1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  28 #include "gc_implementation/shared/vmGCOperations.hpp"
  29 #include "memory/cardTableRS.hpp"
  30 #include "memory/collectorPolicy.hpp"
  31 #include "memory/gcLocker.inline.hpp"
  32 #include "memory/genCollectedHeap.hpp"
  33 #include "memory/generationSpec.hpp"
  34 #include "memory/space.hpp"
  35 #include "memory/universe.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/globals_extension.hpp"
  38 #include "runtime/handles.inline.hpp"
  39 #include "runtime/java.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 #include "runtime/vmThread.hpp"
  42 #include "utilities/macros.hpp"
  43 #if INCLUDE_ALL_GCS
  44 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  45 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  46 #endif // INCLUDE_ALL_GCS
  47 
  48 // CollectorPolicy methods.
  49 
  50 CollectorPolicy::CollectorPolicy() :
  51     _space_alignment(0),
  52     _heap_alignment(0),
  53     _initial_heap_byte_size(InitialHeapSize),
  54     _max_heap_byte_size(MaxHeapSize),
  55     _min_heap_byte_size(Arguments::min_heap_size()),
  56     _max_heap_size_cmdline(false),
  57     _size_policy(NULL),
  58     _should_clear_all_soft_refs(false),
  59     _all_soft_refs_clear(false)
  60 {}
  61 
  62 void CollectorPolicy::assert_flags() {
  63   assert(InitialHeapSize <= MaxHeapSize, "Ergonomics decided on incompatible initial and maximum heap sizes");
  64   assert(InitialHeapSize % _heap_alignment == 0, "InitialHeapSize alignment");
  65   assert(MaxHeapSize % _heap_alignment == 0, "MaxHeapSize alignment");
  66 }
  67 
  68 void CollectorPolicy::assert_size_info() {
  69   assert(InitialHeapSize == _initial_heap_byte_size, "Discrepancy between InitialHeapSize flag and local storage");
  70   assert(MaxHeapSize == _max_heap_byte_size, "Discrepancy between MaxHeapSize flag and local storage");
  71   assert(_max_heap_byte_size >= _min_heap_byte_size, "Ergonomics decided on incompatible minimum and maximum heap sizes");
  72   assert(_initial_heap_byte_size >= _min_heap_byte_size, "Ergonomics decided on incompatible initial and minimum heap sizes");
  73   assert(_max_heap_byte_size >= _initial_heap_byte_size, "Ergonomics decided on incompatible initial and maximum heap sizes");
  74   assert(_min_heap_byte_size % _heap_alignment == 0, "min_heap_byte_size alignment");
  75   assert(_initial_heap_byte_size % _heap_alignment == 0, "initial_heap_byte_size alignment");
  76   assert(_max_heap_byte_size % _heap_alignment == 0, "max_heap_byte_size alignment");
  77 }
  78 
  79 void CollectorPolicy::initialize_alignments() {
  80   _space_alignment = (uintx) Generation::GenGrain;
  81   _heap_alignment = compute_heap_alignment();
  82 }
  83 
  84 void CollectorPolicy::initialize_flags() {
  85   assert(_space_alignment != 0, "Space alignment not set up properly");
  86   assert(_heap_alignment != 0, "Heap alignment not set up properly");
  87   assert(_heap_alignment >= _space_alignment,
  88          err_msg("heap_alignment: " SIZE_FORMAT " less than space_alignment: " SIZE_FORMAT,
  89                  _heap_alignment, _space_alignment));
  90   assert(_heap_alignment % _space_alignment == 0,
  91          err_msg("heap_alignment: " SIZE_FORMAT " not aligned by space_alignment: " SIZE_FORMAT,
  92                  _heap_alignment, _space_alignment));
  93 
  94   if (FLAG_IS_CMDLINE(MaxHeapSize)) {
  95     if (FLAG_IS_CMDLINE(InitialHeapSize) && InitialHeapSize > MaxHeapSize) {
  96       vm_exit_during_initialization("Initial heap size set to a larger value than the maximum heap size");
  97     }
  98     if (_min_heap_byte_size != 0 && MaxHeapSize < _min_heap_byte_size) {
  99       vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
 100     }
 101     _max_heap_size_cmdline = true;
 102   }
 103 
 104   // Check heap parameter properties
 105   if (InitialHeapSize < M) {
 106     vm_exit_during_initialization("Too small initial heap");
 107   }
 108   if (_min_heap_byte_size < M) {
 109     vm_exit_during_initialization("Too small minimum heap");
 110   }
 111 
 112   // User inputs from -Xmx and -Xms must be aligned
 113   _min_heap_byte_size = align_size_up(_min_heap_byte_size, _heap_alignment);
 114   uintx alignedInitialHeapSize = align_size_up(InitialHeapSize, _heap_alignment);
 115   uintx alignedMaxHeapSize = align_size_up(MaxHeapSize, _heap_alignment);
 116 
 117   // Write back to flags if the values changed
 118   if (alignedInitialHeapSize != InitialHeapSize) {
 119     FLAG_SET_ERGO(uintx, InitialHeapSize, alignedInitialHeapSize);
 120   }
 121   if (alignedMaxHeapSize != MaxHeapSize) {
 122     FLAG_SET_ERGO(uintx, MaxHeapSize, alignedMaxHeapSize);
 123   }
 124 
 125   if (FLAG_IS_CMDLINE(InitialHeapSize) && _min_heap_byte_size != 0 &&
 126       InitialHeapSize < _min_heap_byte_size) {
 127     vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
 128   }
 129   if (!FLAG_IS_DEFAULT(InitialHeapSize) && InitialHeapSize > MaxHeapSize) {
 130     FLAG_SET_ERGO(uintx, MaxHeapSize, InitialHeapSize);
 131   } else if (!FLAG_IS_DEFAULT(MaxHeapSize) && InitialHeapSize > MaxHeapSize) {
 132     FLAG_SET_ERGO(uintx, InitialHeapSize, MaxHeapSize);
 133     if (InitialHeapSize < _min_heap_byte_size) {
 134       _min_heap_byte_size = InitialHeapSize;
 135     }
 136   }
 137 
 138   _initial_heap_byte_size = InitialHeapSize;
 139   _max_heap_byte_size = MaxHeapSize;
 140 
 141   FLAG_SET_ERGO(uintx, MinHeapDeltaBytes, align_size_up(MinHeapDeltaBytes, _space_alignment));
 142 
 143   CollectorPolicy::assert_flags();
 144 }
 145 
 146 void CollectorPolicy::initialize_size_info() {
 147   if (PrintGCDetails && Verbose) {
 148     gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT "  Initial heap "
 149       SIZE_FORMAT "  Maximum heap " SIZE_FORMAT,
 150       _min_heap_byte_size, _initial_heap_byte_size, _max_heap_byte_size);
 151   }
 152 
 153   CollectorPolicy::assert_size_info();
 154 }
 155 
 156 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
 157   bool result = _should_clear_all_soft_refs;
 158   set_should_clear_all_soft_refs(false);
 159   return result;
 160 }
 161 
 162 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
 163                                            int max_covered_regions) {
 164   return new CardTableRS(whole_heap, max_covered_regions);
 165 }
 166 
 167 void CollectorPolicy::cleared_all_soft_refs() {
 168   // If near gc overhear limit, continue to clear SoftRefs.  SoftRefs may
 169   // have been cleared in the last collection but if the gc overhear
 170   // limit continues to be near, SoftRefs should still be cleared.
 171   if (size_policy() != NULL) {
 172     _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
 173   }
 174   _all_soft_refs_clear = true;
 175 }
 176 
 177 size_t CollectorPolicy::compute_heap_alignment() {
 178   // The card marking array and the offset arrays for old generations are
 179   // committed in os pages as well. Make sure they are entirely full (to
 180   // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
 181   // byte entry and the os page size is 4096, the maximum heap size should
 182   // be 512*4096 = 2MB aligned.
 183 
 184   // There is only the GenRemSet in Hotspot and only the GenRemSet::CardTable
 185   // is supported.
 186   // Requirements of any new remembered set implementations must be added here.
 187   size_t alignment = GenRemSet::max_alignment_constraint(GenRemSet::CardTable);
 188 
 189   // Parallel GC does its own alignment of the generations to avoid requiring a
 190   // large page (256M on some platforms) for the permanent generation.  The
 191   // other collectors should also be updated to do their own alignment and then
 192   // this use of lcm() should be removed.
 193   if (UseLargePages && !UseParallelGC) {
 194       // in presence of large pages we have to make sure that our
 195       // alignment is large page aware
 196       alignment = lcm(os::large_page_size(), alignment);
 197   }
 198 
 199   return alignment;
 200 }
 201 
 202 // GenCollectorPolicy methods.
 203 
 204 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
 205   return align_size_down_bounded(base_size / (NewRatio + 1), _gen_alignment);
 206 }
 207 
 208 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
 209                                                  size_t maximum_size) {
 210   size_t max_minus = maximum_size - _gen_alignment;
 211   return desired_size < max_minus ? desired_size : max_minus;
 212 }
 213 
 214 
 215 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
 216                                                 size_t init_promo_size,
 217                                                 size_t init_survivor_size) {
 218   const double max_gc_pause_sec = ((double) MaxGCPauseMillis) / 1000.0;
 219   _size_policy = new AdaptiveSizePolicy(init_eden_size,
 220                                         init_promo_size,
 221                                         init_survivor_size,
 222                                         max_gc_pause_sec,
 223                                         GCTimeRatio);
 224 }
 225 
 226 size_t GenCollectorPolicy::young_gen_size_lower_bound() {
 227   // The young generation must be aligned and have room for eden + two survivors
 228   return align_size_up(3 * _space_alignment, _gen_alignment);
 229 }
 230 
 231 void GenCollectorPolicy::assert_flags() {
 232   CollectorPolicy::assert_flags();
 233   assert(NewSize >= _min_gen0_size, "Ergonomics decided on a too small young gen size");
 234   assert(NewSize <= MaxNewSize, "Ergonomics decided on incompatible initial and maximum young gen sizes");
 235   assert(FLAG_IS_DEFAULT(MaxNewSize) || MaxNewSize < MaxHeapSize, "Ergonomics decided on incompatible maximum young gen and heap sizes");
 236   assert(NewSize % _gen_alignment == 0, "NewSize alignment");
 237   assert(FLAG_IS_DEFAULT(MaxNewSize) || MaxNewSize % _gen_alignment == 0, "MaxNewSize alignment");
 238 }
 239 
 240 void TwoGenerationCollectorPolicy::assert_flags() {
 241   GenCollectorPolicy::assert_flags();
 242   assert(OldSize + NewSize <= MaxHeapSize, "Ergonomics decided on incompatible generation and heap sizes");
 243   assert(OldSize % _gen_alignment == 0, "OldSize alignment");
 244 }
 245 
 246 void GenCollectorPolicy::assert_size_info() {
 247   CollectorPolicy::assert_size_info();
 248   // GenCollectorPolicy::initialize_size_info may update the MaxNewSize
 249   assert(MaxNewSize < MaxHeapSize, "Ergonomics decided on incompatible maximum young and heap sizes");
 250   assert(NewSize == _initial_gen0_size, "Discrepancy between NewSize flag and local storage");
 251   assert(MaxNewSize == _max_gen0_size, "Discrepancy between MaxNewSize flag and local storage");
 252   assert(_min_gen0_size <= _initial_gen0_size, "Ergonomics decided on incompatible minimum and initial young gen sizes");
 253   assert(_initial_gen0_size <= _max_gen0_size, "Ergonomics decided on incompatible initial and maximum young gen sizes");
 254   assert(_min_gen0_size % _gen_alignment == 0, "_min_gen0_size alignment");
 255   assert(_initial_gen0_size % _gen_alignment == 0, "_initial_gen0_size alignment");
 256   assert(_max_gen0_size % _gen_alignment == 0, "_max_gen0_size alignment");
 257 }
 258 
 259 void TwoGenerationCollectorPolicy::assert_size_info() {
 260   GenCollectorPolicy::assert_size_info();
 261   assert(OldSize == _initial_gen1_size, "Discrepancy between OldSize flag and local storage");
 262   assert(_min_gen1_size <= _initial_gen1_size, "Ergonomics decided on incompatible minimum and initial old gen sizes");
 263   assert(_initial_gen1_size <= _max_gen1_size, "Ergonomics decided on incompatible initial and maximum old gen sizes");
 264   assert(_max_gen1_size % _gen_alignment == 0, "_max_gen1_size alignment");
 265   assert(_initial_gen1_size % _gen_alignment == 0, "_initial_gen1_size alignment");
 266   assert(_max_heap_byte_size <= (_max_gen0_size + _max_gen1_size), "Total maximum heap sizes must be sum of generation maximum sizes");
 267 }
 268 
 269 void GenCollectorPolicy::initialize_alignments() {
 270   CollectorPolicy::initialize_alignments();
 271   _gen_alignment = default_gen_alignment();
 272 }
 273 
 274 void GenCollectorPolicy::initialize_flags() {
 275   CollectorPolicy::initialize_flags();
 276 
 277   assert(_gen_alignment != 0, "Generation alignment not set up properly");
 278   assert(_heap_alignment >= _gen_alignment,
 279          err_msg("heap_alignment: " SIZE_FORMAT " less than gen_alignment: " SIZE_FORMAT,
 280                  _heap_alignment, _gen_alignment));
 281   assert(_gen_alignment % _space_alignment == 0,
 282          err_msg("gen_alignment: " SIZE_FORMAT " not aligned by space_alignment: " SIZE_FORMAT,
 283                  _gen_alignment, _space_alignment));
 284 
 285   // All generational heaps have a youngest gen; handle those flags here
 286   if (FLAG_IS_CMDLINE(NewSize) && FLAG_IS_CMDLINE(MaxNewSize) && NewSize > MaxNewSize) {
 287     vm_exit_during_initialization("Initial young gen size set larger than the maximum young gen size");
 288   }
 289 
 290   // Make sure the heap is large enough for two generations
 291   uintx smallestNewSize = young_gen_size_lower_bound();
 292   uintx smallestHeapSize = align_size_up(smallestNewSize + align_size_up(_space_alignment, _gen_alignment),
 293                                          _heap_alignment);
 294   if (MaxHeapSize < smallestHeapSize) {
 295     FLAG_SET_ERGO(uintx, MaxHeapSize, smallestHeapSize);
 296     _max_heap_byte_size = MaxHeapSize;
 297   }
 298   // If needed, synchronize _min_heap_byte size and _initial_heap_byte_size
 299   if (_min_heap_byte_size < smallestHeapSize) {
 300     _min_heap_byte_size = smallestHeapSize;
 301     if (InitialHeapSize < _min_heap_byte_size) {
 302       FLAG_SET_ERGO(uintx, InitialHeapSize, smallestHeapSize);
 303       _initial_heap_byte_size = smallestHeapSize;
 304     }
 305   }
 306 
 307   // Now take the actual NewSize into account. We will silently increase NewSize
 308   // if the user specified a smaller value.
 309   smallestNewSize = MAX2(smallestNewSize, (uintx)align_size_down(NewSize, _gen_alignment));
 310   if (smallestNewSize != NewSize) {
 311     FLAG_SET_ERGO(uintx, NewSize, smallestNewSize);
 312   }
 313   _initial_gen0_size = NewSize;
 314 
 315   if (!FLAG_IS_DEFAULT(MaxNewSize)) {
 316     uintx minNewSize = MAX2(_gen_alignment, _min_gen0_size);
 317 
 318     if (MaxNewSize >= MaxHeapSize) {
 319       // Make sure there is room for an old generation
 320       uintx smallerMaxNewSize = MaxHeapSize - _gen_alignment;
 321       if (FLAG_IS_CMDLINE(MaxNewSize)) {
 322         warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or greater than the entire "
 323                 "heap (" SIZE_FORMAT "k).  A new max generation size of " SIZE_FORMAT "k will be used.",
 324                 MaxNewSize/K, MaxHeapSize/K, smallerMaxNewSize/K);
 325       }
 326       FLAG_SET_ERGO(uintx, MaxNewSize, smallerMaxNewSize);
 327       if (NewSize > MaxNewSize) {
 328         FLAG_SET_ERGO(uintx, NewSize, MaxNewSize);
 329         _initial_gen0_size = NewSize;
 330       }
 331     } else if (MaxNewSize < minNewSize) {
 332       FLAG_SET_ERGO(uintx, MaxNewSize, minNewSize);
 333     } else if (!is_size_aligned(MaxNewSize, _gen_alignment)) {
 334       FLAG_SET_ERGO(uintx, MaxNewSize, align_size_down(MaxNewSize, _gen_alignment));
 335     }
 336     _max_gen0_size = MaxNewSize;
 337   }
 338 
 339   if (NewSize > MaxNewSize) {
 340     // At this point this should only happen if the user specifies a large NewSize or
 341     // a small (but not too small) MaxNewSize.
 342     if (FLAG_IS_CMDLINE(NewSize)) {
 343       warning("NewSize (" SIZE_FORMAT "k) is greater than the MaxNewSize (" SIZE_FORMAT "k). "
 344               "A new generation size of " SIZE_FORMAT "k will be used.",
 345               NewSize/K, MaxNewSize/K, MaxNewSize/K);
 346     }
 347     FLAG_SET_ERGO(uintx, NewSize, MaxNewSize);
 348     _initial_gen0_size = NewSize;
 349   }
 350 
 351   if (SurvivorRatio < 1 || NewRatio < 1) {
 352     vm_exit_during_initialization("Invalid young gen ratio specified");
 353   }
 354 
 355   GenCollectorPolicy::assert_flags();
 356 }
 357 
 358 void TwoGenerationCollectorPolicy::initialize_flags() {
 359   GenCollectorPolicy::initialize_flags();
 360 
 361   if (!is_size_aligned(OldSize, _gen_alignment)) {
 362     FLAG_SET_ERGO(uintx, OldSize, align_size_down(OldSize, _gen_alignment));
 363   }
 364 
 365   if (FLAG_IS_CMDLINE(OldSize) && FLAG_IS_DEFAULT(MaxHeapSize)) {
 366     // NewRatio will be used later to set the young generation size so we use
 367     // it to calculate how big the heap should be based on the requested OldSize
 368     // and NewRatio.
 369     assert(NewRatio > 0, "NewRatio should have been set up earlier");
 370     size_t calculated_heapsize = (OldSize / NewRatio) * (NewRatio + 1);
 371 
 372     calculated_heapsize = align_size_up(calculated_heapsize, _heap_alignment);
 373     FLAG_SET_ERGO(uintx, MaxHeapSize, calculated_heapsize);
 374     _max_heap_byte_size = MaxHeapSize;
 375     FLAG_SET_ERGO(uintx, InitialHeapSize, calculated_heapsize);
 376     _initial_heap_byte_size = InitialHeapSize;
 377   }
 378 
 379   // adjust max heap size if necessary
 380   if (NewSize + OldSize > MaxHeapSize) {
 381     if (_max_heap_size_cmdline) {
 382       // somebody set a maximum heap size with the intention that we should not
 383       // exceed it. Adjust New/OldSize as necessary.
 384       uintx calculated_size = NewSize + OldSize;
 385       double shrink_factor = (double) MaxHeapSize / calculated_size;
 386       uintx smallerNewSize = align_size_down((uintx)(NewSize * shrink_factor), _gen_alignment);
 387       FLAG_SET_ERGO(uintx, NewSize, MAX2(young_gen_size_lower_bound(), smallerNewSize));
 388       _initial_gen0_size = NewSize;
 389 
 390       // OldSize is already aligned because above we aligned MaxHeapSize to
 391       // _heap_alignment, and we just made sure that NewSize is aligned to
 392       // _gen_alignment. In initialize_flags() we verified that _heap_alignment
 393       // is a multiple of _gen_alignment.
 394       FLAG_SET_ERGO(uintx, OldSize, MaxHeapSize - NewSize);
 395     } else {
 396       FLAG_SET_ERGO(uintx, MaxHeapSize, align_size_up(NewSize + OldSize, _heap_alignment));
 397       _max_heap_byte_size = MaxHeapSize;
 398     }
 399   }
 400 
 401   always_do_update_barrier = UseConcMarkSweepGC;
 402   TwoGenerationCollectorPolicy::assert_flags();
 403 }
 404 
 405 // Values set on the command line win over any ergonomically
 406 // set command line parameters.
 407 // Ergonomic choice of parameters are done before this
 408 // method is called.  Values for command line parameters such as NewSize
 409 // and MaxNewSize feed those ergonomic choices into this method.
 410 // This method makes the final generation sizings consistent with
 411 // themselves and with overall heap sizings.
 412 // In the absence of explicitly set command line flags, policies
 413 // such as the use of NewRatio are used to size the generation.
 414 void GenCollectorPolicy::initialize_size_info() {
 415   CollectorPolicy::initialize_size_info();
 416 
 417   // _space_alignment is used for alignment within a generation.
 418   // There is additional alignment done down stream for some
 419   // collectors that sometimes causes unwanted rounding up of
 420   // generations sizes.
 421 
 422   // Determine maximum size of gen0
 423 
 424   size_t max_new_size = 0;
 425   if (!FLAG_IS_DEFAULT(MaxNewSize)) {
 426     max_new_size = MaxNewSize;
 427   } else {
 428     max_new_size = scale_by_NewRatio_aligned(_max_heap_byte_size);
 429     // Bound the maximum size by NewSize below (since it historically
 430     // would have been NewSize and because the NewRatio calculation could
 431     // yield a size that is too small) and bound it by MaxNewSize above.
 432     // Ergonomics plays here by previously calculating the desired
 433     // NewSize and MaxNewSize.
 434     max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
 435   }
 436   assert(max_new_size > 0, "All paths should set max_new_size");
 437 
 438   // Given the maximum gen0 size, determine the initial and
 439   // minimum gen0 sizes.
 440 
 441   if (_max_heap_byte_size == _min_heap_byte_size) {
 442     // The maximum and minimum heap sizes are the same so
 443     // the generations minimum and initial must be the
 444     // same as its maximum.
 445     _min_gen0_size = max_new_size;
 446     _initial_gen0_size = max_new_size;
 447     _max_gen0_size = max_new_size;
 448   } else {
 449     size_t desired_new_size = 0;
 450     if (!FLAG_IS_DEFAULT(NewSize)) {
 451       // If NewSize is set ergonomically (for example by cms), it
 452       // would make sense to use it.  If it is used, also use it
 453       // to set the initial size.  Although there is no reason
 454       // the minimum size and the initial size have to be the same,
 455       // the current implementation gets into trouble during the calculation
 456       // of the tenured generation sizes if they are different.
 457       // Note that this makes the initial size and the minimum size
 458       // generally small compared to the NewRatio calculation.
 459       _min_gen0_size = NewSize;
 460       desired_new_size = NewSize;
 461       max_new_size = MAX2(max_new_size, NewSize);
 462     } else {
 463       // For the case where NewSize is the default, use NewRatio
 464       // to size the minimum and initial generation sizes.
 465       // Use the default NewSize as the floor for these values.  If
 466       // NewRatio is overly large, the resulting sizes can be too
 467       // small.
 468       _min_gen0_size = MAX2(scale_by_NewRatio_aligned(_min_heap_byte_size), NewSize);
 469       desired_new_size =
 470         MAX2(scale_by_NewRatio_aligned(_initial_heap_byte_size), NewSize);
 471     }
 472 
 473     assert(_min_gen0_size > 0, "Sanity check");
 474     _initial_gen0_size = desired_new_size;
 475     _max_gen0_size = max_new_size;
 476 
 477     // At this point the desirable initial and minimum sizes have been
 478     // determined without regard to the maximum sizes.
 479 
 480     // Bound the sizes by the corresponding overall heap sizes.
 481     _min_gen0_size = bound_minus_alignment(_min_gen0_size, _min_heap_byte_size);
 482     _initial_gen0_size = bound_minus_alignment(_initial_gen0_size, _initial_heap_byte_size);
 483     _max_gen0_size = bound_minus_alignment(_max_gen0_size, _max_heap_byte_size);
 484 
 485     // At this point all three sizes have been checked against the
 486     // maximum sizes but have not been checked for consistency
 487     // among the three.
 488 
 489     // Final check min <= initial <= max
 490     _min_gen0_size = MIN2(_min_gen0_size, _max_gen0_size);
 491     _initial_gen0_size = MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size);
 492     _min_gen0_size = MIN2(_min_gen0_size, _initial_gen0_size);
 493   }
 494 
 495   // Write back to flags if necessary
 496   if (NewSize != _initial_gen0_size) {
 497     FLAG_SET_ERGO(uintx, NewSize, _initial_gen0_size);
 498   }
 499 
 500   if (MaxNewSize != _max_gen0_size) {
 501     FLAG_SET_ERGO(uintx, MaxNewSize, _max_gen0_size);
 502   }
 503 
 504   if (PrintGCDetails && Verbose) {
 505     gclog_or_tty->print_cr("1: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 506       SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 507       _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 508   }
 509 
 510   GenCollectorPolicy::assert_size_info();
 511 }
 512 
 513 // Call this method during the sizing of the gen1 to make
 514 // adjustments to gen0 because of gen1 sizing policy.  gen0 initially has
 515 // the most freedom in sizing because it is done before the
 516 // policy for gen1 is applied.  Once gen1 policies have been applied,
 517 // there may be conflicts in the shape of the heap and this method
 518 // is used to make the needed adjustments.  The application of the
 519 // policies could be more sophisticated (iterative for example) but
 520 // keeping it simple also seems a worthwhile goal.
 521 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
 522                                                      size_t* gen1_size_ptr,
 523                                                      const size_t heap_size,
 524                                                      const size_t min_gen1_size) {
 525   bool result = false;
 526 
 527   if ((*gen1_size_ptr + *gen0_size_ptr) > heap_size) {
 528     uintx smallestNewSize = young_gen_size_lower_bound();
 529     if ((heap_size < (*gen0_size_ptr + min_gen1_size)) &&
 530         (heap_size >= min_gen1_size + smallestNewSize)) {
 531       // Adjust gen0 down to accommodate min_gen1_size
 532       *gen0_size_ptr = align_size_down_bounded(heap_size - min_gen1_size, _gen_alignment);
 533       assert(*gen0_size_ptr > 0, "Min gen0 is too large");
 534       result = true;
 535     } else {
 536       *gen1_size_ptr = align_size_down_bounded(heap_size - *gen0_size_ptr, _gen_alignment);
 537     }
 538   }
 539   return result;
 540 }
 541 
 542 // Minimum sizes of the generations may be different than
 543 // the initial sizes.  An inconsistently is permitted here
 544 // in the total size that can be specified explicitly by
 545 // command line specification of OldSize and NewSize and
 546 // also a command line specification of -Xms.  Issue a warning
 547 // but allow the values to pass.
 548 
 549 void TwoGenerationCollectorPolicy::initialize_size_info() {
 550   GenCollectorPolicy::initialize_size_info();
 551 
 552   // At this point the minimum, initial and maximum sizes
 553   // of the overall heap and of gen0 have been determined.
 554   // The maximum gen1 size can be determined from the maximum gen0
 555   // and maximum heap size since no explicit flags exits
 556   // for setting the gen1 maximum.
 557   _max_gen1_size = MAX2(_max_heap_byte_size - _max_gen0_size, _gen_alignment);
 558 
 559   // If no explicit command line flag has been set for the
 560   // gen1 size, use what is left for gen1.
 561   if (!FLAG_IS_CMDLINE(OldSize)) {
 562     // The user has not specified any value but the ergonomics
 563     // may have chosen a value (which may or may not be consistent
 564     // with the overall heap size).  In either case make
 565     // the minimum, maximum and initial sizes consistent
 566     // with the gen0 sizes and the overall heap sizes.
 567     _min_gen1_size = MAX2(_min_heap_byte_size - _min_gen0_size, _gen_alignment);
 568     _initial_gen1_size = MAX2(_initial_heap_byte_size - _initial_gen0_size, _gen_alignment);
 569     // _max_gen1_size has already been made consistent above
 570     FLAG_SET_ERGO(uintx, OldSize, _initial_gen1_size);
 571   } else {
 572     // It's been explicitly set on the command line.  Use the
 573     // OldSize and then determine the consequences.
 574     _min_gen1_size = MIN2(OldSize, _min_heap_byte_size - _min_gen0_size);
 575     _initial_gen1_size = OldSize;
 576 
 577     // If the user has explicitly set an OldSize that is inconsistent
 578     // with other command line flags, issue a warning.
 579     // The generation minimums and the overall heap mimimum should
 580     // be within one generation alignment.
 581     if ((_min_gen1_size + _min_gen0_size + _gen_alignment) < _min_heap_byte_size) {
 582       warning("Inconsistency between minimum heap size and minimum "
 583               "generation sizes: using minimum heap = " SIZE_FORMAT,
 584               _min_heap_byte_size);
 585     }
 586     if (OldSize > _max_gen1_size) {
 587       warning("Inconsistency between maximum heap size and maximum "
 588               "generation sizes: using maximum heap = " SIZE_FORMAT
 589               " -XX:OldSize flag is being ignored",
 590               _max_heap_byte_size);
 591     }
 592     // If there is an inconsistency between the OldSize and the minimum and/or
 593     // initial size of gen0, since OldSize was explicitly set, OldSize wins.
 594     if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size,
 595                           _min_heap_byte_size, _min_gen1_size)) {
 596       if (PrintGCDetails && Verbose) {
 597         gclog_or_tty->print_cr("2: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 598               SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 599               _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 600       }
 601     }
 602     // Initial size
 603     if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
 604                           _initial_heap_byte_size, _initial_gen1_size)) {
 605       if (PrintGCDetails && Verbose) {
 606         gclog_or_tty->print_cr("3: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 607           SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 608           _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 609       }
 610     }
 611   }
 612   // Enforce the maximum gen1 size.
 613   _min_gen1_size = MIN2(_min_gen1_size, _max_gen1_size);
 614 
 615   // Check that min gen1 <= initial gen1 <= max gen1
 616   _initial_gen1_size = MAX2(_initial_gen1_size, _min_gen1_size);
 617   _initial_gen1_size = MIN2(_initial_gen1_size, _max_gen1_size);
 618 
 619   // Write back to flags if necessary
 620   if (NewSize != _initial_gen0_size) {
 621     FLAG_SET_ERGO(uintx, NewSize, _max_gen0_size);
 622   }
 623 
 624   if (MaxNewSize != _max_gen0_size) {
 625     FLAG_SET_ERGO(uintx, MaxNewSize, _max_gen0_size);
 626   }
 627 
 628   if (OldSize != _initial_gen1_size) {
 629     FLAG_SET_ERGO(uintx, OldSize, _initial_gen1_size);
 630   }
 631 
 632   if (PrintGCDetails && Verbose) {
 633     gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT "  Initial gen1 "
 634       SIZE_FORMAT "  Maximum gen1 " SIZE_FORMAT,
 635       _min_gen1_size, _initial_gen1_size, _max_gen1_size);
 636   }
 637 
 638   TwoGenerationCollectorPolicy::assert_size_info();
 639 }
 640 
 641 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
 642                                         bool is_tlab,
 643                                         bool* gc_overhead_limit_was_exceeded) {
 644   GenCollectedHeap *gch = GenCollectedHeap::heap();
 645 
 646   debug_only(gch->check_for_valid_allocation_state());
 647   assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
 648 
 649   // In general gc_overhead_limit_was_exceeded should be false so
 650   // set it so here and reset it to true only if the gc time
 651   // limit is being exceeded as checked below.
 652   *gc_overhead_limit_was_exceeded = false;
 653 
 654   HeapWord* result = NULL;
 655 
 656   // Loop until the allocation is satisified,
 657   // or unsatisfied after GC.
 658   for (int try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
 659     HandleMark hm; // discard any handles allocated in each iteration
 660 
 661     // First allocation attempt is lock-free.
 662     Generation *gen0 = gch->get_gen(0);
 663     assert(gen0->supports_inline_contig_alloc(),
 664       "Otherwise, must do alloc within heap lock");
 665     if (gen0->should_allocate(size, is_tlab)) {
 666       result = gen0->par_allocate(size, is_tlab);
 667       if (result != NULL) {
 668         assert(gch->is_in_reserved(result), "result not in heap");
 669         return result;
 670       }
 671     }
 672     unsigned int gc_count_before;  // read inside the Heap_lock locked region
 673     {
 674       MutexLocker ml(Heap_lock);
 675       if (PrintGC && Verbose) {
 676         gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
 677                       " attempting locked slow path allocation");
 678       }
 679       // Note that only large objects get a shot at being
 680       // allocated in later generations.
 681       bool first_only = ! should_try_older_generation_allocation(size);
 682 
 683       result = gch->attempt_allocation(size, is_tlab, first_only);
 684       if (result != NULL) {
 685         assert(gch->is_in_reserved(result), "result not in heap");
 686         return result;
 687       }
 688 
 689       if (GC_locker::is_active_and_needs_gc()) {
 690         if (is_tlab) {
 691           return NULL;  // Caller will retry allocating individual object
 692         }
 693         if (!gch->is_maximal_no_gc()) {
 694           // Try and expand heap to satisfy request
 695           result = expand_heap_and_allocate(size, is_tlab);
 696           // result could be null if we are out of space
 697           if (result != NULL) {
 698             return result;
 699           }
 700         }
 701 
 702         if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 703           return NULL; // we didn't get to do a GC and we didn't get any memory
 704         }
 705 
 706         // If this thread is not in a jni critical section, we stall
 707         // the requestor until the critical section has cleared and
 708         // GC allowed. When the critical section clears, a GC is
 709         // initiated by the last thread exiting the critical section; so
 710         // we retry the allocation sequence from the beginning of the loop,
 711         // rather than causing more, now probably unnecessary, GC attempts.
 712         JavaThread* jthr = JavaThread::current();
 713         if (!jthr->in_critical()) {
 714           MutexUnlocker mul(Heap_lock);
 715           // Wait for JNI critical section to be exited
 716           GC_locker::stall_until_clear();
 717           gclocker_stalled_count += 1;
 718           continue;
 719         } else {
 720           if (CheckJNICalls) {
 721             fatal("Possible deadlock due to allocating while"
 722                   " in jni critical section");
 723           }
 724           return NULL;
 725         }
 726       }
 727 
 728       // Read the gc count while the heap lock is held.
 729       gc_count_before = Universe::heap()->total_collections();
 730     }
 731 
 732     VM_GenCollectForAllocation op(size, is_tlab, gc_count_before);
 733     VMThread::execute(&op);
 734     if (op.prologue_succeeded()) {
 735       result = op.result();
 736       if (op.gc_locked()) {
 737          assert(result == NULL, "must be NULL if gc_locked() is true");
 738          continue;  // retry and/or stall as necessary
 739       }
 740 
 741       // Allocation has failed and a collection
 742       // has been done.  If the gc time limit was exceeded the
 743       // this time, return NULL so that an out-of-memory
 744       // will be thrown.  Clear gc_overhead_limit_exceeded
 745       // so that the overhead exceeded does not persist.
 746 
 747       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 748       const bool softrefs_clear = all_soft_refs_clear();
 749 
 750       if (limit_exceeded && softrefs_clear) {
 751         *gc_overhead_limit_was_exceeded = true;
 752         size_policy()->set_gc_overhead_limit_exceeded(false);
 753         if (op.result() != NULL) {
 754           CollectedHeap::fill_with_object(op.result(), size);
 755         }
 756         return NULL;
 757       }
 758       assert(result == NULL || gch->is_in_reserved(result),
 759              "result not in heap");
 760       return result;
 761     }
 762 
 763     // Give a warning if we seem to be looping forever.
 764     if ((QueuedAllocationWarningCount > 0) &&
 765         (try_count % QueuedAllocationWarningCount == 0)) {
 766           warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
 767                   " size=%d %s", try_count, size, is_tlab ? "(TLAB)" : "");
 768     }
 769   }
 770 }
 771 
 772 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
 773                                                        bool   is_tlab) {
 774   GenCollectedHeap *gch = GenCollectedHeap::heap();
 775   HeapWord* result = NULL;
 776   for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
 777     Generation *gen = gch->get_gen(i);
 778     if (gen->should_allocate(size, is_tlab)) {
 779       result = gen->expand_and_allocate(size, is_tlab);
 780     }
 781   }
 782   assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
 783   return result;
 784 }
 785 
 786 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
 787                                                         bool   is_tlab) {
 788   GenCollectedHeap *gch = GenCollectedHeap::heap();
 789   GCCauseSetter x(gch, GCCause::_allocation_failure);
 790   HeapWord* result = NULL;
 791 
 792   assert(size != 0, "Precondition violated");
 793   if (GC_locker::is_active_and_needs_gc()) {
 794     // GC locker is active; instead of a collection we will attempt
 795     // to expand the heap, if there's room for expansion.
 796     if (!gch->is_maximal_no_gc()) {
 797       result = expand_heap_and_allocate(size, is_tlab);
 798     }
 799     return result;   // could be null if we are out of space
 800   } else if (!gch->incremental_collection_will_fail(false /* don't consult_young */)) {
 801     // Do an incremental collection.
 802     gch->do_collection(false            /* full */,
 803                        false            /* clear_all_soft_refs */,
 804                        size             /* size */,
 805                        is_tlab          /* is_tlab */,
 806                        number_of_generations() - 1 /* max_level */);
 807   } else {
 808     if (Verbose && PrintGCDetails) {
 809       gclog_or_tty->print(" :: Trying full because partial may fail :: ");
 810     }
 811     // Try a full collection; see delta for bug id 6266275
 812     // for the original code and why this has been simplified
 813     // with from-space allocation criteria modified and
 814     // such allocation moved out of the safepoint path.
 815     gch->do_collection(true             /* full */,
 816                        false            /* clear_all_soft_refs */,
 817                        size             /* size */,
 818                        is_tlab          /* is_tlab */,
 819                        number_of_generations() - 1 /* max_level */);
 820   }
 821 
 822   result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
 823 
 824   if (result != NULL) {
 825     assert(gch->is_in_reserved(result), "result not in heap");
 826     return result;
 827   }
 828 
 829   // OK, collection failed, try expansion.
 830   result = expand_heap_and_allocate(size, is_tlab);
 831   if (result != NULL) {
 832     return result;
 833   }
 834 
 835   // If we reach this point, we're really out of memory. Try every trick
 836   // we can to reclaim memory. Force collection of soft references. Force
 837   // a complete compaction of the heap. Any additional methods for finding
 838   // free memory should be here, especially if they are expensive. If this
 839   // attempt fails, an OOM exception will be thrown.
 840   {
 841     UIntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
 842 
 843     gch->do_collection(true             /* full */,
 844                        true             /* clear_all_soft_refs */,
 845                        size             /* size */,
 846                        is_tlab          /* is_tlab */,
 847                        number_of_generations() - 1 /* max_level */);
 848   }
 849 
 850   result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
 851   if (result != NULL) {
 852     assert(gch->is_in_reserved(result), "result not in heap");
 853     return result;
 854   }
 855 
 856   assert(!should_clear_all_soft_refs(),
 857     "Flag should have been handled and cleared prior to this point");
 858 
 859   // What else?  We might try synchronous finalization later.  If the total
 860   // space available is large enough for the allocation, then a more
 861   // complete compaction phase than we've tried so far might be
 862   // appropriate.
 863   return NULL;
 864 }
 865 
 866 MetaWord* CollectorPolicy::satisfy_failed_metadata_allocation(
 867                                                  ClassLoaderData* loader_data,
 868                                                  size_t word_size,
 869                                                  Metaspace::MetadataType mdtype) {
 870   uint loop_count = 0;
 871   uint gc_count = 0;
 872   uint full_gc_count = 0;
 873 
 874   assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock");
 875 
 876   do {
 877     MetaWord* result = NULL;
 878     if (GC_locker::is_active_and_needs_gc()) {
 879       // If the GC_locker is active, just expand and allocate.
 880       // If that does not succeed, wait if this thread is not
 881       // in a critical section itself.
 882       result =
 883         loader_data->metaspace_non_null()->expand_and_allocate(word_size,
 884                                                                mdtype);
 885       if (result != NULL) {
 886         return result;
 887       }
 888       JavaThread* jthr = JavaThread::current();
 889       if (!jthr->in_critical()) {
 890         // Wait for JNI critical section to be exited
 891         GC_locker::stall_until_clear();
 892         // The GC invoked by the last thread leaving the critical
 893         // section will be a young collection and a full collection
 894         // is (currently) needed for unloading classes so continue
 895         // to the next iteration to get a full GC.
 896         continue;
 897       } else {
 898         if (CheckJNICalls) {
 899           fatal("Possible deadlock due to allocating while"
 900                 " in jni critical section");
 901         }
 902         return NULL;
 903       }
 904     }
 905 
 906     {  // Need lock to get self consistent gc_count's
 907       MutexLocker ml(Heap_lock);
 908       gc_count      = Universe::heap()->total_collections();
 909       full_gc_count = Universe::heap()->total_full_collections();
 910     }
 911 
 912     // Generate a VM operation
 913     VM_CollectForMetadataAllocation op(loader_data,
 914                                        word_size,
 915                                        mdtype,
 916                                        gc_count,
 917                                        full_gc_count,
 918                                        GCCause::_metadata_GC_threshold);
 919     VMThread::execute(&op);
 920 
 921     // If GC was locked out, try again.  Check
 922     // before checking success because the prologue
 923     // could have succeeded and the GC still have
 924     // been locked out.
 925     if (op.gc_locked()) {
 926       continue;
 927     }
 928 
 929     if (op.prologue_succeeded()) {
 930       return op.result();
 931     }
 932     loop_count++;
 933     if ((QueuedAllocationWarningCount > 0) &&
 934         (loop_count % QueuedAllocationWarningCount == 0)) {
 935       warning("satisfy_failed_metadata_allocation() retries %d times \n\t"
 936               " size=%d", loop_count, word_size);
 937     }
 938   } while (true);  // Until a GC is done
 939 }
 940 
 941 // Return true if any of the following is true:
 942 // . the allocation won't fit into the current young gen heap
 943 // . gc locker is occupied (jni critical section)
 944 // . heap memory is tight -- the most recent previous collection
 945 //   was a full collection because a partial collection (would
 946 //   have) failed and is likely to fail again
 947 bool GenCollectorPolicy::should_try_older_generation_allocation(
 948         size_t word_size) const {
 949   GenCollectedHeap* gch = GenCollectedHeap::heap();
 950   size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
 951   return    (word_size > heap_word_size(gen0_capacity))
 952          || GC_locker::is_active_and_needs_gc()
 953          || gch->incremental_collection_failed();
 954 }
 955 
 956 
 957 //
 958 // MarkSweepPolicy methods
 959 //
 960 
 961 void MarkSweepPolicy::initialize_generations() {
 962   _generations = NEW_C_HEAP_ARRAY3(GenerationSpecPtr, number_of_generations(), mtGC, 0, AllocFailStrategy::RETURN_NULL);
 963   if (_generations == NULL) {
 964     vm_exit_during_initialization("Unable to allocate gen spec");
 965   }
 966 
 967   if (UseParNewGC) {
 968     _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
 969   } else {
 970     _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
 971   }
 972   _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
 973 
 974   if (_generations[0] == NULL || _generations[1] == NULL) {
 975     vm_exit_during_initialization("Unable to allocate gen spec");
 976   }
 977 }
 978 
 979 void MarkSweepPolicy::initialize_gc_policy_counters() {
 980   // initialize the policy counters - 2 collectors, 3 generations
 981   if (UseParNewGC) {
 982     _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
 983   } else {
 984     _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
 985   }
 986 }