1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  27 #include "gc_implementation/g1/concurrentMark.hpp"
  28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  32 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  33 #include "gc_implementation/g1/g1Log.hpp"
  34 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  35 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/java.hpp"
  38 #include "runtime/mutexLocker.hpp"
  39 #include "utilities/debug.hpp"
  40 
  41 // Different defaults for different number of GC threads
  42 // They were chosen by running GCOld and SPECjbb on debris with different
  43 //   numbers of GC threads and choosing them based on the results
  44 
  45 // all the same
  46 static double rs_length_diff_defaults[] = {
  47   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  48 };
  49 
  50 static double cost_per_card_ms_defaults[] = {
  51   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
  52 };
  53 
  54 // all the same
  55 static double young_cards_per_entry_ratio_defaults[] = {
  56   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
  57 };
  58 
  59 static double cost_per_entry_ms_defaults[] = {
  60   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
  61 };
  62 
  63 static double cost_per_byte_ms_defaults[] = {
  64   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
  65 };
  66 
  67 // these should be pretty consistent
  68 static double constant_other_time_ms_defaults[] = {
  69   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
  70 };
  71 
  72 
  73 static double young_other_cost_per_region_ms_defaults[] = {
  74   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
  75 };
  76 
  77 static double non_young_other_cost_per_region_ms_defaults[] = {
  78   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
  79 };
  80 
  81 G1CollectorPolicy::G1CollectorPolicy() :
  82   _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
  83                         ? ParallelGCThreads : 1),
  84 
  85   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  86   _stop_world_start(0.0),
  87 
  88   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  89   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  90 
  91   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  92   _prev_collection_pause_end_ms(0.0),
  93   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  94   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  95   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  96   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  97   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  98   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  99   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 100   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
 101   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 102   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 103   _non_young_other_cost_per_region_ms_seq(
 104                                          new TruncatedSeq(TruncatedSeqLength)),
 105 
 106   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 107   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
 108 
 109   _pause_time_target_ms((double) MaxGCPauseMillis),
 110 
 111   _gcs_are_young(true),
 112 
 113   _during_marking(false),
 114   _in_marking_window(false),
 115   _in_marking_window_im(false),
 116 
 117   _recent_prev_end_times_for_all_gcs_sec(
 118                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
 119 
 120   _recent_avg_pause_time_ratio(0.0),
 121 
 122   _initiate_conc_mark_if_possible(false),
 123   _during_initial_mark_pause(false),
 124   _last_young_gc(false),
 125   _last_gc_was_young(false),
 126 
 127   _eden_used_bytes_before_gc(0),
 128   _survivor_used_bytes_before_gc(0),
 129   _heap_used_bytes_before_gc(0),
 130   _metaspace_used_bytes_before_gc(0),
 131   _eden_capacity_bytes_before_gc(0),
 132   _heap_capacity_bytes_before_gc(0),
 133 
 134   _eden_cset_region_length(0),
 135   _survivor_cset_region_length(0),
 136   _old_cset_region_length(0),
 137 
 138   _collection_set(NULL),
 139   _collection_set_bytes_used_before(0),
 140 
 141   // Incremental CSet attributes
 142   _inc_cset_build_state(Inactive),
 143   _inc_cset_head(NULL),
 144   _inc_cset_tail(NULL),
 145   _inc_cset_bytes_used_before(0),
 146   _inc_cset_max_finger(NULL),
 147   _inc_cset_recorded_rs_lengths(0),
 148   _inc_cset_recorded_rs_lengths_diffs(0),
 149   _inc_cset_predicted_elapsed_time_ms(0.0),
 150   _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
 151 
 152 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 153 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 154 #endif // _MSC_VER
 155 
 156   _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
 157                                                  G1YoungSurvRateNumRegionsSummary)),
 158   _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
 159                                               G1YoungSurvRateNumRegionsSummary)),
 160   // add here any more surv rate groups
 161   _recorded_survivor_regions(0),
 162   _recorded_survivor_head(NULL),
 163   _recorded_survivor_tail(NULL),
 164   _survivors_age_table(true),
 165 
 166   _gc_overhead_perc(0.0) {
 167 
 168   // Set up the region size and associated fields. Given that the
 169   // policy is created before the heap, we have to set this up here,
 170   // so it's done as soon as possible.
 171 
 172   // It would have been natural to pass initial_heap_byte_size() and
 173   // max_heap_byte_size() to setup_heap_region_size() but those have
 174   // not been set up at this point since they should be aligned with
 175   // the region size. So, there is a circular dependency here. We base
 176   // the region size on the heap size, but the heap size should be
 177   // aligned with the region size. To get around this we use the
 178   // unaligned values for the heap.
 179   HeapRegion::setup_heap_region_size(InitialHeapSize, MaxHeapSize);
 180   HeapRegionRemSet::setup_remset_size();
 181 
 182   G1ErgoVerbose::initialize();
 183   if (PrintAdaptiveSizePolicy) {
 184     // Currently, we only use a single switch for all the heuristics.
 185     G1ErgoVerbose::set_enabled(true);
 186     // Given that we don't currently have a verboseness level
 187     // parameter, we'll hardcode this to high. This can be easily
 188     // changed in the future.
 189     G1ErgoVerbose::set_level(ErgoHigh);
 190   } else {
 191     G1ErgoVerbose::set_enabled(false);
 192   }
 193 
 194   // Verify PLAB sizes
 195   const size_t region_size = HeapRegion::GrainWords;
 196   if (YoungPLABSize > region_size || OldPLABSize > region_size) {
 197     char buffer[128];
 198     jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
 199                  OldPLABSize > region_size ? "Old" : "Young", region_size);
 200     vm_exit_during_initialization(buffer);
 201   }
 202 
 203   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
 204   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
 205 
 206   _phase_times = new G1GCPhaseTimes(_parallel_gc_threads);
 207 
 208   int index = MIN2(_parallel_gc_threads - 1, 7);
 209 
 210   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
 211   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
 212   _young_cards_per_entry_ratio_seq->add(
 213                                   young_cards_per_entry_ratio_defaults[index]);
 214   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
 215   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
 216   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
 217   _young_other_cost_per_region_ms_seq->add(
 218                                young_other_cost_per_region_ms_defaults[index]);
 219   _non_young_other_cost_per_region_ms_seq->add(
 220                            non_young_other_cost_per_region_ms_defaults[index]);
 221 
 222   // Below, we might need to calculate the pause time target based on
 223   // the pause interval. When we do so we are going to give G1 maximum
 224   // flexibility and allow it to do pauses when it needs to. So, we'll
 225   // arrange that the pause interval to be pause time target + 1 to
 226   // ensure that a) the pause time target is maximized with respect to
 227   // the pause interval and b) we maintain the invariant that pause
 228   // time target < pause interval. If the user does not want this
 229   // maximum flexibility, they will have to set the pause interval
 230   // explicitly.
 231 
 232   // First make sure that, if either parameter is set, its value is
 233   // reasonable.
 234   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 235     if (MaxGCPauseMillis < 1) {
 236       vm_exit_during_initialization("MaxGCPauseMillis should be "
 237                                     "greater than 0");
 238     }
 239   }
 240   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 241     if (GCPauseIntervalMillis < 1) {
 242       vm_exit_during_initialization("GCPauseIntervalMillis should be "
 243                                     "greater than 0");
 244     }
 245   }
 246 
 247   // Then, if the pause time target parameter was not set, set it to
 248   // the default value.
 249   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 250     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 251       // The default pause time target in G1 is 200ms
 252       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
 253     } else {
 254       // We do not allow the pause interval to be set without the
 255       // pause time target
 256       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
 257                                     "without setting MaxGCPauseMillis");
 258     }
 259   }
 260 
 261   // Then, if the interval parameter was not set, set it according to
 262   // the pause time target (this will also deal with the case when the
 263   // pause time target is the default value).
 264   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 265     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
 266   }
 267 
 268   // Finally, make sure that the two parameters are consistent.
 269   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
 270     char buffer[256];
 271     jio_snprintf(buffer, 256,
 272                  "MaxGCPauseMillis (%u) should be less than "
 273                  "GCPauseIntervalMillis (%u)",
 274                  MaxGCPauseMillis, GCPauseIntervalMillis);
 275     vm_exit_during_initialization(buffer);
 276   }
 277 
 278   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
 279   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
 280   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
 281 
 282   uintx confidence_perc = G1ConfidencePercent;
 283   // Put an artificial ceiling on this so that it's not set to a silly value.
 284   if (confidence_perc > 100) {
 285     confidence_perc = 100;
 286     warning("G1ConfidencePercent is set to a value that is too large, "
 287             "it's been updated to %u", confidence_perc);
 288   }
 289   _sigma = (double) confidence_perc / 100.0;
 290 
 291   // start conservatively (around 50ms is about right)
 292   _concurrent_mark_remark_times_ms->add(0.05);
 293   _concurrent_mark_cleanup_times_ms->add(0.20);
 294   _tenuring_threshold = MaxTenuringThreshold;
 295   // _max_survivor_regions will be calculated by
 296   // update_young_list_target_length() during initialization.
 297   _max_survivor_regions = 0;
 298 
 299   assert(GCTimeRatio > 0,
 300          "we should have set it to a default value set_g1_gc_flags() "
 301          "if a user set it to 0");
 302   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
 303 
 304   uintx reserve_perc = G1ReservePercent;
 305   // Put an artificial ceiling on this so that it's not set to a silly value.
 306   if (reserve_perc > 50) {
 307     reserve_perc = 50;
 308     warning("G1ReservePercent is set to a value that is too large, "
 309             "it's been updated to %u", reserve_perc);
 310   }
 311   _reserve_factor = (double) reserve_perc / 100.0;
 312   // This will be set when the heap is expanded
 313   // for the first time during initialization.
 314   _reserve_regions = 0;
 315 
 316   initialize_all();
 317   _collectionSetChooser = new CollectionSetChooser();
 318   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
 319 }
 320 
 321 void G1CollectorPolicy::initialize_flags() {
 322   _min_alignment = HeapRegion::GrainBytes;
 323   size_t card_table_alignment = GenRemSet::max_alignment_constraint(rem_set_name());
 324   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 325   _max_alignment = MAX3(card_table_alignment, _min_alignment, page_size);
 326   if (SurvivorRatio < 1) {
 327     vm_exit_during_initialization("Invalid survivor ratio specified");
 328   }
 329   CollectorPolicy::initialize_flags();
 330 }
 331 
 332 G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true) {
 333   assert(G1NewSizePercent <= G1MaxNewSizePercent, "Min larger than max");
 334   assert(G1NewSizePercent > 0 && G1NewSizePercent < 100, "Min out of bounds");
 335   assert(G1MaxNewSizePercent > 0 && G1MaxNewSizePercent < 100, "Max out of bounds");
 336 
 337   if (FLAG_IS_CMDLINE(NewRatio)) {
 338     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
 339       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
 340     } else {
 341       _sizer_kind = SizerNewRatio;
 342       _adaptive_size = false;
 343       return;
 344     }
 345   }
 346 
 347   if (FLAG_IS_CMDLINE(NewSize)) {
 348     _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
 349                                      1U);
 350     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 351       _max_desired_young_length =
 352                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 353                                   1U);
 354       _sizer_kind = SizerMaxAndNewSize;
 355       _adaptive_size = _min_desired_young_length == _max_desired_young_length;
 356     } else {
 357       _sizer_kind = SizerNewSizeOnly;
 358     }
 359   } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
 360     _max_desired_young_length =
 361                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 362                                   1U);
 363     _sizer_kind = SizerMaxNewSizeOnly;
 364   }
 365 }
 366 
 367 uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
 368   uint default_value = (new_number_of_heap_regions * G1NewSizePercent) / 100;
 369   return MAX2(1U, default_value);
 370 }
 371 
 372 uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
 373   uint default_value = (new_number_of_heap_regions * G1MaxNewSizePercent) / 100;
 374   return MAX2(1U, default_value);
 375 }
 376 
 377 void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
 378   assert(new_number_of_heap_regions > 0, "Heap must be initialized");
 379 
 380   switch (_sizer_kind) {
 381     case SizerDefaults:
 382       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
 383       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
 384       break;
 385     case SizerNewSizeOnly:
 386       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
 387       _max_desired_young_length = MAX2(_min_desired_young_length, _max_desired_young_length);
 388       break;
 389     case SizerMaxNewSizeOnly:
 390       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
 391       _min_desired_young_length = MIN2(_min_desired_young_length, _max_desired_young_length);
 392       break;
 393     case SizerMaxAndNewSize:
 394       // Do nothing. Values set on the command line, don't update them at runtime.
 395       break;
 396     case SizerNewRatio:
 397       _min_desired_young_length = new_number_of_heap_regions / (NewRatio + 1);
 398       _max_desired_young_length = _min_desired_young_length;
 399       break;
 400     default:
 401       ShouldNotReachHere();
 402   }
 403 
 404   assert(_min_desired_young_length <= _max_desired_young_length, "Invalid min/max young gen size values");
 405 }
 406 
 407 void G1CollectorPolicy::init() {
 408   // Set aside an initial future to_space.
 409   _g1 = G1CollectedHeap::heap();
 410 
 411   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 412 
 413   initialize_gc_policy_counters();
 414 
 415   if (adaptive_young_list_length()) {
 416     _young_list_fixed_length = 0;
 417   } else {
 418     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
 419   }
 420   _free_regions_at_end_of_collection = _g1->free_regions();
 421   update_young_list_target_length();
 422 
 423   // We may immediately start allocating regions and placing them on the
 424   // collection set list. Initialize the per-collection set info
 425   start_incremental_cset_building();
 426 }
 427 
 428 // Create the jstat counters for the policy.
 429 void G1CollectorPolicy::initialize_gc_policy_counters() {
 430   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
 431 }
 432 
 433 bool G1CollectorPolicy::predict_will_fit(uint young_length,
 434                                          double base_time_ms,
 435                                          uint base_free_regions,
 436                                          double target_pause_time_ms) {
 437   if (young_length >= base_free_regions) {
 438     // end condition 1: not enough space for the young regions
 439     return false;
 440   }
 441 
 442   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
 443   size_t bytes_to_copy =
 444                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 445   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
 446   double young_other_time_ms = predict_young_other_time_ms(young_length);
 447   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
 448   if (pause_time_ms > target_pause_time_ms) {
 449     // end condition 2: prediction is over the target pause time
 450     return false;
 451   }
 452 
 453   size_t free_bytes =
 454                    (base_free_regions - young_length) * HeapRegion::GrainBytes;
 455   if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
 456     // end condition 3: out-of-space (conservatively!)
 457     return false;
 458   }
 459 
 460   // success!
 461   return true;
 462 }
 463 
 464 void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
 465   // re-calculate the necessary reserve
 466   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 467   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 468   // smaller than 1.0) we'll get 1.
 469   _reserve_regions = (uint) ceil(reserve_regions_d);
 470 
 471   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 472 }
 473 
 474 uint G1CollectorPolicy::calculate_young_list_desired_min_length(
 475                                                        uint base_min_length) {
 476   uint desired_min_length = 0;
 477   if (adaptive_young_list_length()) {
 478     if (_alloc_rate_ms_seq->num() > 3) {
 479       double now_sec = os::elapsedTime();
 480       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 481       double alloc_rate_ms = predict_alloc_rate_ms();
 482       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 483     } else {
 484       // otherwise we don't have enough info to make the prediction
 485     }
 486   }
 487   desired_min_length += base_min_length;
 488   // make sure we don't go below any user-defined minimum bound
 489   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
 490 }
 491 
 492 uint G1CollectorPolicy::calculate_young_list_desired_max_length() {
 493   // Here, we might want to also take into account any additional
 494   // constraints (i.e., user-defined minimum bound). Currently, we
 495   // effectively don't set this bound.
 496   return _young_gen_sizer->max_desired_young_length();
 497 }
 498 
 499 void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
 500   if (rs_lengths == (size_t) -1) {
 501     // if it's set to the default value (-1), we should predict it;
 502     // otherwise, use the given value.
 503     rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
 504   }
 505 
 506   // Calculate the absolute and desired min bounds.
 507 
 508   // This is how many young regions we already have (currently: the survivors).
 509   uint base_min_length = recorded_survivor_regions();
 510   // This is the absolute minimum young length, which ensures that we
 511   // can allocate one eden region in the worst-case.
 512   uint absolute_min_length = base_min_length + 1;
 513   uint desired_min_length =
 514                      calculate_young_list_desired_min_length(base_min_length);
 515   if (desired_min_length < absolute_min_length) {
 516     desired_min_length = absolute_min_length;
 517   }
 518 
 519   // Calculate the absolute and desired max bounds.
 520 
 521   // We will try our best not to "eat" into the reserve.
 522   uint absolute_max_length = 0;
 523   if (_free_regions_at_end_of_collection > _reserve_regions) {
 524     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 525   }
 526   uint desired_max_length = calculate_young_list_desired_max_length();
 527   if (desired_max_length > absolute_max_length) {
 528     desired_max_length = absolute_max_length;
 529   }
 530 
 531   uint young_list_target_length = 0;
 532   if (adaptive_young_list_length()) {
 533     if (gcs_are_young()) {
 534       young_list_target_length =
 535                         calculate_young_list_target_length(rs_lengths,
 536                                                            base_min_length,
 537                                                            desired_min_length,
 538                                                            desired_max_length);
 539       _rs_lengths_prediction = rs_lengths;
 540     } else {
 541       // Don't calculate anything and let the code below bound it to
 542       // the desired_min_length, i.e., do the next GC as soon as
 543       // possible to maximize how many old regions we can add to it.
 544     }
 545   } else {
 546     // The user asked for a fixed young gen so we'll fix the young gen
 547     // whether the next GC is young or mixed.
 548     young_list_target_length = _young_list_fixed_length;
 549   }
 550 
 551   // Make sure we don't go over the desired max length, nor under the
 552   // desired min length. In case they clash, desired_min_length wins
 553   // which is why that test is second.
 554   if (young_list_target_length > desired_max_length) {
 555     young_list_target_length = desired_max_length;
 556   }
 557   if (young_list_target_length < desired_min_length) {
 558     young_list_target_length = desired_min_length;
 559   }
 560 
 561   assert(young_list_target_length > recorded_survivor_regions(),
 562          "we should be able to allocate at least one eden region");
 563   assert(young_list_target_length >= absolute_min_length, "post-condition");
 564   _young_list_target_length = young_list_target_length;
 565 
 566   update_max_gc_locker_expansion();
 567 }
 568 
 569 uint
 570 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
 571                                                      uint base_min_length,
 572                                                      uint desired_min_length,
 573                                                      uint desired_max_length) {
 574   assert(adaptive_young_list_length(), "pre-condition");
 575   assert(gcs_are_young(), "only call this for young GCs");
 576 
 577   // In case some edge-condition makes the desired max length too small...
 578   if (desired_max_length <= desired_min_length) {
 579     return desired_min_length;
 580   }
 581 
 582   // We'll adjust min_young_length and max_young_length not to include
 583   // the already allocated young regions (i.e., so they reflect the
 584   // min and max eden regions we'll allocate). The base_min_length
 585   // will be reflected in the predictions by the
 586   // survivor_regions_evac_time prediction.
 587   assert(desired_min_length > base_min_length, "invariant");
 588   uint min_young_length = desired_min_length - base_min_length;
 589   assert(desired_max_length > base_min_length, "invariant");
 590   uint max_young_length = desired_max_length - base_min_length;
 591 
 592   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 593   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
 594   size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
 595   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
 596   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
 597   double base_time_ms =
 598     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
 599     survivor_regions_evac_time;
 600   uint available_free_regions = _free_regions_at_end_of_collection;
 601   uint base_free_regions = 0;
 602   if (available_free_regions > _reserve_regions) {
 603     base_free_regions = available_free_regions - _reserve_regions;
 604   }
 605 
 606   // Here, we will make sure that the shortest young length that
 607   // makes sense fits within the target pause time.
 608 
 609   if (predict_will_fit(min_young_length, base_time_ms,
 610                        base_free_regions, target_pause_time_ms)) {
 611     // The shortest young length will fit into the target pause time;
 612     // we'll now check whether the absolute maximum number of young
 613     // regions will fit in the target pause time. If not, we'll do
 614     // a binary search between min_young_length and max_young_length.
 615     if (predict_will_fit(max_young_length, base_time_ms,
 616                          base_free_regions, target_pause_time_ms)) {
 617       // The maximum young length will fit into the target pause time.
 618       // We are done so set min young length to the maximum length (as
 619       // the result is assumed to be returned in min_young_length).
 620       min_young_length = max_young_length;
 621     } else {
 622       // The maximum possible number of young regions will not fit within
 623       // the target pause time so we'll search for the optimal
 624       // length. The loop invariants are:
 625       //
 626       // min_young_length < max_young_length
 627       // min_young_length is known to fit into the target pause time
 628       // max_young_length is known not to fit into the target pause time
 629       //
 630       // Going into the loop we know the above hold as we've just
 631       // checked them. Every time around the loop we check whether
 632       // the middle value between min_young_length and
 633       // max_young_length fits into the target pause time. If it
 634       // does, it becomes the new min. If it doesn't, it becomes
 635       // the new max. This way we maintain the loop invariants.
 636 
 637       assert(min_young_length < max_young_length, "invariant");
 638       uint diff = (max_young_length - min_young_length) / 2;
 639       while (diff > 0) {
 640         uint young_length = min_young_length + diff;
 641         if (predict_will_fit(young_length, base_time_ms,
 642                              base_free_regions, target_pause_time_ms)) {
 643           min_young_length = young_length;
 644         } else {
 645           max_young_length = young_length;
 646         }
 647         assert(min_young_length <  max_young_length, "invariant");
 648         diff = (max_young_length - min_young_length) / 2;
 649       }
 650       // The results is min_young_length which, according to the
 651       // loop invariants, should fit within the target pause time.
 652 
 653       // These are the post-conditions of the binary search above:
 654       assert(min_young_length < max_young_length,
 655              "otherwise we should have discovered that max_young_length "
 656              "fits into the pause target and not done the binary search");
 657       assert(predict_will_fit(min_young_length, base_time_ms,
 658                               base_free_regions, target_pause_time_ms),
 659              "min_young_length, the result of the binary search, should "
 660              "fit into the pause target");
 661       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
 662                                base_free_regions, target_pause_time_ms),
 663              "min_young_length, the result of the binary search, should be "
 664              "optimal, so no larger length should fit into the pause target");
 665     }
 666   } else {
 667     // Even the minimum length doesn't fit into the pause time
 668     // target, return it as the result nevertheless.
 669   }
 670   return base_min_length + min_young_length;
 671 }
 672 
 673 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
 674   double survivor_regions_evac_time = 0.0;
 675   for (HeapRegion * r = _recorded_survivor_head;
 676        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
 677        r = r->get_next_young_region()) {
 678     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, gcs_are_young());
 679   }
 680   return survivor_regions_evac_time;
 681 }
 682 
 683 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
 684   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 685 
 686   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
 687   if (rs_lengths > _rs_lengths_prediction) {
 688     // add 10% to avoid having to recalculate often
 689     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 690     update_young_list_target_length(rs_lengths_prediction);
 691   }
 692 }
 693 
 694 
 695 
 696 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
 697                                                bool is_tlab,
 698                                                bool* gc_overhead_limit_was_exceeded) {
 699   guarantee(false, "Not using this policy feature yet.");
 700   return NULL;
 701 }
 702 
 703 // This method controls how a collector handles one or more
 704 // of its generations being fully allocated.
 705 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
 706                                                        bool is_tlab) {
 707   guarantee(false, "Not using this policy feature yet.");
 708   return NULL;
 709 }
 710 
 711 
 712 #ifndef PRODUCT
 713 bool G1CollectorPolicy::verify_young_ages() {
 714   HeapRegion* head = _g1->young_list()->first_region();
 715   return
 716     verify_young_ages(head, _short_lived_surv_rate_group);
 717   // also call verify_young_ages on any additional surv rate groups
 718 }
 719 
 720 bool
 721 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
 722                                      SurvRateGroup *surv_rate_group) {
 723   guarantee( surv_rate_group != NULL, "pre-condition" );
 724 
 725   const char* name = surv_rate_group->name();
 726   bool ret = true;
 727   int prev_age = -1;
 728 
 729   for (HeapRegion* curr = head;
 730        curr != NULL;
 731        curr = curr->get_next_young_region()) {
 732     SurvRateGroup* group = curr->surv_rate_group();
 733     if (group == NULL && !curr->is_survivor()) {
 734       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
 735       ret = false;
 736     }
 737 
 738     if (surv_rate_group == group) {
 739       int age = curr->age_in_surv_rate_group();
 740 
 741       if (age < 0) {
 742         gclog_or_tty->print_cr("## %s: encountered negative age", name);
 743         ret = false;
 744       }
 745 
 746       if (age <= prev_age) {
 747         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
 748                                "(%d, %d)", name, age, prev_age);
 749         ret = false;
 750       }
 751       prev_age = age;
 752     }
 753   }
 754 
 755   return ret;
 756 }
 757 #endif // PRODUCT
 758 
 759 void G1CollectorPolicy::record_full_collection_start() {
 760   _full_collection_start_sec = os::elapsedTime();
 761   record_heap_size_info_at_start(true /* full */);
 762   // Release the future to-space so that it is available for compaction into.
 763   _g1->set_full_collection();
 764 }
 765 
 766 void G1CollectorPolicy::record_full_collection_end() {
 767   // Consider this like a collection pause for the purposes of allocation
 768   // since last pause.
 769   double end_sec = os::elapsedTime();
 770   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 771   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 772 
 773   _trace_gen1_time_data.record_full_collection(full_gc_time_ms);
 774 
 775   update_recent_gc_times(end_sec, full_gc_time_ms);
 776 
 777   _g1->clear_full_collection();
 778 
 779   // "Nuke" the heuristics that control the young/mixed GC
 780   // transitions and make sure we start with young GCs after the Full GC.
 781   set_gcs_are_young(true);
 782   _last_young_gc = false;
 783   clear_initiate_conc_mark_if_possible();
 784   clear_during_initial_mark_pause();
 785   _in_marking_window = false;
 786   _in_marking_window_im = false;
 787 
 788   _short_lived_surv_rate_group->start_adding_regions();
 789   // also call this on any additional surv rate groups
 790 
 791   record_survivor_regions(0, NULL, NULL);
 792 
 793   _free_regions_at_end_of_collection = _g1->free_regions();
 794   // Reset survivors SurvRateGroup.
 795   _survivor_surv_rate_group->reset();
 796   update_young_list_target_length();
 797   _collectionSetChooser->clear();
 798 }
 799 
 800 void G1CollectorPolicy::record_stop_world_start() {
 801   _stop_world_start = os::elapsedTime();
 802 }
 803 
 804 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec) {
 805   // We only need to do this here as the policy will only be applied
 806   // to the GC we're about to start. so, no point is calculating this
 807   // every time we calculate / recalculate the target young length.
 808   update_survivors_policy();
 809 
 810   assert(_g1->used() == _g1->recalculate_used(),
 811          err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
 812                  _g1->used(), _g1->recalculate_used()));
 813 
 814   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
 815   _trace_gen0_time_data.record_start_collection(s_w_t_ms);
 816   _stop_world_start = 0.0;
 817 
 818   record_heap_size_info_at_start(false /* full */);
 819 
 820   phase_times()->record_cur_collection_start_sec(start_time_sec);
 821   _pending_cards = _g1->pending_card_num();
 822 
 823   _collection_set_bytes_used_before = 0;
 824   _bytes_copied_during_gc = 0;
 825 
 826   _last_gc_was_young = false;
 827 
 828   // do that for any other surv rate groups
 829   _short_lived_surv_rate_group->stop_adding_regions();
 830   _survivors_age_table.clear();
 831 
 832   assert( verify_young_ages(), "region age verification" );
 833 }
 834 
 835 void G1CollectorPolicy::record_concurrent_mark_init_end(double
 836                                                    mark_init_elapsed_time_ms) {
 837   _during_marking = true;
 838   assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
 839   clear_during_initial_mark_pause();
 840   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
 841 }
 842 
 843 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
 844   _mark_remark_start_sec = os::elapsedTime();
 845   _during_marking = false;
 846 }
 847 
 848 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
 849   double end_time_sec = os::elapsedTime();
 850   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 851   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
 852   _cur_mark_stop_world_time_ms += elapsed_time_ms;
 853   _prev_collection_pause_end_ms += elapsed_time_ms;
 854 
 855   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
 856 }
 857 
 858 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
 859   _mark_cleanup_start_sec = os::elapsedTime();
 860 }
 861 
 862 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
 863   _last_young_gc = true;
 864   _in_marking_window = false;
 865 }
 866 
 867 void G1CollectorPolicy::record_concurrent_pause() {
 868   if (_stop_world_start > 0.0) {
 869     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
 870     _trace_gen0_time_data.record_yield_time(yield_ms);
 871   }
 872 }
 873 
 874 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 875   if (_g1->concurrent_mark()->cmThread()->during_cycle()) {
 876     return false;
 877   }
 878 
 879   size_t marking_initiating_used_threshold =
 880     (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
 881   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
 882   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 883 
 884   if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
 885     if (gcs_are_young() && !_last_young_gc) {
 886       ergo_verbose5(ErgoConcCycles,
 887         "request concurrent cycle initiation",
 888         ergo_format_reason("occupancy higher than threshold")
 889         ergo_format_byte("occupancy")
 890         ergo_format_byte("allocation request")
 891         ergo_format_byte_perc("threshold")
 892         ergo_format_str("source"),
 893         cur_used_bytes,
 894         alloc_byte_size,
 895         marking_initiating_used_threshold,
 896         (double) InitiatingHeapOccupancyPercent,
 897         source);
 898       return true;
 899     } else {
 900       ergo_verbose5(ErgoConcCycles,
 901         "do not request concurrent cycle initiation",
 902         ergo_format_reason("still doing mixed collections")
 903         ergo_format_byte("occupancy")
 904         ergo_format_byte("allocation request")
 905         ergo_format_byte_perc("threshold")
 906         ergo_format_str("source"),
 907         cur_used_bytes,
 908         alloc_byte_size,
 909         marking_initiating_used_threshold,
 910         (double) InitiatingHeapOccupancyPercent,
 911         source);
 912     }
 913   }
 914 
 915   return false;
 916 }
 917 
 918 // Anything below that is considered to be zero
 919 #define MIN_TIMER_GRANULARITY 0.0000001
 920 
 921 void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms, EvacuationInfo& evacuation_info) {
 922   double end_time_sec = os::elapsedTime();
 923   assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
 924          "otherwise, the subtraction below does not make sense");
 925   size_t rs_size =
 926             _cur_collection_pause_used_regions_at_start - cset_region_length();
 927   size_t cur_used_bytes = _g1->used();
 928   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
 929   bool last_pause_included_initial_mark = false;
 930   bool update_stats = !_g1->evacuation_failed();
 931 
 932 #ifndef PRODUCT
 933   if (G1YoungSurvRateVerbose) {
 934     gclog_or_tty->print_cr("");
 935     _short_lived_surv_rate_group->print();
 936     // do that for any other surv rate groups too
 937   }
 938 #endif // PRODUCT
 939 
 940   last_pause_included_initial_mark = during_initial_mark_pause();
 941   if (last_pause_included_initial_mark) {
 942     record_concurrent_mark_init_end(0.0);
 943   } else if (need_to_start_conc_mark("end of GC")) {
 944     // Note: this might have already been set, if during the last
 945     // pause we decided to start a cycle but at the beginning of
 946     // this pause we decided to postpone it. That's OK.
 947     set_initiate_conc_mark_if_possible();
 948   }
 949 
 950   _mmu_tracker->add_pause(end_time_sec - pause_time_ms/1000.0,
 951                           end_time_sec, false);
 952 
 953   evacuation_info.set_collectionset_used_before(_collection_set_bytes_used_before);
 954   evacuation_info.set_bytes_copied(_bytes_copied_during_gc);
 955 
 956   if (update_stats) {
 957     _trace_gen0_time_data.record_end_collection(pause_time_ms, phase_times());
 958     // this is where we update the allocation rate of the application
 959     double app_time_ms =
 960       (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
 961     if (app_time_ms < MIN_TIMER_GRANULARITY) {
 962       // This usually happens due to the timer not having the required
 963       // granularity. Some Linuxes are the usual culprits.
 964       // We'll just set it to something (arbitrarily) small.
 965       app_time_ms = 1.0;
 966     }
 967     // We maintain the invariant that all objects allocated by mutator
 968     // threads will be allocated out of eden regions. So, we can use
 969     // the eden region number allocated since the previous GC to
 970     // calculate the application's allocate rate. The only exception
 971     // to that is humongous objects that are allocated separately. But
 972     // given that humongous object allocations do not really affect
 973     // either the pause's duration nor when the next pause will take
 974     // place we can safely ignore them here.
 975     uint regions_allocated = eden_cset_region_length();
 976     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
 977     _alloc_rate_ms_seq->add(alloc_rate_ms);
 978 
 979     double interval_ms =
 980       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
 981     update_recent_gc_times(end_time_sec, pause_time_ms);
 982     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
 983     if (recent_avg_pause_time_ratio() < 0.0 ||
 984         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
 985 #ifndef PRODUCT
 986       // Dump info to allow post-facto debugging
 987       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
 988       gclog_or_tty->print_cr("-------------------------------------------");
 989       gclog_or_tty->print_cr("Recent GC Times (ms):");
 990       _recent_gc_times_ms->dump();
 991       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
 992       _recent_prev_end_times_for_all_gcs_sec->dump();
 993       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
 994                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
 995       // In debug mode, terminate the JVM if the user wants to debug at this point.
 996       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
 997 #endif  // !PRODUCT
 998       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
 999       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
1000       if (_recent_avg_pause_time_ratio < 0.0) {
1001         _recent_avg_pause_time_ratio = 0.0;
1002       } else {
1003         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
1004         _recent_avg_pause_time_ratio = 1.0;
1005       }
1006     }
1007   }
1008 
1009   bool new_in_marking_window = _in_marking_window;
1010   bool new_in_marking_window_im = false;
1011   if (during_initial_mark_pause()) {
1012     new_in_marking_window = true;
1013     new_in_marking_window_im = true;
1014   }
1015 
1016   if (_last_young_gc) {
1017     // This is supposed to to be the "last young GC" before we start
1018     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
1019 
1020     if (!last_pause_included_initial_mark) {
1021       if (next_gc_should_be_mixed("start mixed GCs",
1022                                   "do not start mixed GCs")) {
1023         set_gcs_are_young(false);
1024       }
1025     } else {
1026       ergo_verbose0(ErgoMixedGCs,
1027                     "do not start mixed GCs",
1028                     ergo_format_reason("concurrent cycle is about to start"));
1029     }
1030     _last_young_gc = false;
1031   }
1032 
1033   if (!_last_gc_was_young) {
1034     // This is a mixed GC. Here we decide whether to continue doing
1035     // mixed GCs or not.
1036 
1037     if (!next_gc_should_be_mixed("continue mixed GCs",
1038                                  "do not continue mixed GCs")) {
1039       set_gcs_are_young(true);
1040     }
1041   }
1042 
1043   _short_lived_surv_rate_group->start_adding_regions();
1044   // do that for any other surv rate groupsx
1045 
1046   if (update_stats) {
1047     double cost_per_card_ms = 0.0;
1048     if (_pending_cards > 0) {
1049       cost_per_card_ms = phase_times()->average_last_update_rs_time() / (double) _pending_cards;
1050       _cost_per_card_ms_seq->add(cost_per_card_ms);
1051     }
1052 
1053     size_t cards_scanned = _g1->cards_scanned();
1054 
1055     double cost_per_entry_ms = 0.0;
1056     if (cards_scanned > 10) {
1057       cost_per_entry_ms = phase_times()->average_last_scan_rs_time() / (double) cards_scanned;
1058       if (_last_gc_was_young) {
1059         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1060       } else {
1061         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
1062       }
1063     }
1064 
1065     if (_max_rs_lengths > 0) {
1066       double cards_per_entry_ratio =
1067         (double) cards_scanned / (double) _max_rs_lengths;
1068       if (_last_gc_was_young) {
1069         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1070       } else {
1071         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1072       }
1073     }
1074 
1075     // This is defensive. For a while _max_rs_lengths could get
1076     // smaller than _recorded_rs_lengths which was causing
1077     // rs_length_diff to get very large and mess up the RSet length
1078     // predictions. The reason was unsafe concurrent updates to the
1079     // _inc_cset_recorded_rs_lengths field which the code below guards
1080     // against (see CR 7118202). This bug has now been fixed (see CR
1081     // 7119027). However, I'm still worried that
1082     // _inc_cset_recorded_rs_lengths might still end up somewhat
1083     // inaccurate. The concurrent refinement thread calculates an
1084     // RSet's length concurrently with other CR threads updating it
1085     // which might cause it to calculate the length incorrectly (if,
1086     // say, it's in mid-coarsening). So I'll leave in the defensive
1087     // conditional below just in case.
1088     size_t rs_length_diff = 0;
1089     if (_max_rs_lengths > _recorded_rs_lengths) {
1090       rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
1091     }
1092     _rs_length_diff_seq->add((double) rs_length_diff);
1093 
1094     size_t freed_bytes = _heap_used_bytes_before_gc - cur_used_bytes;
1095     size_t copied_bytes = _collection_set_bytes_used_before - freed_bytes;
1096     double cost_per_byte_ms = 0.0;
1097 
1098     if (copied_bytes > 0) {
1099       cost_per_byte_ms = phase_times()->average_last_obj_copy_time() / (double) copied_bytes;
1100       if (_in_marking_window) {
1101         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1102       } else {
1103         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1104       }
1105     }
1106 
1107     double all_other_time_ms = pause_time_ms -
1108       (phase_times()->average_last_update_rs_time() + phase_times()->average_last_scan_rs_time()
1109       + phase_times()->average_last_obj_copy_time() + phase_times()->average_last_termination_time());
1110 
1111     double young_other_time_ms = 0.0;
1112     if (young_cset_region_length() > 0) {
1113       young_other_time_ms =
1114         phase_times()->young_cset_choice_time_ms() +
1115         phase_times()->young_free_cset_time_ms();
1116       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
1117                                           (double) young_cset_region_length());
1118     }
1119     double non_young_other_time_ms = 0.0;
1120     if (old_cset_region_length() > 0) {
1121       non_young_other_time_ms =
1122         phase_times()->non_young_cset_choice_time_ms() +
1123         phase_times()->non_young_free_cset_time_ms();
1124 
1125       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
1126                                             (double) old_cset_region_length());
1127     }
1128 
1129     double constant_other_time_ms = all_other_time_ms -
1130       (young_other_time_ms + non_young_other_time_ms);
1131     _constant_other_time_ms_seq->add(constant_other_time_ms);
1132 
1133     double survival_ratio = 0.0;
1134     if (_collection_set_bytes_used_before > 0) {
1135       survival_ratio = (double) _bytes_copied_during_gc /
1136                                    (double) _collection_set_bytes_used_before;
1137     }
1138 
1139     _pending_cards_seq->add((double) _pending_cards);
1140     _rs_lengths_seq->add((double) _max_rs_lengths);
1141   }
1142 
1143   _in_marking_window = new_in_marking_window;
1144   _in_marking_window_im = new_in_marking_window_im;
1145   _free_regions_at_end_of_collection = _g1->free_regions();
1146   update_young_list_target_length();
1147 
1148   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1149   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1150   adjust_concurrent_refinement(phase_times()->average_last_update_rs_time(),
1151                                phase_times()->sum_last_update_rs_processed_buffers(), update_rs_time_goal_ms);
1152 
1153   _collectionSetChooser->verify();
1154 }
1155 
1156 #define EXT_SIZE_FORMAT "%.1f%s"
1157 #define EXT_SIZE_PARAMS(bytes)                                  \
1158   byte_size_in_proper_unit((double)(bytes)),                    \
1159   proper_unit_for_byte_size((bytes))
1160 
1161 void G1CollectorPolicy::record_heap_size_info_at_start(bool full) {
1162   YoungList* young_list = _g1->young_list();
1163   _eden_used_bytes_before_gc = young_list->eden_used_bytes();
1164   _survivor_used_bytes_before_gc = young_list->survivor_used_bytes();
1165   _heap_capacity_bytes_before_gc = _g1->capacity();
1166   _heap_used_bytes_before_gc = _g1->used();
1167   _cur_collection_pause_used_regions_at_start = _g1->used_regions();
1168 
1169   _eden_capacity_bytes_before_gc =
1170          (_young_list_target_length * HeapRegion::GrainBytes) - _survivor_used_bytes_before_gc;
1171 
1172   if (full) {
1173     _metaspace_used_bytes_before_gc = MetaspaceAux::allocated_used_bytes();
1174   }
1175 }
1176 
1177 void G1CollectorPolicy::print_heap_transition() {
1178   _g1->print_size_transition(gclog_or_tty,
1179                              _heap_used_bytes_before_gc,
1180                              _g1->used(),
1181                              _g1->capacity());
1182 }
1183 
1184 void G1CollectorPolicy::print_detailed_heap_transition(bool full) {
1185   YoungList* young_list = _g1->young_list();
1186 
1187   size_t eden_used_bytes_after_gc = young_list->eden_used_bytes();
1188   size_t survivor_used_bytes_after_gc = young_list->survivor_used_bytes();
1189   size_t heap_used_bytes_after_gc = _g1->used();
1190 
1191   size_t heap_capacity_bytes_after_gc = _g1->capacity();
1192   size_t eden_capacity_bytes_after_gc =
1193     (_young_list_target_length * HeapRegion::GrainBytes) - survivor_used_bytes_after_gc;
1194 
1195   gclog_or_tty->print(
1196     "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
1197     "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
1198     "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
1199     EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
1200     EXT_SIZE_PARAMS(_eden_used_bytes_before_gc),
1201     EXT_SIZE_PARAMS(_eden_capacity_bytes_before_gc),
1202     EXT_SIZE_PARAMS(eden_used_bytes_after_gc),
1203     EXT_SIZE_PARAMS(eden_capacity_bytes_after_gc),
1204     EXT_SIZE_PARAMS(_survivor_used_bytes_before_gc),
1205     EXT_SIZE_PARAMS(survivor_used_bytes_after_gc),
1206     EXT_SIZE_PARAMS(_heap_used_bytes_before_gc),
1207     EXT_SIZE_PARAMS(_heap_capacity_bytes_before_gc),
1208     EXT_SIZE_PARAMS(heap_used_bytes_after_gc),
1209     EXT_SIZE_PARAMS(heap_capacity_bytes_after_gc));
1210 
1211   if (full) {
1212     MetaspaceAux::print_metaspace_change(_metaspace_used_bytes_before_gc);
1213   }
1214 
1215   gclog_or_tty->cr();
1216 }
1217 
1218 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
1219                                                      double update_rs_processed_buffers,
1220                                                      double goal_ms) {
1221   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1222   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
1223 
1224   if (G1UseAdaptiveConcRefinement) {
1225     const int k_gy = 3, k_gr = 6;
1226     const double inc_k = 1.1, dec_k = 0.9;
1227 
1228     int g = cg1r->green_zone();
1229     if (update_rs_time > goal_ms) {
1230       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
1231     } else {
1232       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
1233         g = (int)MAX2(g * inc_k, g + 1.0);
1234       }
1235     }
1236     // Change the refinement threads params
1237     cg1r->set_green_zone(g);
1238     cg1r->set_yellow_zone(g * k_gy);
1239     cg1r->set_red_zone(g * k_gr);
1240     cg1r->reinitialize_threads();
1241 
1242     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
1243     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
1244                                     cg1r->yellow_zone());
1245     // Change the barrier params
1246     dcqs.set_process_completed_threshold(processing_threshold);
1247     dcqs.set_max_completed_queue(cg1r->red_zone());
1248   }
1249 
1250   int curr_queue_size = dcqs.completed_buffers_num();
1251   if (curr_queue_size >= cg1r->yellow_zone()) {
1252     dcqs.set_completed_queue_padding(curr_queue_size);
1253   } else {
1254     dcqs.set_completed_queue_padding(0);
1255   }
1256   dcqs.notify_if_necessary();
1257 }
1258 
1259 double
1260 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
1261                                                 size_t scanned_cards) {
1262   return
1263     predict_rs_update_time_ms(pending_cards) +
1264     predict_rs_scan_time_ms(scanned_cards) +
1265     predict_constant_other_time_ms();
1266 }
1267 
1268 double
1269 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
1270   size_t rs_length = predict_rs_length_diff();
1271   size_t card_num;
1272   if (gcs_are_young()) {
1273     card_num = predict_young_card_num(rs_length);
1274   } else {
1275     card_num = predict_non_young_card_num(rs_length);
1276   }
1277   return predict_base_elapsed_time_ms(pending_cards, card_num);
1278 }
1279 
1280 size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
1281   size_t bytes_to_copy;
1282   if (hr->is_marked())
1283     bytes_to_copy = hr->max_live_bytes();
1284   else {
1285     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
1286     int age = hr->age_in_surv_rate_group();
1287     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1288     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
1289   }
1290   return bytes_to_copy;
1291 }
1292 
1293 double
1294 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1295                                                   bool for_young_gc) {
1296   size_t rs_length = hr->rem_set()->occupied();
1297   size_t card_num;
1298 
1299   // Predicting the number of cards is based on which type of GC
1300   // we're predicting for.
1301   if (for_young_gc) {
1302     card_num = predict_young_card_num(rs_length);
1303   } else {
1304     card_num = predict_non_young_card_num(rs_length);
1305   }
1306   size_t bytes_to_copy = predict_bytes_to_copy(hr);
1307 
1308   double region_elapsed_time_ms =
1309     predict_rs_scan_time_ms(card_num) +
1310     predict_object_copy_time_ms(bytes_to_copy);
1311 
1312   // The prediction of the "other" time for this region is based
1313   // upon the region type and NOT the GC type.
1314   if (hr->is_young()) {
1315     region_elapsed_time_ms += predict_young_other_time_ms(1);
1316   } else {
1317     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
1318   }
1319   return region_elapsed_time_ms;
1320 }
1321 
1322 void
1323 G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
1324                                             uint survivor_cset_region_length) {
1325   _eden_cset_region_length     = eden_cset_region_length;
1326   _survivor_cset_region_length = survivor_cset_region_length;
1327   _old_cset_region_length      = 0;
1328 }
1329 
1330 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
1331   _recorded_rs_lengths = rs_lengths;
1332 }
1333 
1334 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
1335                                                double elapsed_ms) {
1336   _recent_gc_times_ms->add(elapsed_ms);
1337   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
1338   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
1339 }
1340 
1341 size_t G1CollectorPolicy::expansion_amount() {
1342   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
1343   double threshold = _gc_overhead_perc;
1344   if (recent_gc_overhead > threshold) {
1345     // We will double the existing space, or take
1346     // G1ExpandByPercentOfAvailable % of the available expansion
1347     // space, whichever is smaller, bounded below by a minimum
1348     // expansion (unless that's all that's left.)
1349     const size_t min_expand_bytes = 1*M;
1350     size_t reserved_bytes = _g1->max_capacity();
1351     size_t committed_bytes = _g1->capacity();
1352     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
1353     size_t expand_bytes;
1354     size_t expand_bytes_via_pct =
1355       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1356     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
1357     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
1358     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1359 
1360     ergo_verbose5(ErgoHeapSizing,
1361                   "attempt heap expansion",
1362                   ergo_format_reason("recent GC overhead higher than "
1363                                      "threshold after GC")
1364                   ergo_format_perc("recent GC overhead")
1365                   ergo_format_perc("threshold")
1366                   ergo_format_byte("uncommitted")
1367                   ergo_format_byte_perc("calculated expansion amount"),
1368                   recent_gc_overhead, threshold,
1369                   uncommitted_bytes,
1370                   expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);
1371 
1372     return expand_bytes;
1373   } else {
1374     return 0;
1375   }
1376 }
1377 
1378 void G1CollectorPolicy::print_tracing_info() const {
1379   _trace_gen0_time_data.print();
1380   _trace_gen1_time_data.print();
1381 }
1382 
1383 void G1CollectorPolicy::print_yg_surv_rate_info() const {
1384 #ifndef PRODUCT
1385   _short_lived_surv_rate_group->print_surv_rate_summary();
1386   // add this call for any other surv rate groups
1387 #endif // PRODUCT
1388 }
1389 
1390 uint G1CollectorPolicy::max_regions(int purpose) {
1391   switch (purpose) {
1392     case GCAllocForSurvived:
1393       return _max_survivor_regions;
1394     case GCAllocForTenured:
1395       return REGIONS_UNLIMITED;
1396     default:
1397       ShouldNotReachHere();
1398       return REGIONS_UNLIMITED;
1399   };
1400 }
1401 
1402 void G1CollectorPolicy::update_max_gc_locker_expansion() {
1403   uint expansion_region_num = 0;
1404   if (GCLockerEdenExpansionPercent > 0) {
1405     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
1406     double expansion_region_num_d = perc * (double) _young_list_target_length;
1407     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
1408     // less than 1.0) we'll get 1.
1409     expansion_region_num = (uint) ceil(expansion_region_num_d);
1410   } else {
1411     assert(expansion_region_num == 0, "sanity");
1412   }
1413   _young_list_max_length = _young_list_target_length + expansion_region_num;
1414   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
1415 }
1416 
1417 // Calculates survivor space parameters.
1418 void G1CollectorPolicy::update_survivors_policy() {
1419   double max_survivor_regions_d =
1420                  (double) _young_list_target_length / (double) SurvivorRatio;
1421   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
1422   // smaller than 1.0) we'll get 1.
1423   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
1424 
1425   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
1426         HeapRegion::GrainWords * _max_survivor_regions);
1427 }
1428 
1429 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
1430                                                      GCCause::Cause gc_cause) {
1431   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1432   if (!during_cycle) {
1433     ergo_verbose1(ErgoConcCycles,
1434                   "request concurrent cycle initiation",
1435                   ergo_format_reason("requested by GC cause")
1436                   ergo_format_str("GC cause"),
1437                   GCCause::to_string(gc_cause));
1438     set_initiate_conc_mark_if_possible();
1439     return true;
1440   } else {
1441     ergo_verbose1(ErgoConcCycles,
1442                   "do not request concurrent cycle initiation",
1443                   ergo_format_reason("concurrent cycle already in progress")
1444                   ergo_format_str("GC cause"),
1445                   GCCause::to_string(gc_cause));
1446     return false;
1447   }
1448 }
1449 
1450 void
1451 G1CollectorPolicy::decide_on_conc_mark_initiation() {
1452   // We are about to decide on whether this pause will be an
1453   // initial-mark pause.
1454 
1455   // First, during_initial_mark_pause() should not be already set. We
1456   // will set it here if we have to. However, it should be cleared by
1457   // the end of the pause (it's only set for the duration of an
1458   // initial-mark pause).
1459   assert(!during_initial_mark_pause(), "pre-condition");
1460 
1461   if (initiate_conc_mark_if_possible()) {
1462     // We had noticed on a previous pause that the heap occupancy has
1463     // gone over the initiating threshold and we should start a
1464     // concurrent marking cycle. So we might initiate one.
1465 
1466     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1467     if (!during_cycle) {
1468       // The concurrent marking thread is not "during a cycle", i.e.,
1469       // it has completed the last one. So we can go ahead and
1470       // initiate a new cycle.
1471 
1472       set_during_initial_mark_pause();
1473       // We do not allow mixed GCs during marking.
1474       if (!gcs_are_young()) {
1475         set_gcs_are_young(true);
1476         ergo_verbose0(ErgoMixedGCs,
1477                       "end mixed GCs",
1478                       ergo_format_reason("concurrent cycle is about to start"));
1479       }
1480 
1481       // And we can now clear initiate_conc_mark_if_possible() as
1482       // we've already acted on it.
1483       clear_initiate_conc_mark_if_possible();
1484 
1485       ergo_verbose0(ErgoConcCycles,
1486                   "initiate concurrent cycle",
1487                   ergo_format_reason("concurrent cycle initiation requested"));
1488     } else {
1489       // The concurrent marking thread is still finishing up the
1490       // previous cycle. If we start one right now the two cycles
1491       // overlap. In particular, the concurrent marking thread might
1492       // be in the process of clearing the next marking bitmap (which
1493       // we will use for the next cycle if we start one). Starting a
1494       // cycle now will be bad given that parts of the marking
1495       // information might get cleared by the marking thread. And we
1496       // cannot wait for the marking thread to finish the cycle as it
1497       // periodically yields while clearing the next marking bitmap
1498       // and, if it's in a yield point, it's waiting for us to
1499       // finish. So, at this point we will not start a cycle and we'll
1500       // let the concurrent marking thread complete the last one.
1501       ergo_verbose0(ErgoConcCycles,
1502                     "do not initiate concurrent cycle",
1503                     ergo_format_reason("concurrent cycle already in progress"));
1504     }
1505   }
1506 }
1507 
1508 class KnownGarbageClosure: public HeapRegionClosure {
1509   G1CollectedHeap* _g1h;
1510   CollectionSetChooser* _hrSorted;
1511 
1512 public:
1513   KnownGarbageClosure(CollectionSetChooser* hrSorted) :
1514     _g1h(G1CollectedHeap::heap()), _hrSorted(hrSorted) { }
1515 
1516   bool doHeapRegion(HeapRegion* r) {
1517     // We only include humongous regions in collection
1518     // sets when concurrent mark shows that their contained object is
1519     // unreachable.
1520 
1521     // Do we have any marking information for this region?
1522     if (r->is_marked()) {
1523       // We will skip any region that's currently used as an old GC
1524       // alloc region (we should not consider those for collection
1525       // before we fill them up).
1526       if (_hrSorted->should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
1527         _hrSorted->add_region(r);
1528       }
1529     }
1530     return false;
1531   }
1532 };
1533 
1534 class ParKnownGarbageHRClosure: public HeapRegionClosure {
1535   G1CollectedHeap* _g1h;
1536   CSetChooserParUpdater _cset_updater;
1537 
1538 public:
1539   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
1540                            uint chunk_size) :
1541     _g1h(G1CollectedHeap::heap()),
1542     _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
1543 
1544   bool doHeapRegion(HeapRegion* r) {
1545     // Do we have any marking information for this region?
1546     if (r->is_marked()) {
1547       // We will skip any region that's currently used as an old GC
1548       // alloc region (we should not consider those for collection
1549       // before we fill them up).
1550       if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
1551         _cset_updater.add_region(r);
1552       }
1553     }
1554     return false;
1555   }
1556 };
1557 
1558 class ParKnownGarbageTask: public AbstractGangTask {
1559   CollectionSetChooser* _hrSorted;
1560   uint _chunk_size;
1561   G1CollectedHeap* _g1;
1562 public:
1563   ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size) :
1564     AbstractGangTask("ParKnownGarbageTask"),
1565     _hrSorted(hrSorted), _chunk_size(chunk_size),
1566     _g1(G1CollectedHeap::heap()) { }
1567 
1568   void work(uint worker_id) {
1569     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);
1570 
1571     // Back to zero for the claim value.
1572     _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, worker_id,
1573                                          _g1->workers()->active_workers(),
1574                                          HeapRegion::InitialClaimValue);
1575   }
1576 };
1577 
1578 void
1579 G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) {
1580   _collectionSetChooser->clear();
1581 
1582   uint region_num = _g1->n_regions();
1583   if (G1CollectedHeap::use_parallel_gc_threads()) {
1584     const uint OverpartitionFactor = 4;
1585     uint WorkUnit;
1586     // The use of MinChunkSize = 8 in the original code
1587     // causes some assertion failures when the total number of
1588     // region is less than 8.  The code here tries to fix that.
1589     // Should the original code also be fixed?
1590     if (no_of_gc_threads > 0) {
1591       const uint MinWorkUnit = MAX2(region_num / no_of_gc_threads, 1U);
1592       WorkUnit = MAX2(region_num / (no_of_gc_threads * OverpartitionFactor),
1593                       MinWorkUnit);
1594     } else {
1595       assert(no_of_gc_threads > 0,
1596         "The active gc workers should be greater than 0");
1597       // In a product build do something reasonable to avoid a crash.
1598       const uint MinWorkUnit = MAX2(region_num / (uint) ParallelGCThreads, 1U);
1599       WorkUnit =
1600         MAX2(region_num / (uint) (ParallelGCThreads * OverpartitionFactor),
1601              MinWorkUnit);
1602     }
1603     _collectionSetChooser->prepare_for_par_region_addition(_g1->n_regions(),
1604                                                            WorkUnit);
1605     ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
1606                                             (int) WorkUnit);
1607     _g1->workers()->run_task(&parKnownGarbageTask);
1608 
1609     assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
1610            "sanity check");
1611   } else {
1612     KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
1613     _g1->heap_region_iterate(&knownGarbagecl);
1614   }
1615 
1616   _collectionSetChooser->sort_regions();
1617 
1618   double end_sec = os::elapsedTime();
1619   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1620   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
1621   _cur_mark_stop_world_time_ms += elapsed_time_ms;
1622   _prev_collection_pause_end_ms += elapsed_time_ms;
1623   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
1624 }
1625 
1626 // Add the heap region at the head of the non-incremental collection set
1627 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
1628   assert(_inc_cset_build_state == Active, "Precondition");
1629   assert(!hr->is_young(), "non-incremental add of young region");
1630 
1631   assert(!hr->in_collection_set(), "should not already be in the CSet");
1632   hr->set_in_collection_set(true);
1633   hr->set_next_in_collection_set(_collection_set);
1634   _collection_set = hr;
1635   _collection_set_bytes_used_before += hr->used();
1636   _g1->register_region_with_in_cset_fast_test(hr);
1637   size_t rs_length = hr->rem_set()->occupied();
1638   _recorded_rs_lengths += rs_length;
1639   _old_cset_region_length += 1;
1640 }
1641 
1642 // Initialize the per-collection-set information
1643 void G1CollectorPolicy::start_incremental_cset_building() {
1644   assert(_inc_cset_build_state == Inactive, "Precondition");
1645 
1646   _inc_cset_head = NULL;
1647   _inc_cset_tail = NULL;
1648   _inc_cset_bytes_used_before = 0;
1649 
1650   _inc_cset_max_finger = 0;
1651   _inc_cset_recorded_rs_lengths = 0;
1652   _inc_cset_recorded_rs_lengths_diffs = 0;
1653   _inc_cset_predicted_elapsed_time_ms = 0.0;
1654   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1655   _inc_cset_build_state = Active;
1656 }
1657 
1658 void G1CollectorPolicy::finalize_incremental_cset_building() {
1659   assert(_inc_cset_build_state == Active, "Precondition");
1660   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1661 
1662   // The two "main" fields, _inc_cset_recorded_rs_lengths and
1663   // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
1664   // that adds a new region to the CSet. Further updates by the
1665   // concurrent refinement thread that samples the young RSet lengths
1666   // are accumulated in the *_diffs fields. Here we add the diffs to
1667   // the "main" fields.
1668 
1669   if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
1670     _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
1671   } else {
1672     // This is defensive. The diff should in theory be always positive
1673     // as RSets can only grow between GCs. However, given that we
1674     // sample their size concurrently with other threads updating them
1675     // it's possible that we might get the wrong size back, which
1676     // could make the calculations somewhat inaccurate.
1677     size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
1678     if (_inc_cset_recorded_rs_lengths >= diffs) {
1679       _inc_cset_recorded_rs_lengths -= diffs;
1680     } else {
1681       _inc_cset_recorded_rs_lengths = 0;
1682     }
1683   }
1684   _inc_cset_predicted_elapsed_time_ms +=
1685                                      _inc_cset_predicted_elapsed_time_ms_diffs;
1686 
1687   _inc_cset_recorded_rs_lengths_diffs = 0;
1688   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1689 }
1690 
1691 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
1692   // This routine is used when:
1693   // * adding survivor regions to the incremental cset at the end of an
1694   //   evacuation pause,
1695   // * adding the current allocation region to the incremental cset
1696   //   when it is retired, and
1697   // * updating existing policy information for a region in the
1698   //   incremental cset via young list RSet sampling.
1699   // Therefore this routine may be called at a safepoint by the
1700   // VM thread, or in-between safepoints by mutator threads (when
1701   // retiring the current allocation region) or a concurrent
1702   // refine thread (RSet sampling).
1703 
1704   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1705   size_t used_bytes = hr->used();
1706   _inc_cset_recorded_rs_lengths += rs_length;
1707   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
1708   _inc_cset_bytes_used_before += used_bytes;
1709 
1710   // Cache the values we have added to the aggregated informtion
1711   // in the heap region in case we have to remove this region from
1712   // the incremental collection set, or it is updated by the
1713   // rset sampling code
1714   hr->set_recorded_rs_length(rs_length);
1715   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
1716 }
1717 
1718 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
1719                                                      size_t new_rs_length) {
1720   // Update the CSet information that is dependent on the new RS length
1721   assert(hr->is_young(), "Precondition");
1722   assert(!SafepointSynchronize::is_at_safepoint(),
1723                                                "should not be at a safepoint");
1724 
1725   // We could have updated _inc_cset_recorded_rs_lengths and
1726   // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
1727   // that atomically, as this code is executed by a concurrent
1728   // refinement thread, potentially concurrently with a mutator thread
1729   // allocating a new region and also updating the same fields. To
1730   // avoid the atomic operations we accumulate these updates on two
1731   // separate fields (*_diffs) and we'll just add them to the "main"
1732   // fields at the start of a GC.
1733 
1734   ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
1735   ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
1736   _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
1737 
1738   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
1739   double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1740   double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
1741   _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
1742 
1743   hr->set_recorded_rs_length(new_rs_length);
1744   hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
1745 }
1746 
1747 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
1748   assert(hr->is_young(), "invariant");
1749   assert(hr->young_index_in_cset() > -1, "should have already been set");
1750   assert(_inc_cset_build_state == Active, "Precondition");
1751 
1752   // We need to clear and set the cached recorded/cached collection set
1753   // information in the heap region here (before the region gets added
1754   // to the collection set). An individual heap region's cached values
1755   // are calculated, aggregated with the policy collection set info,
1756   // and cached in the heap region here (initially) and (subsequently)
1757   // by the Young List sampling code.
1758 
1759   size_t rs_length = hr->rem_set()->occupied();
1760   add_to_incremental_cset_info(hr, rs_length);
1761 
1762   HeapWord* hr_end = hr->end();
1763   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
1764 
1765   assert(!hr->in_collection_set(), "invariant");
1766   hr->set_in_collection_set(true);
1767   assert( hr->next_in_collection_set() == NULL, "invariant");
1768 
1769   _g1->register_region_with_in_cset_fast_test(hr);
1770 }
1771 
1772 // Add the region at the RHS of the incremental cset
1773 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
1774   // We should only ever be appending survivors at the end of a pause
1775   assert( hr->is_survivor(), "Logic");
1776 
1777   // Do the 'common' stuff
1778   add_region_to_incremental_cset_common(hr);
1779 
1780   // Now add the region at the right hand side
1781   if (_inc_cset_tail == NULL) {
1782     assert(_inc_cset_head == NULL, "invariant");
1783     _inc_cset_head = hr;
1784   } else {
1785     _inc_cset_tail->set_next_in_collection_set(hr);
1786   }
1787   _inc_cset_tail = hr;
1788 }
1789 
1790 // Add the region to the LHS of the incremental cset
1791 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
1792   // Survivors should be added to the RHS at the end of a pause
1793   assert(!hr->is_survivor(), "Logic");
1794 
1795   // Do the 'common' stuff
1796   add_region_to_incremental_cset_common(hr);
1797 
1798   // Add the region at the left hand side
1799   hr->set_next_in_collection_set(_inc_cset_head);
1800   if (_inc_cset_head == NULL) {
1801     assert(_inc_cset_tail == NULL, "Invariant");
1802     _inc_cset_tail = hr;
1803   }
1804   _inc_cset_head = hr;
1805 }
1806 
1807 #ifndef PRODUCT
1808 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
1809   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
1810 
1811   st->print_cr("\nCollection_set:");
1812   HeapRegion* csr = list_head;
1813   while (csr != NULL) {
1814     HeapRegion* next = csr->next_in_collection_set();
1815     assert(csr->in_collection_set(), "bad CS");
1816     st->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
1817                  HR_FORMAT_PARAMS(csr),
1818                  csr->prev_top_at_mark_start(), csr->next_top_at_mark_start(),
1819                  csr->age_in_surv_rate_group_cond());
1820     csr = next;
1821   }
1822 }
1823 #endif // !PRODUCT
1824 
1825 double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) {
1826   // Returns the given amount of reclaimable bytes (that represents
1827   // the amount of reclaimable space still to be collected) as a
1828   // percentage of the current heap capacity.
1829   size_t capacity_bytes = _g1->capacity();
1830   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
1831 }
1832 
1833 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
1834                                                 const char* false_action_str) {
1835   CollectionSetChooser* cset_chooser = _collectionSetChooser;
1836   if (cset_chooser->is_empty()) {
1837     ergo_verbose0(ErgoMixedGCs,
1838                   false_action_str,
1839                   ergo_format_reason("candidate old regions not available"));
1840     return false;
1841   }
1842 
1843   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1844   size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
1845   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1846   double threshold = (double) G1HeapWastePercent;
1847   if (reclaimable_perc <= threshold) {
1848     ergo_verbose4(ErgoMixedGCs,
1849               false_action_str,
1850               ergo_format_reason("reclaimable percentage not over threshold")
1851               ergo_format_region("candidate old regions")
1852               ergo_format_byte_perc("reclaimable")
1853               ergo_format_perc("threshold"),
1854               cset_chooser->remaining_regions(),
1855               reclaimable_bytes,
1856               reclaimable_perc, threshold);
1857     return false;
1858   }
1859 
1860   ergo_verbose4(ErgoMixedGCs,
1861                 true_action_str,
1862                 ergo_format_reason("candidate old regions available")
1863                 ergo_format_region("candidate old regions")
1864                 ergo_format_byte_perc("reclaimable")
1865                 ergo_format_perc("threshold"),
1866                 cset_chooser->remaining_regions(),
1867                 reclaimable_bytes,
1868                 reclaimable_perc, threshold);
1869   return true;
1870 }
1871 
1872 uint G1CollectorPolicy::calc_min_old_cset_length() {
1873   // The min old CSet region bound is based on the maximum desired
1874   // number of mixed GCs after a cycle. I.e., even if some old regions
1875   // look expensive, we should add them to the CSet anyway to make
1876   // sure we go through the available old regions in no more than the
1877   // maximum desired number of mixed GCs.
1878   //
1879   // The calculation is based on the number of marked regions we added
1880   // to the CSet chooser in the first place, not how many remain, so
1881   // that the result is the same during all mixed GCs that follow a cycle.
1882 
1883   const size_t region_num = (size_t) _collectionSetChooser->length();
1884   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1885   size_t result = region_num / gc_num;
1886   // emulate ceiling
1887   if (result * gc_num < region_num) {
1888     result += 1;
1889   }
1890   return (uint) result;
1891 }
1892 
1893 uint G1CollectorPolicy::calc_max_old_cset_length() {
1894   // The max old CSet region bound is based on the threshold expressed
1895   // as a percentage of the heap size. I.e., it should bound the
1896   // number of old regions added to the CSet irrespective of how many
1897   // of them are available.
1898 
1899   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1900   const size_t region_num = g1h->n_regions();
1901   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1902   size_t result = region_num * perc / 100;
1903   // emulate ceiling
1904   if (100 * result < region_num * perc) {
1905     result += 1;
1906   }
1907   return (uint) result;
1908 }
1909 
1910 
1911 void G1CollectorPolicy::finalize_cset(double target_pause_time_ms, EvacuationInfo& evacuation_info) {
1912   double young_start_time_sec = os::elapsedTime();
1913 
1914   YoungList* young_list = _g1->young_list();
1915   finalize_incremental_cset_building();
1916 
1917   guarantee(target_pause_time_ms > 0.0,
1918             err_msg("target_pause_time_ms = %1.6lf should be positive",
1919                     target_pause_time_ms));
1920   guarantee(_collection_set == NULL, "Precondition");
1921 
1922   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
1923   double predicted_pause_time_ms = base_time_ms;
1924   double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
1925 
1926   ergo_verbose4(ErgoCSetConstruction | ErgoHigh,
1927                 "start choosing CSet",
1928                 ergo_format_size("_pending_cards")
1929                 ergo_format_ms("predicted base time")
1930                 ergo_format_ms("remaining time")
1931                 ergo_format_ms("target pause time"),
1932                 _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
1933 
1934   _last_gc_was_young = gcs_are_young() ? true : false;
1935 
1936   if (_last_gc_was_young) {
1937     _trace_gen0_time_data.increment_young_collection_count();
1938   } else {
1939     _trace_gen0_time_data.increment_mixed_collection_count();
1940   }
1941 
1942   // The young list is laid with the survivor regions from the previous
1943   // pause are appended to the RHS of the young list, i.e.
1944   //   [Newly Young Regions ++ Survivors from last pause].
1945 
1946   uint survivor_region_length = young_list->survivor_length();
1947   uint eden_region_length = young_list->length() - survivor_region_length;
1948   init_cset_region_lengths(eden_region_length, survivor_region_length);
1949 
1950   HeapRegion* hr = young_list->first_survivor_region();
1951   while (hr != NULL) {
1952     assert(hr->is_survivor(), "badly formed young list");
1953     hr->set_young();
1954     hr = hr->get_next_young_region();
1955   }
1956 
1957   // Clear the fields that point to the survivor list - they are all young now.
1958   young_list->clear_survivors();
1959 
1960   _collection_set = _inc_cset_head;
1961   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
1962   time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
1963   predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
1964 
1965   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
1966                 "add young regions to CSet",
1967                 ergo_format_region("eden")
1968                 ergo_format_region("survivors")
1969                 ergo_format_ms("predicted young region time"),
1970                 eden_region_length, survivor_region_length,
1971                 _inc_cset_predicted_elapsed_time_ms);
1972 
1973   // The number of recorded young regions is the incremental
1974   // collection set's current size
1975   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
1976 
1977   double young_end_time_sec = os::elapsedTime();
1978   phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
1979 
1980   // Set the start of the non-young choice time.
1981   double non_young_start_time_sec = young_end_time_sec;
1982 
1983   if (!gcs_are_young()) {
1984     CollectionSetChooser* cset_chooser = _collectionSetChooser;
1985     cset_chooser->verify();
1986     const uint min_old_cset_length = calc_min_old_cset_length();
1987     const uint max_old_cset_length = calc_max_old_cset_length();
1988 
1989     uint expensive_region_num = 0;
1990     bool check_time_remaining = adaptive_young_list_length();
1991 
1992     HeapRegion* hr = cset_chooser->peek();
1993     while (hr != NULL) {
1994       if (old_cset_region_length() >= max_old_cset_length) {
1995         // Added maximum number of old regions to the CSet.
1996         ergo_verbose2(ErgoCSetConstruction,
1997                       "finish adding old regions to CSet",
1998                       ergo_format_reason("old CSet region num reached max")
1999                       ergo_format_region("old")
2000                       ergo_format_region("max"),
2001                       old_cset_region_length(), max_old_cset_length);
2002         break;
2003       }
2004 
2005 
2006       // Stop adding regions if the remaining reclaimable space is
2007       // not above G1HeapWastePercent.
2008       size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
2009       double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
2010       double threshold = (double) G1HeapWastePercent;
2011       if (reclaimable_perc <= threshold) {
2012         // We've added enough old regions that the amount of uncollected
2013         // reclaimable space is at or below the waste threshold. Stop
2014         // adding old regions to the CSet.
2015         ergo_verbose5(ErgoCSetConstruction,
2016                       "finish adding old regions to CSet",
2017                       ergo_format_reason("reclaimable percentage not over threshold")
2018                       ergo_format_region("old")
2019                       ergo_format_region("max")
2020                       ergo_format_byte_perc("reclaimable")
2021                       ergo_format_perc("threshold"),
2022                       old_cset_region_length(),
2023                       max_old_cset_length,
2024                       reclaimable_bytes,
2025                       reclaimable_perc, threshold);
2026         break;
2027       }
2028 
2029       double predicted_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
2030       if (check_time_remaining) {
2031         if (predicted_time_ms > time_remaining_ms) {
2032           // Too expensive for the current CSet.
2033 
2034           if (old_cset_region_length() >= min_old_cset_length) {
2035             // We have added the minimum number of old regions to the CSet,
2036             // we are done with this CSet.
2037             ergo_verbose4(ErgoCSetConstruction,
2038                           "finish adding old regions to CSet",
2039                           ergo_format_reason("predicted time is too high")
2040                           ergo_format_ms("predicted time")
2041                           ergo_format_ms("remaining time")
2042                           ergo_format_region("old")
2043                           ergo_format_region("min"),
2044                           predicted_time_ms, time_remaining_ms,
2045                           old_cset_region_length(), min_old_cset_length);
2046             break;
2047           }
2048 
2049           // We'll add it anyway given that we haven't reached the
2050           // minimum number of old regions.
2051           expensive_region_num += 1;
2052         }
2053       } else {
2054         if (old_cset_region_length() >= min_old_cset_length) {
2055           // In the non-auto-tuning case, we'll finish adding regions
2056           // to the CSet if we reach the minimum.
2057           ergo_verbose2(ErgoCSetConstruction,
2058                         "finish adding old regions to CSet",
2059                         ergo_format_reason("old CSet region num reached min")
2060                         ergo_format_region("old")
2061                         ergo_format_region("min"),
2062                         old_cset_region_length(), min_old_cset_length);
2063           break;
2064         }
2065       }
2066 
2067       // We will add this region to the CSet.
2068       time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
2069       predicted_pause_time_ms += predicted_time_ms;
2070       cset_chooser->remove_and_move_to_next(hr);
2071       _g1->old_set_remove(hr);
2072       add_old_region_to_cset(hr);
2073 
2074       hr = cset_chooser->peek();
2075     }
2076     if (hr == NULL) {
2077       ergo_verbose0(ErgoCSetConstruction,
2078                     "finish adding old regions to CSet",
2079                     ergo_format_reason("candidate old regions not available"));
2080     }
2081 
2082     if (expensive_region_num > 0) {
2083       // We print the information once here at the end, predicated on
2084       // whether we added any apparently expensive regions or not, to
2085       // avoid generating output per region.
2086       ergo_verbose4(ErgoCSetConstruction,
2087                     "added expensive regions to CSet",
2088                     ergo_format_reason("old CSet region num not reached min")
2089                     ergo_format_region("old")
2090                     ergo_format_region("expensive")
2091                     ergo_format_region("min")
2092                     ergo_format_ms("remaining time"),
2093                     old_cset_region_length(),
2094                     expensive_region_num,
2095                     min_old_cset_length,
2096                     time_remaining_ms);
2097     }
2098 
2099     cset_chooser->verify();
2100   }
2101 
2102   stop_incremental_cset_building();
2103 
2104   ergo_verbose5(ErgoCSetConstruction,
2105                 "finish choosing CSet",
2106                 ergo_format_region("eden")
2107                 ergo_format_region("survivors")
2108                 ergo_format_region("old")
2109                 ergo_format_ms("predicted pause time")
2110                 ergo_format_ms("target pause time"),
2111                 eden_region_length, survivor_region_length,
2112                 old_cset_region_length(),
2113                 predicted_pause_time_ms, target_pause_time_ms);
2114 
2115   double non_young_end_time_sec = os::elapsedTime();
2116   phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
2117   evacuation_info.set_collectionset_regions(cset_region_length());
2118 }
2119 
2120 void TraceGen0TimeData::record_start_collection(double time_to_stop_the_world_ms) {
2121   if(TraceGen0Time) {
2122     _all_stop_world_times_ms.add(time_to_stop_the_world_ms);
2123   }
2124 }
2125 
2126 void TraceGen0TimeData::record_yield_time(double yield_time_ms) {
2127   if(TraceGen0Time) {
2128     _all_yield_times_ms.add(yield_time_ms);
2129   }
2130 }
2131 
2132 void TraceGen0TimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) {
2133   if(TraceGen0Time) {
2134     _total.add(pause_time_ms);
2135     _other.add(pause_time_ms - phase_times->accounted_time_ms());
2136     _root_region_scan_wait.add(phase_times->root_region_scan_wait_time_ms());
2137     _parallel.add(phase_times->cur_collection_par_time_ms());
2138     _ext_root_scan.add(phase_times->average_last_ext_root_scan_time());
2139     _satb_filtering.add(phase_times->average_last_satb_filtering_times_ms());
2140     _update_rs.add(phase_times->average_last_update_rs_time());
2141     _scan_rs.add(phase_times->average_last_scan_rs_time());
2142     _obj_copy.add(phase_times->average_last_obj_copy_time());
2143     _termination.add(phase_times->average_last_termination_time());
2144 
2145     double parallel_known_time = phase_times->average_last_ext_root_scan_time() +
2146       phase_times->average_last_satb_filtering_times_ms() +
2147       phase_times->average_last_update_rs_time() +
2148       phase_times->average_last_scan_rs_time() +
2149       phase_times->average_last_obj_copy_time() +
2150       + phase_times->average_last_termination_time();
2151 
2152     double parallel_other_time = phase_times->cur_collection_par_time_ms() - parallel_known_time;
2153     _parallel_other.add(parallel_other_time);
2154     _clear_ct.add(phase_times->cur_clear_ct_time_ms());
2155   }
2156 }
2157 
2158 void TraceGen0TimeData::increment_young_collection_count() {
2159   if(TraceGen0Time) {
2160     ++_young_pause_num;
2161   }
2162 }
2163 
2164 void TraceGen0TimeData::increment_mixed_collection_count() {
2165   if(TraceGen0Time) {
2166     ++_mixed_pause_num;
2167   }
2168 }
2169 
2170 void TraceGen0TimeData::print_summary(const char* str,
2171                                       const NumberSeq* seq) const {
2172   double sum = seq->sum();
2173   gclog_or_tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)",
2174                 str, sum / 1000.0, seq->avg());
2175 }
2176 
2177 void TraceGen0TimeData::print_summary_sd(const char* str,
2178                                          const NumberSeq* seq) const {
2179   print_summary(str, seq);
2180   gclog_or_tty->print_cr("%+45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
2181                 "(num", seq->num(), seq->sd(), seq->maximum());
2182 }
2183 
2184 void TraceGen0TimeData::print() const {
2185   if (!TraceGen0Time) {
2186     return;
2187   }
2188 
2189   gclog_or_tty->print_cr("ALL PAUSES");
2190   print_summary_sd("   Total", &_total);
2191   gclog_or_tty->print_cr("");
2192   gclog_or_tty->print_cr("");
2193   gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
2194   gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
2195   gclog_or_tty->print_cr("");
2196 
2197   gclog_or_tty->print_cr("EVACUATION PAUSES");
2198 
2199   if (_young_pause_num == 0 && _mixed_pause_num == 0) {
2200     gclog_or_tty->print_cr("none");
2201   } else {
2202     print_summary_sd("   Evacuation Pauses", &_total);
2203     print_summary("      Root Region Scan Wait", &_root_region_scan_wait);
2204     print_summary("      Parallel Time", &_parallel);
2205     print_summary("         Ext Root Scanning", &_ext_root_scan);
2206     print_summary("         SATB Filtering", &_satb_filtering);
2207     print_summary("         Update RS", &_update_rs);
2208     print_summary("         Scan RS", &_scan_rs);
2209     print_summary("         Object Copy", &_obj_copy);
2210     print_summary("         Termination", &_termination);
2211     print_summary("         Parallel Other", &_parallel_other);
2212     print_summary("      Clear CT", &_clear_ct);
2213     print_summary("      Other", &_other);
2214   }
2215   gclog_or_tty->print_cr("");
2216 
2217   gclog_or_tty->print_cr("MISC");
2218   print_summary_sd("   Stop World", &_all_stop_world_times_ms);
2219   print_summary_sd("   Yields", &_all_yield_times_ms);
2220 }
2221 
2222 void TraceGen1TimeData::record_full_collection(double full_gc_time_ms) {
2223   if (TraceGen1Time) {
2224     _all_full_gc_times.add(full_gc_time_ms);
2225   }
2226 }
2227 
2228 void TraceGen1TimeData::print() const {
2229   if (!TraceGen1Time) {
2230     return;
2231   }
2232 
2233   if (_all_full_gc_times.num() > 0) {
2234     gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
2235       _all_full_gc_times.num(),
2236       _all_full_gc_times.sum() / 1000.0);
2237     gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg());
2238     gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
2239       _all_full_gc_times.sd(),
2240       _all_full_gc_times.maximum());
2241   }
2242 }