src/share/vm/memory/collectorPolicy.cpp
Index Unified diffs Context diffs Sdiffs Patch New Old Previous File Next File hotspot Sdiff src/share/vm/memory

src/share/vm/memory/collectorPolicy.cpp

Print this page




  35 #include "memory/universe.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/globals_extension.hpp"
  38 #include "runtime/handles.inline.hpp"
  39 #include "runtime/java.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 #include "runtime/vmThread.hpp"
  42 #include "utilities/macros.hpp"
  43 #if INCLUDE_ALL_GCS
  44 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  45 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  46 #endif // INCLUDE_ALL_GCS
  47 
  48 // CollectorPolicy methods.
  49 
  50 // Align down. If the aligning result in 0, return 'alignment'.
  51 static size_t restricted_align_down(size_t size, size_t alignment) {
  52   return MAX2(alignment, align_size_down_(size, alignment));
  53 }
  54 















  55 void CollectorPolicy::initialize_flags() {
  56   assert(_max_alignment >= _min_alignment,
  57          err_msg("max_alignment: " SIZE_FORMAT " less than min_alignment: " SIZE_FORMAT,
  58                  _max_alignment, _min_alignment));
  59   assert(_max_alignment % _min_alignment == 0,
  60          err_msg("max_alignment: " SIZE_FORMAT " not aligned by min_alignment: " SIZE_FORMAT,
  61                  _max_alignment, _min_alignment));
  62 
  63   if (MaxHeapSize < InitialHeapSize) {

  64     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
  65   }































  66 
  67   if (!is_size_aligned(MaxMetaspaceSize, _max_alignment)) {
  68     FLAG_SET_ERGO(uintx, MaxMetaspaceSize,
  69         restricted_align_down(MaxMetaspaceSize, _max_alignment));
  70   }
  71 
  72   if (MetaspaceSize > MaxMetaspaceSize) {
  73     FLAG_SET_ERGO(uintx, MetaspaceSize, MaxMetaspaceSize);
  74   }
  75 
  76   if (!is_size_aligned(MetaspaceSize, _min_alignment)) {
  77     FLAG_SET_ERGO(uintx, MetaspaceSize,
  78         restricted_align_down(MetaspaceSize, _min_alignment));
  79   }
  80 
  81   assert(MetaspaceSize <= MaxMetaspaceSize, "Must be");
  82 
  83   MinMetaspaceExpansion = restricted_align_down(MinMetaspaceExpansion, _min_alignment);
  84   MaxMetaspaceExpansion = restricted_align_down(MaxMetaspaceExpansion, _min_alignment);
  85 
  86   MinHeapDeltaBytes = align_size_up(MinHeapDeltaBytes, _min_alignment);
  87 
  88   assert(MetaspaceSize    % _min_alignment == 0, "metapace alignment");
  89   assert(MaxMetaspaceSize % _max_alignment == 0, "maximum metaspace alignment");
  90   if (MetaspaceSize < 256*K) {
  91     vm_exit_during_initialization("Too small initial Metaspace size");
  92   }


  93 }
  94 
  95 void CollectorPolicy::initialize_size_info() {
  96   // User inputs from -mx and ms must be aligned
  97   _min_heap_byte_size = align_size_up(Arguments::min_heap_size(), _min_alignment);
  98   _initial_heap_byte_size = align_size_up(InitialHeapSize, _min_alignment);
  99   _max_heap_byte_size = align_size_up(MaxHeapSize, _max_alignment);
 100 
 101   // Check heap parameter properties
 102   if (_initial_heap_byte_size < M) {
 103     vm_exit_during_initialization("Too small initial heap");
 104   }
 105   // Check heap parameter properties
 106   if (_min_heap_byte_size < M) {
 107     vm_exit_during_initialization("Too small minimum heap");
 108   }
 109   if (_initial_heap_byte_size <= NewSize) {
 110      // make sure there is at least some room in old space
 111     vm_exit_during_initialization("Too small initial heap for new size specified");
 112   }
 113   if (_max_heap_byte_size < _min_heap_byte_size) {
 114     vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
 115   }
 116   if (_initial_heap_byte_size < _min_heap_byte_size) {
 117     vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
 118   }
 119   if (_max_heap_byte_size < _initial_heap_byte_size) {
 120     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
 121   }
 122 
 123   if (PrintGCDetails && Verbose) {
 124     gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT "  Initial heap "
 125       SIZE_FORMAT "  Maximum heap " SIZE_FORMAT,
 126       _min_heap_byte_size, _initial_heap_byte_size, _max_heap_byte_size);
 127   }


 128 }
 129 
 130 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
 131   bool result = _should_clear_all_soft_refs;
 132   set_should_clear_all_soft_refs(false);
 133   return result;
 134 }
 135 
 136 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
 137                                            int max_covered_regions) {
 138   assert(rem_set_name() == GenRemSet::CardTable, "unrecognized GenRemSet::Name");
 139   return new CardTableRS(whole_heap, max_covered_regions);
 140 }
 141 
 142 void CollectorPolicy::cleared_all_soft_refs() {
 143   // If near gc overhear limit, continue to clear SoftRefs.  SoftRefs may
 144   // have been cleared in the last collection but if the gc overhear
 145   // limit continues to be near, SoftRefs should still be cleared.
 146   if (size_policy() != NULL) {
 147     _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();


 160   // is supported.
 161   // Requirements of any new remembered set implementations must be added here.
 162   size_t alignment = GenRemSet::max_alignment_constraint(GenRemSet::CardTable);
 163 
 164   // Parallel GC does its own alignment of the generations to avoid requiring a
 165   // large page (256M on some platforms) for the permanent generation.  The
 166   // other collectors should also be updated to do their own alignment and then
 167   // this use of lcm() should be removed.
 168   if (UseLargePages && !UseParallelGC) {
 169       // in presence of large pages we have to make sure that our
 170       // alignment is large page aware
 171       alignment = lcm(os::large_page_size(), alignment);
 172   }
 173 
 174   return alignment;
 175 }
 176 
 177 // GenCollectorPolicy methods.
 178 
 179 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
 180   size_t x = base_size / (NewRatio+1);
 181   size_t new_gen_size = x > _min_alignment ?
 182                      align_size_down(x, _min_alignment) :
 183                      _min_alignment;
 184   return new_gen_size;
 185 }
 186 
 187 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
 188                                                  size_t maximum_size) {
 189   size_t alignment = _min_alignment;
 190   size_t max_minus = maximum_size - alignment;
 191   return desired_size < max_minus ? desired_size : max_minus;
 192 }
 193 
 194 
 195 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
 196                                                 size_t init_promo_size,
 197                                                 size_t init_survivor_size) {
 198   const double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
 199   _size_policy = new AdaptiveSizePolicy(init_eden_size,
 200                                         init_promo_size,
 201                                         init_survivor_size,
 202                                         max_gc_pause_sec,
 203                                         GCTimeRatio);
 204 }
 205 


























































 206 void GenCollectorPolicy::initialize_flags() {
 207   // All sizes must be multiples of the generation granularity.
 208   _min_alignment = (uintx) Generation::GenGrain;
 209   _max_alignment = compute_max_alignment();
 210 
 211   CollectorPolicy::initialize_flags();
 212 












 213   // All generational heaps have a youngest gen; handle those flags here.
 214 
 215   // Adjust max size parameters














 216   if (NewSize > MaxNewSize) {
 217     MaxNewSize = NewSize;






 218   }
 219   NewSize = align_size_down(NewSize, _min_alignment);
 220   MaxNewSize = align_size_down(MaxNewSize, _min_alignment);
 221 
 222   // Check validity of heap flags
 223   assert(NewSize     % _min_alignment == 0, "eden space alignment");
 224   assert(MaxNewSize  % _min_alignment == 0, "survivor space alignment");
 225 
 226   if (NewSize < 3 * _min_alignment) {
 227      // make sure there room for eden and two survivor spaces
 228     vm_exit_during_initialization("Too small new size specified");








 229   }



 230   if (SurvivorRatio < 1 || NewRatio < 1) {
 231     vm_exit_during_initialization("Invalid young gen ratio specified");
 232   }


 233 }
 234 
 235 void TwoGenerationCollectorPolicy::initialize_flags() {
 236   GenCollectorPolicy::initialize_flags();
 237 
 238   OldSize = align_size_down(OldSize, _min_alignment);


 239 
 240   if (FLAG_IS_CMDLINE(OldSize) && FLAG_IS_DEFAULT(NewSize)) {
 241     // NewRatio will be used later to set the young generation size so we use
 242     // it to calculate how big the heap should be based on the requested OldSize
 243     // and NewRatio.
 244     assert(NewRatio > 0, "NewRatio should have been set up earlier");
 245     size_t calculated_heapsize = (OldSize / NewRatio) * (NewRatio + 1);
 246 
 247     calculated_heapsize = align_size_up(calculated_heapsize, _max_alignment);
 248     MaxHeapSize = calculated_heapsize;
 249     InitialHeapSize = calculated_heapsize;
 250   }
 251   MaxHeapSize = align_size_up(MaxHeapSize, _max_alignment);
 252 
 253   // adjust max heap size if necessary
 254   if (NewSize + OldSize > MaxHeapSize) {
 255     if (FLAG_IS_CMDLINE(MaxHeapSize)) {
 256       // somebody set a maximum heap size with the intention that we should not
 257       // exceed it. Adjust New/OldSize as necessary.
 258       uintx calculated_size = NewSize + OldSize;
 259       double shrink_factor = (double) MaxHeapSize / calculated_size;
 260       // align
 261       NewSize = align_size_down((uintx) (NewSize * shrink_factor), _min_alignment);
 262       // OldSize is already aligned because above we aligned MaxHeapSize to
 263       // _max_alignment, and we just made sure that NewSize is aligned to
 264       // _min_alignment. In initialize_flags() we verified that _max_alignment
 265       // is a multiple of _min_alignment.
 266       OldSize = MaxHeapSize - NewSize;
 267     } else {
 268       MaxHeapSize = NewSize + OldSize;
 269     }
 270   }
 271   // need to do this again
 272   MaxHeapSize = align_size_up(MaxHeapSize, _max_alignment);
 273 
 274   // adjust max heap size if necessary
 275   if (NewSize + OldSize > MaxHeapSize) {
 276     if (FLAG_IS_CMDLINE(MaxHeapSize)) {
 277       // somebody set a maximum heap size with the intention that we should not
 278       // exceed it. Adjust New/OldSize as necessary.
 279       uintx calculated_size = NewSize + OldSize;
 280       double shrink_factor = (double) MaxHeapSize / calculated_size;
 281       // align
 282       NewSize = align_size_down((uintx) (NewSize * shrink_factor), _min_alignment);
 283       // OldSize is already aligned because above we aligned MaxHeapSize to
 284       // _max_alignment, and we just made sure that NewSize is aligned to
 285       // _min_alignment. In initialize_flags() we verified that _max_alignment
 286       // is a multiple of _min_alignment.
 287       OldSize = MaxHeapSize - NewSize;
 288     } else {
 289       MaxHeapSize = NewSize + OldSize;
 290     }
 291   }
 292   // need to do this again
 293   MaxHeapSize = align_size_up(MaxHeapSize, _max_alignment);
 294 
 295   always_do_update_barrier = UseConcMarkSweepGC;
 296 
 297   // Check validity of heap flags
 298   assert(OldSize     % _min_alignment == 0, "old space alignment");
 299   assert(MaxHeapSize % _max_alignment == 0, "maximum heap alignment");
 300 }
 301 
 302 // Values set on the command line win over any ergonomically
 303 // set command line parameters.
 304 // Ergonomic choice of parameters are done before this
 305 // method is called.  Values for command line parameters such as NewSize
 306 // and MaxNewSize feed those ergonomic choices into this method.
 307 // This method makes the final generation sizings consistent with
 308 // themselves and with overall heap sizings.
 309 // In the absence of explicitly set command line flags, policies
 310 // such as the use of NewRatio are used to size the generation.
 311 void GenCollectorPolicy::initialize_size_info() {
 312   CollectorPolicy::initialize_size_info();
 313 
 314   // _min_alignment is used for alignment within a generation.
 315   // There is additional alignment done down stream for some
 316   // collectors that sometimes causes unwanted rounding up of
 317   // generations sizes.
 318 
 319   // Determine maximum size of gen0
 320 
 321   size_t max_new_size = 0;
 322   if (FLAG_IS_CMDLINE(MaxNewSize) || FLAG_IS_ERGO(MaxNewSize)) {
 323     if (MaxNewSize < _min_alignment) {
 324       max_new_size = _min_alignment;
 325     }
 326     if (MaxNewSize >= _max_heap_byte_size) {
 327       max_new_size = align_size_down(_max_heap_byte_size - _min_alignment,
 328                                      _min_alignment);
 329       warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or "
 330         "greater than the entire heap (" SIZE_FORMAT "k).  A "
 331         "new generation size of " SIZE_FORMAT "k will be used.",
 332         MaxNewSize/K, _max_heap_byte_size/K, max_new_size/K);
 333     } else {
 334       max_new_size = align_size_down(MaxNewSize, _min_alignment);
 335     }
 336 
 337   // The case for FLAG_IS_ERGO(MaxNewSize) could be treated
 338   // specially at this point to just use an ergonomically set
 339   // MaxNewSize to set max_new_size.  For cases with small
 340   // heaps such a policy often did not work because the MaxNewSize
 341   // was larger than the entire heap.  The interpretation given
 342   // to ergonomically set flags is that the flags are set
 343   // by different collectors for their own special needs but
 344   // are not allowed to badly shape the heap.  This allows the
 345   // different collectors to decide what's best for themselves
 346   // without having to factor in the overall heap shape.  It
 347   // can be the case in the future that the collectors would
 348   // only make "wise" ergonomics choices and this policy could
 349   // just accept those choices.  The choices currently made are
 350   // not always "wise".
 351   } else {
 352     max_new_size = scale_by_NewRatio_aligned(_max_heap_byte_size);
 353     // Bound the maximum size by NewSize below (since it historically
 354     // would have been NewSize and because the NewRatio calculation could
 355     // yield a size that is too small) and bound it by MaxNewSize above.
 356     // Ergonomics plays here by previously calculating the desired
 357     // NewSize and MaxNewSize.
 358     max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
 359   }
 360   assert(max_new_size > 0, "All paths should set max_new_size");
 361 
 362   // Given the maximum gen0 size, determine the initial and
 363   // minimum gen0 sizes.
 364 
 365   if (_max_heap_byte_size == _min_heap_byte_size) {
 366     // The maximum and minimum heap sizes are the same so
 367     // the generations minimum and initial must be the
 368     // same as its maximum.
 369     _min_gen0_size = max_new_size;
 370     _initial_gen0_size = max_new_size;


 399     _max_gen0_size = max_new_size;
 400 
 401     // At this point the desirable initial and minimum sizes have been
 402     // determined without regard to the maximum sizes.
 403 
 404     // Bound the sizes by the corresponding overall heap sizes.
 405     _min_gen0_size = bound_minus_alignment(_min_gen0_size, _min_heap_byte_size);
 406     _initial_gen0_size = bound_minus_alignment(_initial_gen0_size, _initial_heap_byte_size);
 407     _max_gen0_size = bound_minus_alignment(_max_gen0_size, _max_heap_byte_size);
 408 
 409     // At this point all three sizes have been checked against the
 410     // maximum sizes but have not been checked for consistency
 411     // among the three.
 412 
 413     // Final check min <= initial <= max
 414     _min_gen0_size = MIN2(_min_gen0_size, _max_gen0_size);
 415     _initial_gen0_size = MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size);
 416     _min_gen0_size = MIN2(_min_gen0_size, _initial_gen0_size);
 417   }
 418 





 419   if (PrintGCDetails && Verbose) {
 420     gclog_or_tty->print_cr("1: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 421       SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 422       _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 423   }


 424 }
 425 
 426 // Call this method during the sizing of the gen1 to make
 427 // adjustments to gen0 because of gen1 sizing policy.  gen0 initially has
 428 // the most freedom in sizing because it is done before the
 429 // policy for gen1 is applied.  Once gen1 policies have been applied,
 430 // there may be conflicts in the shape of the heap and this method
 431 // is used to make the needed adjustments.  The application of the
 432 // policies could be more sophisticated (iterative for example) but
 433 // keeping it simple also seems a worthwhile goal.
 434 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
 435                                                      size_t* gen1_size_ptr,
 436                                                      const size_t heap_size,
 437                                                      const size_t min_gen1_size) {
 438   bool result = false;
 439 
 440   if ((*gen1_size_ptr + *gen0_size_ptr) > heap_size) {
 441     if ((heap_size < (*gen0_size_ptr + min_gen1_size)) &&
 442         (heap_size >= min_gen1_size + _min_alignment)) {
 443       // Adjust gen0 down to accommodate min_gen1_size
 444       *gen0_size_ptr = heap_size - min_gen1_size;
 445       *gen0_size_ptr =
 446         MAX2((uintx)align_size_down(*gen0_size_ptr, _min_alignment), _min_alignment);
 447       assert(*gen0_size_ptr > 0, "Min gen0 is too large");
 448       result = true;
 449     } else {
 450       *gen1_size_ptr = heap_size - *gen0_size_ptr;
 451       *gen1_size_ptr =
 452         MAX2((uintx)align_size_down(*gen1_size_ptr, _min_alignment), _min_alignment);
 453     }
 454   }
 455   return result;
 456 }
 457 
 458 // Minimum sizes of the generations may be different than
 459 // the initial sizes.  An inconsistency is permitted here
 460 // in the total size that can be specified explicitly by
 461 // command line specification of OldSize and NewSize and
 462 // also a command line specification of -Xms.  Issue a warning
 463 // but allow the values to pass.
 464 
 465 void TwoGenerationCollectorPolicy::initialize_size_info() {
 466   GenCollectorPolicy::initialize_size_info();
 467 
 468   // At this point the minimum, initial and maximum sizes
 469   // of the overall heap and of gen0 have been determined.
 470   // The maximum gen1 size can be determined from the maximum gen0
 471   // and maximum heap size since no explicit flags exist
 472   // for setting the gen1 maximum.
 473   _max_gen1_size = _max_heap_byte_size - _max_gen0_size;
 474   _max_gen1_size =
 475     MAX2((uintx)align_size_down(_max_gen1_size, _min_alignment), _min_alignment);
 476   // If no explicit command line flag has been set for the
 477   // gen1 size, use what is left for gen1.
 478   if (FLAG_IS_DEFAULT(OldSize) || FLAG_IS_ERGO(OldSize)) {
 479     // The user has not specified any value or ergonomics
 480     // has chosen a value (which may or may not be consistent
 481     // with the overall heap size).  In either case make
 482     // the minimum, maximum and initial sizes consistent
 483     // with the gen0 sizes and the overall heap sizes.
 484     assert(_min_heap_byte_size > _min_gen0_size,
 485       "gen0 has an unexpected minimum size");
 486     _min_gen1_size = _min_heap_byte_size - _min_gen0_size;
 487     _min_gen1_size = MAX2((uintx)align_size_down(_min_gen1_size, _min_alignment),
 488            _min_alignment);
 489     _initial_gen1_size = _initial_heap_byte_size - _initial_gen0_size;
 490     _initial_gen1_size = MAX2((uintx)align_size_down(_initial_gen1_size, _min_alignment),
 491            _min_alignment);
 492   } else {
 493     // OldSize has been explicitly set on the command line. Use the
 494     // OldSize and then determine the consequences.
 495     _min_gen1_size = OldSize;
 496     _initial_gen1_size = OldSize;
 497 
 498     // If the user has explicitly set an OldSize that is inconsistent
 499     // with other command line flags, issue a warning.
 500     // The generation minimums and the overall heap minimum should
 501     // be within one heap alignment.
 502     if ((_min_gen1_size + _min_gen0_size + _min_alignment) < _min_heap_byte_size) {
 503       warning("Inconsistency between minimum heap size and minimum "
 504               "generation sizes: using minimum heap = " SIZE_FORMAT,
 505               _min_heap_byte_size);
 506     }
 507     if (OldSize > _max_gen1_size) {
 508       warning("Inconsistency between maximum heap size and maximum "
 509               "generation sizes: using maximum heap = " SIZE_FORMAT
 510               " -XX:OldSize flag is being ignored",
 511               _max_heap_byte_size);
 512     }
 513     // If there is an inconsistency between the OldSize and the minimum and/or
 514     // initial size of gen0, since OldSize was explicitly set, OldSize wins.
 515     if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size,
 516                           _min_heap_byte_size, OldSize)) {
 517       if (PrintGCDetails && Verbose) {
 518         gclog_or_tty->print_cr("2: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 519               SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 520               _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 521       }
 522     }
 523     // The same as above for the old gen initial size
 524     if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
 525                           _initial_heap_byte_size, OldSize)) {
 526       if (PrintGCDetails && Verbose) {
 527         gclog_or_tty->print_cr("3: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 528           SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 529           _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 530       }
 531     }


 532   }
 533 
 534   _min_gen1_size = MIN2(_min_gen1_size, _max_gen1_size);
 535 
 536   // Make sure that min gen1 <= initial gen1 <= max gen1
 537   _initial_gen1_size = MAX2(_initial_gen1_size, _min_gen1_size);
 538   _initial_gen1_size = MIN2(_initial_gen1_size, _max_gen1_size);
 539 
 540   if (PrintGCDetails && Verbose) {
 541     gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT "  Initial gen1 "
 542       SIZE_FORMAT "  Maximum gen1 " SIZE_FORMAT,
 543       _min_gen1_size, _initial_gen1_size, _max_gen1_size);
 544   }


 545 }
 546 
 547 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
 548                                         bool is_tlab,
 549                                         bool* gc_overhead_limit_was_exceeded) {
 550   GenCollectedHeap *gch = GenCollectedHeap::heap();
 551 
 552   debug_only(gch->check_for_valid_allocation_state());
 553   assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
 554 
 555   // In general gc_overhead_limit_was_exceeded should be false so
 556   // set it so here and reset it to true only if the gc time
 557   // limit is being exceeded as checked below.
 558   *gc_overhead_limit_was_exceeded = false;
 559 
 560   HeapWord* result = NULL;
 561 
 562   // Loop until the allocation is satisfied, or unsatisfied after GC.
 563   for (int try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
 564     HandleMark hm; // discard any handles allocated in each iteration




  35 #include "memory/universe.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/globals_extension.hpp"
  38 #include "runtime/handles.inline.hpp"
  39 #include "runtime/java.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 #include "runtime/vmThread.hpp"
  42 #include "utilities/macros.hpp"
  43 #if INCLUDE_ALL_GCS
  44 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  45 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  46 #endif // INCLUDE_ALL_GCS
  47 
  48 // CollectorPolicy methods.
  49 
  50 // Align down. If the aligning result in 0, return 'alignment'.
  51 static size_t restricted_align_down(size_t size, size_t alignment) {
  52   return MAX2(alignment, align_size_down_(size, alignment));
  53 }
  54 
  55 void CollectorPolicy::assert_flags() {
  56   assert(InitialHeapSize <= MaxHeapSize, "Ergonomics decided on incompatible initial and maximum heap sizes");
  57   assert(InitialHeapSize % _min_alignment == 0, "InitialHeapSize alignment");
  58   assert(MaxHeapSize % _max_alignment == 0, "MaxHeapSize alignment");
  59 }
  60 
  61 void CollectorPolicy::assert_size_info() {
  62   assert(_max_heap_byte_size >= _min_heap_byte_size, "Ergonomics decided on incompatible minimum and maximum heap sizes");
  63   assert(_initial_heap_byte_size >= _min_heap_byte_size, "Ergonomics decided on incompatible initial and minimum heap sizes");
  64   assert(_max_heap_byte_size >= _initial_heap_byte_size, "Ergonomics decided on incompatible initial and maximum heap sizes");
  65   assert(_min_heap_byte_size % _min_alignment == 0, "min_heap_byte_size alignment");
  66   assert(_initial_heap_byte_size % _min_alignment == 0, "initial_heap_byte_size alignment");
  67   assert(_max_heap_byte_size % _max_alignment == 0, "max_heap_byte_size alignment");
  68 }
  69 
  70 void CollectorPolicy::initialize_flags() {
  71   assert(_max_alignment >= _min_alignment,
  72          err_msg("max_alignment: " SIZE_FORMAT " less than min_alignment: " SIZE_FORMAT,
  73                  _max_alignment, _min_alignment));
  74   assert(_max_alignment % _min_alignment == 0,
  75          err_msg("max_alignment: " SIZE_FORMAT " not aligned by min_alignment: " SIZE_FORMAT,
  76                  _max_alignment, _min_alignment));
  77 
  78   if (FLAG_IS_CMDLINE(MaxHeapSize)) {
  79     if (FLAG_IS_CMDLINE(InitialHeapSize) && InitialHeapSize > MaxHeapSize) {
  80       vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
  81     }
  82     if (Arguments::min_heap_size() != 0 && MaxHeapSize < Arguments::min_heap_size()) {
  83       vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
  84     }
  85     _max_heap_size_cmdline = true;
  86   }
  87 
  88   if (FLAG_IS_CMDLINE(InitialHeapSize) && Arguments::min_heap_size() != 0 &&
  89       InitialHeapSize < Arguments::min_heap_size()) {
  90     vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
  91   }
  92   if (!FLAG_IS_DEFAULT(InitialHeapSize) && InitialHeapSize > MaxHeapSize) {
  93     FLAG_SET_ERGO(uintx, MaxHeapSize, InitialHeapSize);
  94   } else if (!FLAG_IS_DEFAULT(MaxHeapSize) && InitialHeapSize > MaxHeapSize) {
  95     FLAG_SET_ERGO(uintx, InitialHeapSize, MaxHeapSize);
  96     if (InitialHeapSize < Arguments::min_heap_size()) {
  97       Arguments::set_min_heap_size(InitialHeapSize);
  98     }
  99   }
 100 
 101   // User inputs from -Xmx and -Xms must be aligned
 102   Arguments::set_min_heap_size(align_size_up(Arguments::min_heap_size(), _min_alignment));
 103   uintx alignedInitialHeapSize = align_size_up(InitialHeapSize, _min_alignment);
 104   uintx alignedMaxHeapSize = align_size_up(MaxHeapSize, _max_alignment);
 105 
 106   // Write back to flags if the values changed
 107   if (alignedInitialHeapSize != InitialHeapSize) {
 108     FLAG_SET_ERGO(uintx, InitialHeapSize, alignedInitialHeapSize);
 109   }
 110   if (alignedMaxHeapSize != MaxHeapSize) {
 111     FLAG_SET_ERGO(uintx, MaxHeapSize, alignedMaxHeapSize);
 112   }
 113 
 114   if (!is_size_aligned(MaxMetaspaceSize, _max_alignment)) {
 115     FLAG_SET_ERGO(uintx, MaxMetaspaceSize,
 116         restricted_align_down(MaxMetaspaceSize, _max_alignment));
 117   }
 118 
 119   if (MetaspaceSize > MaxMetaspaceSize) {
 120     FLAG_SET_ERGO(uintx, MetaspaceSize, MaxMetaspaceSize);
 121   }
 122 
 123   if (!is_size_aligned(MetaspaceSize, _min_alignment)) {
 124     FLAG_SET_ERGO(uintx, MetaspaceSize,
 125         restricted_align_down(MetaspaceSize, _min_alignment));
 126   }
 127 
 128   assert(MetaspaceSize <= MaxMetaspaceSize, "Must be");
 129 
 130   MinMetaspaceExpansion = restricted_align_down(MinMetaspaceExpansion, _min_alignment);
 131   MaxMetaspaceExpansion = restricted_align_down(MaxMetaspaceExpansion, _min_alignment);
 132 
 133   MinHeapDeltaBytes = align_size_up(MinHeapDeltaBytes, _min_alignment);
 134 
 135   assert(MetaspaceSize    % _min_alignment == 0, "metapace alignment");
 136   assert(MaxMetaspaceSize % _max_alignment == 0, "maximum metaspace alignment");
 137   if (MetaspaceSize < 256*K) {
 138     vm_exit_during_initialization("Too small initial Metaspace size");
 139   }
 140 
 141   CollectorPolicy::assert_flags();
 142 }
 143 
 144 void CollectorPolicy::initialize_size_info() {
 145   _min_heap_byte_size = Arguments::min_heap_size();
 146   _initial_heap_byte_size = InitialHeapSize;
 147   _max_heap_byte_size = MaxHeapSize;

 148 
 149   // Check heap parameter properties
 150   if (_initial_heap_byte_size < M) {
 151     vm_exit_during_initialization("Too small initial heap");
 152   }
 153   // Check heap parameter properties
 154   if (_min_heap_byte_size < M) {
 155     vm_exit_during_initialization("Too small minimum heap");
 156   }













 157 
 158   if (PrintGCDetails && Verbose) {
 159     gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT "  Initial heap "
 160       SIZE_FORMAT "  Maximum heap " SIZE_FORMAT,
 161       _min_heap_byte_size, _initial_heap_byte_size, _max_heap_byte_size);
 162   }
 163 
 164   CollectorPolicy::assert_size_info();
 165 }
 166 
 167 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
 168   bool result = _should_clear_all_soft_refs;
 169   set_should_clear_all_soft_refs(false);
 170   return result;
 171 }
 172 
 173 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
 174                                            int max_covered_regions) {
 175   assert(rem_set_name() == GenRemSet::CardTable, "unrecognized GenRemSet::Name");
 176   return new CardTableRS(whole_heap, max_covered_regions);
 177 }
 178 
 179 void CollectorPolicy::cleared_all_soft_refs() {
 180   // If near gc overhear limit, continue to clear SoftRefs.  SoftRefs may
 181   // have been cleared in the last collection but if the gc overhear
 182   // limit continues to be near, SoftRefs should still be cleared.
 183   if (size_policy() != NULL) {
 184     _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();


 197   // is supported.
 198   // Requirements of any new remembered set implementations must be added here.
 199   size_t alignment = GenRemSet::max_alignment_constraint(GenRemSet::CardTable);
 200 
 201   // Parallel GC does its own alignment of the generations to avoid requiring a
 202   // large page (256M on some platforms) for the permanent generation.  The
 203   // other collectors should also be updated to do their own alignment and then
 204   // this use of lcm() should be removed.
 205   if (UseLargePages && !UseParallelGC) {
 206       // in presence of large pages we have to make sure that our
 207       // alignment is large page aware
 208       alignment = lcm(os::large_page_size(), alignment);
 209   }
 210 
 211   return alignment;
 212 }
 213 
 214 // GenCollectorPolicy methods.
 215 
 216 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
 217   return restricted_align_down(base_size / (NewRatio + 1), _min_alignment);




 218 }
 219 
 220 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
 221                                                  size_t maximum_size) {
 222   size_t alignment = _min_alignment;
 223   size_t max_minus = maximum_size - alignment;
 224   return desired_size < max_minus ? desired_size : max_minus;
 225 }
 226 
 227 
 228 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
 229                                                 size_t init_promo_size,
 230                                                 size_t init_survivor_size) {
 231   const double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
 232   _size_policy = new AdaptiveSizePolicy(init_eden_size,
 233                                         init_promo_size,
 234                                         init_survivor_size,
 235                                         max_gc_pause_sec,
 236                                         GCTimeRatio);
 237 }
 238 
 239 size_t GenCollectorPolicy::compute_max_alignment() {
 240   // The card marking array and the offset arrays for old generations are
 241   // committed in os pages as well. Make sure they are entirely full (to
 242   // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
 243   // byte entry and the os page size is 4096, the maximum heap size should
 244   // be 512*4096 = 2MB aligned.
 245   size_t alignment = GenRemSet::max_alignment_constraint(rem_set_name());
 246 
 247   // Parallel GC does its own alignment of the generations to avoid requiring a
 248   // large page (256M on some platforms) for the permanent generation.  The
 249   // other collectors should also be updated to do their own alignment and then
 250   // this use of lcm() should be removed.
 251   if (UseLargePages && !UseParallelGC) {
 252       // in presence of large pages we have to make sure that our
 253       // alignment is large page aware
 254       alignment = lcm(os::large_page_size(), alignment);
 255   }
 256 
 257   assert(alignment >= _min_alignment, "Must be");
 258 
 259   return alignment;
 260 }
 261 
 262 void GenCollectorPolicy::assert_flags() {
 263   CollectorPolicy::assert_flags();
 264   assert(NewSize >= _min_gen0_size, "Ergonomics decided on a too small young gen size");
 265   assert(NewSize <= MaxNewSize, "Ergonomics decided on incompatible initial and maximum young gen sizes");
 266   assert(FLAG_IS_DEFAULT(MaxNewSize) || MaxNewSize < MaxHeapSize, "Ergonomics decided on incompatible maximum young gen and heap sizes");
 267   assert(NewSize % _min_alignment == 0, "NewSize alignment");
 268   assert(FLAG_IS_DEFAULT(MaxNewSize) || MaxNewSize % _min_alignment == 0, "MaxNewSize alignment");
 269 }
 270 
 271 void TwoGenerationCollectorPolicy::assert_flags() {
 272   GenCollectorPolicy::assert_flags();
 273   assert(OldSize + NewSize <= MaxHeapSize, "Ergonomics decided on incompatible generation and heap sizes");
 274   assert(OldSize % _min_alignment == 0, "OldSize alignment");
 275 }
 276 
 277 void GenCollectorPolicy::assert_size_info() {
 278   CollectorPolicy::assert_size_info();
 279   // GenCollectorPolicy::initialize_size_info may update the MaxNewSize
 280   assert(MaxNewSize < MaxHeapSize, "Ergonomics decided on incompatible maximum young and heap sizes");
 281   assert(_min_gen0_size <= _initial_gen0_size, "Ergonomics decided on incompatible minimum and initial young gen sizes");
 282   assert(_initial_gen0_size <= _max_gen0_size, "Ergonomics decided on incompatible initial and maximum young gen sizes");
 283   assert(_min_gen0_size % _min_alignment == 0, "_min_gen0_size alignment");
 284   assert(_initial_gen0_size % _min_alignment == 0, "_initial_gen0_size alignment");
 285   assert(_max_gen0_size % _min_alignment == 0, "_max_gen0_size alignment");
 286 }
 287 
 288 void TwoGenerationCollectorPolicy::assert_size_info() {
 289   GenCollectorPolicy::assert_size_info();
 290   assert(_min_gen1_size <= _initial_gen1_size, "Ergonomics decided on incompatible minimum and initial old gen sizes");
 291   assert(_initial_gen1_size <= _max_gen1_size, "Ergonomics decided on incompatible initial and maximum old gen sizes");
 292   assert(_max_gen1_size % _min_alignment == 0, "_max_gen1_size alignment");
 293   assert(_initial_gen1_size % _min_alignment == 0, "_initial_gen1_size alignment");
 294   assert(_max_heap_byte_size <= (_max_gen0_size + _max_gen1_size), "Total maximum heap sizes must be sum of generation maximum sizes");
 295 }
 296 
 297 void GenCollectorPolicy::initialize_flags() {
 298   // All sizes must be multiples of the generation granularity.
 299   _min_alignment = (uintx) Generation::GenGrain;
 300   _max_alignment = compute_max_alignment();
 301 
 302   CollectorPolicy::initialize_flags();
 303 
 304   // This is the absolute minimum for the young generation. It has to hold two
 305   // survivor areas and the eden. We set it here since it is used repeatedly
 306   // throughout the initialization. However this is not necessarily the final
 307   // value of _min_gen0_size.
 308   _min_gen0_size = 3 * intra_heap_alignment();
 309 
 310   // Make sure the heap is large enough for two generations.
 311   uintx smallestHeapSize = _min_gen0_size + intra_heap_alignment();
 312   if (MaxHeapSize < smallestHeapSize) {
 313     FLAG_SET_ERGO(uintx, MaxHeapSize, align_size_up(smallestHeapSize, _max_alignment));
 314   }
 315 
 316   // All generational heaps have a youngest gen; handle those flags here.
 317 
 318   if (FLAG_IS_CMDLINE(NewSize) && FLAG_IS_CMDLINE(MaxNewSize) && NewSize > MaxNewSize) {
 319     vm_exit_during_initialization("Incompatible initial and maximum young gen sizes specified");
 320   }
 321 
 322   if (!FLAG_IS_DEFAULT(MaxNewSize)) {
 323     uintx minNewSize = MAX2(_min_alignment, _min_gen0_size);
 324 
 325     if (MaxNewSize >= MaxHeapSize) {
 326       uintx smallerMaxNewSize = MaxHeapSize - _min_alignment;
 327       if (FLAG_IS_CMDLINE(MaxNewSize)) {
 328         warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or greater than the entire "
 329                 "heap (" SIZE_FORMAT "k).  A new max generation size of " SIZE_FORMAT "k will be used.",
 330                 MaxNewSize/K, MaxHeapSize/K, smallerMaxNewSize/K);
 331       }
 332       FLAG_SET_ERGO(uintx, MaxNewSize, smallerMaxNewSize);
 333       if (NewSize > MaxNewSize) {
 334         FLAG_SET_ERGO(uintx, NewSize, MaxNewSize);
 335       }
 336     } else if (MaxNewSize < minNewSize) {
 337       FLAG_SET_ERGO(uintx, MaxNewSize, minNewSize);
 338     } else if (!is_size_aligned(MaxNewSize, _min_alignment)) {
 339       FLAG_SET_ERGO(uintx, MaxNewSize, align_size_down(MaxNewSize, _min_alignment));
 340     }
 341   }


 342 
 343   // Young space must be aligned and have room for eden + two survivors.
 344   // We will silently increase the NewSize even if the user specified a smaller value.
 345   uintx smallestNewSize = MAX2(align_size_up(_min_gen0_size, _min_alignment),
 346                                align_size_down(NewSize, _min_alignment));
 347   if (smallestNewSize != NewSize) {
 348     FLAG_SET_ERGO(uintx, NewSize, smallestNewSize);
 349   }
 350 
 351   if (NewSize > MaxNewSize) {
 352     // At this point this should only happen if the user specifies a large NewSize or
 353     // a small (but not too small) MaxNewSize.
 354     if (FLAG_IS_CMDLINE(NewSize)) {
 355       warning("NewSize (" SIZE_FORMAT "k) is greater than the MaxNewSize (" SIZE_FORMAT "k). "
 356               "A new generation size of " SIZE_FORMAT "k will be used.",
 357               NewSize/K, MaxNewSize/K, MaxNewSize/K);
 358     }
 359     FLAG_SET_ERGO(uintx, NewSize, MaxNewSize);
 360   }
 361 
 362   if (SurvivorRatio < 1 || NewRatio < 1) {
 363     vm_exit_during_initialization("Invalid young gen ratio specified");
 364   }
 365 
 366   GenCollectorPolicy::assert_flags();
 367 }
 368 
 369 void TwoGenerationCollectorPolicy::initialize_flags() {
 370   GenCollectorPolicy::initialize_flags();
 371 
 372   if (!is_size_aligned(OldSize, _min_alignment)) {
 373     FLAG_SET_ERGO(uintx, OldSize, align_size_down(OldSize, _min_alignment));
 374   }
 375 
 376   if (FLAG_IS_CMDLINE(OldSize) && FLAG_IS_DEFAULT(MaxHeapSize)) {
 377     // NewRatio will be used later to set the young generation size so we use
 378     // it to calculate how big the heap should be based on the requested OldSize
 379     // and NewRatio.
 380     assert(NewRatio > 0, "NewRatio should have been set up earlier");
 381     size_t calculated_heapsize = (OldSize / NewRatio) * (NewRatio + 1);
 382 
 383     calculated_heapsize = align_size_up(calculated_heapsize, _max_alignment);
 384     FLAG_SET_ERGO(uintx, MaxHeapSize, calculated_heapsize);
 385     FLAG_SET_ERGO(uintx, InitialHeapSize, calculated_heapsize);
 386   }

 387 
 388   // adjust max heap size if necessary
 389   if (NewSize + OldSize > MaxHeapSize) {
 390     if (_max_heap_size_cmdline) {
 391       // Somebody has set a maximum heap size with the intention that we should not
 392       // exceed it. Adjust New/OldSize as necessary.
 393       uintx calculated_size = NewSize + OldSize;
 394       double shrink_factor = (double) MaxHeapSize / calculated_size;
 395       // align
 396       FLAG_SET_ERGO(uintx, NewSize, MAX2(_min_gen0_size, (uintx)align_size_down((uintx)(NewSize * shrink_factor), _min_alignment)));











 397 









 398       // OldSize is already aligned because above we aligned MaxHeapSize to
 399       // _max_alignment, and we just made sure that NewSize is aligned to
 400       // _min_alignment. In initialize_flags() we verified that _max_alignment
 401       // is a multiple of _min_alignment.
 402       FLAG_SET_ERGO(uintx, OldSize, MaxHeapSize - NewSize);
 403     } else {
 404       FLAG_SET_ERGO(uintx, MaxHeapSize, align_size_up(NewSize + OldSize, _max_alignment));
 405     }
 406   }


 407 
 408   always_do_update_barrier = UseConcMarkSweepGC;
 409   TwoGenerationCollectorPolicy::assert_flags();



 410 }
 411 
 412 // Values set on the command line win over any ergonomically
 413 // set command line parameters.
 414 // Ergonomic choice of parameters are done before this
 415 // method is called.  Values for command line parameters such as NewSize
 416 // and MaxNewSize feed those ergonomic choices into this method.
 417 // This method makes the final generation sizings consistent with
 418 // themselves and with overall heap sizings.
 419 // In the absence of explicitly set command line flags, policies
 420 // such as the use of NewRatio are used to size the generation.
 421 void GenCollectorPolicy::initialize_size_info() {
 422   CollectorPolicy::initialize_size_info();
 423 
 424   // _min_alignment is used for alignment within a generation.
 425   // There is additional alignment done down stream for some
 426   // collectors that sometimes causes unwanted rounding up of
 427   // generations sizes.
 428 
 429   // Determine maximum size of gen0
 430 
 431   size_t max_new_size = 0;
 432   if (!FLAG_IS_DEFAULT(MaxNewSize)) {
 433     max_new_size = MaxNewSize;



























 434   } else {
 435     max_new_size = scale_by_NewRatio_aligned(_max_heap_byte_size);
 436     // Bound the maximum size by NewSize below (since it historically
 437     // would have been NewSize and because the NewRatio calculation could
 438     // yield a size that is too small) and bound it by MaxNewSize above.
 439     // Ergonomics plays here by previously calculating the desired
 440     // NewSize and MaxNewSize.
 441     max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
 442   }
 443   assert(max_new_size > 0, "All paths should set max_new_size");
 444 
 445   // Given the maximum gen0 size, determine the initial and
 446   // minimum gen0 sizes.
 447 
 448   if (_max_heap_byte_size == _min_heap_byte_size) {
 449     // The maximum and minimum heap sizes are the same so
 450     // the generations minimum and initial must be the
 451     // same as its maximum.
 452     _min_gen0_size = max_new_size;
 453     _initial_gen0_size = max_new_size;


 482     _max_gen0_size = max_new_size;
 483 
 484     // At this point the desirable initial and minimum sizes have been
 485     // determined without regard to the maximum sizes.
 486 
 487     // Bound the sizes by the corresponding overall heap sizes.
 488     _min_gen0_size = bound_minus_alignment(_min_gen0_size, _min_heap_byte_size);
 489     _initial_gen0_size = bound_minus_alignment(_initial_gen0_size, _initial_heap_byte_size);
 490     _max_gen0_size = bound_minus_alignment(_max_gen0_size, _max_heap_byte_size);
 491 
 492     // At this point all three sizes have been checked against the
 493     // maximum sizes but have not been checked for consistency
 494     // among the three.
 495 
 496     // Final check min <= initial <= max
 497     _min_gen0_size = MIN2(_min_gen0_size, _max_gen0_size);
 498     _initial_gen0_size = MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size);
 499     _min_gen0_size = MIN2(_min_gen0_size, _initial_gen0_size);
 500   }
 501 
 502   // Write back to flag if necessary
 503   if (MaxNewSize != _min_gen0_size) {
 504     FLAG_SET_ERGO(uintx, MaxNewSize, _max_gen0_size);
 505   }
 506 
 507   if (PrintGCDetails && Verbose) {
 508     gclog_or_tty->print_cr("1: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 509       SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 510       _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 511   }
 512 
 513   GenCollectorPolicy::assert_size_info();
 514 }
 515 
 516 // Call this method during the sizing of the gen1 to make
 517 // adjustments to gen0 because of gen1 sizing policy.  gen0 initially has
 518 // the most freedom in sizing because it is done before the
 519 // policy for gen1 is applied.  Once gen1 policies have been applied,
 520 // there may be conflicts in the shape of the heap and this method
 521 // is used to make the needed adjustments.  The application of the
 522 // policies could be more sophisticated (iterative for example) but
 523 // keeping it simple also seems a worthwhile goal.
 524 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
 525                                                      size_t* gen1_size_ptr,
 526                                                      const size_t heap_size,
 527                                                      const size_t min_gen1_size) {
 528   bool result = false;
 529 
 530   if ((*gen1_size_ptr + *gen0_size_ptr) > heap_size) {
 531     if ((heap_size < (*gen0_size_ptr + min_gen1_size)) &&
 532         (heap_size >= min_gen1_size + _min_alignment)) {
 533       // Adjust gen0 down to accommodate min_gen1_size
 534       *gen0_size_ptr = restricted_align_down(heap_size - min_gen1_size, _min_alignment);


 535       assert(*gen0_size_ptr > 0, "Min gen0 is too large");
 536       result = true;
 537     } else {
 538       *gen1_size_ptr = restricted_align_down(heap_size - *gen0_size_ptr, _min_alignment);


 539     }
 540   }
 541   return result;
 542 }
 543 
 544 // Minimum sizes of the generations may be different than
 545 // the initial sizes.  An inconsistency is permitted here
 546 // in the total size that can be specified explicitly by
 547 // command line specification of OldSize and NewSize and
 548 // also a command line specification of -Xms.  Issue a warning
 549 // but allow the values to pass.
 550 
 551 void TwoGenerationCollectorPolicy::initialize_size_info() {
 552   GenCollectorPolicy::initialize_size_info();
 553 
 554   // At this point the minimum, initial and maximum sizes
 555   // of the overall heap and of gen0 have been determined.
 556   // The maximum gen1 size can be determined from the maximum gen0
 557   // and maximum heap size since no explicit flags exist
 558   // for setting the gen1 maximum.
 559   _max_gen1_size = MAX2(_max_heap_byte_size - _max_gen0_size, _min_alignment);
 560 

 561   // If no explicit command line flag has been set for the
 562   // gen1 size, use what is left for gen1.
 563   if (!FLAG_IS_CMDLINE(OldSize)) {
 564     // The user has not specified any value but the ergonomics
 565     // may have chosen a value (which may or may not be consistent
 566     // with the overall heap size).  In either case make
 567     // the minimum, maximum and initial sizes consistent
 568     // with the gen0 sizes and the overall heap sizes.
 569     _min_gen1_size = MAX2(_min_heap_byte_size - _min_gen0_size, _min_alignment);
 570     _initial_gen1_size = MAX2(_initial_heap_byte_size - _initial_gen0_size, _min_alignment);
 571     // _max_gen1_size has already been made consistent above
 572     FLAG_SET_ERGO(uintx, OldSize, _initial_gen1_size);




 573   } else {
 574     // OldSize has been explicitly set on the command line. Use the
 575     // OldSize and then determine the consequences.
 576     _min_gen1_size = MIN2(OldSize, _min_heap_byte_size - _min_gen0_size);
 577     _initial_gen1_size = OldSize;
 578 
 579     // If the user has explicitly set an OldSize that is inconsistent
 580     // with other command line flags, issue a warning.
 581     // The generation minimums and the overall heap minimum should
 582     // be within one heap alignment.
 583     if ((_min_gen1_size + _min_gen0_size + _min_alignment) < _min_heap_byte_size) {
 584       warning("Inconsistency between minimum heap size and minimum "
 585               "generation sizes: using minimum heap = " SIZE_FORMAT,
 586               _min_heap_byte_size);
 587     }
 588     if (OldSize > _max_gen1_size) {
 589       warning("Inconsistency between maximum heap size and maximum "
 590               "generation sizes: using maximum heap = " SIZE_FORMAT
 591               " -XX:OldSize flag is being ignored",
 592               _max_heap_byte_size);
 593     }
 594     // If there is an inconsistency between the OldSize and the minimum and/or
 595     // initial size of gen0, since OldSize was explicitly set, OldSize wins.
 596     if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size,
 597                           _min_heap_byte_size, _min_gen1_size)) {
 598       if (PrintGCDetails && Verbose) {
 599         gclog_or_tty->print_cr("2: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 600               SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 601               _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 602       }
 603     }
 604     // The same as above for the old gen initial size
 605     if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
 606                           _initial_heap_byte_size, _initial_gen1_size)) {
 607       if (PrintGCDetails && Verbose) {
 608         gclog_or_tty->print_cr("3: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 609           SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 610           _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 611       }
 612     }
 613     // update OldSize
 614     FLAG_SET_ERGO(uintx, OldSize, _initial_gen1_size);
 615   }
 616 
 617   _min_gen1_size = MIN2(_min_gen1_size, _max_gen1_size);
 618 
 619   // Make sure that min gen1 <= initial gen1 <= max gen1
 620   _initial_gen1_size = MAX2(_initial_gen1_size, _min_gen1_size);
 621   _initial_gen1_size = MIN2(_initial_gen1_size, _max_gen1_size);
 622 
 623   if (PrintGCDetails && Verbose) {
 624     gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT "  Initial gen1 "
 625       SIZE_FORMAT "  Maximum gen1 " SIZE_FORMAT,
 626       _min_gen1_size, _initial_gen1_size, _max_gen1_size);
 627   }
 628 
 629   TwoGenerationCollectorPolicy::assert_size_info();
 630 }
 631 
 632 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
 633                                         bool is_tlab,
 634                                         bool* gc_overhead_limit_was_exceeded) {
 635   GenCollectedHeap *gch = GenCollectedHeap::heap();
 636 
 637   debug_only(gch->check_for_valid_allocation_state());
 638   assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
 639 
 640   // In general gc_overhead_limit_was_exceeded should be false so
 641   // set it so here and reset it to true only if the gc time
 642   // limit is being exceeded as checked below.
 643   *gc_overhead_limit_was_exceeded = false;
 644 
 645   HeapWord* result = NULL;
 646 
 647   // Loop until the allocation is satisfied, or unsatisfied after GC.
 648   for (int try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
 649     HandleMark hm; // discard any handles allocated in each iteration


src/share/vm/memory/collectorPolicy.cpp
Index Unified diffs Context diffs Sdiffs Patch New Old Previous File Next File