1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "gc_implementation/shared/gcHeapSummary.hpp"
  28 #include "gc_implementation/shared/gcTrace.hpp"
  29 #include "gc_implementation/shared/gcTraceTime.hpp"
  30 #include "gc_implementation/shared/gcWhen.hpp"
  31 #include "gc_implementation/shared/vmGCOperations.hpp"
  32 #include "gc_interface/allocTracer.hpp"
  33 #include "gc_interface/collectedHeap.hpp"
  34 #include "gc_interface/collectedHeap.inline.hpp"
  35 #include "memory/metaspace.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "oops/instanceMirrorKlass.hpp"
  38 #include "runtime/init.hpp"
  39 #include "runtime/thread.inline.hpp"
  40 #include "services/heapDumper.hpp"
  41 
  42 
  43 #ifdef ASSERT
  44 int CollectedHeap::_fire_out_of_memory_count = 0;
  45 #endif
  46 
  47 size_t CollectedHeap::_filler_array_max_size = 0;
  48 
  49 template <>
  50 void EventLogBase<GCMessage>::print(outputStream* st, GCMessage& m) {
  51   st->print_cr("GC heap %s", m.is_before ? "before" : "after");
  52   st->print_raw(m);
  53 }
  54 
  55 void GCHeapLog::log_heap(bool before) {
  56   if (!should_log()) {
  57     return;
  58   }
  59 
  60   double timestamp = fetch_timestamp();
  61   MutexLockerEx ml(&_mutex, Mutex::_no_safepoint_check_flag);
  62   int index = compute_log_index();
  63   _records[index].thread = NULL; // Its the GC thread so it's not that interesting.
  64   _records[index].timestamp = timestamp;
  65   _records[index].data.is_before = before;
  66   stringStream st(_records[index].data.buffer(), _records[index].data.size());
  67   if (before) {
  68     Universe::print_heap_before_gc(&st, true);
  69   } else {
  70     Universe::print_heap_after_gc(&st, true);
  71   }
  72 }
  73 
  74 VirtualSpaceSummary CollectedHeap::create_heap_space_summary() {
  75   size_t capacity_in_words = capacity() / HeapWordSize;
  76 
  77   return VirtualSpaceSummary(
  78     reserved_region().start(), reserved_region().start() + capacity_in_words, reserved_region().end());
  79 }
  80 
  81 GCHeapSummary CollectedHeap::create_heap_summary() {
  82   VirtualSpaceSummary heap_space = create_heap_space_summary();
  83   return GCHeapSummary(heap_space, used());
  84 }
  85 
  86 MetaspaceSummary CollectedHeap::create_metaspace_summary() {
  87   const MetaspaceSizes meta_space(
  88       MetaspaceAux::allocated_capacity_bytes(),
  89       MetaspaceAux::allocated_used_bytes(),
  90       MetaspaceAux::reserved_bytes());
  91   const MetaspaceSizes data_space(
  92       MetaspaceAux::allocated_capacity_bytes(Metaspace::NonClassType),
  93       MetaspaceAux::allocated_used_bytes(Metaspace::NonClassType),
  94       MetaspaceAux::reserved_bytes(Metaspace::NonClassType));
  95   const MetaspaceSizes class_space(
  96       MetaspaceAux::allocated_capacity_bytes(Metaspace::ClassType),
  97       MetaspaceAux::allocated_used_bytes(Metaspace::ClassType),
  98       MetaspaceAux::reserved_bytes(Metaspace::ClassType));
  99 
 100   return MetaspaceSummary(meta_space, data_space, class_space);
 101 }
 102 
 103 void CollectedHeap::print_heap_before_gc() {
 104   if (PrintHeapAtGC) {
 105     Universe::print_heap_before_gc();
 106   }
 107   if (_gc_heap_log != NULL) {
 108     _gc_heap_log->log_heap_before();
 109   }
 110 }
 111 
 112 void CollectedHeap::print_heap_after_gc() {
 113   if (PrintHeapAtGC) {
 114     Universe::print_heap_after_gc();
 115   }
 116   if (_gc_heap_log != NULL) {
 117     _gc_heap_log->log_heap_after();
 118   }
 119 }
 120 
 121 void CollectedHeap::register_nmethod(nmethod* nm) {
 122   assert_locked_or_safepoint(CodeCache_lock);
 123 }
 124 
 125 void CollectedHeap::unregister_nmethod(nmethod* nm) {
 126   assert_locked_or_safepoint(CodeCache_lock);
 127 }
 128 
 129 void CollectedHeap::trace_heap(GCWhen::Type when, GCTracer* gc_tracer) {
 130   const GCHeapSummary& heap_summary = create_heap_summary();
 131   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
 132   gc_tracer->report_gc_heap_summary(when, heap_summary, metaspace_summary);
 133 }
 134 
 135 void CollectedHeap::trace_heap_before_gc(GCTracer* gc_tracer) {
 136   trace_heap(GCWhen::BeforeGC, gc_tracer);
 137 }
 138 
 139 void CollectedHeap::trace_heap_after_gc(GCTracer* gc_tracer) {
 140   trace_heap(GCWhen::AfterGC, gc_tracer);
 141 }
 142 
 143 // Memory state functions.
 144 
 145 
 146 CollectedHeap::CollectedHeap() : _n_par_threads(0)
 147 {
 148   const size_t max_len = size_t(arrayOopDesc::max_array_length(T_INT));
 149   const size_t elements_per_word = HeapWordSize / sizeof(jint);
 150   _filler_array_max_size = align_object_size(filler_array_hdr_size() +
 151                                              max_len / elements_per_word);
 152 
 153   _barrier_set = NULL;
 154   _is_gc_active = false;
 155   _total_collections = _total_full_collections = 0;
 156   _gc_cause = _gc_lastcause = GCCause::_no_gc;
 157   NOT_PRODUCT(_promotion_failure_alot_count = 0;)
 158   NOT_PRODUCT(_promotion_failure_alot_gc_number = 0;)
 159 
 160   if (UsePerfData) {
 161     EXCEPTION_MARK;
 162 
 163     // create the gc cause jvmstat counters
 164     _perf_gc_cause = PerfDataManager::create_string_variable(SUN_GC, "cause",
 165                              80, GCCause::to_string(_gc_cause), CHECK);
 166 
 167     _perf_gc_lastcause =
 168                 PerfDataManager::create_string_variable(SUN_GC, "lastCause",
 169                              80, GCCause::to_string(_gc_lastcause), CHECK);
 170   }
 171   _defer_initial_card_mark = false; // strengthened by subclass in pre_initialize() below.
 172   // Create the ring log
 173   if (LogEvents) {
 174     _gc_heap_log = new GCHeapLog();
 175   } else {
 176     _gc_heap_log = NULL;
 177   }
 178 }
 179 
 180 // This interface assumes that it's being called by the
 181 // vm thread. It collects the heap assuming that the
 182 // heap lock is already held and that we are executing in
 183 // the context of the vm thread.
 184 void CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
 185   assert(Thread::current()->is_VM_thread(), "Precondition#1");
 186   assert(Heap_lock->is_locked(), "Precondition#2");
 187   GCCauseSetter gcs(this, cause);
 188   switch (cause) {
 189     case GCCause::_heap_inspection:
 190     case GCCause::_heap_dump:
 191     case GCCause::_metadata_GC_threshold : {
 192       HandleMark hm;
 193       do_full_collection(false);        // don't clear all soft refs
 194       break;
 195     }
 196     case GCCause::_last_ditch_collection: {
 197       HandleMark hm;
 198       do_full_collection(true);         // do clear all soft refs
 199       break;
 200     }
 201     default:
 202       ShouldNotReachHere(); // Unexpected use of this function
 203   }
 204 }
 205 MetaWord* CollectedHeap::satisfy_failed_metadata_allocation(
 206                                               ClassLoaderData* loader_data,
 207                                               size_t size, Metaspace::MetadataType mdtype) {
 208   return collector_policy()->satisfy_failed_metadata_allocation(loader_data, size, mdtype);
 209 }
 210 
 211 
 212 void CollectedHeap::pre_initialize() {
 213   // Used for ReduceInitialCardMarks (when COMPILER2 is used);
 214   // otherwise remains unused.
 215 #ifdef COMPILER2
 216   _defer_initial_card_mark =    ReduceInitialCardMarks && can_elide_tlab_store_barriers()
 217                              && (DeferInitialCardMark || card_mark_must_follow_store());
 218 #else
 219   assert(_defer_initial_card_mark == false, "Who would set it?");
 220 #endif
 221 }
 222 
 223 #ifndef PRODUCT
 224 void CollectedHeap::check_for_bad_heap_word_value(HeapWord* addr, size_t size) {
 225   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 226     for (size_t slot = 0; slot < size; slot += 1) {
 227       assert((*(intptr_t*) (addr + slot)) != ((intptr_t) badHeapWordVal),
 228              "Found badHeapWordValue in post-allocation check");
 229     }
 230   }
 231 }
 232 
 233 void CollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr, size_t size) {
 234   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 235     for (size_t slot = 0; slot < size; slot += 1) {
 236       assert((*(intptr_t*) (addr + slot)) == ((intptr_t) badHeapWordVal),
 237              "Found non badHeapWordValue in pre-allocation check");
 238     }
 239   }
 240 }
 241 #endif // PRODUCT
 242 
 243 #ifdef ASSERT
 244 void CollectedHeap::check_for_valid_allocation_state() {
 245   Thread *thread = Thread::current();
 246   // How to choose between a pending exception and a potential
 247   // OutOfMemoryError?  Don't allow pending exceptions.
 248   // This is a VM policy failure, so how do we exhaustively test it?
 249   assert(!thread->has_pending_exception(),
 250          "shouldn't be allocating with pending exception");
 251   if (StrictSafepointChecks) {
 252     assert(thread->allow_allocation(),
 253            "Allocation done by thread for which allocation is blocked "
 254            "by No_Allocation_Verifier!");
 255     // Allocation of an oop can always invoke a safepoint,
 256     // hence, the true argument
 257     thread->check_for_valid_safepoint_state(true);
 258   }
 259 }
 260 #endif
 261 
 262 HeapWord* CollectedHeap::allocate_from_tlab_slow(KlassHandle klass, Thread* thread, size_t size) {
 263 
 264   // Retain tlab and allocate object in shared space if
 265   // the amount free in the tlab is too large to discard.
 266   if (thread->tlab().free() > thread->tlab().refill_waste_limit()) {
 267     thread->tlab().record_slow_allocation(size);
 268     return NULL;
 269   }
 270 
 271   // Discard tlab and allocate a new one.
 272   // To minimize fragmentation, the last TLAB may be smaller than the rest.
 273   size_t new_tlab_size = thread->tlab().compute_size(size);
 274 
 275   thread->tlab().clear_before_allocation();
 276 
 277   if (new_tlab_size == 0) {
 278     return NULL;
 279   }
 280 
 281   // Allocate a new TLAB...
 282   HeapWord* obj = Universe::heap()->allocate_new_tlab(new_tlab_size);
 283   if (obj == NULL) {
 284     return NULL;
 285   }
 286 
 287   AllocTracer::send_allocation_in_new_tlab_event(klass, new_tlab_size * HeapWordSize, size * HeapWordSize);
 288 
 289   if (ZeroTLAB) {
 290     // ..and clear it.
 291     Copy::zero_to_words(obj, new_tlab_size);
 292   } else {
 293     // ...and zap just allocated object.
 294 #ifdef ASSERT
 295     // Skip mangling the space corresponding to the object header to
 296     // ensure that the returned space is not considered parsable by
 297     // any concurrent GC thread.
 298     size_t hdr_size = oopDesc::header_size();
 299     Copy::fill_to_words(obj + hdr_size, new_tlab_size - hdr_size, badHeapWordVal);
 300 #endif // ASSERT
 301   }
 302   thread->tlab().fill(obj, obj + size, new_tlab_size);
 303   return obj;
 304 }
 305 
 306 void CollectedHeap::flush_deferred_store_barrier(JavaThread* thread) {
 307   MemRegion deferred = thread->deferred_card_mark();
 308   if (!deferred.is_empty()) {
 309     assert(_defer_initial_card_mark, "Otherwise should be empty");
 310     {
 311       // Verify that the storage points to a parsable object in heap
 312       DEBUG_ONLY(oop old_obj = oop(deferred.start());)
 313       assert(is_in(old_obj), "Not in allocated heap");
 314       assert(!can_elide_initializing_store_barrier(old_obj),
 315              "Else should have been filtered in new_store_pre_barrier()");
 316       assert(old_obj->is_oop(true), "Not an oop");
 317       assert(deferred.word_size() == (size_t)(old_obj->size()),
 318              "Mismatch: multiple objects?");
 319     }
 320     BarrierSet* bs = barrier_set();
 321     assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
 322     bs->write_region(deferred);
 323     // "Clear" the deferred_card_mark field
 324     thread->set_deferred_card_mark(MemRegion());
 325   }
 326   assert(thread->deferred_card_mark().is_empty(), "invariant");
 327 }
 328 
 329 // Helper for ReduceInitialCardMarks. For performance,
 330 // compiled code may elide card-marks for initializing stores
 331 // to a newly allocated object along the fast-path. We
 332 // compensate for such elided card-marks as follows:
 333 // (a) Generational, non-concurrent collectors, such as
 334 //     GenCollectedHeap(ParNew,DefNew,Tenured) and
 335 //     ParallelScavengeHeap(ParallelGC, ParallelOldGC)
 336 //     need the card-mark if and only if the region is
 337 //     in the old gen, and do not care if the card-mark
 338 //     succeeds or precedes the initializing stores themselves,
 339 //     so long as the card-mark is completed before the next
 340 //     scavenge. For all these cases, we can do a card mark
 341 //     at the point at which we do a slow path allocation
 342 //     in the old gen, i.e. in this call.
 343 // (b) GenCollectedHeap(ConcurrentMarkSweepGeneration) requires
 344 //     in addition that the card-mark for an old gen allocated
 345 //     object strictly follow any associated initializing stores.
 346 //     In these cases, the memRegion remembered below is
 347 //     used to card-mark the entire region either just before the next
 348 //     slow-path allocation by this thread or just before the next scavenge or
 349 //     CMS-associated safepoint, whichever of these events happens first.
 350 //     (The implicit assumption is that the object has been fully
 351 //     initialized by this point, a fact that we assert when doing the
 352 //     card-mark.)
 353 // (c) G1CollectedHeap(G1) uses two kinds of write barriers. When a
 354 //     G1 concurrent marking is in progress an SATB (pre-write-)barrier is
 355 //     is used to remember the pre-value of any store. Initializing
 356 //     stores will not need this barrier, so we need not worry about
 357 //     compensating for the missing pre-barrier here. Turning now
 358 //     to the post-barrier, we note that G1 needs a RS update barrier
 359 //     which simply enqueues a (sequence of) dirty cards which may
 360 //     optionally be refined by the concurrent update threads. Note
 361 //     that this barrier need only be applied to a non-young write,
 362 //     but, like in CMS, because of the presence of concurrent refinement
 363 //     (much like CMS' precleaning), must strictly follow the oop-store.
 364 //     Thus, using the same protocol for maintaining the intended
 365 //     invariants turns out, serendepitously, to be the same for both
 366 //     G1 and CMS.
 367 //
 368 // For any future collector, this code should be reexamined with
 369 // that specific collector in mind, and the documentation above suitably
 370 // extended and updated.
 371 oop CollectedHeap::new_store_pre_barrier(JavaThread* thread, oop new_obj) {
 372   // If a previous card-mark was deferred, flush it now.
 373   flush_deferred_store_barrier(thread);
 374   if (can_elide_initializing_store_barrier(new_obj)) {
 375     // The deferred_card_mark region should be empty
 376     // following the flush above.
 377     assert(thread->deferred_card_mark().is_empty(), "Error");
 378   } else {
 379     MemRegion mr((HeapWord*)new_obj, new_obj->size());
 380     assert(!mr.is_empty(), "Error");
 381     if (_defer_initial_card_mark) {
 382       // Defer the card mark
 383       thread->set_deferred_card_mark(mr);
 384     } else {
 385       // Do the card mark
 386       BarrierSet* bs = barrier_set();
 387       assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
 388       bs->write_region(mr);
 389     }
 390   }
 391   return new_obj;
 392 }
 393 
 394 size_t CollectedHeap::filler_array_hdr_size() {
 395   return size_t(align_object_offset(arrayOopDesc::header_size(T_INT))); // align to Long
 396 }
 397 
 398 size_t CollectedHeap::filler_array_min_size() {
 399   return align_object_size(filler_array_hdr_size()); // align to MinObjAlignment
 400 }
 401 
 402 #ifdef ASSERT
 403 void CollectedHeap::fill_args_check(HeapWord* start, size_t words)
 404 {
 405   assert(words >= min_fill_size(), "too small to fill");
 406   assert(words % MinObjAlignment == 0, "unaligned size");
 407   assert(Universe::heap()->is_in_reserved(start), "not in heap");
 408   assert(Universe::heap()->is_in_reserved(start + words - 1), "not in heap");
 409 }
 410 
 411 void CollectedHeap::zap_filler_array(HeapWord* start, size_t words, bool zap)
 412 {
 413   if (ZapFillerObjects && zap) {
 414     Copy::fill_to_words(start + filler_array_hdr_size(),
 415                         words - filler_array_hdr_size(), 0XDEAFBABE);
 416   }
 417 }
 418 #endif // ASSERT
 419 
 420 void
 421 CollectedHeap::fill_with_array(HeapWord* start, size_t words, bool zap)
 422 {
 423   assert(words >= filler_array_min_size(), "too small for an array");
 424   assert(words <= filler_array_max_size(), "too big for a single object");
 425 
 426   const size_t payload_size = words - filler_array_hdr_size();
 427   const size_t len = payload_size * HeapWordSize / sizeof(jint);
 428   assert((int)len >= 0, err_msg("size too large " SIZE_FORMAT " becomes %d", words, (int)len));
 429 
 430   // Set the length first for concurrent GC.
 431   ((arrayOop)start)->set_length((int)len);
 432   post_allocation_setup_common(Universe::intArrayKlassObj(), start);
 433   DEBUG_ONLY(zap_filler_array(start, words, zap);)
 434 }
 435 
 436 void
 437 CollectedHeap::fill_with_object_impl(HeapWord* start, size_t words, bool zap)
 438 {
 439   assert(words <= filler_array_max_size(), "too big for a single object");
 440 
 441   if (words >= filler_array_min_size()) {
 442     fill_with_array(start, words, zap);
 443   } else if (words > 0) {
 444     assert(words == min_fill_size(), "unaligned size");
 445     post_allocation_setup_common(SystemDictionary::Object_klass(), start);
 446   }
 447 }
 448 
 449 void CollectedHeap::fill_with_object(HeapWord* start, size_t words, bool zap)
 450 {
 451   DEBUG_ONLY(fill_args_check(start, words);)
 452   HandleMark hm;  // Free handles before leaving.
 453   fill_with_object_impl(start, words, zap);
 454 }
 455 
 456 void CollectedHeap::fill_with_objects(HeapWord* start, size_t words, bool zap)
 457 {
 458   DEBUG_ONLY(fill_args_check(start, words);)
 459   HandleMark hm;  // Free handles before leaving.
 460 
 461 #ifdef _LP64
 462   // A single array can fill ~8G, so multiple objects are needed only in 64-bit.
 463   // First fill with arrays, ensuring that any remaining space is big enough to
 464   // fill.  The remainder is filled with a single object.
 465   const size_t min = min_fill_size();
 466   const size_t max = filler_array_max_size();
 467   while (words > max) {
 468     const size_t cur = words - max >= min ? max : max - min;
 469     fill_with_array(start, cur, zap);
 470     start += cur;
 471     words -= cur;
 472   }
 473 #endif
 474 
 475   fill_with_object_impl(start, words, zap);
 476 }
 477 
 478 HeapWord* CollectedHeap::allocate_new_tlab(size_t size) {
 479   guarantee(false, "thread-local allocation buffers not supported");
 480   return NULL;
 481 }
 482 
 483 void CollectedHeap::ensure_parsability(bool retire_tlabs) {
 484   // The second disjunct in the assertion below makes a concession
 485   // for the start-up verification done while the VM is being
 486   // created. Callers be careful that you know that mutators
 487   // aren't going to interfere -- for instance, this is permissible
 488   // if we are still single-threaded and have either not yet
 489   // started allocating (nothing much to verify) or we have
 490   // started allocating but are now a full-fledged JavaThread
 491   // (and have thus made our TLAB's) available for filling.
 492   assert(SafepointSynchronize::is_at_safepoint() ||
 493          !is_init_completed(),
 494          "Should only be called at a safepoint or at start-up"
 495          " otherwise concurrent mutator activity may make heap "
 496          " unparsable again");
 497   const bool use_tlab = UseTLAB;
 498   const bool deferred = _defer_initial_card_mark;
 499   // The main thread starts allocating via a TLAB even before it
 500   // has added itself to the threads list at vm boot-up.
 501   assert(!use_tlab || Threads::first() != NULL,
 502          "Attempt to fill tlabs before main thread has been added"
 503          " to threads list is doomed to failure!");
 504   for (JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
 505      if (use_tlab) thread->tlab().make_parsable(retire_tlabs);
 506 #ifdef COMPILER2
 507      // The deferred store barriers must all have been flushed to the
 508      // card-table (or other remembered set structure) before GC starts
 509      // processing the card-table (or other remembered set).
 510      if (deferred) flush_deferred_store_barrier(thread);
 511 #else
 512      assert(!deferred, "Should be false");
 513      assert(thread->deferred_card_mark().is_empty(), "Should be empty");
 514 #endif
 515   }
 516 }
 517 
 518 void CollectedHeap::accumulate_statistics_all_tlabs() {
 519   if (UseTLAB) {
 520     assert(SafepointSynchronize::is_at_safepoint() ||
 521          !is_init_completed(),
 522          "should only accumulate statistics on tlabs at safepoint");
 523 
 524     ThreadLocalAllocBuffer::accumulate_statistics_before_gc();
 525   }
 526 }
 527 
 528 void CollectedHeap::resize_all_tlabs() {
 529   if (UseTLAB) {
 530     assert(SafepointSynchronize::is_at_safepoint() ||
 531          !is_init_completed(),
 532          "should only resize tlabs at safepoint");
 533 
 534     ThreadLocalAllocBuffer::resize_all_tlabs();
 535   }
 536 }
 537 
 538 void CollectedHeap::pre_full_gc_dump(GCTimer* timer) {
 539   if (HeapDumpBeforeFullGC) {
 540     GCTraceTime tt("Heap Dump (before full gc): ", PrintGCDetails, false, timer);
 541     // We are doing a "major" collection and a heap dump before
 542     // major collection has been requested.
 543     HeapDumper::dump_heap();
 544   }
 545   if (PrintClassHistogramBeforeFullGC) {
 546     GCTraceTime tt("Class Histogram (before full gc): ", PrintGCDetails, true, timer);
 547     VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */);
 548     inspector.doit();
 549   }
 550 }
 551 
 552 void CollectedHeap::post_full_gc_dump(GCTimer* timer) {
 553   if (HeapDumpAfterFullGC) {
 554     GCTraceTime tt("Heap Dump (after full gc): ", PrintGCDetails, false, timer);
 555     HeapDumper::dump_heap();
 556   }
 557   if (PrintClassHistogramAfterFullGC) {
 558     GCTraceTime tt("Class Histogram (after full gc): ", PrintGCDetails, true, timer);
 559     VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */);
 560     inspector.doit();
 561   }
 562 }
 563 
 564 oop CollectedHeap::Class_obj_allocate(KlassHandle klass, int size, KlassHandle real_klass, TRAPS) {
 565   debug_only(check_for_valid_allocation_state());
 566   assert(!Universe::heap()->is_gc_active(), "Allocation during gc not allowed");
 567   assert(size >= 0, "int won't convert to size_t");
 568   HeapWord* obj;
 569     assert(ScavengeRootsInCode > 0, "must be");
 570     obj = common_mem_allocate_init(real_klass, size, CHECK_NULL);
 571   post_allocation_setup_common(klass, obj);
 572   assert(Universe::is_bootstrapping() ||
 573          !((oop)obj)->is_array(), "must not be an array");
 574   NOT_PRODUCT(Universe::heap()->check_for_bad_heap_word_value(obj, size));
 575   oop mirror = (oop)obj;
 576 
 577   java_lang_Class::set_oop_size(mirror, size);
 578 
 579   // Setup indirections
 580   if (!real_klass.is_null()) {
 581     java_lang_Class::set_klass(mirror, real_klass());
 582     real_klass->set_java_mirror(mirror);
 583   }
 584 
 585   InstanceMirrorKlass* mk = InstanceMirrorKlass::cast(mirror->klass());
 586   assert(size == mk->instance_size(real_klass), "should have been set");
 587 
 588   // notify jvmti and dtrace
 589   post_allocation_notify(klass, (oop)obj);
 590 
 591   return mirror;
 592 }
 593 
 594 /////////////// Unit tests ///////////////
 595 
 596 #ifndef PRODUCT
 597 void CollectedHeap::test_is_in() {
 598   CollectedHeap* heap = Universe::heap();
 599 
 600   uintptr_t epsilon    = (uintptr_t) MinObjAlignment;
 601   uintptr_t heap_start = (uintptr_t) heap->_reserved.start();
 602   uintptr_t heap_end   = (uintptr_t) heap->_reserved.end();
 603 
 604   // Test that NULL is not in the heap.
 605   assert(!heap->is_in(NULL), "NULL is unexpectedly in the heap");
 606 
 607   // Test that a pointer to before the heap start is reported as outside the heap.
 608   assert(heap_start >= ((uintptr_t)NULL + epsilon), "sanity");
 609   void* before_heap = (void*)(heap_start - epsilon);
 610   assert(!heap->is_in(before_heap),
 611       err_msg("before_heap: " PTR_FORMAT " is unexpectedly in the heap", before_heap));
 612 
 613   // Test that a pointer to after the heap end is reported as outside the heap.
 614   assert(heap_end <= ((uintptr_t)-1 - epsilon), "sanity");
 615   void* after_heap = (void*)(heap_end + epsilon);
 616   assert(!heap->is_in(after_heap),
 617       err_msg("after_heap: " PTR_FORMAT " is unexpectedly in the heap", after_heap));
 618 }
 619 #endif