src/share/vm/memory/collectorPolicy.cpp
Index Unified diffs Context diffs Sdiffs Patch New Old Previous File Next File hotspot Sdiff src/share/vm/memory

src/share/vm/memory/collectorPolicy.cpp

Print this page




  30 #include "memory/collectorPolicy.hpp"
  31 #include "memory/gcLocker.inline.hpp"
  32 #include "memory/genCollectedHeap.hpp"
  33 #include "memory/generationSpec.hpp"
  34 #include "memory/space.hpp"
  35 #include "memory/universe.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/globals_extension.hpp"
  38 #include "runtime/handles.inline.hpp"
  39 #include "runtime/java.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 #include "runtime/vmThread.hpp"
  42 #include "utilities/macros.hpp"
  43 #if INCLUDE_ALL_GCS
  44 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  45 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  46 #endif // INCLUDE_ALL_GCS
  47 
  48 // CollectorPolicy methods.
  49 


































  50 void CollectorPolicy::initialize_flags() {
  51   assert(_max_alignment >= _min_alignment,
  52          err_msg("max_alignment: " SIZE_FORMAT " less than min_alignment: " SIZE_FORMAT,
  53                  _max_alignment, _min_alignment));
  54   assert(_max_alignment % _min_alignment == 0,
  55          err_msg("max_alignment: " SIZE_FORMAT " not aligned by min_alignment: " SIZE_FORMAT,
  56                  _max_alignment, _min_alignment));


  57 
  58   if (MaxHeapSize < InitialHeapSize) {
  59     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");






  60   }
  61 
  62   MinHeapDeltaBytes = align_size_up(MinHeapDeltaBytes, _min_alignment);
  63 }
  64 
  65 void CollectorPolicy::initialize_size_info() {
  66   // User inputs from -mx and ms must be aligned
  67   _min_heap_byte_size = align_size_up(Arguments::min_heap_size(), _min_alignment);
  68   _initial_heap_byte_size = align_size_up(InitialHeapSize, _min_alignment);
  69   _max_heap_byte_size = align_size_up(MaxHeapSize, _max_alignment);
  70 
  71   // Check heap parameter properties
  72   if (_initial_heap_byte_size < M) {
  73     vm_exit_during_initialization("Too small initial heap");
  74   }
  75   // Check heap parameter properties
  76   if (_min_heap_byte_size < M) {
  77     vm_exit_during_initialization("Too small minimum heap");
  78   }
  79   if (_initial_heap_byte_size <= NewSize) {
  80      // make sure there is at least some room in old space
  81     vm_exit_during_initialization("Too small initial heap for new size specified");






  82   }
  83   if (_max_heap_byte_size < _min_heap_byte_size) {
  84     vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
  85   }
  86   if (_initial_heap_byte_size < _min_heap_byte_size) {


  87     vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
  88   }
  89   if (_max_heap_byte_size < _initial_heap_byte_size) {
  90     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");





  91   }
  92 









  93   if (PrintGCDetails && Verbose) {
  94     gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT "  Initial heap "
  95       SIZE_FORMAT "  Maximum heap " SIZE_FORMAT,
  96       _min_heap_byte_size, _initial_heap_byte_size, _max_heap_byte_size);
  97   }


  98 }
  99 
 100 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
 101   bool result = _should_clear_all_soft_refs;
 102   set_should_clear_all_soft_refs(false);
 103   return result;
 104 }
 105 
 106 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
 107                                            int max_covered_regions) {
 108   return new CardTableRS(whole_heap, max_covered_regions);
 109 }
 110 
 111 void CollectorPolicy::cleared_all_soft_refs() {
 112   // If near gc overhear limit, continue to clear SoftRefs.  SoftRefs may
 113   // have been cleared in the last collection but if the gc overhear
 114   // limit continues to be near, SoftRefs should still be cleared.
 115   if (size_policy() != NULL) {
 116     _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
 117   }
 118   _all_soft_refs_clear = true;
 119 }
 120 
 121 size_t CollectorPolicy::compute_max_alignment() {
 122   // The card marking array and the offset arrays for old generations are
 123   // committed in os pages as well. Make sure they are entirely full (to
 124   // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
 125   // byte entry and the os page size is 4096, the maximum heap size should
 126   // be 512*4096 = 2MB aligned.
 127 
 128   // There is only the GenRemSet in Hotspot and only the GenRemSet::CardTable
 129   // is supported.
 130   // Requirements of any new remembered set implementations must be added here.
 131   size_t alignment = GenRemSet::max_alignment_constraint(GenRemSet::CardTable);
 132 
 133   // Parallel GC does its own alignment of the generations to avoid requiring a
 134   // large page (256M on some platforms) for the permanent generation.  The
 135   // other collectors should also be updated to do their own alignment and then
 136   // this use of lcm() should be removed.
 137   if (UseLargePages && !UseParallelGC) {
 138       // in presence of large pages we have to make sure that our
 139       // alignment is large page aware
 140       alignment = lcm(os::large_page_size(), alignment);
 141   }
 142 
 143   return alignment;
 144 }
 145 
 146 // GenCollectorPolicy methods.
 147 
 148 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
 149   return align_size_down_bounded(base_size / (NewRatio + 1), _min_alignment);
 150 }
 151 
 152 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
 153                                                  size_t maximum_size) {
 154   size_t alignment = _min_alignment;
 155   size_t max_minus = maximum_size - alignment;
 156   return desired_size < max_minus ? desired_size : max_minus;
 157 }
 158 
 159 
 160 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
 161                                                 size_t init_promo_size,
 162                                                 size_t init_survivor_size) {
 163   const double max_gc_pause_sec = ((double) MaxGCPauseMillis) / 1000.0;
 164   _size_policy = new AdaptiveSizePolicy(init_eden_size,
 165                                         init_promo_size,
 166                                         init_survivor_size,
 167                                         max_gc_pause_sec,
 168                                         GCTimeRatio);
 169 }
 170 
 171 void GenCollectorPolicy::initialize_flags() {
 172   // All sizes must be multiples of the generation granularity.
 173   _min_alignment = (uintx) Generation::GenGrain;
 174   _max_alignment = compute_max_alignment();











































 175 

 176   CollectorPolicy::initialize_flags();
 177 
 178   // All generational heaps have a youngest gen; handle those flags here.




























 179 
 180   // Adjust max size parameters



















 181   if (NewSize > MaxNewSize) {
 182     MaxNewSize = NewSize;








 183   }
 184   NewSize = align_size_down(NewSize, _min_alignment);
 185   MaxNewSize = align_size_down(MaxNewSize, _min_alignment);
 186 
 187   // Check validity of heap flags
 188   assert(NewSize     % _min_alignment == 0, "eden space alignment");
 189   assert(MaxNewSize  % _min_alignment == 0, "survivor space alignment");
 190 
 191   if (NewSize < 3 * _min_alignment) {
 192      // make sure there room for eden and two survivor spaces
 193     vm_exit_during_initialization("Too small new size specified");



 194   }
 195 
 196   if (SurvivorRatio < 1 || NewRatio < 1) {
 197     vm_exit_during_initialization("Invalid young gen ratio specified");
 198   }


 199 }
 200 
 201 void TwoGenerationCollectorPolicy::initialize_flags() {
 202   GenCollectorPolicy::initialize_flags();
 203 
 204   OldSize = align_size_down(OldSize, _min_alignment);


 205 
 206   if (FLAG_IS_CMDLINE(OldSize) && FLAG_IS_DEFAULT(NewSize)) {
 207     // NewRatio will be used later to set the young generation size so we use
 208     // it to calculate how big the heap should be based on the requested OldSize
 209     // and NewRatio.
 210     assert(NewRatio > 0, "NewRatio should have been set up earlier");
 211     size_t calculated_heapsize = (OldSize / NewRatio) * (NewRatio + 1);
 212 
 213     calculated_heapsize = align_size_up(calculated_heapsize, _max_alignment);
 214     MaxHeapSize = calculated_heapsize;
 215     InitialHeapSize = calculated_heapsize;


 216   }
 217   MaxHeapSize = align_size_up(MaxHeapSize, _max_alignment);
 218 
 219   // adjust max heap size if necessary
 220   if (NewSize + OldSize > MaxHeapSize) {
 221     if (FLAG_IS_CMDLINE(MaxHeapSize)) {
 222       // somebody set a maximum heap size with the intention that we should not
 223       // exceed it. Adjust New/OldSize as necessary.
 224       uintx calculated_size = NewSize + OldSize;
 225       double shrink_factor = (double) MaxHeapSize / calculated_size;
 226       // align
 227       NewSize = align_size_down((uintx) (NewSize * shrink_factor), _min_alignment);
 228       // OldSize is already aligned because above we aligned MaxHeapSize to
 229       // _max_alignment, and we just made sure that NewSize is aligned to
 230       // _min_alignment. In initialize_flags() we verified that _max_alignment
 231       // is a multiple of _min_alignment.
 232       OldSize = MaxHeapSize - NewSize;
 233     } else {
 234       MaxHeapSize = NewSize + OldSize;
 235     }
 236   }
 237   // need to do this again
 238   MaxHeapSize = align_size_up(MaxHeapSize, _max_alignment);
 239 
 240   // adjust max heap size if necessary
 241   if (NewSize + OldSize > MaxHeapSize) {
 242     if (FLAG_IS_CMDLINE(MaxHeapSize)) {
 243       // somebody set a maximum heap size with the intention that we should not
 244       // exceed it. Adjust New/OldSize as necessary.
 245       uintx calculated_size = NewSize + OldSize;
 246       double shrink_factor = (double) MaxHeapSize / calculated_size;
 247       // align
 248       NewSize = align_size_down((uintx) (NewSize * shrink_factor), _min_alignment);
 249       // OldSize is already aligned because above we aligned MaxHeapSize to
 250       // _max_alignment, and we just made sure that NewSize is aligned to
 251       // _min_alignment. In initialize_flags() we verified that _max_alignment
 252       // is a multiple of _min_alignment.
 253       OldSize = MaxHeapSize - NewSize;
 254     } else {
 255       MaxHeapSize = NewSize + OldSize;

 256     }
 257   }
 258   // need to do this again
 259   MaxHeapSize = align_size_up(MaxHeapSize, _max_alignment);
 260 
 261   always_do_update_barrier = UseConcMarkSweepGC;
 262 
 263   // Check validity of heap flags
 264   assert(OldSize     % _min_alignment == 0, "old space alignment");
 265   assert(MaxHeapSize % _max_alignment == 0, "maximum heap alignment");
 266 }
 267 
 268 // Values set on the command line win over any ergonomically
 269 // set command line parameters.
 270 // Ergonomic choice of parameters are done before this
 271 // method is called.  Values for command line parameters such as NewSize
 272 // and MaxNewSize feed those ergonomic choices into this method.
 273 // This method makes the final generation sizings consistent with
 274 // themselves and with overall heap sizings.
 275 // In the absence of explicitly set command line flags, policies
 276 // such as the use of NewRatio are used to size the generation.
 277 void GenCollectorPolicy::initialize_size_info() {
 278   CollectorPolicy::initialize_size_info();
 279 
 280   // _min_alignment is used for alignment within a generation.
 281   // There is additional alignment done down stream for some
 282   // collectors that sometimes causes unwanted rounding up of
 283   // generations sizes.
 284 
 285   // Determine maximum size of gen0
 286 
 287   size_t max_new_size = 0;
 288   if (FLAG_IS_CMDLINE(MaxNewSize) || FLAG_IS_ERGO(MaxNewSize)) {
 289     if (MaxNewSize < _min_alignment) {
 290       max_new_size = _min_alignment;
 291     }
 292     if (MaxNewSize >= _max_heap_byte_size) {
 293       max_new_size = align_size_down(_max_heap_byte_size - _min_alignment,
 294                                      _min_alignment);
 295       warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or "
 296         "greater than the entire heap (" SIZE_FORMAT "k).  A "
 297         "new generation size of " SIZE_FORMAT "k will be used.",
 298         MaxNewSize/K, _max_heap_byte_size/K, max_new_size/K);
 299     } else {
 300       max_new_size = align_size_down(MaxNewSize, _min_alignment);
 301     }
 302 
 303   // The case for FLAG_IS_ERGO(MaxNewSize) could be treated
 304   // specially at this point to just use an ergonomically set
 305   // MaxNewSize to set max_new_size.  For cases with small
 306   // heaps such a policy often did not work because the MaxNewSize
 307   // was larger than the entire heap.  The interpretation given
 308   // to ergonomically set flags is that the flags are set
 309   // by different collectors for their own special needs but
 310   // are not allowed to badly shape the heap.  This allows the
 311   // different collectors to decide what's best for themselves
 312   // without having to factor in the overall heap shape.  It
 313   // can be the case in the future that the collectors would
 314   // only make "wise" ergonomics choices and this policy could
 315   // just accept those choices.  The choices currently made are
 316   // not always "wise".
 317   } else {
 318     max_new_size = scale_by_NewRatio_aligned(_max_heap_byte_size);
 319     // Bound the maximum size by NewSize below (since it historically
 320     // would have been NewSize and because the NewRatio calculation could
 321     // yield a size that is too small) and bound it by MaxNewSize above.
 322     // Ergonomics plays here by previously calculating the desired
 323     // NewSize and MaxNewSize.
 324     max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
 325   }
 326   assert(max_new_size > 0, "All paths should set max_new_size");
 327 
 328   // Given the maximum gen0 size, determine the initial and
 329   // minimum gen0 sizes.
 330 
 331   if (_max_heap_byte_size == _min_heap_byte_size) {
 332     // The maximum and minimum heap sizes are the same so
 333     // the generations minimum and initial must be the
 334     // same as its maximum.
 335     _min_gen0_size = max_new_size;
 336     _initial_gen0_size = max_new_size;


 365     _max_gen0_size = max_new_size;
 366 
 367     // At this point the desirable initial and minimum sizes have been
 368     // determined without regard to the maximum sizes.
 369 
 370     // Bound the sizes by the corresponding overall heap sizes.
 371     _min_gen0_size = bound_minus_alignment(_min_gen0_size, _min_heap_byte_size);
 372     _initial_gen0_size = bound_minus_alignment(_initial_gen0_size, _initial_heap_byte_size);
 373     _max_gen0_size = bound_minus_alignment(_max_gen0_size, _max_heap_byte_size);
 374 
 375     // At this point all three sizes have been checked against the
 376     // maximum sizes but have not been checked for consistency
 377     // among the three.
 378 
 379     // Final check min <= initial <= max
 380     _min_gen0_size = MIN2(_min_gen0_size, _max_gen0_size);
 381     _initial_gen0_size = MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size);
 382     _min_gen0_size = MIN2(_min_gen0_size, _initial_gen0_size);
 383   }
 384 









 385   if (PrintGCDetails && Verbose) {
 386     gclog_or_tty->print_cr("1: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 387       SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 388       _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 389   }


 390 }
 391 
 392 // Call this method during the sizing of the gen1 to make
 393 // adjustments to gen0 because of gen1 sizing policy.  gen0 initially has
 394 // the most freedom in sizing because it is done before the
 395 // policy for gen1 is applied.  Once gen1 policies have been applied,
 396 // there may be conflicts in the shape of the heap and this method
 397 // is used to make the needed adjustments.  The application of the
 398 // policies could be more sophisticated (iterative for example) but
 399 // keeping it simple also seems a worthwhile goal.
 400 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
 401                                                      size_t* gen1_size_ptr,
 402                                                      const size_t heap_size,
 403                                                      const size_t min_gen1_size) {
 404   bool result = false;
 405 
 406   if ((*gen1_size_ptr + *gen0_size_ptr) > heap_size) {

 407     if ((heap_size < (*gen0_size_ptr + min_gen1_size)) &&
 408         (heap_size >= min_gen1_size + _min_alignment)) {
 409       // Adjust gen0 down to accommodate min_gen1_size
 410       *gen0_size_ptr = align_size_down_bounded(heap_size - min_gen1_size, _min_alignment);
 411       assert(*gen0_size_ptr > 0, "Min gen0 is too large");
 412       result = true;
 413     } else {
 414       *gen1_size_ptr = align_size_down_bounded(heap_size - *gen0_size_ptr, _min_alignment);
 415     }
 416   }
 417   return result;
 418 }
 419 
 420 // Minimum sizes of the generations may be different than
 421 // the initial sizes.  An inconsistently is permitted here
 422 // in the total size that can be specified explicitly by
 423 // command line specification of OldSize and NewSize and
 424 // also a command line specification of -Xms.  Issue a warning
 425 // but allow the values to pass.
 426 
 427 void TwoGenerationCollectorPolicy::initialize_size_info() {
 428   GenCollectorPolicy::initialize_size_info();
 429 
 430   // At this point the minimum, initial and maximum sizes
 431   // of the overall heap and of gen0 have been determined.
 432   // The maximum gen1 size can be determined from the maximum gen0
 433   // and maximum heap size since no explicit flags exits
 434   // for setting the gen1 maximum.
 435   _max_gen1_size = _max_heap_byte_size - _max_gen0_size;
 436   _max_gen1_size =
 437     MAX2((uintx)align_size_down(_max_gen1_size, _min_alignment), _min_alignment);
 438   // If no explicit command line flag has been set for the
 439   // gen1 size, use what is left for gen1.
 440   if (FLAG_IS_DEFAULT(OldSize) || FLAG_IS_ERGO(OldSize)) {
 441     // The user has not specified any value or ergonomics
 442     // has chosen a value (which may or may not be consistent
 443     // with the overall heap size).  In either case make
 444     // the minimum, maximum and initial sizes consistent
 445     // with the gen0 sizes and the overall heap sizes.
 446     assert(_min_heap_byte_size > _min_gen0_size,
 447       "gen0 has an unexpected minimum size");
 448     _min_gen1_size = _min_heap_byte_size - _min_gen0_size;
 449     _min_gen1_size =
 450       MAX2((uintx)align_size_down(_min_gen1_size, _min_alignment), _min_alignment);
 451     _initial_gen1_size = _initial_heap_byte_size - _initial_gen0_size;
 452     _initial_gen1_size =
 453       MAX2((uintx)align_size_down(_initial_gen1_size, _min_alignment), _min_alignment);
 454   } else {
 455     // It's been explicitly set on the command line.  Use the
 456     // OldSize and then determine the consequences.
 457     _min_gen1_size = OldSize;
 458     _initial_gen1_size = OldSize;
 459 
 460     // If the user has explicitly set an OldSize that is inconsistent
 461     // with other command line flags, issue a warning.
 462     // The generation minimums and the overall heap mimimum should
 463     // be within one heap alignment.
 464     if ((_min_gen1_size + _min_gen0_size + _min_alignment) < _min_heap_byte_size) {
 465       warning("Inconsistency between minimum heap size and minimum "
 466               "generation sizes: using minimum heap = " SIZE_FORMAT,
 467               _min_heap_byte_size);
 468     }
 469     if (OldSize > _max_gen1_size) {
 470       warning("Inconsistency between maximum heap size and maximum "
 471               "generation sizes: using maximum heap = " SIZE_FORMAT
 472               " -XX:OldSize flag is being ignored",
 473               _max_heap_byte_size);
 474     }
 475     // If there is an inconsistency between the OldSize and the minimum and/or
 476     // initial size of gen0, since OldSize was explicitly set, OldSize wins.
 477     if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size,
 478                           _min_heap_byte_size, OldSize)) {
 479       if (PrintGCDetails && Verbose) {
 480         gclog_or_tty->print_cr("2: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 481               SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 482               _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 483       }
 484     }
 485     // Initial size
 486     if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
 487                           _initial_heap_byte_size, OldSize)) {
 488       if (PrintGCDetails && Verbose) {
 489         gclog_or_tty->print_cr("3: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 490           SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 491           _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 492       }
 493     }
 494   }
 495   // Enforce the maximum gen1 size.
 496   _min_gen1_size = MIN2(_min_gen1_size, _max_gen1_size);
 497 
 498   // Check that min gen1 <= initial gen1 <= max gen1
 499   _initial_gen1_size = MAX2(_initial_gen1_size, _min_gen1_size);
 500   _initial_gen1_size = MIN2(_initial_gen1_size, _max_gen1_size);
 501 













 502   if (PrintGCDetails && Verbose) {
 503     gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT "  Initial gen1 "
 504       SIZE_FORMAT "  Maximum gen1 " SIZE_FORMAT,
 505       _min_gen1_size, _initial_gen1_size, _max_gen1_size);
 506   }


 507 }
 508 
 509 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
 510                                         bool is_tlab,
 511                                         bool* gc_overhead_limit_was_exceeded) {
 512   GenCollectedHeap *gch = GenCollectedHeap::heap();
 513 
 514   debug_only(gch->check_for_valid_allocation_state());
 515   assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
 516 
 517   // In general gc_overhead_limit_was_exceeded should be false so
 518   // set it so here and reset it to true only if the gc time
 519   // limit is being exceeded as checked below.
 520   *gc_overhead_limit_was_exceeded = false;
 521 
 522   HeapWord* result = NULL;
 523 
 524   // Loop until the allocation is satisified,
 525   // or unsatisfied after GC.
 526   for (int try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {


 809 // Return true if any of the following is true:
 810 // . the allocation won't fit into the current young gen heap
 811 // . gc locker is occupied (jni critical section)
 812 // . heap memory is tight -- the most recent previous collection
 813 //   was a full collection because a partial collection (would
 814 //   have) failed and is likely to fail again
 815 bool GenCollectorPolicy::should_try_older_generation_allocation(
 816         size_t word_size) const {
 817   GenCollectedHeap* gch = GenCollectedHeap::heap();
 818   size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
 819   return    (word_size > heap_word_size(gen0_capacity))
 820          || GC_locker::is_active_and_needs_gc()
 821          || gch->incremental_collection_failed();
 822 }
 823 
 824 
 825 //
 826 // MarkSweepPolicy methods
 827 //
 828 
 829 MarkSweepPolicy::MarkSweepPolicy() {
 830   initialize_all();
 831 }
 832 
 833 void MarkSweepPolicy::initialize_generations() {
 834   _generations = NEW_C_HEAP_ARRAY3(GenerationSpecPtr, number_of_generations(), mtGC, 0, AllocFailStrategy::RETURN_NULL);
 835   if (_generations == NULL) {
 836     vm_exit_during_initialization("Unable to allocate gen spec");
 837   }
 838 
 839   if (UseParNewGC) {
 840     _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
 841   } else {
 842     _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
 843   }
 844   _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
 845 
 846   if (_generations[0] == NULL || _generations[1] == NULL) {
 847     vm_exit_during_initialization("Unable to allocate gen spec");
 848   }
 849 }
 850 
 851 void MarkSweepPolicy::initialize_gc_policy_counters() {
 852   // initialize the policy counters - 2 collectors, 3 generations


  30 #include "memory/collectorPolicy.hpp"
  31 #include "memory/gcLocker.inline.hpp"
  32 #include "memory/genCollectedHeap.hpp"
  33 #include "memory/generationSpec.hpp"
  34 #include "memory/space.hpp"
  35 #include "memory/universe.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/globals_extension.hpp"
  38 #include "runtime/handles.inline.hpp"
  39 #include "runtime/java.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 #include "runtime/vmThread.hpp"
  42 #include "utilities/macros.hpp"
  43 #if INCLUDE_ALL_GCS
  44 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  45 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  46 #endif // INCLUDE_ALL_GCS
  47 
  48 // CollectorPolicy methods.
  49 
  50 CollectorPolicy::CollectorPolicy() :
  51     _space_alignment(0),
  52     _heap_alignment(0),
  53     _initial_heap_byte_size(InitialHeapSize),
  54     _max_heap_byte_size(MaxHeapSize),
  55     _min_heap_byte_size(Arguments::min_heap_size()),
  56     _max_heap_size_cmdline(false),
  57     _size_policy(NULL),
  58     _should_clear_all_soft_refs(false),
  59     _all_soft_refs_clear(false)
  60 {}
  61 
  62 void CollectorPolicy::assert_flags() {
  63   assert(InitialHeapSize <= MaxHeapSize, "Ergonomics decided on incompatible initial and maximum heap sizes");
  64   assert(InitialHeapSize % _heap_alignment == 0, "InitialHeapSize alignment");
  65   assert(MaxHeapSize % _heap_alignment == 0, "MaxHeapSize alignment");
  66 }
  67 
  68 void CollectorPolicy::assert_size_info() {
  69   assert(InitialHeapSize == _initial_heap_byte_size, "Discrepancy between InitialHeapSize flag and local storage");
  70   assert(MaxHeapSize == _max_heap_byte_size, "Discrepancy between MaxHeapSize flag and local storage");
  71   assert(_max_heap_byte_size >= _min_heap_byte_size, "Ergonomics decided on incompatible minimum and maximum heap sizes");
  72   assert(_initial_heap_byte_size >= _min_heap_byte_size, "Ergonomics decided on incompatible initial and minimum heap sizes");
  73   assert(_max_heap_byte_size >= _initial_heap_byte_size, "Ergonomics decided on incompatible initial and maximum heap sizes");
  74   assert(_min_heap_byte_size % _heap_alignment == 0, "min_heap_byte_size alignment");
  75   assert(_initial_heap_byte_size % _heap_alignment == 0, "initial_heap_byte_size alignment");
  76   assert(_max_heap_byte_size % _heap_alignment == 0, "max_heap_byte_size alignment");
  77 }
  78 
  79 void CollectorPolicy::initialize_alignments() {
  80   _space_alignment = (uintx) Generation::GenGrain;
  81   _heap_alignment = compute_heap_alignment();
  82 }
  83 
  84 void CollectorPolicy::initialize_flags() {
  85   assert(_space_alignment != 0, "Space alignment not set up properly");
  86   assert(_heap_alignment != 0, "Heap alignment not set up properly");
  87   assert(_heap_alignment >= _space_alignment,
  88          err_msg("heap_alignment: " SIZE_FORMAT " less than space_alignment: " SIZE_FORMAT,
  89                  _heap_alignment, _space_alignment));
  90   assert(_heap_alignment % _space_alignment == 0,
  91          err_msg("heap_alignment: " SIZE_FORMAT " not aligned by space_alignment: " SIZE_FORMAT,
  92                  _heap_alignment, _space_alignment));
  93 
  94   if (FLAG_IS_CMDLINE(MaxHeapSize)) {
  95     if (FLAG_IS_CMDLINE(InitialHeapSize) && InitialHeapSize > MaxHeapSize) {
  96       vm_exit_during_initialization("Initial heap size set to a larger value than the maximum heap size");
  97     }
  98     if (_min_heap_byte_size != 0 && MaxHeapSize < _min_heap_byte_size) {
  99       vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
 100     }
 101     _max_heap_size_cmdline = true;
 102   }









 103 
 104   // Check heap parameter properties
 105   if (InitialHeapSize < M) {
 106     vm_exit_during_initialization("Too small initial heap");
 107   }

 108   if (_min_heap_byte_size < M) {
 109     vm_exit_during_initialization("Too small minimum heap");
 110   }
 111 
 112   // User inputs from -Xmx and -Xms must be aligned
 113   _min_heap_byte_size = align_size_up(_min_heap_byte_size, _heap_alignment);
 114   uintx alignedInitialHeapSize = align_size_up(InitialHeapSize, _heap_alignment);
 115   uintx alignedMaxHeapSize = align_size_up(MaxHeapSize, _heap_alignment);
 116 
 117   // Write back to flags if the values changed
 118   if (alignedInitialHeapSize != InitialHeapSize) {
 119     FLAG_SET_ERGO(uintx, InitialHeapSize, alignedInitialHeapSize);
 120   }
 121   if (alignedMaxHeapSize != MaxHeapSize) {
 122     FLAG_SET_ERGO(uintx, MaxHeapSize, alignedMaxHeapSize);
 123   }
 124 
 125   if (FLAG_IS_CMDLINE(InitialHeapSize) && _min_heap_byte_size != 0 &&
 126       InitialHeapSize < _min_heap_byte_size) {
 127     vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
 128   }
 129   if (!FLAG_IS_DEFAULT(InitialHeapSize) && InitialHeapSize > MaxHeapSize) {
 130     FLAG_SET_ERGO(uintx, MaxHeapSize, InitialHeapSize);
 131   } else if (!FLAG_IS_DEFAULT(MaxHeapSize) && InitialHeapSize > MaxHeapSize) {
 132     FLAG_SET_ERGO(uintx, InitialHeapSize, MaxHeapSize);
 133     if (InitialHeapSize < _min_heap_byte_size) {
 134       _min_heap_byte_size = InitialHeapSize;
 135     }
 136   }
 137 
 138   _initial_heap_byte_size = InitialHeapSize;
 139   _max_heap_byte_size = MaxHeapSize;
 140 
 141   FLAG_SET_ERGO(uintx, MinHeapDeltaBytes, align_size_up(MinHeapDeltaBytes, _space_alignment));
 142 
 143   CollectorPolicy::assert_flags();
 144 }
 145 
 146 void CollectorPolicy::initialize_size_info() {
 147   if (PrintGCDetails && Verbose) {
 148     gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT "  Initial heap "
 149       SIZE_FORMAT "  Maximum heap " SIZE_FORMAT,
 150       _min_heap_byte_size, _initial_heap_byte_size, _max_heap_byte_size);
 151   }
 152 
 153   CollectorPolicy::assert_size_info();
 154 }
 155 
 156 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
 157   bool result = _should_clear_all_soft_refs;
 158   set_should_clear_all_soft_refs(false);
 159   return result;
 160 }
 161 
 162 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
 163                                            int max_covered_regions) {
 164   return new CardTableRS(whole_heap, max_covered_regions);
 165 }
 166 
 167 void CollectorPolicy::cleared_all_soft_refs() {
 168   // If near gc overhear limit, continue to clear SoftRefs.  SoftRefs may
 169   // have been cleared in the last collection but if the gc overhear
 170   // limit continues to be near, SoftRefs should still be cleared.
 171   if (size_policy() != NULL) {
 172     _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
 173   }
 174   _all_soft_refs_clear = true;
 175 }
 176 
 177 size_t CollectorPolicy::compute_heap_alignment() {
 178   // The card marking array and the offset arrays for old generations are
 179   // committed in os pages as well. Make sure they are entirely full (to
 180   // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
 181   // byte entry and the os page size is 4096, the maximum heap size should
 182   // be 512*4096 = 2MB aligned.
 183 
 184   // There is only the GenRemSet in Hotspot and only the GenRemSet::CardTable
 185   // is supported.
 186   // Requirements of any new remembered set implementations must be added here.
 187   size_t alignment = GenRemSet::max_alignment_constraint(GenRemSet::CardTable);
 188 
 189   // Parallel GC does its own alignment of the generations to avoid requiring a
 190   // large page (256M on some platforms) for the permanent generation.  The
 191   // other collectors should also be updated to do their own alignment and then
 192   // this use of lcm() should be removed.
 193   if (UseLargePages && !UseParallelGC) {
 194       // in presence of large pages we have to make sure that our
 195       // alignment is large page aware
 196       alignment = lcm(os::large_page_size(), alignment);
 197   }
 198 
 199   return alignment;
 200 }
 201 
 202 // GenCollectorPolicy methods.
 203 
 204 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
 205   return align_size_down_bounded(base_size / (NewRatio + 1), _gen_alignment);
 206 }
 207 
 208 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
 209                                                  size_t maximum_size) {
 210   size_t max_minus = maximum_size - _gen_alignment;

 211   return desired_size < max_minus ? desired_size : max_minus;
 212 }
 213 
 214 
 215 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
 216                                                 size_t init_promo_size,
 217                                                 size_t init_survivor_size) {
 218   const double max_gc_pause_sec = ((double) MaxGCPauseMillis) / 1000.0;
 219   _size_policy = new AdaptiveSizePolicy(init_eden_size,
 220                                         init_promo_size,
 221                                         init_survivor_size,
 222                                         max_gc_pause_sec,
 223                                         GCTimeRatio);
 224 }
 225 
 226 size_t GenCollectorPolicy::young_gen_size_lower_bound() {
 227   // The young generation must be aligned and have room for eden + two survivors
 228   return align_size_up(3 * _space_alignment, _gen_alignment);
 229 }
 230 
 231 void GenCollectorPolicy::assert_flags() {
 232   CollectorPolicy::assert_flags();
 233   assert(NewSize >= _min_gen0_size, "Ergonomics decided on a too small young gen size");
 234   assert(NewSize <= MaxNewSize, "Ergonomics decided on incompatible initial and maximum young gen sizes");
 235   assert(FLAG_IS_DEFAULT(MaxNewSize) || MaxNewSize < MaxHeapSize, "Ergonomics decided on incompatible maximum young gen and heap sizes");
 236   assert(NewSize % _gen_alignment == 0, "NewSize alignment");
 237   assert(FLAG_IS_DEFAULT(MaxNewSize) || MaxNewSize % _gen_alignment == 0, "MaxNewSize alignment");
 238 }
 239 
 240 void TwoGenerationCollectorPolicy::assert_flags() {
 241   GenCollectorPolicy::assert_flags();
 242   assert(OldSize + NewSize <= MaxHeapSize, "Ergonomics decided on incompatible generation and heap sizes");
 243   assert(OldSize % _gen_alignment == 0, "OldSize alignment");
 244 }
 245 
 246 void GenCollectorPolicy::assert_size_info() {
 247   CollectorPolicy::assert_size_info();
 248   // GenCollectorPolicy::initialize_size_info may update the MaxNewSize
 249   assert(MaxNewSize < MaxHeapSize, "Ergonomics decided on incompatible maximum young and heap sizes");
 250   assert(NewSize == _initial_gen0_size, "Discrepancy between NewSize flag and local storage");
 251   assert(MaxNewSize == _max_gen0_size, "Discrepancy between MaxNewSize flag and local storage");
 252   assert(_min_gen0_size <= _initial_gen0_size, "Ergonomics decided on incompatible minimum and initial young gen sizes");
 253   assert(_initial_gen0_size <= _max_gen0_size, "Ergonomics decided on incompatible initial and maximum young gen sizes");
 254   assert(_min_gen0_size % _gen_alignment == 0, "_min_gen0_size alignment");
 255   assert(_initial_gen0_size % _gen_alignment == 0, "_initial_gen0_size alignment");
 256   assert(_max_gen0_size % _gen_alignment == 0, "_max_gen0_size alignment");
 257 }
 258 
 259 void TwoGenerationCollectorPolicy::assert_size_info() {
 260   GenCollectorPolicy::assert_size_info();
 261   assert(OldSize == _initial_gen1_size, "Discrepancy between OldSize flag and local storage");
 262   assert(_min_gen1_size <= _initial_gen1_size, "Ergonomics decided on incompatible minimum and initial old gen sizes");
 263   assert(_initial_gen1_size <= _max_gen1_size, "Ergonomics decided on incompatible initial and maximum old gen sizes");
 264   assert(_max_gen1_size % _gen_alignment == 0, "_max_gen1_size alignment");
 265   assert(_initial_gen1_size % _gen_alignment == 0, "_initial_gen1_size alignment");
 266   assert(_max_heap_byte_size <= (_max_gen0_size + _max_gen1_size), "Total maximum heap sizes must be sum of generation maximum sizes");
 267 }
 268 
 269 void GenCollectorPolicy::initialize_alignments() {
 270   CollectorPolicy::initialize_alignments();
 271   _gen_alignment = default_gen_alignment();
 272 }
 273 
 274 void GenCollectorPolicy::initialize_flags() {
 275   CollectorPolicy::initialize_flags();
 276 
 277   assert(_gen_alignment != 0, "Generation alignment not set up properly");
 278   assert(_heap_alignment >= _gen_alignment,
 279          err_msg("heap_alignment: " SIZE_FORMAT " less than gen_alignment: " SIZE_FORMAT,
 280                  _heap_alignment, _gen_alignment));
 281   assert(_gen_alignment % _space_alignment == 0,
 282          err_msg("gen_alignment: " SIZE_FORMAT " not aligned by space_alignment: " SIZE_FORMAT,
 283                  _gen_alignment, _space_alignment));
 284 
 285   // All generational heaps have a youngest gen; handle those flags here
 286   if (FLAG_IS_CMDLINE(NewSize) && FLAG_IS_CMDLINE(MaxNewSize) && NewSize > MaxNewSize) {
 287     vm_exit_during_initialization("Initial young gen size set larger than the maximum young gen size");
 288   }
 289 
 290   // Make sure the heap is large enough for two generations
 291   uintx smallestNewSize = young_gen_size_lower_bound();
 292   uintx smallestHeapSize = align_size_up(smallestNewSize + align_size_up(_space_alignment, _gen_alignment),
 293                                          _heap_alignment);
 294   if (MaxHeapSize < smallestHeapSize) {
 295     FLAG_SET_ERGO(uintx, MaxHeapSize, smallestHeapSize);
 296     _max_heap_byte_size = MaxHeapSize;
 297   }
 298   // If needed, synchronize _min_heap_byte size and _initial_heap_byte_size
 299   if (_min_heap_byte_size < smallestHeapSize) {
 300     _min_heap_byte_size = smallestHeapSize;
 301     if (InitialHeapSize < _min_heap_byte_size) {
 302       FLAG_SET_ERGO(uintx, InitialHeapSize, smallestHeapSize);
 303       _initial_heap_byte_size = smallestHeapSize;
 304     }
 305   }
 306 
 307   // Now take the actual NewSize into account. We will silently increase NewSize
 308   // if the user specified a smaller value.
 309   smallestNewSize = MAX2(smallestNewSize, (uintx)align_size_down(NewSize, _gen_alignment));
 310   if (smallestNewSize != NewSize) {
 311     FLAG_SET_ERGO(uintx, NewSize, smallestNewSize);
 312   }
 313   _initial_gen0_size = NewSize;
 314 
 315   if (!FLAG_IS_DEFAULT(MaxNewSize)) {
 316     uintx minNewSize = MAX2(_gen_alignment, _min_gen0_size);
 317 
 318     if (MaxNewSize >= MaxHeapSize) {
 319       // Make sure there is room for an old generation
 320       uintx smallerMaxNewSize = MaxHeapSize - _gen_alignment;
 321       if (FLAG_IS_CMDLINE(MaxNewSize)) {
 322         warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or greater than the entire "
 323                 "heap (" SIZE_FORMAT "k).  A new max generation size of " SIZE_FORMAT "k will be used.",
 324                 MaxNewSize/K, MaxHeapSize/K, smallerMaxNewSize/K);
 325       }
 326       FLAG_SET_ERGO(uintx, MaxNewSize, smallerMaxNewSize);
 327       if (NewSize > MaxNewSize) {
 328         FLAG_SET_ERGO(uintx, NewSize, MaxNewSize);
 329         _initial_gen0_size = NewSize;
 330       }
 331     } else if (MaxNewSize < minNewSize) {
 332       FLAG_SET_ERGO(uintx, MaxNewSize, minNewSize);
 333     } else if (!is_size_aligned(MaxNewSize, _gen_alignment)) {
 334       FLAG_SET_ERGO(uintx, MaxNewSize, align_size_down(MaxNewSize, _gen_alignment));
 335     }
 336     _max_gen0_size = MaxNewSize;
 337   }


 338 
 339   if (NewSize > MaxNewSize) {
 340     // At this point this should only happen if the user specifies a large NewSize or
 341     // a small (but not too small) MaxNewSize.
 342     if (FLAG_IS_CMDLINE(NewSize)) {
 343       warning("NewSize (" SIZE_FORMAT "k) is greater than the MaxNewSize (" SIZE_FORMAT "k). "
 344               "A new generation size of " SIZE_FORMAT "k will be used.",
 345               NewSize/K, MaxNewSize/K, MaxNewSize/K);
 346     }
 347     FLAG_SET_ERGO(uintx, NewSize, MaxNewSize);
 348     _initial_gen0_size = NewSize;
 349   }
 350 
 351   if (SurvivorRatio < 1 || NewRatio < 1) {
 352     vm_exit_during_initialization("Invalid young gen ratio specified");
 353   }
 354 
 355   GenCollectorPolicy::assert_flags();
 356 }
 357 
 358 void TwoGenerationCollectorPolicy::initialize_flags() {
 359   GenCollectorPolicy::initialize_flags();
 360 
 361   if (!is_size_aligned(OldSize, _gen_alignment)) {
 362     FLAG_SET_ERGO(uintx, OldSize, align_size_down(OldSize, _gen_alignment));
 363   }
 364 
 365   if (FLAG_IS_CMDLINE(OldSize) && FLAG_IS_DEFAULT(MaxHeapSize)) {
 366     // NewRatio will be used later to set the young generation size so we use
 367     // it to calculate how big the heap should be based on the requested OldSize
 368     // and NewRatio.
 369     assert(NewRatio > 0, "NewRatio should have been set up earlier");
 370     size_t calculated_heapsize = (OldSize / NewRatio) * (NewRatio + 1);
 371 
 372     calculated_heapsize = align_size_up(calculated_heapsize, _heap_alignment);
 373     FLAG_SET_ERGO(uintx, MaxHeapSize, calculated_heapsize);
 374     _max_heap_byte_size = MaxHeapSize;
 375     FLAG_SET_ERGO(uintx, InitialHeapSize, calculated_heapsize);
 376     _initial_heap_byte_size = InitialHeapSize;
 377   }

 378 
 379   // adjust max heap size if necessary
 380   if (NewSize + OldSize > MaxHeapSize) {
 381     if (_max_heap_size_cmdline) {
 382       // somebody set a maximum heap size with the intention that we should not
 383       // exceed it. Adjust New/OldSize as necessary.
 384       uintx calculated_size = NewSize + OldSize;
 385       double shrink_factor = (double) MaxHeapSize / calculated_size;
 386       uintx smallerNewSize = align_size_down((uintx)(NewSize * shrink_factor), _gen_alignment);
 387       FLAG_SET_ERGO(uintx, NewSize, MAX2(young_gen_size_lower_bound(), smallerNewSize));
 388       _initial_gen0_size = NewSize;










 389 









 390       // OldSize is already aligned because above we aligned MaxHeapSize to
 391       // _heap_alignment, and we just made sure that NewSize is aligned to
 392       // _gen_alignment. In initialize_flags() we verified that _heap_alignment
 393       // is a multiple of _gen_alignment.
 394       FLAG_SET_ERGO(uintx, OldSize, MaxHeapSize - NewSize);
 395     } else {
 396       FLAG_SET_ERGO(uintx, MaxHeapSize, align_size_up(NewSize + OldSize, _heap_alignment));
 397       _max_heap_byte_size = MaxHeapSize;
 398     }
 399   }


 400 
 401   always_do_update_barrier = UseConcMarkSweepGC;
 402   TwoGenerationCollectorPolicy::assert_flags();



 403 }
 404 
 405 // Values set on the command line win over any ergonomically
 406 // set command line parameters.
 407 // Ergonomic choice of parameters are done before this
 408 // method is called.  Values for command line parameters such as NewSize
 409 // and MaxNewSize feed those ergonomic choices into this method.
 410 // This method makes the final generation sizings consistent with
 411 // themselves and with overall heap sizings.
 412 // In the absence of explicitly set command line flags, policies
 413 // such as the use of NewRatio are used to size the generation.
 414 void GenCollectorPolicy::initialize_size_info() {
 415   CollectorPolicy::initialize_size_info();
 416 
 417   // _space_alignment is used for alignment within a generation.
 418   // There is additional alignment done down stream for some
 419   // collectors that sometimes causes unwanted rounding up of
 420   // generations sizes.
 421 
 422   // Determine maximum size of gen0
 423 
 424   size_t max_new_size = 0;
 425   if (!FLAG_IS_DEFAULT(MaxNewSize)) {
 426     max_new_size = MaxNewSize;



























 427   } else {
 428     max_new_size = scale_by_NewRatio_aligned(_max_heap_byte_size);
 429     // Bound the maximum size by NewSize below (since it historically
 430     // would have been NewSize and because the NewRatio calculation could
 431     // yield a size that is too small) and bound it by MaxNewSize above.
 432     // Ergonomics plays here by previously calculating the desired
 433     // NewSize and MaxNewSize.
 434     max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
 435   }
 436   assert(max_new_size > 0, "All paths should set max_new_size");
 437 
 438   // Given the maximum gen0 size, determine the initial and
 439   // minimum gen0 sizes.
 440 
 441   if (_max_heap_byte_size == _min_heap_byte_size) {
 442     // The maximum and minimum heap sizes are the same so
 443     // the generations minimum and initial must be the
 444     // same as its maximum.
 445     _min_gen0_size = max_new_size;
 446     _initial_gen0_size = max_new_size;


 475     _max_gen0_size = max_new_size;
 476 
 477     // At this point the desirable initial and minimum sizes have been
 478     // determined without regard to the maximum sizes.
 479 
 480     // Bound the sizes by the corresponding overall heap sizes.
 481     _min_gen0_size = bound_minus_alignment(_min_gen0_size, _min_heap_byte_size);
 482     _initial_gen0_size = bound_minus_alignment(_initial_gen0_size, _initial_heap_byte_size);
 483     _max_gen0_size = bound_minus_alignment(_max_gen0_size, _max_heap_byte_size);
 484 
 485     // At this point all three sizes have been checked against the
 486     // maximum sizes but have not been checked for consistency
 487     // among the three.
 488 
 489     // Final check min <= initial <= max
 490     _min_gen0_size = MIN2(_min_gen0_size, _max_gen0_size);
 491     _initial_gen0_size = MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size);
 492     _min_gen0_size = MIN2(_min_gen0_size, _initial_gen0_size);
 493   }
 494 
 495   // Write back to flags if necessary
 496   if (NewSize != _initial_gen0_size) {
 497     FLAG_SET_ERGO(uintx, NewSize, _initial_gen0_size);
 498   }
 499 
 500   if (MaxNewSize != _max_gen0_size) {
 501     FLAG_SET_ERGO(uintx, MaxNewSize, _max_gen0_size);
 502   }
 503 
 504   if (PrintGCDetails && Verbose) {
 505     gclog_or_tty->print_cr("1: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 506       SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 507       _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 508   }
 509 
 510   GenCollectorPolicy::assert_size_info();
 511 }
 512 
 513 // Call this method during the sizing of the gen1 to make
 514 // adjustments to gen0 because of gen1 sizing policy.  gen0 initially has
 515 // the most freedom in sizing because it is done before the
 516 // policy for gen1 is applied.  Once gen1 policies have been applied,
 517 // there may be conflicts in the shape of the heap and this method
 518 // is used to make the needed adjustments.  The application of the
 519 // policies could be more sophisticated (iterative for example) but
 520 // keeping it simple also seems a worthwhile goal.
 521 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
 522                                                      size_t* gen1_size_ptr,
 523                                                      const size_t heap_size,
 524                                                      const size_t min_gen1_size) {
 525   bool result = false;
 526 
 527   if ((*gen1_size_ptr + *gen0_size_ptr) > heap_size) {
 528     uintx smallestNewSize = young_gen_size_lower_bound();
 529     if ((heap_size < (*gen0_size_ptr + min_gen1_size)) &&
 530         (heap_size >= min_gen1_size + smallestNewSize)) {
 531       // Adjust gen0 down to accommodate min_gen1_size
 532       *gen0_size_ptr = align_size_down_bounded(heap_size - min_gen1_size, _gen_alignment);
 533       assert(*gen0_size_ptr > 0, "Min gen0 is too large");
 534       result = true;
 535     } else {
 536       *gen1_size_ptr = align_size_down_bounded(heap_size - *gen0_size_ptr, _gen_alignment);
 537     }
 538   }
 539   return result;
 540 }
 541 
 542 // Minimum sizes of the generations may be different than
 543 // the initial sizes.  An inconsistently is permitted here
 544 // in the total size that can be specified explicitly by
 545 // command line specification of OldSize and NewSize and
 546 // also a command line specification of -Xms.  Issue a warning
 547 // but allow the values to pass.
 548 
 549 void TwoGenerationCollectorPolicy::initialize_size_info() {
 550   GenCollectorPolicy::initialize_size_info();
 551 
 552   // At this point the minimum, initial and maximum sizes
 553   // of the overall heap and of gen0 have been determined.
 554   // The maximum gen1 size can be determined from the maximum gen0
 555   // and maximum heap size since no explicit flags exits
 556   // for setting the gen1 maximum.
 557   _max_gen1_size = MAX2(_max_heap_byte_size - _max_gen0_size, _gen_alignment);
 558 

 559   // If no explicit command line flag has been set for the
 560   // gen1 size, use what is left for gen1.
 561   if (!FLAG_IS_CMDLINE(OldSize)) {
 562     // The user has not specified any value but the ergonomics
 563     // may have chosen a value (which may or may not be consistent
 564     // with the overall heap size).  In either case make
 565     // the minimum, maximum and initial sizes consistent
 566     // with the gen0 sizes and the overall heap sizes.
 567     _min_gen1_size = MAX2(_min_heap_byte_size - _min_gen0_size, _gen_alignment);
 568     _initial_gen1_size = MAX2(_initial_heap_byte_size - _initial_gen0_size, _gen_alignment);
 569     // _max_gen1_size has already been made consistent above
 570     FLAG_SET_ERGO(uintx, OldSize, _initial_gen1_size);




 571   } else {
 572     // It's been explicitly set on the command line.  Use the
 573     // OldSize and then determine the consequences.
 574     _min_gen1_size = MIN2(OldSize, _min_heap_byte_size - _min_gen0_size);
 575     _initial_gen1_size = OldSize;
 576 
 577     // If the user has explicitly set an OldSize that is inconsistent
 578     // with other command line flags, issue a warning.
 579     // The generation minimums and the overall heap mimimum should
 580     // be within one generation alignment.
 581     if ((_min_gen1_size + _min_gen0_size + _gen_alignment) < _min_heap_byte_size) {
 582       warning("Inconsistency between minimum heap size and minimum "
 583               "generation sizes: using minimum heap = " SIZE_FORMAT,
 584               _min_heap_byte_size);
 585     }
 586     if (OldSize > _max_gen1_size) {
 587       warning("Inconsistency between maximum heap size and maximum "
 588               "generation sizes: using maximum heap = " SIZE_FORMAT
 589               " -XX:OldSize flag is being ignored",
 590               _max_heap_byte_size);
 591     }
 592     // If there is an inconsistency between the OldSize and the minimum and/or
 593     // initial size of gen0, since OldSize was explicitly set, OldSize wins.
 594     if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size,
 595                           _min_heap_byte_size, _min_gen1_size)) {
 596       if (PrintGCDetails && Verbose) {
 597         gclog_or_tty->print_cr("2: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 598               SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 599               _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 600       }
 601     }
 602     // Initial size
 603     if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
 604                           _initial_heap_byte_size, _initial_gen1_size)) {
 605       if (PrintGCDetails && Verbose) {
 606         gclog_or_tty->print_cr("3: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 607           SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 608           _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 609       }
 610     }
 611   }
 612   // Enforce the maximum gen1 size.
 613   _min_gen1_size = MIN2(_min_gen1_size, _max_gen1_size);
 614 
 615   // Check that min gen1 <= initial gen1 <= max gen1
 616   _initial_gen1_size = MAX2(_initial_gen1_size, _min_gen1_size);
 617   _initial_gen1_size = MIN2(_initial_gen1_size, _max_gen1_size);
 618 
 619   // Write back to flags if necessary
 620   if (NewSize != _initial_gen0_size) {
 621     FLAG_SET_ERGO(uintx, NewSize, _max_gen0_size);
 622   }
 623 
 624   if (MaxNewSize != _max_gen0_size) {
 625     FLAG_SET_ERGO(uintx, MaxNewSize, _max_gen0_size);
 626   }
 627 
 628   if (OldSize != _initial_gen1_size) {
 629     FLAG_SET_ERGO(uintx, OldSize, _initial_gen1_size);
 630   }
 631 
 632   if (PrintGCDetails && Verbose) {
 633     gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT "  Initial gen1 "
 634       SIZE_FORMAT "  Maximum gen1 " SIZE_FORMAT,
 635       _min_gen1_size, _initial_gen1_size, _max_gen1_size);
 636   }
 637 
 638   TwoGenerationCollectorPolicy::assert_size_info();
 639 }
 640 
 641 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
 642                                         bool is_tlab,
 643                                         bool* gc_overhead_limit_was_exceeded) {
 644   GenCollectedHeap *gch = GenCollectedHeap::heap();
 645 
 646   debug_only(gch->check_for_valid_allocation_state());
 647   assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
 648 
 649   // In general gc_overhead_limit_was_exceeded should be false so
 650   // set it so here and reset it to true only if the gc time
 651   // limit is being exceeded as checked below.
 652   *gc_overhead_limit_was_exceeded = false;
 653 
 654   HeapWord* result = NULL;
 655 
 656   // Loop until the allocation is satisified,
 657   // or unsatisfied after GC.
 658   for (int try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {


 941 // Return true if any of the following is true:
 942 // . the allocation won't fit into the current young gen heap
 943 // . gc locker is occupied (jni critical section)
 944 // . heap memory is tight -- the most recent previous collection
 945 //   was a full collection because a partial collection (would
 946 //   have) failed and is likely to fail again
 947 bool GenCollectorPolicy::should_try_older_generation_allocation(
 948         size_t word_size) const {
 949   GenCollectedHeap* gch = GenCollectedHeap::heap();
 950   size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
 951   return    (word_size > heap_word_size(gen0_capacity))
 952          || GC_locker::is_active_and_needs_gc()
 953          || gch->incremental_collection_failed();
 954 }
 955 
 956 
 957 //
 958 // MarkSweepPolicy methods
 959 //
 960 




 961 void MarkSweepPolicy::initialize_generations() {
 962   _generations = NEW_C_HEAP_ARRAY3(GenerationSpecPtr, number_of_generations(), mtGC, 0, AllocFailStrategy::RETURN_NULL);
 963   if (_generations == NULL) {
 964     vm_exit_during_initialization("Unable to allocate gen spec");
 965   }
 966 
 967   if (UseParNewGC) {
 968     _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
 969   } else {
 970     _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
 971   }
 972   _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
 973 
 974   if (_generations[0] == NULL || _generations[1] == NULL) {
 975     vm_exit_during_initialization("Unable to allocate gen spec");
 976   }
 977 }
 978 
 979 void MarkSweepPolicy::initialize_gc_policy_counters() {
 980   // initialize the policy counters - 2 collectors, 3 generations
src/share/vm/memory/collectorPolicy.cpp
Index Unified diffs Context diffs Sdiffs Patch New Old Previous File Next File