1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/parallelScavenge/adjoiningGenerations.hpp"
  27 #include "gc_implementation/parallelScavenge/adjoiningVirtualSpaces.hpp"
  28 #include "gc_implementation/parallelScavenge/cardTableExtension.hpp"
  29 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
  30 #include "gc_implementation/parallelScavenge/generationSizer.hpp"
  31 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.inline.hpp"
  32 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
  33 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
  34 #include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
  35 #include "gc_implementation/parallelScavenge/psPromotionManager.hpp"
  36 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
  37 #include "gc_implementation/parallelScavenge/vmPSOperations.hpp"
  38 #include "gc_implementation/shared/gcHeapSummary.hpp"
  39 #include "gc_implementation/shared/gcWhen.hpp"
  40 #include "memory/gcLocker.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "runtime/handles.inline.hpp"
  43 #include "runtime/java.hpp"
  44 #include "runtime/vmThread.hpp"
  45 #include "services/memTracker.hpp"
  46 #include "utilities/vmError.hpp"
  47 
  48 PSYoungGen*  ParallelScavengeHeap::_young_gen = NULL;
  49 PSOldGen*    ParallelScavengeHeap::_old_gen = NULL;
  50 PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = NULL;
  51 PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = NULL;
  52 ParallelScavengeHeap* ParallelScavengeHeap::_psh = NULL;
  53 GCTaskManager* ParallelScavengeHeap::_gc_task_manager = NULL;
  54 
  55  size_t ParallelScavengeHeap::intra_heap_alignment() {
  56    return GenCollectorPolicy::intra_heap_alignment();
  57  }
  58 
  59  size_t ParallelScavengeHeap::alignment() {
  60    return collector_policy()->min_alignment();
  61  }
  62 
  63 jint ParallelScavengeHeap::initialize() {
  64   CollectedHeap::pre_initialize();
  65 
  66   // Initialize collector policy
  67   _collector_policy = new GenerationSizer();
  68 
  69   const size_t heap_size = _collector_policy->max_heap_byte_size();
  70 
  71   ReservedSpace heap_rs = Universe::reserve_heap(heap_size, _collector_policy->max_alignment());
  72   MemTracker::record_virtual_memory_type((address)heap_rs.base(), mtJavaHeap);
  73 
  74   os::trace_page_sizes("ps main", _collector_policy->min_heap_byte_size(),
  75                        heap_size, alignment(),
  76                        heap_rs.base(),
  77                        heap_rs.size());
  78   if (!heap_rs.is_reserved()) {
  79     vm_shutdown_during_initialization(
  80       "Could not reserve enough space for object heap");
  81     return JNI_ENOMEM;
  82   }
  83 
  84   _reserved = MemRegion((HeapWord*)heap_rs.base(),
  85                         (HeapWord*)(heap_rs.base() + heap_rs.size()));
  86 
  87   CardTableExtension* const barrier_set = new CardTableExtension(_reserved, 3);
  88   _barrier_set = barrier_set;
  89   oopDesc::set_bs(_barrier_set);
  90   if (_barrier_set == NULL) {
  91     vm_shutdown_during_initialization(
  92       "Could not reserve enough space for barrier set");
  93     return JNI_ENOMEM;
  94   }
  95 
  96   // Make up the generations
  97   // Calculate the maximum size that a generation can grow.  This
  98   // includes growth into the other generation.  Note that the
  99   // parameter _max_gen_size is kept as the maximum
 100   // size of the generation as the boundaries currently stand.
 101   // _max_gen_size is still used as that value.
 102   double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
 103   double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
 104 
 105   _gens = new AdjoiningGenerations(heap_rs, _collector_policy, alignment());
 106 
 107   _old_gen = _gens->old_gen();
 108   _young_gen = _gens->young_gen();
 109 
 110   const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
 111   const size_t old_capacity = _old_gen->capacity_in_bytes();
 112   const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
 113   _size_policy =
 114     new PSAdaptiveSizePolicy(eden_capacity,
 115                              initial_promo_size,
 116                              young_gen()->to_space()->capacity_in_bytes(),
 117                              intra_heap_alignment(),
 118                              max_gc_pause_sec,
 119                              max_gc_minor_pause_sec,
 120                              GCTimeRatio
 121                              );
 122 
 123   assert(!UseAdaptiveGCBoundary ||
 124     (old_gen()->virtual_space()->high_boundary() ==
 125      young_gen()->virtual_space()->low_boundary()),
 126     "Boundaries must meet");
 127   // initialize the policy counters - 2 collectors, 3 generations
 128   _gc_policy_counters =
 129     new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 3, _size_policy);
 130   _psh = this;
 131 
 132   // Set up the GCTaskManager
 133   _gc_task_manager = GCTaskManager::create(ParallelGCThreads);
 134 
 135   if (UseParallelOldGC && !PSParallelCompact::initialize()) {
 136     return JNI_ENOMEM;
 137   }
 138 
 139   return JNI_OK;
 140 }
 141 
 142 void ParallelScavengeHeap::post_initialize() {
 143   // Need to init the tenuring threshold
 144   PSScavenge::initialize();
 145   if (UseParallelOldGC) {
 146     PSParallelCompact::post_initialize();
 147   } else {
 148     PSMarkSweep::initialize();
 149   }
 150   PSPromotionManager::initialize();
 151 }
 152 
 153 void ParallelScavengeHeap::update_counters() {
 154   young_gen()->update_counters();
 155   old_gen()->update_counters();
 156   MetaspaceCounters::update_performance_counters();
 157   CompressedClassSpaceCounters::update_performance_counters();
 158 }
 159 
 160 size_t ParallelScavengeHeap::capacity() const {
 161   size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
 162   return value;
 163 }
 164 
 165 size_t ParallelScavengeHeap::used() const {
 166   size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();
 167   return value;
 168 }
 169 
 170 bool ParallelScavengeHeap::is_maximal_no_gc() const {
 171   return old_gen()->is_maximal_no_gc() && young_gen()->is_maximal_no_gc();
 172 }
 173 
 174 
 175 size_t ParallelScavengeHeap::max_capacity() const {
 176   size_t estimated = reserved_region().byte_size();
 177   if (UseAdaptiveSizePolicy) {
 178     estimated -= _size_policy->max_survivor_size(young_gen()->max_size());
 179   } else {
 180     estimated -= young_gen()->to_space()->capacity_in_bytes();
 181   }
 182   return MAX2(estimated, capacity());
 183 }
 184 
 185 bool ParallelScavengeHeap::is_in(const void* p) const {
 186   if (young_gen()->is_in(p)) {
 187     return true;
 188   }
 189 
 190   if (old_gen()->is_in(p)) {
 191     return true;
 192   }
 193 
 194   return false;
 195 }
 196 
 197 bool ParallelScavengeHeap::is_in_reserved(const void* p) const {
 198   if (young_gen()->is_in_reserved(p)) {
 199     return true;
 200   }
 201 
 202   if (old_gen()->is_in_reserved(p)) {
 203     return true;
 204   }
 205 
 206   return false;
 207 }
 208 
 209 bool ParallelScavengeHeap::is_scavengable(const void* addr) {
 210   return is_in_young((oop)addr);
 211 }
 212 
 213 #ifdef ASSERT
 214 // Don't implement this by using is_in_young().  This method is used
 215 // in some cases to check that is_in_young() is correct.
 216 bool ParallelScavengeHeap::is_in_partial_collection(const void *p) {
 217   assert(is_in_reserved(p) || p == NULL,
 218     "Does not work if address is non-null and outside of the heap");
 219   // The order of the generations is old (low addr), young (high addr)
 220   return p >= old_gen()->reserved().end();
 221 }
 222 #endif
 223 
 224 // There are two levels of allocation policy here.
 225 //
 226 // When an allocation request fails, the requesting thread must invoke a VM
 227 // operation, transfer control to the VM thread, and await the results of a
 228 // garbage collection. That is quite expensive, and we should avoid doing it
 229 // multiple times if possible.
 230 //
 231 // To accomplish this, we have a basic allocation policy, and also a
 232 // failed allocation policy.
 233 //
 234 // The basic allocation policy controls how you allocate memory without
 235 // attempting garbage collection. It is okay to grab locks and
 236 // expand the heap, if that can be done without coming to a safepoint.
 237 // It is likely that the basic allocation policy will not be very
 238 // aggressive.
 239 //
 240 // The failed allocation policy is invoked from the VM thread after
 241 // the basic allocation policy is unable to satisfy a mem_allocate
 242 // request. This policy needs to cover the entire range of collection,
 243 // heap expansion, and out-of-memory conditions. It should make every
 244 // attempt to allocate the requested memory.
 245 
 246 // Basic allocation policy. Should never be called at a safepoint, or
 247 // from the VM thread.
 248 //
 249 // This method must handle cases where many mem_allocate requests fail
 250 // simultaneously. When that happens, only one VM operation will succeed,
 251 // and the rest will not be executed. For that reason, this method loops
 252 // during failed allocation attempts. If the java heap becomes exhausted,
 253 // we rely on the size_policy object to force a bail out.
 254 HeapWord* ParallelScavengeHeap::mem_allocate(
 255                                      size_t size,
 256                                      bool* gc_overhead_limit_was_exceeded) {
 257   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
 258   assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
 259   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 260 
 261   // In general gc_overhead_limit_was_exceeded should be false so
 262   // set it so here and reset it to true only if the gc time
 263   // limit is being exceeded as checked below.
 264   *gc_overhead_limit_was_exceeded = false;
 265 
 266   HeapWord* result = young_gen()->allocate(size);
 267 
 268   uint loop_count = 0;
 269   uint gc_count = 0;
 270   int gclocker_stalled_count = 0;
 271 
 272   while (result == NULL) {
 273     // We don't want to have multiple collections for a single filled generation.
 274     // To prevent this, each thread tracks the total_collections() value, and if
 275     // the count has changed, does not do a new collection.
 276     //
 277     // The collection count must be read only while holding the heap lock. VM
 278     // operations also hold the heap lock during collections. There is a lock
 279     // contention case where thread A blocks waiting on the Heap_lock, while
 280     // thread B is holding it doing a collection. When thread A gets the lock,
 281     // the collection count has already changed. To prevent duplicate collections,
 282     // The policy MUST attempt allocations during the same period it reads the
 283     // total_collections() value!
 284     {
 285       MutexLocker ml(Heap_lock);
 286       gc_count = Universe::heap()->total_collections();
 287 
 288       result = young_gen()->allocate(size);
 289       if (result != NULL) {
 290         return result;
 291       }
 292 
 293       // If certain conditions hold, try allocating from the old gen.
 294       result = mem_allocate_old_gen(size);
 295       if (result != NULL) {
 296         return result;
 297       }
 298 
 299       if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 300         return NULL;
 301       }
 302 
 303       // Failed to allocate without a gc.
 304       if (GC_locker::is_active_and_needs_gc()) {
 305         // If this thread is not in a jni critical section, we stall
 306         // the requestor until the critical section has cleared and
 307         // GC allowed. When the critical section clears, a GC is
 308         // initiated by the last thread exiting the critical section; so
 309         // we retry the allocation sequence from the beginning of the loop,
 310         // rather than causing more, now probably unnecessary, GC attempts.
 311         JavaThread* jthr = JavaThread::current();
 312         if (!jthr->in_critical()) {
 313           MutexUnlocker mul(Heap_lock);
 314           GC_locker::stall_until_clear();
 315           gclocker_stalled_count += 1;
 316           continue;
 317         } else {
 318           if (CheckJNICalls) {
 319             fatal("Possible deadlock due to allocating while"
 320                   " in jni critical section");
 321           }
 322           return NULL;
 323         }
 324       }
 325     }
 326 
 327     if (result == NULL) {
 328       // Generate a VM operation
 329       VM_ParallelGCFailedAllocation op(size, gc_count);
 330       VMThread::execute(&op);
 331 
 332       // Did the VM operation execute? If so, return the result directly.
 333       // This prevents us from looping until time out on requests that can
 334       // not be satisfied.
 335       if (op.prologue_succeeded()) {
 336         assert(Universe::heap()->is_in_or_null(op.result()),
 337           "result not in heap");
 338 
 339         // If GC was locked out during VM operation then retry allocation
 340         // and/or stall as necessary.
 341         if (op.gc_locked()) {
 342           assert(op.result() == NULL, "must be NULL if gc_locked() is true");
 343           continue;  // retry and/or stall as necessary
 344         }
 345 
 346         // Exit the loop if the gc time limit has been exceeded.
 347         // The allocation must have failed above ("result" guarding
 348         // this path is NULL) and the most recent collection has exceeded the
 349         // gc overhead limit (although enough may have been collected to
 350         // satisfy the allocation).  Exit the loop so that an out-of-memory
 351         // will be thrown (return a NULL ignoring the contents of
 352         // op.result()),
 353         // but clear gc_overhead_limit_exceeded so that the next collection
 354         // starts with a clean slate (i.e., forgets about previous overhead
 355         // excesses).  Fill op.result() with a filler object so that the
 356         // heap remains parsable.
 357         const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 358         const bool softrefs_clear = collector_policy()->all_soft_refs_clear();
 359 
 360         if (limit_exceeded && softrefs_clear) {
 361           *gc_overhead_limit_was_exceeded = true;
 362           size_policy()->set_gc_overhead_limit_exceeded(false);
 363           if (PrintGCDetails && Verbose) {
 364             gclog_or_tty->print_cr("ParallelScavengeHeap::mem_allocate: "
 365               "return NULL because gc_overhead_limit_exceeded is set");
 366           }
 367           if (op.result() != NULL) {
 368             CollectedHeap::fill_with_object(op.result(), size);
 369           }
 370           return NULL;
 371         }
 372 
 373         return op.result();
 374       }
 375     }
 376 
 377     // The policy object will prevent us from looping forever. If the
 378     // time spent in gc crosses a threshold, we will bail out.
 379     loop_count++;
 380     if ((result == NULL) && (QueuedAllocationWarningCount > 0) &&
 381         (loop_count % QueuedAllocationWarningCount == 0)) {
 382       warning("ParallelScavengeHeap::mem_allocate retries %d times \n\t"
 383               " size=%d", loop_count, size);
 384     }
 385   }
 386 
 387   return result;
 388 }
 389 
 390 // A "death march" is a series of ultra-slow allocations in which a full gc is
 391 // done before each allocation, and after the full gc the allocation still
 392 // cannot be satisfied from the young gen.  This routine detects that condition;
 393 // it should be called after a full gc has been done and the allocation
 394 // attempted from the young gen. The parameter 'addr' should be the result of
 395 // that young gen allocation attempt.
 396 void
 397 ParallelScavengeHeap::death_march_check(HeapWord* const addr, size_t size) {
 398   if (addr != NULL) {
 399     _death_march_count = 0;  // death march has ended
 400   } else if (_death_march_count == 0) {
 401     if (should_alloc_in_eden(size)) {
 402       _death_march_count = 1;    // death march has started
 403     }
 404   }
 405 }
 406 
 407 HeapWord* ParallelScavengeHeap::mem_allocate_old_gen(size_t size) {
 408   if (!should_alloc_in_eden(size) || GC_locker::is_active_and_needs_gc()) {
 409     // Size is too big for eden, or gc is locked out.
 410     return old_gen()->allocate(size);
 411   }
 412 
 413   // If a "death march" is in progress, allocate from the old gen a limited
 414   // number of times before doing a GC.
 415   if (_death_march_count > 0) {
 416     if (_death_march_count < 64) {
 417       ++_death_march_count;
 418       return old_gen()->allocate(size);
 419     } else {
 420       _death_march_count = 0;
 421     }
 422   }
 423   return NULL;
 424 }
 425 
 426 void ParallelScavengeHeap::do_full_collection(bool clear_all_soft_refs) {
 427   if (UseParallelOldGC) {
 428     // The do_full_collection() parameter clear_all_soft_refs
 429     // is interpreted here as maximum_compaction which will
 430     // cause SoftRefs to be cleared.
 431     bool maximum_compaction = clear_all_soft_refs;
 432     PSParallelCompact::invoke(maximum_compaction);
 433   } else {
 434     PSMarkSweep::invoke(clear_all_soft_refs);
 435   }
 436 }
 437 
 438 // Failed allocation policy. Must be called from the VM thread, and
 439 // only at a safepoint! Note that this method has policy for allocation
 440 // flow, and NOT collection policy. So we do not check for gc collection
 441 // time over limit here, that is the responsibility of the heap specific
 442 // collection methods. This method decides where to attempt allocations,
 443 // and when to attempt collections, but no collection specific policy.
 444 HeapWord* ParallelScavengeHeap::failed_mem_allocate(size_t size) {
 445   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 446   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
 447   assert(!Universe::heap()->is_gc_active(), "not reentrant");
 448   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 449 
 450   // We assume that allocation in eden will fail unless we collect.
 451 
 452   // First level allocation failure, scavenge and allocate in young gen.
 453   GCCauseSetter gccs(this, GCCause::_allocation_failure);
 454   const bool invoked_full_gc = PSScavenge::invoke();
 455   HeapWord* result = young_gen()->allocate(size);
 456 
 457   // Second level allocation failure.
 458   //   Mark sweep and allocate in young generation.
 459   if (result == NULL && !invoked_full_gc) {
 460     do_full_collection(false);
 461     result = young_gen()->allocate(size);
 462   }
 463 
 464   death_march_check(result, size);
 465 
 466   // Third level allocation failure.
 467   //   After mark sweep and young generation allocation failure,
 468   //   allocate in old generation.
 469   if (result == NULL) {
 470     result = old_gen()->allocate(size);
 471   }
 472 
 473   // Fourth level allocation failure. We're running out of memory.
 474   //   More complete mark sweep and allocate in young generation.
 475   if (result == NULL) {
 476     do_full_collection(true);
 477     result = young_gen()->allocate(size);
 478   }
 479 
 480   // Fifth level allocation failure.
 481   //   After more complete mark sweep, allocate in old generation.
 482   if (result == NULL) {
 483     result = old_gen()->allocate(size);
 484   }
 485 
 486   return result;
 487 }
 488 
 489 void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
 490   CollectedHeap::ensure_parsability(retire_tlabs);
 491   young_gen()->eden_space()->ensure_parsability();
 492 }
 493 
 494 size_t ParallelScavengeHeap::unsafe_max_alloc() {
 495   return young_gen()->eden_space()->free_in_bytes();
 496 }
 497 
 498 size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
 499   return young_gen()->eden_space()->tlab_capacity(thr);
 500 }
 501 
 502 size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const {
 503   return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr);
 504 }
 505 
 506 HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t size) {
 507   return young_gen()->allocate(size);
 508 }
 509 
 510 void ParallelScavengeHeap::accumulate_statistics_all_tlabs() {
 511   CollectedHeap::accumulate_statistics_all_tlabs();
 512 }
 513 
 514 void ParallelScavengeHeap::resize_all_tlabs() {
 515   CollectedHeap::resize_all_tlabs();
 516 }
 517 
 518 bool ParallelScavengeHeap::can_elide_initializing_store_barrier(oop new_obj) {
 519   // We don't need barriers for stores to objects in the
 520   // young gen and, a fortiori, for initializing stores to
 521   // objects therein.
 522   return is_in_young(new_obj);
 523 }
 524 
 525 // This method is used by System.gc() and JVMTI.
 526 void ParallelScavengeHeap::collect(GCCause::Cause cause) {
 527   assert(!Heap_lock->owned_by_self(),
 528     "this thread should not own the Heap_lock");
 529 
 530   unsigned int gc_count      = 0;
 531   unsigned int full_gc_count = 0;
 532   {
 533     MutexLocker ml(Heap_lock);
 534     // This value is guarded by the Heap_lock
 535     gc_count      = Universe::heap()->total_collections();
 536     full_gc_count = Universe::heap()->total_full_collections();
 537   }
 538 
 539   VM_ParallelGCSystemGC op(gc_count, full_gc_count, cause);
 540   VMThread::execute(&op);
 541 }
 542 
 543 void ParallelScavengeHeap::oop_iterate(ExtendedOopClosure* cl) {
 544   Unimplemented();
 545 }
 546 
 547 void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
 548   young_gen()->object_iterate(cl);
 549   old_gen()->object_iterate(cl);
 550 }
 551 
 552 
 553 HeapWord* ParallelScavengeHeap::block_start(const void* addr) const {
 554   if (young_gen()->is_in_reserved(addr)) {
 555     assert(young_gen()->is_in(addr),
 556            "addr should be in allocated part of young gen");
 557     // called from os::print_location by find or VMError
 558     if (Debugging || VMError::fatal_error_in_progress())  return NULL;
 559     Unimplemented();
 560   } else if (old_gen()->is_in_reserved(addr)) {
 561     assert(old_gen()->is_in(addr),
 562            "addr should be in allocated part of old gen");
 563     return old_gen()->start_array()->object_start((HeapWord*)addr);
 564   }
 565   return 0;
 566 }
 567 
 568 size_t ParallelScavengeHeap::block_size(const HeapWord* addr) const {
 569   return oop(addr)->size();
 570 }
 571 
 572 bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const {
 573   return block_start(addr) == addr;
 574 }
 575 
 576 jlong ParallelScavengeHeap::millis_since_last_gc() {
 577   return UseParallelOldGC ?
 578     PSParallelCompact::millis_since_last_gc() :
 579     PSMarkSweep::millis_since_last_gc();
 580 }
 581 
 582 void ParallelScavengeHeap::prepare_for_verify() {
 583   ensure_parsability(false);  // no need to retire TLABs for verification
 584 }
 585 
 586 PSHeapSummary ParallelScavengeHeap::create_ps_heap_summary() {
 587   PSOldGen* old = old_gen();
 588   HeapWord* old_committed_end = (HeapWord*)old->virtual_space()->committed_high_addr();
 589   VirtualSpaceSummary old_summary(old->reserved().start(), old_committed_end, old->reserved().end());
 590   SpaceSummary old_space(old->reserved().start(), old_committed_end, old->used_in_bytes());
 591 
 592   PSYoungGen* young = young_gen();
 593   VirtualSpaceSummary young_summary(young->reserved().start(),
 594     (HeapWord*)young->virtual_space()->committed_high_addr(), young->reserved().end());
 595 
 596   MutableSpace* eden = young_gen()->eden_space();
 597   SpaceSummary eden_space(eden->bottom(), eden->end(), eden->used_in_bytes());
 598 
 599   MutableSpace* from = young_gen()->from_space();
 600   SpaceSummary from_space(from->bottom(), from->end(), from->used_in_bytes());
 601 
 602   MutableSpace* to = young_gen()->to_space();
 603   SpaceSummary to_space(to->bottom(), to->end(), to->used_in_bytes());
 604 
 605   VirtualSpaceSummary heap_summary = create_heap_space_summary();
 606   return PSHeapSummary(heap_summary, used(), old_summary, old_space, young_summary, eden_space, from_space, to_space);
 607 }
 608 
 609 void ParallelScavengeHeap::print_on(outputStream* st) const {
 610   young_gen()->print_on(st);
 611   old_gen()->print_on(st);
 612   MetaspaceAux::print_on(st);
 613 }
 614 
 615 void ParallelScavengeHeap::print_on_error(outputStream* st) const {
 616   this->CollectedHeap::print_on_error(st);
 617 
 618   if (UseParallelOldGC) {
 619     st->cr();
 620     PSParallelCompact::print_on_error(st);
 621   }
 622 }
 623 
 624 void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
 625   PSScavenge::gc_task_manager()->threads_do(tc);
 626 }
 627 
 628 void ParallelScavengeHeap::print_gc_threads_on(outputStream* st) const {
 629   PSScavenge::gc_task_manager()->print_threads_on(st);
 630 }
 631 
 632 void ParallelScavengeHeap::print_tracing_info() const {
 633   if (TraceGen0Time) {
 634     double time = PSScavenge::accumulated_time()->seconds();
 635     tty->print_cr("[Accumulated GC generation 0 time %3.7f secs]", time);
 636   }
 637   if (TraceGen1Time) {
 638     double time = UseParallelOldGC ? PSParallelCompact::accumulated_time()->seconds() : PSMarkSweep::accumulated_time()->seconds();
 639     tty->print_cr("[Accumulated GC generation 1 time %3.7f secs]", time);
 640   }
 641 }
 642 
 643 
 644 void ParallelScavengeHeap::verify(bool silent, VerifyOption option /* ignored */) {
 645   // Why do we need the total_collections()-filter below?
 646   if (total_collections() > 0) {
 647     if (!silent) {
 648       gclog_or_tty->print("tenured ");
 649     }
 650     old_gen()->verify();
 651 
 652     if (!silent) {
 653       gclog_or_tty->print("eden ");
 654     }
 655     young_gen()->verify();
 656   }
 657 }
 658 
 659 void ParallelScavengeHeap::print_heap_change(size_t prev_used) {
 660   if (PrintGCDetails && Verbose) {
 661     gclog_or_tty->print(" "  SIZE_FORMAT
 662                         "->" SIZE_FORMAT
 663                         "("  SIZE_FORMAT ")",
 664                         prev_used, used(), capacity());
 665   } else {
 666     gclog_or_tty->print(" "  SIZE_FORMAT "K"
 667                         "->" SIZE_FORMAT "K"
 668                         "("  SIZE_FORMAT "K)",
 669                         prev_used / K, used() / K, capacity() / K);
 670   }
 671 }
 672 
 673 void ParallelScavengeHeap::trace_heap(GCWhen::Type when, GCTracer* gc_tracer) {
 674   const PSHeapSummary& heap_summary = create_ps_heap_summary();
 675   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
 676   gc_tracer->report_gc_heap_summary(when, heap_summary, metaspace_summary);
 677 }
 678 
 679 ParallelScavengeHeap* ParallelScavengeHeap::heap() {
 680   assert(_psh != NULL, "Uninitialized access to ParallelScavengeHeap::heap()");
 681   assert(_psh->kind() == CollectedHeap::ParallelScavengeHeap, "not a parallel scavenge heap");
 682   return _psh;
 683 }
 684 
 685 // Before delegating the resize to the young generation,
 686 // the reserved space for the young and old generations
 687 // may be changed to accomodate the desired resize.
 688 void ParallelScavengeHeap::resize_young_gen(size_t eden_size,
 689     size_t survivor_size) {
 690   if (UseAdaptiveGCBoundary) {
 691     if (size_policy()->bytes_absorbed_from_eden() != 0) {
 692       size_policy()->reset_bytes_absorbed_from_eden();
 693       return;  // The generation changed size already.
 694     }
 695     gens()->adjust_boundary_for_young_gen_needs(eden_size, survivor_size);
 696   }
 697 
 698   // Delegate the resize to the generation.
 699   _young_gen->resize(eden_size, survivor_size);
 700 }
 701 
 702 // Before delegating the resize to the old generation,
 703 // the reserved space for the young and old generations
 704 // may be changed to accomodate the desired resize.
 705 void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) {
 706   if (UseAdaptiveGCBoundary) {
 707     if (size_policy()->bytes_absorbed_from_eden() != 0) {
 708       size_policy()->reset_bytes_absorbed_from_eden();
 709       return;  // The generation changed size already.
 710     }
 711     gens()->adjust_boundary_for_old_gen_needs(desired_free_space);
 712   }
 713 
 714   // Delegate the resize to the generation.
 715   _old_gen->resize(desired_free_space);
 716 }
 717 
 718 ParallelScavengeHeap::ParStrongRootsScope::ParStrongRootsScope() {
 719   // nothing particular
 720 }
 721 
 722 ParallelScavengeHeap::ParStrongRootsScope::~ParStrongRootsScope() {
 723   // nothing particular
 724 }
 725 
 726 #ifndef PRODUCT
 727 void ParallelScavengeHeap::record_gen_tops_before_GC() {
 728   if (ZapUnusedHeapArea) {
 729     young_gen()->record_spaces_top();
 730     old_gen()->record_spaces_top();
 731   }
 732 }
 733 
 734 void ParallelScavengeHeap::gen_mangle_unused_area() {
 735   if (ZapUnusedHeapArea) {
 736     young_gen()->eden_space()->mangle_unused_area();
 737     young_gen()->to_space()->mangle_unused_area();
 738     young_gen()->from_space()->mangle_unused_area();
 739     old_gen()->object_space()->mangle_unused_area();
 740   }
 741 }
 742 #endif