1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  28 #include "gc_implementation/shared/vmGCOperations.hpp"
  29 #include "memory/cardTableRS.hpp"
  30 #include "memory/collectorPolicy.hpp"
  31 #include "memory/gcLocker.inline.hpp"
  32 #include "memory/genCollectedHeap.hpp"
  33 #include "memory/generationSpec.hpp"
  34 #include "memory/space.hpp"
  35 #include "memory/universe.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/globals_extension.hpp"
  38 #include "runtime/handles.inline.hpp"
  39 #include "runtime/java.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 #include "runtime/vmThread.hpp"
  42 #include "utilities/macros.hpp"
  43 #if INCLUDE_ALL_GCS
  44 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  45 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  46 #endif // INCLUDE_ALL_GCS
  47 
  48 // CollectorPolicy methods.
  49 
  50 // Align down. If the aligning result in 0, return 'alignment'.
  51 static size_t restricted_align_down(size_t size, size_t alignment) {
  52   return MAX2(alignment, align_size_down_(size, alignment));
  53 }
  54 
  55 void CollectorPolicy::initialize_flags() {
  56   assert(_max_alignment >= _min_alignment,
  57          err_msg("max_alignment: " SIZE_FORMAT " less than min_alignment: " SIZE_FORMAT,
  58                  _max_alignment, _min_alignment));
  59   assert(_max_alignment % _min_alignment == 0,
  60          err_msg("max_alignment: " SIZE_FORMAT " not aligned by min_alignment: " SIZE_FORMAT,
  61                  _max_alignment, _min_alignment));
  62 
  63   if (MaxHeapSize < InitialHeapSize) {
  64     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
  65   }
  66 
  67   if (!is_size_aligned(MaxMetaspaceSize, _max_alignment)) {
  68     FLAG_SET_ERGO(uintx, MaxMetaspaceSize,
  69         restricted_align_down(MaxMetaspaceSize, _max_alignment));
  70   }
  71 
  72   if (MetaspaceSize > MaxMetaspaceSize) {
  73     FLAG_SET_ERGO(uintx, MetaspaceSize, MaxMetaspaceSize);
  74   }
  75 
  76   if (!is_size_aligned(MetaspaceSize, _min_alignment)) {
  77     FLAG_SET_ERGO(uintx, MetaspaceSize,
  78         restricted_align_down(MetaspaceSize, _min_alignment));
  79   }
  80 
  81   assert(MetaspaceSize <= MaxMetaspaceSize, "Must be");
  82 
  83   MinMetaspaceExpansion = restricted_align_down(MinMetaspaceExpansion, _min_alignment);
  84   MaxMetaspaceExpansion = restricted_align_down(MaxMetaspaceExpansion, _min_alignment);
  85 
  86   MinHeapDeltaBytes = align_size_up(MinHeapDeltaBytes, _min_alignment);
  87 
  88   assert(MetaspaceSize    % _min_alignment == 0, "metapace alignment");
  89   assert(MaxMetaspaceSize % _max_alignment == 0, "maximum metaspace alignment");
  90   if (MetaspaceSize < 256*K) {
  91     vm_exit_during_initialization("Too small initial Metaspace size");
  92   }
  93 }
  94 
  95 void CollectorPolicy::initialize_size_info() {
  96   // User inputs from -mx and ms must be aligned
  97   _min_heap_byte_size = align_size_up(Arguments::min_heap_size(), _min_alignment);
  98   _initial_heap_byte_size = align_size_up(InitialHeapSize, _min_alignment);
  99   _max_heap_byte_size = align_size_up(MaxHeapSize, _max_alignment);
 100 
 101   // Check heap parameter properties
 102   if (_initial_heap_byte_size < M) {
 103     vm_exit_during_initialization("Too small initial heap");
 104   }
 105   // Check heap parameter properties
 106   if (_min_heap_byte_size < M) {
 107     vm_exit_during_initialization("Too small minimum heap");
 108   }
 109   if (_initial_heap_byte_size <= NewSize) {
 110      // make sure there is at least some room in old space
 111     vm_exit_during_initialization("Too small initial heap for new size specified");
 112   }
 113   if (_max_heap_byte_size < _min_heap_byte_size) {
 114     vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
 115   }
 116   if (_initial_heap_byte_size < _min_heap_byte_size) {
 117     vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
 118   }
 119   if (_max_heap_byte_size < _initial_heap_byte_size) {
 120     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
 121   }
 122 
 123   if (PrintGCDetails && Verbose) {
 124     gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT "  Initial heap "
 125       SIZE_FORMAT "  Maximum heap " SIZE_FORMAT,
 126       _min_heap_byte_size, _initial_heap_byte_size, _max_heap_byte_size);
 127   }
 128 }
 129 
 130 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
 131   bool result = _should_clear_all_soft_refs;
 132   set_should_clear_all_soft_refs(false);
 133   return result;
 134 }
 135 
 136 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
 137                                            int max_covered_regions) {
 138   switch (rem_set_name()) {
 139   case GenRemSet::CardTable: {
 140     CardTableRS* res = new CardTableRS(whole_heap, max_covered_regions);
 141     return res;
 142   }
 143   default:
 144     guarantee(false, "unrecognized GenRemSet::Name");
 145     return NULL;
 146   }
 147 }
 148 
 149 void CollectorPolicy::cleared_all_soft_refs() {
 150   // If near gc overhear limit, continue to clear SoftRefs.  SoftRefs may
 151   // have been cleared in the last collection but if the gc overhear
 152   // limit continues to be near, SoftRefs should still be cleared.
 153   if (size_policy() != NULL) {
 154     _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
 155   }
 156   _all_soft_refs_clear = true;
 157 }
 158 
 159 size_t CollectorPolicy::compute_max_alignment() {
 160   // The card marking array and the offset arrays for old generations are
 161   // committed in os pages as well. Make sure they are entirely full (to
 162   // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
 163   // byte entry and the os page size is 4096, the maximum heap size should
 164   // be 512*4096 = 2MB aligned.
 165 
 166   // There is only the GenRemSet in Hotspot and only the GenRemSet::CardTable
 167   // is supported.
 168   // Requirements of any new remembered set implementations must be added here.
 169   size_t alignment = GenRemSet::max_alignment_constraint(GenRemSet::CardTable);
 170 
 171   // Parallel GC does its own alignment of the generations to avoid requiring a
 172   // large page (256M on some platforms) for the permanent generation.  The
 173   // other collectors should also be updated to do their own alignment and then
 174   // this use of lcm() should be removed.
 175   if (UseLargePages && !UseParallelGC) {
 176       // in presence of large pages we have to make sure that our
 177       // alignment is large page aware
 178       alignment = lcm(os::large_page_size(), alignment);
 179   }
 180 
 181   return alignment;
 182 }
 183 
 184 // GenCollectorPolicy methods.
 185 
 186 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
 187   size_t x = base_size / (NewRatio+1);
 188   size_t new_gen_size = x > _min_alignment ?
 189                      align_size_down(x, _min_alignment) : _min_alignment;
 190   return new_gen_size;
 191 }
 192 
 193 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
 194                                                  size_t maximum_size) {
 195   size_t alignment = _min_alignment;
 196   size_t max_minus = maximum_size - alignment;
 197   return desired_size < max_minus ? desired_size : max_minus;
 198 }
 199 
 200 
 201 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
 202                                                 size_t init_promo_size,
 203                                                 size_t init_survivor_size) {
 204   const double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
 205   _size_policy = new AdaptiveSizePolicy(init_eden_size,
 206                                         init_promo_size,
 207                                         init_survivor_size,
 208                                         max_gc_pause_sec,
 209                                         GCTimeRatio);
 210 }
 211 
 212 void GenCollectorPolicy::initialize_flags() {
 213   // All sizes must be multiples of the generation granularity.
 214   _min_alignment = (uintx) Generation::GenGrain;
 215   _max_alignment = compute_max_alignment();
 216 
 217   CollectorPolicy::initialize_flags();
 218 
 219   // All generational heaps have a youngest gen; handle those flags here.
 220 
 221   // Adjust max size parameters
 222   if (NewSize > MaxNewSize) {
 223     MaxNewSize = NewSize;
 224   }
 225   NewSize = align_size_down(NewSize, _min_alignment);
 226   MaxNewSize = align_size_down(MaxNewSize, _min_alignment);
 227 
 228   // Check validity of heap flags
 229   assert(NewSize     % _min_alignment == 0, "eden space alignment");
 230   assert(MaxNewSize  % _min_alignment == 0, "survivor space alignment");
 231 
 232   if (NewSize < 3 * _min_alignment) {
 233      // make sure there room for eden and two survivor spaces
 234     vm_exit_during_initialization("Too small new size specified");
 235   }
 236   if (SurvivorRatio < 1 || NewRatio < 1) {
 237     vm_exit_during_initialization("Invalid young gen ratio specified");
 238   }
 239 }
 240 
 241 void TwoGenerationCollectorPolicy::initialize_flags() {
 242   GenCollectorPolicy::initialize_flags();
 243 
 244   OldSize = align_size_down(OldSize, _min_alignment);
 245 
 246   if (FLAG_IS_CMDLINE(OldSize) && FLAG_IS_DEFAULT(NewSize)) {
 247     // NewRatio will be used later to set the young generation size so we use
 248     // it to calculate how big the heap should be based on the requested OldSize
 249     // and NewRatio.
 250     assert(NewRatio > 0, "NewRatio should have been set up earlier");
 251     size_t calculated_heapsize = (OldSize / NewRatio) * (NewRatio + 1);
 252 
 253     calculated_heapsize = align_size_up(calculated_heapsize, _max_alignment);
 254     MaxHeapSize = calculated_heapsize;
 255     InitialHeapSize = calculated_heapsize;
 256   }
 257   MaxHeapSize = align_size_up(MaxHeapSize, _max_alignment);
 258 
 259   // adjust max heap size if necessary
 260   if (NewSize + OldSize > MaxHeapSize) {
 261     if (FLAG_IS_CMDLINE(MaxHeapSize)) {
 262       // Somebody has set a maximum heap size with the intention that we should not
 263       // exceed it. Adjust New/OldSize as necessary.
 264       uintx calculated_size = NewSize + OldSize;
 265       double shrink_factor = (double) MaxHeapSize / calculated_size;
 266       // align
 267       NewSize = align_size_down((uintx) (NewSize * shrink_factor), _min_alignment);
 268       // OldSize is already aligned because above we aligned MaxHeapSize to
 269       // _max_alignment, and we just made sure that NewSize is aligned to
 270       // _min_alignment. In initialize_flags() we verified that _max_alignment
 271       // is a multiple of _min_alignment.
 272       OldSize = MaxHeapSize - NewSize;
 273     } else {
 274       MaxHeapSize = NewSize + OldSize;
 275     }
 276   }
 277   // need to do this again
 278   MaxHeapSize = align_size_up(MaxHeapSize, _max_alignment);
 279 
 280   // adjust max heap size if necessary
 281   if (NewSize + OldSize > MaxHeapSize) {
 282     if (FLAG_IS_CMDLINE(MaxHeapSize)) {
 283       // somebody set a maximum heap size with the intention that we should not
 284       // exceed it. Adjust New/OldSize as necessary.
 285       uintx calculated_size = NewSize + OldSize;
 286       double shrink_factor = (double) MaxHeapSize / calculated_size;
 287       // align
 288       NewSize = align_size_down((uintx) (NewSize * shrink_factor), _min_alignment);
 289       // OldSize is already aligned because above we aligned MaxHeapSize to
 290       // _max_alignment, and we just made sure that NewSize is aligned to
 291       // _min_alignment. In initialize_flags() we verified that _max_alignment
 292       // is a multiple of _min_alignment.
 293       OldSize = MaxHeapSize - NewSize;
 294     } else {
 295       MaxHeapSize = NewSize + OldSize;
 296     }
 297   }
 298   // need to do this again
 299   MaxHeapSize = align_size_up(MaxHeapSize, _max_alignment);
 300 
 301   always_do_update_barrier = UseConcMarkSweepGC;
 302 
 303   // Check validity of heap flags
 304   assert(OldSize     % _min_alignment == 0, "old space alignment");
 305   assert(MaxHeapSize % _max_alignment == 0, "maximum heap alignment");
 306 }
 307 
 308 // Values set on the command line win over any ergonomically
 309 // set command line parameters.
 310 // Ergonomic choice of parameters are done before this
 311 // method is called.  Values for command line parameters such as NewSize
 312 // and MaxNewSize feed those ergonomic choices into this method.
 313 // This method makes the final generation sizings consistent with
 314 // themselves and with overall heap sizings.
 315 // In the absence of explicitly set command line flags, policies
 316 // such as the use of NewRatio are used to size the generation.
 317 void GenCollectorPolicy::initialize_size_info() {
 318   CollectorPolicy::initialize_size_info();
 319 
 320   // _min_alignment is used for alignment within a generation.
 321   // There is additional alignment done down stream for some
 322   // collectors that sometimes causes unwanted rounding up of
 323   // generations sizes.
 324 
 325   // Determine maximum size of gen0
 326 
 327   size_t max_new_size = 0;
 328   if (FLAG_IS_CMDLINE(MaxNewSize) || FLAG_IS_ERGO(MaxNewSize)) {
 329     if (MaxNewSize < _min_alignment) {
 330       max_new_size = _min_alignment;
 331     }
 332     if (MaxNewSize >= _max_heap_byte_size) {
 333       max_new_size = align_size_down(_max_heap_byte_size - _min_alignment,
 334                                      _min_alignment);
 335       warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or "
 336         "greater than the entire heap (" SIZE_FORMAT "k).  A "
 337         "new generation size of " SIZE_FORMAT "k will be used.",
 338         MaxNewSize/K, _max_heap_byte_size/K, max_new_size/K);
 339     } else {
 340       max_new_size = align_size_down(MaxNewSize, _min_alignment);
 341     }
 342 
 343   // The case for FLAG_IS_ERGO(MaxNewSize) could be treated
 344   // specially at this point to just use an ergonomically set
 345   // MaxNewSize to set max_new_size.  For cases with small
 346   // heaps such a policy often did not work because the MaxNewSize
 347   // was larger than the entire heap.  The interpretation given
 348   // to ergonomically set flags is that the flags are set
 349   // by different collectors for their own special needs but
 350   // are not allowed to badly shape the heap.  This allows the
 351   // different collectors to decide what's best for themselves
 352   // without having to factor in the overall heap shape.  It
 353   // can be the case in the future that the collectors would
 354   // only make "wise" ergonomics choices and this policy could
 355   // just accept those choices.  The choices currently made are
 356   // not always "wise".
 357   } else {
 358     max_new_size = scale_by_NewRatio_aligned(_max_heap_byte_size);
 359     // Bound the maximum size by NewSize below (since it historically
 360     // would have been NewSize and because the NewRatio calculation could
 361     // yield a size that is too small) and bound it by MaxNewSize above.
 362     // Ergonomics plays here by previously calculating the desired
 363     // NewSize and MaxNewSize.
 364     max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
 365   }
 366   assert(max_new_size > 0, "All paths should set max_new_size");
 367 
 368   // Given the maximum gen0 size, determine the initial and
 369   // minimum gen0 sizes.
 370 
 371   if (_max_heap_byte_size == _min_heap_byte_size) {
 372     // The maximum and minimum heap sizes are the same so
 373     // the generations minimum and initial must be the
 374     // same as its maximum.
 375     _min_gen0_size = max_new_size;
 376     _initial_gen0_size = max_new_size;
 377     _max_gen0_size = max_new_size;
 378   } else {
 379     size_t desired_new_size = 0;
 380     if (!FLAG_IS_DEFAULT(NewSize)) {
 381       // If NewSize is set ergonomically (for example by cms), it
 382       // would make sense to use it.  If it is used, also use it
 383       // to set the initial size.  Although there is no reason
 384       // the minimum size and the initial size have to be the same,
 385       // the current implementation gets into trouble during the calculation
 386       // of the tenured generation sizes if they are different.
 387       // Note that this makes the initial size and the minimum size
 388       // generally small compared to the NewRatio calculation.
 389       _min_gen0_size = NewSize;
 390       desired_new_size = NewSize;
 391       max_new_size = MAX2(max_new_size, NewSize);
 392     } else {
 393       // For the case where NewSize is the default, use NewRatio
 394       // to size the minimum and initial generation sizes.
 395       // Use the default NewSize as the floor for these values.  If
 396       // NewRatio is overly large, the resulting sizes can be too
 397       // small.
 398       _min_gen0_size = MAX2(scale_by_NewRatio_aligned(_min_heap_byte_size), NewSize);
 399       desired_new_size =
 400         MAX2(scale_by_NewRatio_aligned(_initial_heap_byte_size), NewSize);
 401     }
 402 
 403     assert(_min_gen0_size > 0, "Sanity check");
 404     _initial_gen0_size = desired_new_size;
 405     _max_gen0_size = max_new_size;
 406 
 407     // At this point the desirable initial and minimum sizes have been
 408     // determined without regard to the maximum sizes.
 409 
 410     // Bound the sizes by the corresponding overall heap sizes.
 411     _min_gen0_size = bound_minus_alignment(_min_gen0_size, _min_heap_byte_size);
 412     _initial_gen0_size = bound_minus_alignment(_initial_gen0_size, _initial_heap_byte_size);
 413     _max_gen0_size = bound_minus_alignment(_max_gen0_size, _max_heap_byte_size);
 414 
 415     // At this point all three sizes have been checked against the
 416     // maximum sizes but have not been checked for consistency
 417     // among the three.
 418 
 419     // Final check min <= initial <= max
 420     _min_gen0_size = MIN2(_min_gen0_size, _max_gen0_size);
 421     _initial_gen0_size = MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size);
 422     _min_gen0_size = MIN2(_min_gen0_size, _initial_gen0_size);
 423   }
 424 
 425   if (PrintGCDetails && Verbose) {
 426     gclog_or_tty->print_cr("1: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 427       SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 428       _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 429   }
 430 }
 431 
 432 // Call this method during the sizing of the gen1 to make
 433 // adjustments to gen0 because of gen1 sizing policy.  gen0 initially has
 434 // the most freedom in sizing because it is done before the
 435 // policy for gen1 is applied.  Once gen1 policies have been applied,
 436 // there may be conflicts in the shape of the heap and this method
 437 // is used to make the needed adjustments.  The application of the
 438 // policies could be more sophisticated (iterative for example) but
 439 // keeping it simple also seems a worthwhile goal.
 440 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
 441                                                      size_t* gen1_size_ptr,
 442                                                      const size_t heap_size,
 443                                                      const size_t min_gen1_size) {
 444   bool result = false;
 445 
 446   if ((*gen1_size_ptr + *gen0_size_ptr) > heap_size) {
 447     if ((heap_size < (*gen0_size_ptr + min_gen1_size)) &&
 448         (heap_size >= min_gen1_size + _min_alignment)) {
 449       // Adjust gen0 down to accommodate min_gen1_size
 450       *gen0_size_ptr =
 451         MAX2((uintx)align_size_down(heap_size - min_gen1_size, _min_alignment),
 452              _min_alignment);
 453       assert(*gen0_size_ptr > 0, "Min gen0 is too large");
 454       result = true;
 455     } else {
 456       *gen1_size_ptr =
 457         MAX2((uintx)align_size_down(heap_size - *gen0_size_ptr, _min_alignment),
 458              _min_alignment);
 459     }
 460   }
 461   return result;
 462 }
 463 
 464 // Minimum sizes of the generations may be different than
 465 // the initial sizes.  An inconsistency is permitted here
 466 // in the total size that can be specified explicitly by
 467 // command line specification of OldSize and NewSize and
 468 // also a command line specification of -Xms.  Issue a warning
 469 // but allow the values to pass.
 470 
 471 void TwoGenerationCollectorPolicy::initialize_size_info() {
 472   GenCollectorPolicy::initialize_size_info();
 473 
 474   // At this point the minimum, initial and maximum sizes
 475   // of the overall heap and of gen0 have been determined.
 476   // The maximum gen1 size can be determined from the maximum gen0
 477   // and maximum heap size since no explicit flags exist
 478   // for setting the gen1 maximum.
 479   _max_gen1_size = _max_heap_byte_size - _max_gen0_size;
 480   _max_gen1_size =
 481     MAX2((uintx)align_size_down(_max_gen1_size, _min_alignment), _min_alignment);
 482 
 483   // If no explicit command line flag has been set for the
 484   // gen1 size, use what is left for gen1.
 485   if (FLAG_IS_DEFAULT(OldSize) || FLAG_IS_ERGO(OldSize)) {
 486     // The user has not specified any value or ergonomics
 487     // has chosen a value (which may or may not be consistent
 488     // with the overall heap size).  In either case make
 489     // the minimum, maximum and initial sizes consistent
 490     // with the gen0 sizes and the overall heap sizes.
 491     assert(_min_heap_byte_size > _min_gen0_size,
 492       "gen0 has an unexpected minimum size");
 493     _min_gen1_size = _min_heap_byte_size - _min_gen0_size;
 494     _min_gen1_size = MAX2((uintx)align_size_down(_min_gen1_size, _min_alignment),
 495            _min_alignment);
 496     _initial_gen1_size = _initial_heap_byte_size - _initial_gen0_size;
 497     _initial_gen1_size = MAX2((uintx)align_size_down(_initial_gen1_size, _min_alignment),
 498            _min_alignment);
 499   } else {
 500     // OldSize has been explicitly set on the command line. Use the
 501     // OldSize and then determine the consequences.
 502     _min_gen1_size = OldSize;
 503     _initial_gen1_size = OldSize;
 504 
 505     // If the user has explicitly set an OldSize that is inconsistent
 506     // with other command line flags, issue a warning.
 507     // The generation minimums and the overall heap minimum should
 508     // be within one heap alignment.
 509     if ((_min_gen1_size + _min_gen0_size + _min_alignment) < _min_heap_byte_size) {
 510       warning("Inconsistency between minimum heap size and minimum "
 511               "generation sizes: using minimum heap = " SIZE_FORMAT,
 512               _min_heap_byte_size);
 513     }
 514     if (OldSize > _max_gen1_size) {
 515       warning("Inconsistency between maximum heap size and maximum "
 516               "generation sizes: using maximum heap = " SIZE_FORMAT
 517               " -XX:OldSize flag is being ignored",
 518               _max_heap_byte_size);
 519     }
 520     // If there is an inconsistency between the OldSize and the minimum and/or
 521     // initial size of gen0, since OldSize was explicitly set, OldSize wins.
 522     if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size,
 523                           _min_heap_byte_size, OldSize)) {
 524       if (PrintGCDetails && Verbose) {
 525         gclog_or_tty->print_cr("2: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 526               SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 527               _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 528       }
 529     }
 530     // The same as above for the old gen initial size
 531     if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
 532                           _initial_heap_byte_size, OldSize)) {
 533       if (PrintGCDetails && Verbose) {
 534         gclog_or_tty->print_cr("3: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 535           SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 536           _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 537       }
 538     }
 539   }
 540   // Enforce the maximum gen1 size.
 541   _min_gen1_size = MIN2(_min_gen1_size, _max_gen1_size);
 542 
 543   // Check that min gen1 <= initial gen1 <= max gen1
 544   _initial_gen1_size = MAX2(_initial_gen1_size, _min_gen1_size);
 545   _initial_gen1_size = MIN2(_initial_gen1_size, _max_gen1_size);
 546 
 547   if (PrintGCDetails && Verbose) {
 548     gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT "  Initial gen1 "
 549       SIZE_FORMAT "  Maximum gen1 " SIZE_FORMAT,
 550       _min_gen1_size, _initial_gen1_size, _max_gen1_size);
 551   }
 552 }
 553 
 554 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
 555                                         bool is_tlab,
 556                                         bool* gc_overhead_limit_was_exceeded) {
 557   GenCollectedHeap *gch = GenCollectedHeap::heap();
 558 
 559   debug_only(gch->check_for_valid_allocation_state());
 560   assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
 561 
 562   // In general gc_overhead_limit_was_exceeded should be false so
 563   // set it so here and reset it to true only if the gc time
 564   // limit is being exceeded as checked below.
 565   *gc_overhead_limit_was_exceeded = false;
 566 
 567   HeapWord* result = NULL;
 568 
 569   // Loop until the allocation is satisfied, or unsatisfied after GC.
 570   for (int try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
 571     HandleMark hm; // discard any handles allocated in each iteration
 572 
 573     // First allocation attempt is lock-free.
 574     Generation *gen0 = gch->get_gen(0);
 575     assert(gen0->supports_inline_contig_alloc(),
 576       "Otherwise, must do alloc within heap lock");
 577     if (gen0->should_allocate(size, is_tlab)) {
 578       result = gen0->par_allocate(size, is_tlab);
 579       if (result != NULL) {
 580         assert(gch->is_in_reserved(result), "result not in heap");
 581         return result;
 582       }
 583     }
 584     unsigned int gc_count_before;  // read inside the Heap_lock locked region
 585     {
 586       MutexLocker ml(Heap_lock);
 587       if (PrintGC && Verbose) {
 588         gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
 589                       " attempting locked slow path allocation");
 590       }
 591       // Note that only large objects get a shot at being
 592       // allocated in later generations.
 593       bool first_only = ! should_try_older_generation_allocation(size);
 594 
 595       result = gch->attempt_allocation(size, is_tlab, first_only);
 596       if (result != NULL) {
 597         assert(gch->is_in_reserved(result), "result not in heap");
 598         return result;
 599       }
 600 
 601       if (GC_locker::is_active_and_needs_gc()) {
 602         if (is_tlab) {
 603           return NULL;  // Caller will retry allocating individual object
 604         }
 605         if (!gch->is_maximal_no_gc()) {
 606           // Try and expand heap to satisfy request
 607           result = expand_heap_and_allocate(size, is_tlab);
 608           // result could be null if we are out of space
 609           if (result != NULL) {
 610             return result;
 611           }
 612         }
 613 
 614         if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 615           return NULL; // we didn't get to do a GC and we didn't get any memory
 616         }
 617 
 618         // If this thread is not in a jni critical section, we stall
 619         // the requestor until the critical section has cleared and
 620         // GC allowed. When the critical section clears, a GC is
 621         // initiated by the last thread exiting the critical section; so
 622         // we retry the allocation sequence from the beginning of the loop,
 623         // rather than causing more, now probably unnecessary, GC attempts.
 624         JavaThread* jthr = JavaThread::current();
 625         if (!jthr->in_critical()) {
 626           MutexUnlocker mul(Heap_lock);
 627           // Wait for JNI critical section to be exited
 628           GC_locker::stall_until_clear();
 629           gclocker_stalled_count += 1;
 630           continue;
 631         } else {
 632           if (CheckJNICalls) {
 633             fatal("Possible deadlock due to allocating while"
 634                   " in jni critical section");
 635           }
 636           return NULL;
 637         }
 638       }
 639 
 640       // Read the gc count while the heap lock is held.
 641       gc_count_before = Universe::heap()->total_collections();
 642     }
 643 
 644     VM_GenCollectForAllocation op(size,
 645                                   is_tlab,
 646                                   gc_count_before);
 647     VMThread::execute(&op);
 648     if (op.prologue_succeeded()) {
 649       result = op.result();
 650       if (op.gc_locked()) {
 651          assert(result == NULL, "must be NULL if gc_locked() is true");
 652          continue;  // retry and/or stall as necessary
 653       }
 654 
 655       // Allocation has failed and a collection
 656       // has been done.  If the gc time limit was exceeded the
 657       // this time, return NULL so that an out-of-memory
 658       // will be thrown.  Clear gc_overhead_limit_exceeded
 659       // so that the overhead exceeded does not persist.
 660 
 661       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 662       const bool softrefs_clear = all_soft_refs_clear();
 663 
 664       if (limit_exceeded && softrefs_clear) {
 665         *gc_overhead_limit_was_exceeded = true;
 666         size_policy()->set_gc_overhead_limit_exceeded(false);
 667         if (op.result() != NULL) {
 668           CollectedHeap::fill_with_object(op.result(), size);
 669         }
 670         return NULL;
 671       }
 672       assert(result == NULL || gch->is_in_reserved(result),
 673              "result not in heap");
 674       return result;
 675     }
 676 
 677     // Give a warning if we seem to be looping forever.
 678     if ((QueuedAllocationWarningCount > 0) &&
 679         (try_count % QueuedAllocationWarningCount == 0)) {
 680           warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
 681                   " size=%d %s", try_count, size, is_tlab ? "(TLAB)" : "");
 682     }
 683   }
 684 }
 685 
 686 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
 687                                                        bool   is_tlab) {
 688   GenCollectedHeap *gch = GenCollectedHeap::heap();
 689   HeapWord* result = NULL;
 690   for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
 691     Generation *gen = gch->get_gen(i);
 692     if (gen->should_allocate(size, is_tlab)) {
 693       result = gen->expand_and_allocate(size, is_tlab);
 694     }
 695   }
 696   assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
 697   return result;
 698 }
 699 
 700 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
 701                                                         bool   is_tlab) {
 702   GenCollectedHeap *gch = GenCollectedHeap::heap();
 703   GCCauseSetter x(gch, GCCause::_allocation_failure);
 704   HeapWord* result = NULL;
 705 
 706   assert(size != 0, "Precondition violated");
 707   if (GC_locker::is_active_and_needs_gc()) {
 708     // GC locker is active; instead of a collection we will attempt
 709     // to expand the heap, if there's room for expansion.
 710     if (!gch->is_maximal_no_gc()) {
 711       result = expand_heap_and_allocate(size, is_tlab);
 712     }
 713     return result;   // could be null if we are out of space
 714   } else if (!gch->incremental_collection_will_fail(false /* don't consult_young */)) {
 715     // Do an incremental collection.
 716     gch->do_collection(false            /* full */,
 717                        false            /* clear_all_soft_refs */,
 718                        size             /* size */,
 719                        is_tlab          /* is_tlab */,
 720                        number_of_generations() - 1 /* max_level */);
 721   } else {
 722     if (Verbose && PrintGCDetails) {
 723       gclog_or_tty->print(" :: Trying full because partial may fail :: ");
 724     }
 725     // Try a full collection; see delta for bug id 6266275
 726     // for the original code and why this has been simplified
 727     // with from-space allocation criteria modified and
 728     // such allocation moved out of the safepoint path.
 729     gch->do_collection(true             /* full */,
 730                        false            /* clear_all_soft_refs */,
 731                        size             /* size */,
 732                        is_tlab          /* is_tlab */,
 733                        number_of_generations() - 1 /* max_level */);
 734   }
 735 
 736   result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
 737 
 738   if (result != NULL) {
 739     assert(gch->is_in_reserved(result), "result not in heap");
 740     return result;
 741   }
 742 
 743   // OK, collection failed, try expansion.
 744   result = expand_heap_and_allocate(size, is_tlab);
 745   if (result != NULL) {
 746     return result;
 747   }
 748 
 749   // If we reach this point, we're really out of memory. Try every trick
 750   // we can to reclaim memory. Force collection of soft references. Force
 751   // a complete compaction of the heap. Any additional methods for finding
 752   // free memory should be here, especially if they are expensive. If this
 753   // attempt fails, an OOM exception will be thrown.
 754   {
 755     UIntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
 756 
 757     gch->do_collection(true             /* full */,
 758                        true             /* clear_all_soft_refs */,
 759                        size             /* size */,
 760                        is_tlab          /* is_tlab */,
 761                        number_of_generations() - 1 /* max_level */);
 762   }
 763 
 764   result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
 765   if (result != NULL) {
 766     assert(gch->is_in_reserved(result), "result not in heap");
 767     return result;
 768   }
 769 
 770   assert(!should_clear_all_soft_refs(),
 771     "Flag should have been handled and cleared prior to this point");
 772 
 773   // What else?  We might try synchronous finalization later.  If the total
 774   // space available is large enough for the allocation, then a more
 775   // complete compaction phase than we've tried so far might be
 776   // appropriate.
 777   return NULL;
 778 }
 779 
 780 MetaWord* CollectorPolicy::satisfy_failed_metadata_allocation(
 781                                                  ClassLoaderData* loader_data,
 782                                                  size_t word_size,
 783                                                  Metaspace::MetadataType mdtype) {
 784   uint loop_count = 0;
 785   uint gc_count = 0;
 786   uint full_gc_count = 0;
 787 
 788   assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock");
 789 
 790   do {
 791     MetaWord* result = NULL;
 792     if (GC_locker::is_active_and_needs_gc()) {
 793       // If the GC_locker is active, just expand and allocate.
 794       // If that does not succeed, wait if this thread is not
 795       // in a critical section itself.
 796       result =
 797         loader_data->metaspace_non_null()->expand_and_allocate(word_size,
 798                                                                mdtype);
 799       if (result != NULL) {
 800         return result;
 801       }
 802       JavaThread* jthr = JavaThread::current();
 803       if (!jthr->in_critical()) {
 804         // Wait for JNI critical section to be exited
 805         GC_locker::stall_until_clear();
 806         // The GC invoked by the last thread leaving the critical
 807         // section will be a young collection and a full collection
 808         // is (currently) needed for unloading classes so continue
 809         // to the next iteration to get a full GC.
 810         continue;
 811       } else {
 812         if (CheckJNICalls) {
 813           fatal("Possible deadlock due to allocating while"
 814                 " in jni critical section");
 815         }
 816         return NULL;
 817       }
 818     }
 819 
 820     {  // Need lock to get self consistent gc_count's
 821       MutexLocker ml(Heap_lock);
 822       gc_count      = Universe::heap()->total_collections();
 823       full_gc_count = Universe::heap()->total_full_collections();
 824     }
 825 
 826     // Generate a VM operation
 827     VM_CollectForMetadataAllocation op(loader_data,
 828                                        word_size,
 829                                        mdtype,
 830                                        gc_count,
 831                                        full_gc_count,
 832                                        GCCause::_metadata_GC_threshold);
 833     VMThread::execute(&op);
 834 
 835     // If GC was locked out, try again.  Check
 836     // before checking success because the prologue
 837     // could have succeeded and the GC still have
 838     // been locked out.
 839     if (op.gc_locked()) {
 840       continue;
 841     }
 842 
 843     if (op.prologue_succeeded()) {
 844       return op.result();
 845     }
 846     loop_count++;
 847     if ((QueuedAllocationWarningCount > 0) &&
 848         (loop_count % QueuedAllocationWarningCount == 0)) {
 849       warning("satisfy_failed_metadata_allocation() retries %d times \n\t"
 850               " size=%d", loop_count, word_size);
 851     }
 852   } while (true);  // Until a GC is done
 853 }
 854 
 855 // Return true if any of the following is true:
 856 // . the allocation won't fit into the current young gen heap
 857 // . gc locker is occupied (jni critical section)
 858 // . heap memory is tight -- the most recent previous collection
 859 //   was a full collection because a partial collection (would
 860 //   have) failed and is likely to fail again
 861 bool GenCollectorPolicy::should_try_older_generation_allocation(
 862         size_t word_size) const {
 863   GenCollectedHeap* gch = GenCollectedHeap::heap();
 864   size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
 865   return    (word_size > heap_word_size(gen0_capacity))
 866          || GC_locker::is_active_and_needs_gc()
 867          || gch->incremental_collection_failed();
 868 }
 869 
 870 
 871 //
 872 // MarkSweepPolicy methods
 873 //
 874 
 875 MarkSweepPolicy::MarkSweepPolicy() {
 876   initialize_all();
 877 }
 878 
 879 void MarkSweepPolicy::initialize_generations() {
 880   _generations = NEW_C_HEAP_ARRAY3(GenerationSpecPtr, number_of_generations(), mtGC, 0, AllocFailStrategy::RETURN_NULL);
 881   if (_generations == NULL) {
 882     vm_exit_during_initialization("Unable to allocate gen spec");
 883   }
 884 
 885   if (UseParNewGC) {
 886     _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
 887   } else {
 888     _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
 889   }
 890   _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
 891 
 892   if (_generations[0] == NULL || _generations[1] == NULL) {
 893     vm_exit_during_initialization("Unable to allocate gen spec");
 894   }
 895 }
 896 
 897 void MarkSweepPolicy::initialize_gc_policy_counters() {
 898   // initialize the policy counters - 2 collectors, 3 generations
 899   if (UseParNewGC) {
 900     _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
 901   } else {
 902     _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
 903   }
 904 }