1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  28 #include "gc_implementation/shared/vmGCOperations.hpp"
  29 #include "memory/cardTableRS.hpp"
  30 #include "memory/collectorPolicy.hpp"
  31 #include "memory/gcLocker.inline.hpp"
  32 #include "memory/genCollectedHeap.hpp"
  33 #include "memory/generationSpec.hpp"
  34 #include "memory/space.hpp"
  35 #include "memory/universe.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/globals_extension.hpp"
  38 #include "runtime/handles.inline.hpp"
  39 #include "runtime/java.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 #include "runtime/vmThread.hpp"
  42 #include "utilities/macros.hpp"
  43 #if INCLUDE_ALL_GCS
  44 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  45 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  46 #endif // INCLUDE_ALL_GCS
  47 
  48 // CollectorPolicy methods.
  49 
  50 // Align down. If the aligning result in 0, return 'alignment'.
  51 static size_t restricted_align_down(size_t size, size_t alignment) {
  52   return MAX2(alignment, align_size_down_(size, alignment));
  53 }
  54 
  55 void CollectorPolicy::initialize_flags() {
  56   assert(_max_alignment >= _min_alignment,
  57          err_msg("max_alignment: " SIZE_FORMAT " less than min_alignment: " SIZE_FORMAT,
  58                  _max_alignment, _min_alignment));
  59   assert(_max_alignment % _min_alignment == 0,
  60          err_msg("max_alignment: " SIZE_FORMAT " not aligned by min_alignment: " SIZE_FORMAT,
  61                  _max_alignment, _min_alignment));
  62 
  63   if (FLAG_IS_CMDLINE(MaxHeapSize)) {
  64     if (FLAG_IS_CMDLINE(InitialHeapSize) && InitialHeapSize > MaxHeapSize) {
  65       vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
  66     }
  67     if (Arguments::min_heap_size() != 0 && MaxHeapSize < Arguments::min_heap_size()) {
  68       vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
  69     }
  70     _max_heap_size_cmdline = true;
  71   }
  72 
  73   if (FLAG_IS_CMDLINE(InitialHeapSize) && Arguments::min_heap_size() != 0 &&
  74       InitialHeapSize < Arguments::min_heap_size()) {
  75     vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
  76   }
  77   if (!FLAG_IS_DEFAULT(InitialHeapSize) && InitialHeapSize > MaxHeapSize) {
  78     FLAG_SET_ERGO(uintx, MaxHeapSize, InitialHeapSize);
  79   } else if (!FLAG_IS_DEFAULT(MaxHeapSize) && InitialHeapSize > MaxHeapSize) {
  80     FLAG_SET_ERGO(uintx, InitialHeapSize, MaxHeapSize);
  81     if (InitialHeapSize < Arguments::min_heap_size()) {
  82       Arguments::set_min_heap_size(InitialHeapSize);
  83     }
  84   }
  85 
  86   // User inputs from -Xmx and -Xms must be aligned
  87   Arguments::set_min_heap_size(align_size_up(Arguments::min_heap_size(), _min_alignment));
  88   uintx alignedInitialHeapSize = align_size_up(InitialHeapSize, _min_alignment);
  89   uintx alignedMaxHeapSize = align_size_up(MaxHeapSize, _max_alignment);
  90 
  91   // Write back to flags if the values was changed
  92   if (alignedInitialHeapSize != InitialHeapSize) {
  93     FLAG_SET_ERGO(uintx, InitialHeapSize, alignedInitialHeapSize);
  94   }
  95   if (alignedMaxHeapSize != MaxHeapSize) {
  96     FLAG_SET_ERGO(uintx, MaxHeapSize, alignedMaxHeapSize);
  97   }
  98 
  99   assert(InitialHeapSize <= MaxHeapSize, "Ergonomics decided on incompatible initial and maximum heap sizes");
 100   assert(InitialHeapSize % _min_alignment == 0, "InitialHeapSize alignment");
 101   assert(MaxHeapSize % _max_alignment == 0, "MaxHeapSize alignment");
 102 
 103   if (!is_size_aligned(MaxMetaspaceSize, _max_alignment)) {
 104     FLAG_SET_ERGO(uintx, MaxMetaspaceSize,
 105         restricted_align_down(MaxMetaspaceSize, _max_alignment));
 106   }
 107 
 108   if (MetaspaceSize > MaxMetaspaceSize) {
 109     FLAG_SET_ERGO(uintx, MetaspaceSize, MaxMetaspaceSize);
 110   }
 111 
 112   if (!is_size_aligned(MetaspaceSize, _min_alignment)) {
 113     FLAG_SET_ERGO(uintx, MetaspaceSize,
 114         restricted_align_down(MetaspaceSize, _min_alignment));
 115   }
 116 
 117   assert(MetaspaceSize <= MaxMetaspaceSize, "Must be");
 118 
 119   MinMetaspaceExpansion = restricted_align_down(MinMetaspaceExpansion, _min_alignment);
 120   MaxMetaspaceExpansion = restricted_align_down(MaxMetaspaceExpansion, _min_alignment);
 121 
 122   MinHeapDeltaBytes = align_size_up(MinHeapDeltaBytes, _min_alignment);
 123 
 124   assert(MetaspaceSize    % _min_alignment == 0, "metapace alignment");
 125   assert(MaxMetaspaceSize % _max_alignment == 0, "maximum metaspace alignment");
 126   if (MetaspaceSize < 256*K) {
 127     vm_exit_during_initialization("Too small initial Metaspace size");
 128   }
 129 }
 130 
 131 void CollectorPolicy::initialize_size_info() {
 132   _min_heap_byte_size = Arguments::min_heap_size();
 133   _initial_heap_byte_size = InitialHeapSize;
 134   _max_heap_byte_size = MaxHeapSize;
 135 
 136   // Check heap parameter properties
 137   if (_initial_heap_byte_size < M) {
 138     vm_exit_during_initialization("Too small initial heap");
 139   }
 140   // Check heap parameter properties
 141   if (_min_heap_byte_size < M) {
 142     vm_exit_during_initialization("Too small minimum heap");
 143   }
 144 
 145   assert(_max_heap_byte_size >= _min_heap_byte_size, "Ergonomics decided on incompatible minimum and maximum heap sizes");
 146   assert(_initial_heap_byte_size >= _min_heap_byte_size, "Ergonomics decided on incompatible initial and minimum heap sizes");
 147   assert(_max_heap_byte_size >= _initial_heap_byte_size, "Ergonomics decided on incompatible initial and maximum heap sizes");
 148   assert(_min_heap_byte_size % _min_alignment == 0, "min_heap_byte_size alignment");
 149   assert(_initial_heap_byte_size % _min_alignment == 0, "initial_heap_byte_size alignment");
 150   assert(_max_heap_byte_size % _max_alignment == 0, "max_heap_byte_size alignment");
 151 
 152   if (PrintGCDetails && Verbose) {
 153     gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT "  Initial heap "
 154       SIZE_FORMAT "  Maximum heap " SIZE_FORMAT,
 155       _min_heap_byte_size, _initial_heap_byte_size, _max_heap_byte_size);
 156   }
 157 }
 158 
 159 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
 160   bool result = _should_clear_all_soft_refs;
 161   set_should_clear_all_soft_refs(false);
 162   return result;
 163 }
 164 
 165 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
 166                                            int max_covered_regions) {
 167   switch (rem_set_name()) {
 168   case GenRemSet::CardTable: {
 169     CardTableRS* res = new CardTableRS(whole_heap, max_covered_regions);
 170     return res;
 171   }
 172   default:
 173     guarantee(false, "unrecognized GenRemSet::Name");
 174     return NULL;
 175   }
 176 }
 177 
 178 void CollectorPolicy::cleared_all_soft_refs() {
 179   // If near gc overhear limit, continue to clear SoftRefs.  SoftRefs may
 180   // have been cleared in the last collection but if the gc overhear
 181   // limit continues to be near, SoftRefs should still be cleared.
 182   if (size_policy() != NULL) {
 183     _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
 184   }
 185   _all_soft_refs_clear = true;
 186 }
 187 
 188 size_t CollectorPolicy::compute_max_alignment() {
 189   // The card marking array and the offset arrays for old generations are
 190   // committed in os pages as well. Make sure they are entirely full (to
 191   // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
 192   // byte entry and the os page size is 4096, the maximum heap size should
 193   // be 512*4096 = 2MB aligned.
 194 
 195   // There is only the GenRemSet in Hotspot and only the GenRemSet::CardTable
 196   // is supported.
 197   // Requirements of any new remembered set implementations must be added here.
 198   size_t alignment = GenRemSet::max_alignment_constraint(GenRemSet::CardTable);
 199 
 200   // Parallel GC does its own alignment of the generations to avoid requiring a
 201   // large page (256M on some platforms) for the permanent generation.  The
 202   // other collectors should also be updated to do their own alignment and then
 203   // this use of lcm() should be removed.
 204   if (UseLargePages && !UseParallelGC) {
 205       // in presence of large pages we have to make sure that our
 206       // alignment is large page aware
 207       alignment = lcm(os::large_page_size(), alignment);
 208   }
 209 
 210   return alignment;
 211 }
 212 
 213 // GenCollectorPolicy methods.
 214 
 215 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
 216   size_t x = base_size / (NewRatio+1);
 217   size_t new_gen_size = x > _min_alignment ?
 218                      align_size_down(x, _min_alignment) : _min_alignment;
 219   return new_gen_size;
 220 }
 221 
 222 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
 223                                                  size_t maximum_size) {
 224   size_t alignment = _min_alignment;
 225   size_t max_minus = maximum_size - alignment;
 226   return desired_size < max_minus ? desired_size : max_minus;
 227 }
 228 
 229 
 230 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
 231                                                 size_t init_promo_size,
 232                                                 size_t init_survivor_size) {
 233   const double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
 234   _size_policy = new AdaptiveSizePolicy(init_eden_size,
 235                                         init_promo_size,
 236                                         init_survivor_size,
 237                                         max_gc_pause_sec,
 238                                         GCTimeRatio);
 239 }
 240 
 241 size_t GenCollectorPolicy::compute_max_alignment() {
 242   // The card marking array and the offset arrays for old generations are
 243   // committed in os pages as well. Make sure they are entirely full (to
 244   // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
 245   // byte entry and the os page size is 4096, the maximum heap size should
 246   // be 512*4096 = 2MB aligned.
 247   size_t alignment = GenRemSet::max_alignment_constraint(rem_set_name());
 248 
 249   // Parallel GC does its own alignment of the generations to avoid requiring a
 250   // large page (256M on some platforms) for the permanent generation.  The
 251   // other collectors should also be updated to do their own alignment and then
 252   // this use of lcm() should be removed.
 253   if (UseLargePages && !UseParallelGC) {
 254       // in presence of large pages we have to make sure that our
 255       // alignment is large page aware
 256       alignment = lcm(os::large_page_size(), alignment);
 257   }
 258 
 259   assert(alignment >= _min_alignment, "Must be");
 260 
 261   return alignment;
 262 }
 263 
 264 void GenCollectorPolicy::initialize_flags() {
 265   // All sizes must be multiples of the generation granularity.
 266   _min_alignment = (uintx) Generation::GenGrain;
 267   _max_alignment = compute_max_alignment();
 268 
 269   CollectorPolicy::initialize_flags();
 270 
 271   // This is the absolute minimum for the young generation. It has to hold two
 272   // survivor areas and the eden. We set it here since it is used repeatedly
 273   // throughout the initialization. However this is not necessarily the final
 274   // value of _min_gen0_size.
 275   _min_gen0_size = 3 * intra_heap_alignment();
 276 
 277   // Make sure the heap is large enough for two generations.
 278   uintx smallestHeapSize = _min_gen0_size + intra_heap_alignment();
 279   if (MaxHeapSize < smallestHeapSize) {
 280     FLAG_SET_ERGO(uintx, MaxHeapSize, align_size_up(smallestHeapSize, _max_alignment));
 281   }
 282 
 283   // All generational heaps have a youngest gen; handle those flags here.
 284 
 285   if (FLAG_IS_CMDLINE(NewSize) && FLAG_IS_CMDLINE(MaxNewSize) && NewSize > MaxNewSize) {
 286     vm_exit_during_initialization("Incompatible initial and maximum young gen sizes specified");
 287   }
 288 
 289   if (!FLAG_IS_DEFAULT(MaxNewSize)) {
 290     uintx minNewSize = MAX2(_min_alignment, _min_gen0_size);
 291 
 292     if (MaxNewSize >= MaxHeapSize) {
 293       uintx smallerMaxNewSize = align_size_down(MaxHeapSize - _min_alignment, _min_alignment);
 294       if (FLAG_IS_CMDLINE(MaxNewSize)) {
 295         warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or greater than the entire "
 296                 "heap (" SIZE_FORMAT "k).  A new max generation size of " SIZE_FORMAT "k will be used.",
 297                 MaxNewSize/K, MaxHeapSize/K, smallerMaxNewSize/K);
 298       }
 299       FLAG_SET_ERGO(uintx, MaxNewSize, smallerMaxNewSize);
 300       if (NewSize > MaxNewSize) {
 301         FLAG_SET_ERGO(uintx, NewSize, MaxNewSize);
 302       }
 303     } else if (MaxNewSize < minNewSize) {
 304       FLAG_SET_ERGO(uintx, MaxNewSize, align_size_up(minNewSize, _min_alignment));
 305     } else if (!is_size_aligned(MaxNewSize, _min_alignment)) {
 306       FLAG_SET_ERGO(uintx, MaxNewSize, align_size_down(MaxNewSize, _min_alignment));
 307     }
 308   }
 309 
 310   // Young space must be aligned and have room for eden + two survivors.
 311   // We will silently increase the NewSize even if the user specified a smaller value.
 312   uintx smallestNewSize = MAX2(align_size_up(_min_gen0_size, _min_alignment),
 313                                align_size_down(NewSize, _min_alignment));
 314   if (smallestNewSize != NewSize) {
 315     FLAG_SET_ERGO(uintx, NewSize, smallestNewSize);
 316   }
 317 
 318   if (NewSize > MaxNewSize) {
 319     // At this point this should only happen if the user specifies a large NewSize or
 320     // a small (but not too small) MaxNewSize.
 321     if (FLAG_IS_CMDLINE(NewSize)) {
 322       warning("NewSize (" SIZE_FORMAT "k) is greater than the MaxNewSize (" SIZE_FORMAT "k). "
 323               "A new generation size of " SIZE_FORMAT "k will be used.",
 324               NewSize/K, MaxNewSize/K, MaxNewSize/K);
 325     }
 326     FLAG_SET_ERGO(uintx, NewSize, MaxNewSize);
 327   }
 328 
 329   assert(InitialHeapSize <= MaxHeapSize, "Ergonomics decided on incompatible initial and maximum heap sizes");
 330   assert(NewSize >= _min_gen0_size, "Ergonomics decided on a too small young gen size");
 331   assert(NewSize <= MaxNewSize, "Ergonomics decided on incompatible initial and maximum young gen sizes");
 332   assert(FLAG_IS_DEFAULT(MaxNewSize) || MaxNewSize < MaxHeapSize, "Ergonomics decided on incompatible maximum young gen and heap sizes");
 333   assert(InitialHeapSize % _min_alignment == 0, "InitialHeapSize alignment");
 334   assert(MaxHeapSize % _max_alignment == 0, "MaxHeapSize alignment");
 335   assert(NewSize % _min_alignment == 0, "NewSize alignment");
 336   assert(FLAG_IS_DEFAULT(MaxNewSize) || MaxNewSize % _min_alignment == 0, "MaxNewSize alignment");
 337 
 338   if (SurvivorRatio < 1 || NewRatio < 1) {
 339     vm_exit_during_initialization("Invalid young gen ratio specified");
 340   }
 341 }
 342 
 343 void TwoGenerationCollectorPolicy::initialize_flags() {
 344   GenCollectorPolicy::initialize_flags();
 345 
 346   if (!is_size_aligned(OldSize, _min_alignment)) {
 347     FLAG_SET_ERGO(uintx, OldSize, align_size_down(OldSize, _min_alignment));
 348   }
 349 
 350   if (FLAG_IS_CMDLINE(OldSize) && FLAG_IS_DEFAULT(MaxHeapSize)) {
 351     // NewRatio will be used later to set the young generation size so we use
 352     // it to calculate how big the heap should be based on the requested OldSize
 353     // and NewRatio.
 354     assert(NewRatio > 0, "NewRatio should have been set up earlier");
 355     size_t calculated_heapsize = (OldSize / NewRatio) * (NewRatio + 1);
 356 
 357     calculated_heapsize = align_size_up(calculated_heapsize, _max_alignment);
 358     FLAG_SET_ERGO(uintx, MaxHeapSize, calculated_heapsize);
 359     FLAG_SET_ERGO(uintx, InitialHeapSize, calculated_heapsize);
 360   }
 361 
 362   // adjust max heap size if necessary
 363   if (NewSize + OldSize > MaxHeapSize) {
 364     if (_max_heap_size_cmdline) {
 365       // Somebody has set a maximum heap size with the intention that we should not
 366       // exceed it. Adjust New/OldSize as necessary.
 367       uintx calculated_size = NewSize + OldSize;
 368       double shrink_factor = (double) MaxHeapSize / calculated_size;
 369       // align
 370       FLAG_SET_ERGO(uintx, NewSize, MAX2(_min_gen0_size, (uintx)align_size_down((uintx)(NewSize * shrink_factor), _min_alignment)));
 371 
 372       // OldSize is already aligned because above we aligned MaxHeapSize to
 373       // _max_alignment, and we just made sure that NewSize is aligned to
 374       // _min_alignment. In initialize_flags() we verified that _max_alignment
 375       // is a multiple of _min_alignment.
 376       FLAG_SET_ERGO(uintx, OldSize, MaxHeapSize - NewSize);
 377     } else {
 378       FLAG_SET_ERGO(uintx, MaxHeapSize, align_size_up(NewSize + OldSize, _max_alignment));
 379     }
 380   }
 381 
 382   always_do_update_barrier = UseConcMarkSweepGC;
 383 
 384   // Check validity of heap flags
 385   assert(InitialHeapSize <= MaxHeapSize, "Ergonomics decided on incompatible initial and maximum heap sizes");
 386   assert(NewSize >= _min_gen0_size, "Ergonomics decided on a too small young gen size");
 387   assert(NewSize <= MaxNewSize, "Ergonomics decided on incompatible initial and maximum young gen sizes");
 388   assert(FLAG_IS_DEFAULT(MaxNewSize) || MaxNewSize < MaxHeapSize, "Ergonomics decided on incompatible maximum young gen and heap sizes");
 389   assert(OldSize + NewSize <= MaxHeapSize, "Ergonomics decided on incompatible generation and heap sizes");
 390   assert(InitialHeapSize % _min_alignment == 0, "InitialHeapSize alignment");
 391   assert(MaxHeapSize % _max_alignment == 0, "MaxHeapSize alignment");
 392   assert(NewSize % _min_alignment == 0, "NewSize alignment");
 393   assert(FLAG_IS_DEFAULT(MaxNewSize) || MaxNewSize % _min_alignment == 0, "MaxNewSize alignment");
 394   assert(OldSize % _min_alignment == 0, "OldSize alignment");
 395 }
 396 
 397 // Values set on the command line win over any ergonomically
 398 // set command line parameters.
 399 // Ergonomic choice of parameters are done before this
 400 // method is called.  Values for command line parameters such as NewSize
 401 // and MaxNewSize feed those ergonomic choices into this method.
 402 // This method makes the final generation sizings consistent with
 403 // themselves and with overall heap sizings.
 404 // In the absence of explicitly set command line flags, policies
 405 // such as the use of NewRatio are used to size the generation.
 406 void GenCollectorPolicy::initialize_size_info() {
 407   CollectorPolicy::initialize_size_info();
 408 
 409   // _min_alignment is used for alignment within a generation.
 410   // There is additional alignment done down stream for some
 411   // collectors that sometimes causes unwanted rounding up of
 412   // generations sizes.
 413 
 414   // Determine maximum size of gen0
 415 
 416   size_t max_new_size = 0;
 417   if (!FLAG_IS_DEFAULT(MaxNewSize)) {
 418     max_new_size = MaxNewSize;
 419   } else {
 420     max_new_size = scale_by_NewRatio_aligned(_max_heap_byte_size);
 421     // Bound the maximum size by NewSize below (since it historically
 422     // would have been NewSize and because the NewRatio calculation could
 423     // yield a size that is too small) and bound it by MaxNewSize above.
 424     // Ergonomics plays here by previously calculating the desired
 425     // NewSize and MaxNewSize.
 426     max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
 427   }
 428   assert(max_new_size > 0, "All paths should set max_new_size");
 429 
 430   // Given the maximum gen0 size, determine the initial and
 431   // minimum gen0 sizes.
 432 
 433   if (_max_heap_byte_size == _min_heap_byte_size) {
 434     // The maximum and minimum heap sizes are the same so
 435     // the generations minimum and initial must be the
 436     // same as its maximum.
 437     _min_gen0_size = max_new_size;
 438     _initial_gen0_size = max_new_size;
 439     _max_gen0_size = max_new_size;
 440   } else {
 441     size_t desired_new_size = 0;
 442     if (!FLAG_IS_DEFAULT(NewSize)) {
 443       // If NewSize is set ergonomically (for example by cms), it
 444       // would make sense to use it.  If it is used, also use it
 445       // to set the initial size.  Although there is no reason
 446       // the minimum size and the initial size have to be the same,
 447       // the current implementation gets into trouble during the calculation
 448       // of the tenured generation sizes if they are different.
 449       // Note that this makes the initial size and the minimum size
 450       // generally small compared to the NewRatio calculation.
 451       _min_gen0_size = NewSize;
 452       desired_new_size = NewSize;
 453       max_new_size = MAX2(max_new_size, NewSize);
 454     } else {
 455       // For the case where NewSize is the default, use NewRatio
 456       // to size the minimum and initial generation sizes.
 457       // Use the default NewSize as the floor for these values.  If
 458       // NewRatio is overly large, the resulting sizes can be too
 459       // small.
 460       _min_gen0_size = MAX2(scale_by_NewRatio_aligned(_min_heap_byte_size), NewSize);
 461       desired_new_size =
 462         MAX2(scale_by_NewRatio_aligned(_initial_heap_byte_size), NewSize);
 463     }
 464 
 465     assert(_min_gen0_size > 0, "Sanity check");
 466     _initial_gen0_size = desired_new_size;
 467     _max_gen0_size = max_new_size;
 468 
 469     // At this point the desirable initial and minimum sizes have been
 470     // determined without regard to the maximum sizes.
 471 
 472     // Bound the sizes by the corresponding overall heap sizes.
 473     _min_gen0_size = bound_minus_alignment(_min_gen0_size, _min_heap_byte_size);
 474     _initial_gen0_size = bound_minus_alignment(_initial_gen0_size, _initial_heap_byte_size);
 475     _max_gen0_size = bound_minus_alignment(_max_gen0_size, _max_heap_byte_size);
 476 
 477     // At this point all three sizes have been checked against the
 478     // maximum sizes but have not been checked for consistency
 479     // among the three.
 480 
 481     // Final check min <= initial <= max
 482     _min_gen0_size = MIN2(_min_gen0_size, _max_gen0_size);
 483     _initial_gen0_size = MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size);
 484     _min_gen0_size = MIN2(_min_gen0_size, _initial_gen0_size);
 485   }
 486 
 487   // Write back to flag if necessary
 488   if (MaxNewSize != _min_gen0_size) {
 489     FLAG_SET_ERGO(uintx, MaxNewSize, _max_gen0_size);
 490   }
 491   assert(MaxNewSize < MaxHeapSize, "Ergonomics decided on incompatible maximum young and heap sizes");
 492   assert(_max_heap_byte_size >= _min_heap_byte_size, "Ergonomics decided on incompatible minimum and maximum heap sizes");
 493   assert(_initial_heap_byte_size >= _min_heap_byte_size, "Ergonomics decided on incompatible initial and minimum heap sizes");
 494   assert(_max_heap_byte_size >= _initial_heap_byte_size, "Ergonomics decided on incompatible initial and maximum heap sizes");
 495   assert(_min_gen0_size <= _initial_gen0_size, "Ergonomics decided on incompatible minimum and initial young gen sizes");
 496   assert(_initial_gen0_size <= _max_gen0_size, "Ergonomics decided on incompatible initial and maximum young gen sizes");
 497   assert(_min_heap_byte_size % _min_alignment == 0, "min_heap_byte_size alignment");
 498   assert(_initial_heap_byte_size % _min_alignment == 0, "initial_heap_byte_size alignment");
 499   assert(_max_heap_byte_size % _max_alignment == 0, "max_heap_byte_size alignment");
 500   assert(_min_gen0_size % _min_alignment == 0, "_min_gen0_size alignment");
 501   assert(_initial_gen0_size % _min_alignment == 0, "_initial_gen0_size alignment");
 502   assert(_max_gen0_size % _min_alignment == 0, "_max_gen0_size alignment");
 503 
 504   if (PrintGCDetails && Verbose) {
 505     gclog_or_tty->print_cr("1: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 506       SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 507       _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 508   }
 509 }
 510 
 511 // Call this method during the sizing of the gen1 to make
 512 // adjustments to gen0 because of gen1 sizing policy.  gen0 initially has
 513 // the most freedom in sizing because it is done before the
 514 // policy for gen1 is applied.  Once gen1 policies have been applied,
 515 // there may be conflicts in the shape of the heap and this method
 516 // is used to make the needed adjustments.  The application of the
 517 // policies could be more sophisticated (iterative for example) but
 518 // keeping it simple also seems a worthwhile goal.
 519 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
 520                                                      size_t* gen1_size_ptr,
 521                                                      const size_t heap_size,
 522                                                      const size_t min_gen1_size) {
 523   bool result = false;
 524 
 525   if ((*gen1_size_ptr + *gen0_size_ptr) > heap_size) {
 526     if ((heap_size < (*gen0_size_ptr + min_gen1_size)) &&
 527         (heap_size >= min_gen1_size + _min_alignment)) {
 528       // Adjust gen0 down to accommodate min_gen1_size
 529       *gen0_size_ptr =
 530         MAX2((uintx)align_size_down(heap_size - min_gen1_size, _min_alignment),
 531              _min_alignment);
 532       assert(*gen0_size_ptr > 0, "Min gen0 is too large");
 533       result = true;
 534     } else {
 535       *gen1_size_ptr =
 536         MAX2((uintx)align_size_down(heap_size - *gen0_size_ptr, _min_alignment),
 537              _min_alignment);
 538     }
 539   }
 540   return result;
 541 }
 542 
 543 // Minimum sizes of the generations may be different than
 544 // the initial sizes.  An inconsistency is permitted here
 545 // in the total size that can be specified explicitly by
 546 // command line specification of OldSize and NewSize and
 547 // also a command line specification of -Xms.  Issue a warning
 548 // but allow the values to pass.
 549 
 550 void TwoGenerationCollectorPolicy::initialize_size_info() {
 551   GenCollectorPolicy::initialize_size_info();
 552 
 553   // At this point the minimum, initial and maximum sizes
 554   // of the overall heap and of gen0 have been determined.
 555   // The maximum gen1 size can be determined from the maximum gen0
 556   // and maximum heap size since no explicit flags exist
 557   // for setting the gen1 maximum.
 558   _max_gen1_size = MAX2(_max_heap_byte_size - _max_gen0_size, _min_alignment);
 559 
 560   // If no explicit command line flag has been set for the
 561   // gen1 size, use what is left for gen1.
 562   if (!FLAG_IS_CMDLINE(OldSize)) {
 563     // The user has not specified any value but the ergonomics
 564     // may have chosen a value (which may or may not be consistent
 565     // with the overall heap size).  In either case make
 566     // the minimum, maximum and initial sizes consistent
 567     // with the gen0 sizes and the overall heap sizes.
 568     _min_gen1_size = MAX2(_min_heap_byte_size - _min_gen0_size, _min_alignment);
 569     _initial_gen1_size = MAX2(_initial_heap_byte_size - _initial_gen0_size, _min_alignment);
 570     // _max_gen1_size has already been made consistent above
 571     FLAG_SET_ERGO(uintx, OldSize, _initial_gen1_size);
 572   } else {
 573     // OldSize has been explicitly set on the command line. Use the
 574     // OldSize and then determine the consequences.
 575     _min_gen1_size = MIN2(OldSize, _min_heap_byte_size - _min_gen0_size);
 576     _initial_gen1_size = OldSize;
 577 
 578     // If the user has explicitly set an OldSize that is inconsistent
 579     // with other command line flags, issue a warning.
 580     // The generation minimums and the overall heap minimum should
 581     // be within one heap alignment.
 582     if ((_min_gen1_size + _min_gen0_size + _min_alignment) < _min_heap_byte_size) {
 583       warning("Inconsistency between minimum heap size and minimum "
 584               "generation sizes: using minimum heap = " SIZE_FORMAT,
 585               _min_heap_byte_size);
 586     }
 587     if (OldSize > _max_gen1_size) {
 588       warning("Inconsistency between maximum heap size and maximum "
 589               "generation sizes: using maximum heap = " SIZE_FORMAT
 590               " -XX:OldSize flag is being ignored",
 591               _max_heap_byte_size);
 592     }
 593     // If there is an inconsistency between the OldSize and the minimum and/or
 594     // initial size of gen0, since OldSize was explicitly set, OldSize wins.
 595     if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size,
 596                           _min_heap_byte_size, _min_gen1_size)) {
 597       if (PrintGCDetails && Verbose) {
 598         gclog_or_tty->print_cr("2: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 599               SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 600               _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 601       }
 602     }
 603     // The same as above for the old gen initial size
 604     if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
 605                           _initial_heap_byte_size, _initial_gen1_size)) {
 606       if (PrintGCDetails && Verbose) {
 607         gclog_or_tty->print_cr("3: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 608           SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 609           _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 610       }
 611     }
 612     // update OldSize
 613     FLAG_SET_ERGO(uintx, OldSize, _initial_gen1_size);
 614   }
 615 
 616   _min_gen1_size = MIN2(_min_gen1_size, _max_gen1_size);
 617 
 618   // Make sure that min gen1 <= initial gen1 <= max gen1
 619   _initial_gen1_size = MAX2(_initial_gen1_size, _min_gen1_size);
 620   _initial_gen1_size = MIN2(_initial_gen1_size, _max_gen1_size);
 621 
 622   // check
 623   assert(_max_heap_byte_size >= _min_heap_byte_size, "Ergonomics decided on incompatible minimum and maximum heap sizes");
 624   assert(_initial_heap_byte_size >= _min_heap_byte_size, "Ergonomics decided on incompatible initial and minimum heap sizes");
 625   assert(_max_heap_byte_size >= _initial_heap_byte_size, "Ergonomics decided on incompatible initial and maximum heap sizes");
 626   assert(_min_gen0_size <= _initial_gen0_size, "Ergonomics decided on incompatible minimum and initial young gen sizes");
 627   assert(_initial_gen0_size <= _max_gen0_size, "Ergonomics decided on incompatible initial and maximum young gen sizes");
 628   assert(_min_gen1_size <= _initial_gen1_size, "Ergonomics decided on incompatible minimum and initial old gen sizes");
 629   assert(_initial_gen1_size <= _max_gen1_size, "Ergonomics decided on incompatible initial and maximum old gen sizes");
 630   assert(_min_heap_byte_size % _min_alignment == 0, "min_heap_byte_size alignment");
 631   assert(_initial_heap_byte_size % _min_alignment == 0, "initial_heap_byte_size alignment");
 632   assert(_max_heap_byte_size % _max_alignment == 0, "max_heap_byte_size alignment");
 633   assert(_min_gen0_size % _min_alignment == 0, "_min_gen0_size alignment");
 634   assert(_initial_gen0_size % _min_alignment == 0, "_initial_gen0_size alignment");
 635   assert(_max_gen0_size % _min_alignment == 0, "_max_gen0_size alignment");
 636   assert(_max_gen1_size % _min_alignment == 0, "_max_gen1_size alignment");
 637 
 638   assert(_max_heap_byte_size <= (_max_gen0_size + _max_gen1_size), "Total maximum heap sizes must be sum of generation maximum sizes");
 639 
 640   if (PrintGCDetails && Verbose) {
 641     gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT "  Initial gen1 "
 642       SIZE_FORMAT "  Maximum gen1 " SIZE_FORMAT,
 643       _min_gen1_size, _initial_gen1_size, _max_gen1_size);
 644   }
 645 }
 646 
 647 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
 648                                         bool is_tlab,
 649                                         bool* gc_overhead_limit_was_exceeded) {
 650   GenCollectedHeap *gch = GenCollectedHeap::heap();
 651 
 652   debug_only(gch->check_for_valid_allocation_state());
 653   assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
 654 
 655   // In general gc_overhead_limit_was_exceeded should be false so
 656   // set it so here and reset it to true only if the gc time
 657   // limit is being exceeded as checked below.
 658   *gc_overhead_limit_was_exceeded = false;
 659 
 660   HeapWord* result = NULL;
 661 
 662   // Loop until the allocation is satisfied, or unsatisfied after GC.
 663   for (int try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
 664     HandleMark hm; // discard any handles allocated in each iteration
 665 
 666     // First allocation attempt is lock-free.
 667     Generation *gen0 = gch->get_gen(0);
 668     assert(gen0->supports_inline_contig_alloc(),
 669       "Otherwise, must do alloc within heap lock");
 670     if (gen0->should_allocate(size, is_tlab)) {
 671       result = gen0->par_allocate(size, is_tlab);
 672       if (result != NULL) {
 673         assert(gch->is_in_reserved(result), "result not in heap");
 674         return result;
 675       }
 676     }
 677     unsigned int gc_count_before;  // read inside the Heap_lock locked region
 678     {
 679       MutexLocker ml(Heap_lock);
 680       if (PrintGC && Verbose) {
 681         gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
 682                       " attempting locked slow path allocation");
 683       }
 684       // Note that only large objects get a shot at being
 685       // allocated in later generations.
 686       bool first_only = ! should_try_older_generation_allocation(size);
 687 
 688       result = gch->attempt_allocation(size, is_tlab, first_only);
 689       if (result != NULL) {
 690         assert(gch->is_in_reserved(result), "result not in heap");
 691         return result;
 692       }
 693 
 694       if (GC_locker::is_active_and_needs_gc()) {
 695         if (is_tlab) {
 696           return NULL;  // Caller will retry allocating individual object
 697         }
 698         if (!gch->is_maximal_no_gc()) {
 699           // Try and expand heap to satisfy request
 700           result = expand_heap_and_allocate(size, is_tlab);
 701           // result could be null if we are out of space
 702           if (result != NULL) {
 703             return result;
 704           }
 705         }
 706 
 707         if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 708           return NULL; // we didn't get to do a GC and we didn't get any memory
 709         }
 710 
 711         // If this thread is not in a jni critical section, we stall
 712         // the requestor until the critical section has cleared and
 713         // GC allowed. When the critical section clears, a GC is
 714         // initiated by the last thread exiting the critical section; so
 715         // we retry the allocation sequence from the beginning of the loop,
 716         // rather than causing more, now probably unnecessary, GC attempts.
 717         JavaThread* jthr = JavaThread::current();
 718         if (!jthr->in_critical()) {
 719           MutexUnlocker mul(Heap_lock);
 720           // Wait for JNI critical section to be exited
 721           GC_locker::stall_until_clear();
 722           gclocker_stalled_count += 1;
 723           continue;
 724         } else {
 725           if (CheckJNICalls) {
 726             fatal("Possible deadlock due to allocating while"
 727                   " in jni critical section");
 728           }
 729           return NULL;
 730         }
 731       }
 732 
 733       // Read the gc count while the heap lock is held.
 734       gc_count_before = Universe::heap()->total_collections();
 735     }
 736 
 737     VM_GenCollectForAllocation op(size,
 738                                   is_tlab,
 739                                   gc_count_before);
 740     VMThread::execute(&op);
 741     if (op.prologue_succeeded()) {
 742       result = op.result();
 743       if (op.gc_locked()) {
 744          assert(result == NULL, "must be NULL if gc_locked() is true");
 745          continue;  // retry and/or stall as necessary
 746       }
 747 
 748       // Allocation has failed and a collection
 749       // has been done.  If the gc time limit was exceeded the
 750       // this time, return NULL so that an out-of-memory
 751       // will be thrown.  Clear gc_overhead_limit_exceeded
 752       // so that the overhead exceeded does not persist.
 753 
 754       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 755       const bool softrefs_clear = all_soft_refs_clear();
 756 
 757       if (limit_exceeded && softrefs_clear) {
 758         *gc_overhead_limit_was_exceeded = true;
 759         size_policy()->set_gc_overhead_limit_exceeded(false);
 760         if (op.result() != NULL) {
 761           CollectedHeap::fill_with_object(op.result(), size);
 762         }
 763         return NULL;
 764       }
 765       assert(result == NULL || gch->is_in_reserved(result),
 766              "result not in heap");
 767       return result;
 768     }
 769 
 770     // Give a warning if we seem to be looping forever.
 771     if ((QueuedAllocationWarningCount > 0) &&
 772         (try_count % QueuedAllocationWarningCount == 0)) {
 773           warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
 774                   " size=%d %s", try_count, size, is_tlab ? "(TLAB)" : "");
 775     }
 776   }
 777 }
 778 
 779 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
 780                                                        bool   is_tlab) {
 781   GenCollectedHeap *gch = GenCollectedHeap::heap();
 782   HeapWord* result = NULL;
 783   for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
 784     Generation *gen = gch->get_gen(i);
 785     if (gen->should_allocate(size, is_tlab)) {
 786       result = gen->expand_and_allocate(size, is_tlab);
 787     }
 788   }
 789   assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
 790   return result;
 791 }
 792 
 793 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
 794                                                         bool   is_tlab) {
 795   GenCollectedHeap *gch = GenCollectedHeap::heap();
 796   GCCauseSetter x(gch, GCCause::_allocation_failure);
 797   HeapWord* result = NULL;
 798 
 799   assert(size != 0, "Precondition violated");
 800   if (GC_locker::is_active_and_needs_gc()) {
 801     // GC locker is active; instead of a collection we will attempt
 802     // to expand the heap, if there's room for expansion.
 803     if (!gch->is_maximal_no_gc()) {
 804       result = expand_heap_and_allocate(size, is_tlab);
 805     }
 806     return result;   // could be null if we are out of space
 807   } else if (!gch->incremental_collection_will_fail(false /* don't consult_young */)) {
 808     // Do an incremental collection.
 809     gch->do_collection(false            /* full */,
 810                        false            /* clear_all_soft_refs */,
 811                        size             /* size */,
 812                        is_tlab          /* is_tlab */,
 813                        number_of_generations() - 1 /* max_level */);
 814   } else {
 815     if (Verbose && PrintGCDetails) {
 816       gclog_or_tty->print(" :: Trying full because partial may fail :: ");
 817     }
 818     // Try a full collection; see delta for bug id 6266275
 819     // for the original code and why this has been simplified
 820     // with from-space allocation criteria modified and
 821     // such allocation moved out of the safepoint path.
 822     gch->do_collection(true             /* full */,
 823                        false            /* clear_all_soft_refs */,
 824                        size             /* size */,
 825                        is_tlab          /* is_tlab */,
 826                        number_of_generations() - 1 /* max_level */);
 827   }
 828 
 829   result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
 830 
 831   if (result != NULL) {
 832     assert(gch->is_in_reserved(result), "result not in heap");
 833     return result;
 834   }
 835 
 836   // OK, collection failed, try expansion.
 837   result = expand_heap_and_allocate(size, is_tlab);
 838   if (result != NULL) {
 839     return result;
 840   }
 841 
 842   // If we reach this point, we're really out of memory. Try every trick
 843   // we can to reclaim memory. Force collection of soft references. Force
 844   // a complete compaction of the heap. Any additional methods for finding
 845   // free memory should be here, especially if they are expensive. If this
 846   // attempt fails, an OOM exception will be thrown.
 847   {
 848     UIntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
 849 
 850     gch->do_collection(true             /* full */,
 851                        true             /* clear_all_soft_refs */,
 852                        size             /* size */,
 853                        is_tlab          /* is_tlab */,
 854                        number_of_generations() - 1 /* max_level */);
 855   }
 856 
 857   result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
 858   if (result != NULL) {
 859     assert(gch->is_in_reserved(result), "result not in heap");
 860     return result;
 861   }
 862 
 863   assert(!should_clear_all_soft_refs(),
 864     "Flag should have been handled and cleared prior to this point");
 865 
 866   // What else?  We might try synchronous finalization later.  If the total
 867   // space available is large enough for the allocation, then a more
 868   // complete compaction phase than we've tried so far might be
 869   // appropriate.
 870   return NULL;
 871 }
 872 
 873 MetaWord* CollectorPolicy::satisfy_failed_metadata_allocation(
 874                                                  ClassLoaderData* loader_data,
 875                                                  size_t word_size,
 876                                                  Metaspace::MetadataType mdtype) {
 877   uint loop_count = 0;
 878   uint gc_count = 0;
 879   uint full_gc_count = 0;
 880 
 881   assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock");
 882 
 883   do {
 884     MetaWord* result = NULL;
 885     if (GC_locker::is_active_and_needs_gc()) {
 886       // If the GC_locker is active, just expand and allocate.
 887       // If that does not succeed, wait if this thread is not
 888       // in a critical section itself.
 889       result =
 890         loader_data->metaspace_non_null()->expand_and_allocate(word_size,
 891                                                                mdtype);
 892       if (result != NULL) {
 893         return result;
 894       }
 895       JavaThread* jthr = JavaThread::current();
 896       if (!jthr->in_critical()) {
 897         // Wait for JNI critical section to be exited
 898         GC_locker::stall_until_clear();
 899         // The GC invoked by the last thread leaving the critical
 900         // section will be a young collection and a full collection
 901         // is (currently) needed for unloading classes so continue
 902         // to the next iteration to get a full GC.
 903         continue;
 904       } else {
 905         if (CheckJNICalls) {
 906           fatal("Possible deadlock due to allocating while"
 907                 " in jni critical section");
 908         }
 909         return NULL;
 910       }
 911     }
 912 
 913     {  // Need lock to get self consistent gc_count's
 914       MutexLocker ml(Heap_lock);
 915       gc_count      = Universe::heap()->total_collections();
 916       full_gc_count = Universe::heap()->total_full_collections();
 917     }
 918 
 919     // Generate a VM operation
 920     VM_CollectForMetadataAllocation op(loader_data,
 921                                        word_size,
 922                                        mdtype,
 923                                        gc_count,
 924                                        full_gc_count,
 925                                        GCCause::_metadata_GC_threshold);
 926     VMThread::execute(&op);
 927 
 928     // If GC was locked out, try again.  Check
 929     // before checking success because the prologue
 930     // could have succeeded and the GC still have
 931     // been locked out.
 932     if (op.gc_locked()) {
 933       continue;
 934     }
 935 
 936     if (op.prologue_succeeded()) {
 937       return op.result();
 938     }
 939     loop_count++;
 940     if ((QueuedAllocationWarningCount > 0) &&
 941         (loop_count % QueuedAllocationWarningCount == 0)) {
 942       warning("satisfy_failed_metadata_allocation() retries %d times \n\t"
 943               " size=%d", loop_count, word_size);
 944     }
 945   } while (true);  // Until a GC is done
 946 }
 947 
 948 // Return true if any of the following is true:
 949 // . the allocation won't fit into the current young gen heap
 950 // . gc locker is occupied (jni critical section)
 951 // . heap memory is tight -- the most recent previous collection
 952 //   was a full collection because a partial collection (would
 953 //   have) failed and is likely to fail again
 954 bool GenCollectorPolicy::should_try_older_generation_allocation(
 955         size_t word_size) const {
 956   GenCollectedHeap* gch = GenCollectedHeap::heap();
 957   size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
 958   return    (word_size > heap_word_size(gen0_capacity))
 959          || GC_locker::is_active_and_needs_gc()
 960          || gch->incremental_collection_failed();
 961 }
 962 
 963 
 964 //
 965 // MarkSweepPolicy methods
 966 //
 967 
 968 MarkSweepPolicy::MarkSweepPolicy() {
 969   initialize_all();
 970 }
 971 
 972 void MarkSweepPolicy::initialize_generations() {
 973   _generations = NEW_C_HEAP_ARRAY3(GenerationSpecPtr, number_of_generations(), mtGC, 0, AllocFailStrategy::RETURN_NULL);
 974   if (_generations == NULL) {
 975     vm_exit_during_initialization("Unable to allocate gen spec");
 976   }
 977 
 978   if (UseParNewGC) {
 979     _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
 980   } else {
 981     _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
 982   }
 983   _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
 984 
 985   if (_generations[0] == NULL || _generations[1] == NULL) {
 986     vm_exit_during_initialization("Unable to allocate gen spec");
 987   }
 988 }
 989 
 990 void MarkSweepPolicy::initialize_gc_policy_counters() {
 991   // initialize the policy counters - 2 collectors, 3 generations
 992   if (UseParNewGC) {
 993     _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
 994   } else {
 995     _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
 996   }
 997 }