t size) {
 507   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 508   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
 509   assert(!Universe::heap()->is_gc_active(), "not reentrant");
 510   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 511 
 512   // We assume that allocation in eden will fail unless we collect.
 513 
 514   // First level allocation failure, scavenge and allocate in young gen.
 515   GCCauseSetter gccs(this, GCCause::_allocation_failure);
 516   const bool invoked_full_gc = PSScavenge::invoke();
 517   HeapWord* result = young_gen()->allocate(size);
 518 
 519   // Second level allocation failure.
 520   //   Mark sweep and allocate in young generation.
 521   if (result == NULL && !invoked_full_gc) {
 522     do_full_collection(false);
 523     result = young_gen()->allocate(size);
 524   }
 525 
 526   death_march_check(result, size);
 527 
 528   // Third level allocation failure.
 529   //   After mark sweep and young generation allocation failure,
 530   //   allocate in old generation.
 531   if (result == NULL) {
 532     result = old_gen()->allocate(size);
 533   }
 534 
 535   // Fourth level allocation failure. We're running out of memory.
 536   //   More complete mark sweep and allocate in young generation.
 537   if (result == NULL) {
 538     do_full_collection(true);
 539     result = young_gen()->allocate(size);
 540   }
 541 
 542   // Fifth level allocation failure.
 543   //   After more complete mark sweep, allocate in old generation.
 544   if (result == NULL) {
 545     result = old_gen()->allocate(size);
 546   }
 547 
 548   return result;
 549 }
 550 
 551 void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
 552   CollectedHeap::ensure_parsability(retire_tlabs);
 553   young_gen()->eden_space()->ensure_parsability();
 554 }
 555 
 556 size_t ParallelScavengeHeap::unsafe_max_alloc() {
 557   return young_gen()->eden_space()->free_in_bytes();
 558 }
 559 
 560 size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
 561   return young_gen()->eden_space()->tlab_capacity(thr);
 562 }
 563 
 564 size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const {
 565   return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr);
 566 }
 567 
 568 HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t size) {
 569   return young_gen()->allocate(size);
 570 }
 571 
 572 void ParallelScavengeHeap::accumulate_statistics_all_tlabs() {
 573   CollectedHeap::accumulate_statistics_all_tlabs();
 574 }
 575 
 576 void ParallelScavengeHeap::resize_all_tlabs() {
 577   CollectedHeap::resize_all_tlabs();
 578 }
 579 
 580 bool ParallelScavengeHeap::can_elide_initializing_store_barrier(oop new_obj) {
 581   // We don't need barriers for stores to objects in the
 582   // young gen and, a fortiori, for initializing stores to
 583   // objects therein.
 584   return is_in_young(new_obj);
 585 }
 586 
 587 // This method is used by System.gc() and JVMTI.
 588 void ParallelScavengeHeap::collect(GCCause::Cause cause) {
 589   assert(!Heap_lock->owned_by_self(),
 590     "this thread should not own the Heap_lock");
 591 
 592   unsigned int gc_count      = 0;
 593   unsigned int full_gc_count = 0;
 594   {
 595     MutexLocker ml(Heap_lock);
 596     // This value is guarded by the Heap_lock
 597     gc_count      = Universe::heap()->total_collections();
 598     full_gc_count = Universe::heap()->total_full_collections();
 599   }
 600 
 601   VM_ParallelGCSystemGC op(gc_count, full_gc_count, cause);
 602   VMThread::execute(&op);
 603 }
 604 
 605 void ParallelScavengeHeap::oop_iterate(ExtendedOopClosure* cl) {
 606   Unimplemented();
 607 }
 608 
 609 void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
 610   young_gen()->object_iterate(cl);
 611   old_gen()->object_iterate(cl);
 612 }
 613 
 614 
 615 HeapWord* ParallelScavengeHeap::block_start(const void* addr) const {
 616   if (young_gen()->is_in_reserved(addr)) {
 617     assert(young_gen()->is_in(addr),
 618            "addr should be in allocated part of young gen");
 619     // called from os::print_location by find or VMError
 620     if (Debugging || VMError::fatal_error_in_progress())  return NULL;
 621     Unimplemented();
 622   } else if (old_gen()->is_in_reserved(addr)) {
 623     assert(old_gen()->is_in(addr),
 624            "addr should be in allocated part of old gen");
 625     return old_gen()->start_array()->object_start((HeapWord*)addr);
 626   }
 627   return 0;
 628 }
 629 
 630 size_t ParallelScavengeHeap::block_size(const HeapWord* addr) const {
 631   return oop(addr)->size();
 632 }
 633 
 634 bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const {
 635   return block_start(addr) == addr;
 636 }
 637 
 638 jlong ParallelScavengeHeap::millis_since_last_gc() {
 639   return UseParallelOldGC ?
 640     PSParallelCompact::millis_since_last_gc() :
 641     PSMarkSweep::millis_since_last_gc();
 642 }
 643 
 644 void ParallelScavengeHeap::prepare_for_verify() {
 645   ensure_parsability(false);  // no need to retire TLABs for verification
 646 }
 647 
 648 PSHeapSummary ParallelScavengeHeap::create_ps_heap_summary() {
 649   PSOldGen* old = old_gen();
 650   HeapWord* old_committed_end = (HeapWord*)old->virtual_space()->committed_high_addr();
 651   VirtualSpaceSummary old_summary(old->reserved().start(), old_committed_end, old->reserved().end());
 652   SpaceSummary old_space(old->reserved().start(), old_committed_end, old->used_in_bytes());
 653 
 654   PSYoungGen* young = young_gen();
 655   VirtualSpaceSummary young_summary(young->reserved().start(),
 656     (HeapWord*)young->virtual_space()->committed_high_addr(), young->reserved().end());
 657 
 658   MutableSpace* eden = young_gen()->eden_space();
 659   SpaceSummary eden_space(eden->bottom(), eden->end(), eden->used_in_bytes());
 660 
 661   MutableSpace* from = young_gen()->from_space();
 662   SpaceSummary from_space(from->bottom(), from->end(), from->used_in_bytes());
 663 
 664   MutableSpace* to = young_gen()->to_space();
 665   SpaceSummary to_space(to->bottom(), to->end(), to->used_in_bytes());
 666 
 667   VirtualSpaceSummary heap_summary = create_heap_space_summary();
 668   return PSHeapSummary(heap_summary, used(), old_summary, old_space, young_summary, eden_space, from_space, to_space);
 669 }
 670 
 671 void ParallelScavengeHeap::print_on(outputStream* st) const {
 672   young_gen()->print_on(st);
 673   old_gen()->print_on(st);
 674   MetaspaceAux::print_on(st);
 675 }
 676 
 677 void ParallelScavengeHeap::print_on_error(outputStream* st) const {
 678   this->CollectedHeap::print_on_error(st);
 679 
 680   if (UseParallelOldGC) {
 681     st->cr();
 682     PSParallelCompact::print_on_error(st);
 683   }
 684 }
 685 
 686 void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
 687   PSScavenge::gc_task_manager()->threads_do(tc);
 688 }
 689 
 690 void ParallelScavengeHeap::print_gc_threads_on(outputStream* st) const {
 691   PSScavenge::gc_task_manager()->print_threads_on(st);
 692 }
 693 
 694 void ParallelScavengeHeap::print_tracing_info() const {
 695   if (TraceGen0Time) {
 696     double time = PSScavenge::accumulated_time()->seconds();
 697     tty->print_cr("[Accumulated GC generation 0 time %3.7f secs]", time);
 698   }
 699   if (TraceGen1Time) {
 700     double time = UseParallelOldGC ? PSParallelCompact::accumulated_time()->seconds() : PSMarkSweep::accumulated_time()->seconds();
 701     tty->print_cr("[Accumulated GC generation 1 time %3.7f secs]", time);
 702   }
 703 }
 704 
 705 
 706 void ParallelScavengeHeap::verify(bool silent, VerifyOption option /* ignored */) {
 707   // Why do we need the total_collections()-filter below?
 708   if (total_collections() > 0) {
 709     if (!silent) {
 710       gclog_or_tty->print("tenured ");
 711     }
 712     old_gen()->verify();
 713 
 714     if (!silent) {
 715       gclog_or_tty->print("eden ");
 716     }
 717     young_gen()->verify();
 718   }
 719 }
 720 
 721 void ParallelScavengeHeap::print_heap_change(size_t prev_used) {
 722   if (PrintGCDetails && Verbose) {
 723     gclog_or_tty->print(" "  SIZE_FORMAT
 724                         "->" SIZE_FORMAT
 725                         "("  SIZE_FORMAT ")",
 726                         prev_used, used(), capacity());
 727   } else {
 728     gclog_or_tty->print(" "  SIZE_FORMAT "K"
 729                         "->" SIZE_FORMAT "K"
 730                         "("  SIZE_FORMAT "K)",
 731                         prev_used / K, used() / K, capacity() / K);
 732   }
 733 }
 734 
 735 void ParallelScavengeHeap::trace_heap(GCWhen::Type when, GCTracer* gc_tracer) {
 736   const PSHeapSummary& heap_summary = create_ps_heap_summary();
 737   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
 738   gc_tracer->report_gc_heap_summary(when, heap_summary, metaspace_summary);
 739 }
 740 
 741 ParallelScavengeHeap* ParallelScavengeHeap::heap() {
 742   assert(_psh != NULL, "Uninitialized access to ParallelScavengeHeap::heap()");
 743   assert(_psh->kind() == CollectedHeap::ParallelScavengeHeap, "not a parallel scavenge heap");
 744   return _psh;
 745 }
 746 
 747 // Before delegating the resize to the young generation,
 748 // the reserved space for the young and old generations
 749 // may be changed to accomodate the desired resize.
 750 void ParallelScavengeHeap::resize_young_gen(size_t eden_size,
 751     size_t survivor_size) {
 752   if (UseAdaptiveGCBoundary) {
 753     if (size_policy()->bytes_absorbed_from_eden() != 0) {
 754       size_policy()->reset_bytes_absorbed_from_eden();
 755       return;  // The generation changed size already.
 756     }
 757     gens()->adjust_boundary_for_young_gen_needs(eden_size, survivor_size);
 758   }
 759 
 760   // Delegate the resize to the generation.
 761   _young_gen->resize(eden_size, survivor_size);
 762 }
 763 
 764 // Before delegating the resize to the old generation,
 765 // the reserved space for the young and old generations
 766 // may be changed to accomodate the desired resize.
 767 void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) {
 768   if (UseAdaptiveGCBoundary) {
 769     if (size_policy()->bytes_absorbed_from_eden() != 0) {
 770       size_policy()->reset_bytes_absorbed_from_eden();
 771       return;  // The generation changed size already.
 772     }
 773     gens()->adjust_boundary_for_old_gen_needs(desired_free_space);
 774   }
 775 
 776   // Delegate the resize to the generation.
 777   _old_gen->resize(desired_free_space);
 778 }
 779 
 780 ParallelScavengeHeap::ParStrongRootsScope::ParStrongRootsScope() {
 781   // nothing particular
 782 }
 783 
 784 ParallelScavengeHeap::ParStrongRootsScope::~ParStrongRootsScope() {
 785   // nothing particular
 786 }
 787 
 788 #ifndef PRODUCT
 789 void ParallelScavengeHeap::record_gen_tops_before_GC() {
 790   if (ZapUnusedHeapArea) {
 791     young_gen()->record_spaces_top();
 792     old_gen()->record_spaces_top();
 793   }
 794 }
 795 
 796 void ParallelScavengeHeap::gen_mangle_unused_area() {
 797   if (ZapUnusedHeapArea) {
 798     young_gen()->eden_space()->mangle_unused_area();
 799     young_gen()->to_space()->mangle_unused_area();
 800     young_gen()->from_space()->mangle_unused_area();
 801     old_gen()->object_space()->mangle_unused_area();
 802   }
 803 }
 804 #endif