1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  28 #include "gc_implementation/shared/vmGCOperations.hpp"
  29 #include "memory/cardTableRS.hpp"
  30 #include "memory/collectorPolicy.hpp"
  31 #include "memory/gcLocker.inline.hpp"
  32 #include "memory/genCollectedHeap.hpp"
  33 #include "memory/generationSpec.hpp"
  34 #include "memory/space.hpp"
  35 #include "memory/universe.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/globals_extension.hpp"
  38 #include "runtime/handles.inline.hpp"
  39 #include "runtime/java.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 #include "runtime/vmThread.hpp"
  42 #include "utilities/macros.hpp"
  43 #if INCLUDE_ALL_GCS
  44 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  45 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  46 #endif // INCLUDE_ALL_GCS
  47 
  48 // CollectorPolicy methods.
  49 
  50 // Align down. If the aligning result in 0, return 'alignment'.
  51 static size_t restricted_align_down(size_t size, size_t alignment) {
  52   return MAX2(alignment, align_size_down_(size, alignment));
  53 }
  54 
  55 void CollectorPolicy::initialize_flags() {
  56   assert(_max_alignment >= _min_alignment,
  57          err_msg("max_alignment: " SIZE_FORMAT " less than min_alignment: " SIZE_FORMAT,
  58                  _max_alignment, _min_alignment));
  59   assert(_max_alignment % _min_alignment == 0,
  60          err_msg("max_alignment: " SIZE_FORMAT " not aligned by min_alignment: " SIZE_FORMAT,
  61                  _max_alignment, _min_alignment));
  62 
  63   if (MaxHeapSize < InitialHeapSize) {
  64     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
  65   }
  66 
  67   if (!is_size_aligned(MaxMetaspaceSize, _max_alignment)) {
  68     FLAG_SET_ERGO(uintx, MaxMetaspaceSize,
  69         restricted_align_down(MaxMetaspaceSize, _max_alignment));
  70   }
  71 
  72   if (MetaspaceSize > MaxMetaspaceSize) {
  73     FLAG_SET_ERGO(uintx, MetaspaceSize, MaxMetaspaceSize);
  74   }
  75 
  76   if (!is_size_aligned(MetaspaceSize, _min_alignment)) {
  77     FLAG_SET_ERGO(uintx, MetaspaceSize,
  78         restricted_align_down(MetaspaceSize, _min_alignment));
  79   }
  80 
  81   assert(MetaspaceSize <= MaxMetaspaceSize, "Must be");
  82 
  83   MinMetaspaceExpansion = restricted_align_down(MinMetaspaceExpansion, _min_alignment);
  84   MaxMetaspaceExpansion = restricted_align_down(MaxMetaspaceExpansion, _min_alignment);
  85 
  86   MinHeapDeltaBytes = align_size_up(MinHeapDeltaBytes, _min_alignment);
  87 
  88   assert(MetaspaceSize    % _min_alignment == 0, "metapace alignment");
  89   assert(MaxMetaspaceSize % _max_alignment == 0, "maximum metaspace alignment");
  90   if (MetaspaceSize < 256*K) {
  91     vm_exit_during_initialization("Too small initial Metaspace size");
  92   }
  93 }
  94 
  95 void CollectorPolicy::initialize_size_info() {
  96   // User inputs from -mx and ms must be aligned
  97   _min_heap_byte_size = align_size_up(Arguments::min_heap_size(), _min_alignment);
  98   _initial_heap_byte_size = align_size_up(InitialHeapSize, _min_alignment);
  99   _max_heap_byte_size = align_size_up(MaxHeapSize, _max_alignment);
 100 
 101   // Check heap parameter properties
 102   if (_initial_heap_byte_size < M) {
 103     vm_exit_during_initialization("Too small initial heap");
 104   }
 105   // Check heap parameter properties
 106   if (_min_heap_byte_size < M) {
 107     vm_exit_during_initialization("Too small minimum heap");
 108   }
 109   if (_initial_heap_byte_size <= NewSize) {
 110      // make sure there is at least some room in old space
 111     vm_exit_during_initialization("Too small initial heap for new size specified");
 112   }
 113   if (_max_heap_byte_size < _min_heap_byte_size) {
 114     vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
 115   }
 116   if (_initial_heap_byte_size < _min_heap_byte_size) {
 117     vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
 118   }
 119   if (_max_heap_byte_size < _initial_heap_byte_size) {
 120     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
 121   }
 122 
 123   if (PrintGCDetails && Verbose) {
 124     gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT "  Initial heap "
 125       SIZE_FORMAT "  Maximum heap " SIZE_FORMAT,
 126       _min_heap_byte_size, _initial_heap_byte_size, _max_heap_byte_size);
 127   }
 128 }
 129 
 130 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
 131   bool result = _should_clear_all_soft_refs;
 132   set_should_clear_all_soft_refs(false);
 133   return result;
 134 }
 135 
 136 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
 137                                            int max_covered_regions) {
 138   assert(rem_set_name() == GenRemSet::CardTable, "unrecognized GenRemSet::Name");
 139   return new CardTableRS(whole_heap, max_covered_regions);
 140 }
 141 
 142 void CollectorPolicy::cleared_all_soft_refs() {
 143   // If near gc overhear limit, continue to clear SoftRefs.  SoftRefs may
 144   // have been cleared in the last collection but if the gc overhear
 145   // limit continues to be near, SoftRefs should still be cleared.
 146   if (size_policy() != NULL) {
 147     _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
 148   }
 149   _all_soft_refs_clear = true;
 150 }
 151 
 152 size_t CollectorPolicy::compute_max_alignment() {
 153   // The card marking array and the offset arrays for old generations are
 154   // committed in os pages as well. Make sure they are entirely full (to
 155   // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
 156   // byte entry and the os page size is 4096, the maximum heap size should
 157   // be 512*4096 = 2MB aligned.
 158 
 159   // There is only the GenRemSet in Hotspot and only the GenRemSet::CardTable
 160   // is supported.
 161   // Requirements of any new remembered set implementations must be added here.
 162   size_t alignment = GenRemSet::max_alignment_constraint(GenRemSet::CardTable);
 163 
 164   // Parallel GC does its own alignment of the generations to avoid requiring a
 165   // large page (256M on some platforms) for the permanent generation.  The
 166   // other collectors should also be updated to do their own alignment and then
 167   // this use of lcm() should be removed.
 168   if (UseLargePages && !UseParallelGC) {
 169       // in presence of large pages we have to make sure that our
 170       // alignment is large page aware
 171       alignment = lcm(os::large_page_size(), alignment);
 172   }
 173 
 174   return alignment;
 175 }
 176 
 177 // GenCollectorPolicy methods.
 178 
 179 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
 180   size_t x = base_size / (NewRatio+1);
 181   size_t new_gen_size = x > _min_alignment ?
 182                      align_size_down(x, _min_alignment) :
 183                      _min_alignment;
 184   return new_gen_size;
 185 }
 186 
 187 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
 188                                                  size_t maximum_size) {
 189   size_t alignment = _min_alignment;
 190   size_t max_minus = maximum_size - alignment;
 191   return desired_size < max_minus ? desired_size : max_minus;
 192 }
 193 
 194 
 195 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
 196                                                 size_t init_promo_size,
 197                                                 size_t init_survivor_size) {
 198   const double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
 199   _size_policy = new AdaptiveSizePolicy(init_eden_size,
 200                                         init_promo_size,
 201                                         init_survivor_size,
 202                                         max_gc_pause_sec,
 203                                         GCTimeRatio);
 204 }
 205 
 206 void GenCollectorPolicy::initialize_flags() {
 207   // All sizes must be multiples of the generation granularity.
 208   _min_alignment = (uintx) Generation::GenGrain;
 209   _max_alignment = compute_max_alignment();
 210 
 211   CollectorPolicy::initialize_flags();
 212 
 213   // All generational heaps have a youngest gen; handle those flags here.
 214 
 215   // Adjust max size parameters
 216   if (NewSize > MaxNewSize) {
 217     MaxNewSize = NewSize;
 218   }
 219   NewSize = align_size_down(NewSize, _min_alignment);
 220   MaxNewSize = align_size_down(MaxNewSize, _min_alignment);
 221 
 222   // Check validity of heap flags
 223   assert(NewSize     % _min_alignment == 0, "eden space alignment");
 224   assert(MaxNewSize  % _min_alignment == 0, "survivor space alignment");
 225 
 226   if (NewSize < 3 * _min_alignment) {
 227      // make sure there room for eden and two survivor spaces
 228     vm_exit_during_initialization("Too small new size specified");
 229   }
 230   if (SurvivorRatio < 1 || NewRatio < 1) {
 231     vm_exit_during_initialization("Invalid young gen ratio specified");
 232   }
 233 }
 234 
 235 void TwoGenerationCollectorPolicy::initialize_flags() {
 236   GenCollectorPolicy::initialize_flags();
 237 
 238   OldSize = align_size_down(OldSize, _min_alignment);
 239 
 240   if (FLAG_IS_CMDLINE(OldSize) && FLAG_IS_DEFAULT(NewSize)) {
 241     // NewRatio will be used later to set the young generation size so we use
 242     // it to calculate how big the heap should be based on the requested OldSize
 243     // and NewRatio.
 244     assert(NewRatio > 0, "NewRatio should have been set up earlier");
 245     size_t calculated_heapsize = (OldSize / NewRatio) * (NewRatio + 1);
 246 
 247     calculated_heapsize = align_size_up(calculated_heapsize, _max_alignment);
 248     MaxHeapSize = calculated_heapsize;
 249     InitialHeapSize = calculated_heapsize;
 250   }
 251   MaxHeapSize = align_size_up(MaxHeapSize, _max_alignment);
 252 
 253   // adjust max heap size if necessary
 254   if (NewSize + OldSize > MaxHeapSize) {
 255     if (FLAG_IS_CMDLINE(MaxHeapSize)) {
 256       // somebody set a maximum heap size with the intention that we should not
 257       // exceed it. Adjust New/OldSize as necessary.
 258       uintx calculated_size = NewSize + OldSize;
 259       double shrink_factor = (double) MaxHeapSize / calculated_size;
 260       // align
 261       NewSize = align_size_down((uintx) (NewSize * shrink_factor), _min_alignment);
 262       // OldSize is already aligned because above we aligned MaxHeapSize to
 263       // _max_alignment, and we just made sure that NewSize is aligned to
 264       // _min_alignment. In initialize_flags() we verified that _max_alignment
 265       // is a multiple of _min_alignment.
 266       OldSize = MaxHeapSize - NewSize;
 267     } else {
 268       MaxHeapSize = NewSize + OldSize;
 269     }
 270   }
 271   // need to do this again
 272   MaxHeapSize = align_size_up(MaxHeapSize, _max_alignment);
 273 
 274   // adjust max heap size if necessary
 275   if (NewSize + OldSize > MaxHeapSize) {
 276     if (FLAG_IS_CMDLINE(MaxHeapSize)) {
 277       // somebody set a maximum heap size with the intention that we should not
 278       // exceed it. Adjust New/OldSize as necessary.
 279       uintx calculated_size = NewSize + OldSize;
 280       double shrink_factor = (double) MaxHeapSize / calculated_size;
 281       // align
 282       NewSize = align_size_down((uintx) (NewSize * shrink_factor), _min_alignment);
 283       // OldSize is already aligned because above we aligned MaxHeapSize to
 284       // _max_alignment, and we just made sure that NewSize is aligned to
 285       // _min_alignment. In initialize_flags() we verified that _max_alignment
 286       // is a multiple of _min_alignment.
 287       OldSize = MaxHeapSize - NewSize;
 288     } else {
 289       MaxHeapSize = NewSize + OldSize;
 290     }
 291   }
 292   // need to do this again
 293   MaxHeapSize = align_size_up(MaxHeapSize, _max_alignment);
 294 
 295   always_do_update_barrier = UseConcMarkSweepGC;
 296 
 297   // Check validity of heap flags
 298   assert(OldSize     % _min_alignment == 0, "old space alignment");
 299   assert(MaxHeapSize % _max_alignment == 0, "maximum heap alignment");
 300 }
 301 
 302 // Values set on the command line win over any ergonomically
 303 // set command line parameters.
 304 // Ergonomic choice of parameters are done before this
 305 // method is called.  Values for command line parameters such as NewSize
 306 // and MaxNewSize feed those ergonomic choices into this method.
 307 // This method makes the final generation sizings consistent with
 308 // themselves and with overall heap sizings.
 309 // In the absence of explicitly set command line flags, policies
 310 // such as the use of NewRatio are used to size the generation.
 311 void GenCollectorPolicy::initialize_size_info() {
 312   CollectorPolicy::initialize_size_info();
 313 
 314   // _min_alignment is used for alignment within a generation.
 315   // There is additional alignment done down stream for some
 316   // collectors that sometimes causes unwanted rounding up of
 317   // generations sizes.
 318 
 319   // Determine maximum size of gen0
 320 
 321   size_t max_new_size = 0;
 322   if (FLAG_IS_CMDLINE(MaxNewSize) || FLAG_IS_ERGO(MaxNewSize)) {
 323     if (MaxNewSize < _min_alignment) {
 324       max_new_size = _min_alignment;
 325     }
 326     if (MaxNewSize >= _max_heap_byte_size) {
 327       max_new_size = align_size_down(_max_heap_byte_size - _min_alignment,
 328                                      _min_alignment);
 329       warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or "
 330         "greater than the entire heap (" SIZE_FORMAT "k).  A "
 331         "new generation size of " SIZE_FORMAT "k will be used.",
 332         MaxNewSize/K, _max_heap_byte_size/K, max_new_size/K);
 333     } else {
 334       max_new_size = align_size_down(MaxNewSize, _min_alignment);
 335     }
 336 
 337   // The case for FLAG_IS_ERGO(MaxNewSize) could be treated
 338   // specially at this point to just use an ergonomically set
 339   // MaxNewSize to set max_new_size.  For cases with small
 340   // heaps such a policy often did not work because the MaxNewSize
 341   // was larger than the entire heap.  The interpretation given
 342   // to ergonomically set flags is that the flags are set
 343   // by different collectors for their own special needs but
 344   // are not allowed to badly shape the heap.  This allows the
 345   // different collectors to decide what's best for themselves
 346   // without having to factor in the overall heap shape.  It
 347   // can be the case in the future that the collectors would
 348   // only make "wise" ergonomics choices and this policy could
 349   // just accept those choices.  The choices currently made are
 350   // not always "wise".
 351   } else {
 352     max_new_size = scale_by_NewRatio_aligned(_max_heap_byte_size);
 353     // Bound the maximum size by NewSize below (since it historically
 354     // would have been NewSize and because the NewRatio calculation could
 355     // yield a size that is too small) and bound it by MaxNewSize above.
 356     // Ergonomics plays here by previously calculating the desired
 357     // NewSize and MaxNewSize.
 358     max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
 359   }
 360   assert(max_new_size > 0, "All paths should set max_new_size");
 361 
 362   // Given the maximum gen0 size, determine the initial and
 363   // minimum gen0 sizes.
 364 
 365   if (_max_heap_byte_size == _min_heap_byte_size) {
 366     // The maximum and minimum heap sizes are the same so
 367     // the generations minimum and initial must be the
 368     // same as its maximum.
 369     _min_gen0_size = max_new_size;
 370     _initial_gen0_size = max_new_size;
 371     _max_gen0_size = max_new_size;
 372   } else {
 373     size_t desired_new_size = 0;
 374     if (!FLAG_IS_DEFAULT(NewSize)) {
 375       // If NewSize is set ergonomically (for example by cms), it
 376       // would make sense to use it.  If it is used, also use it
 377       // to set the initial size.  Although there is no reason
 378       // the minimum size and the initial size have to be the same,
 379       // the current implementation gets into trouble during the calculation
 380       // of the tenured generation sizes if they are different.
 381       // Note that this makes the initial size and the minimum size
 382       // generally small compared to the NewRatio calculation.
 383       _min_gen0_size = NewSize;
 384       desired_new_size = NewSize;
 385       max_new_size = MAX2(max_new_size, NewSize);
 386     } else {
 387       // For the case where NewSize is the default, use NewRatio
 388       // to size the minimum and initial generation sizes.
 389       // Use the default NewSize as the floor for these values.  If
 390       // NewRatio is overly large, the resulting sizes can be too
 391       // small.
 392       _min_gen0_size = MAX2(scale_by_NewRatio_aligned(_min_heap_byte_size), NewSize);
 393       desired_new_size =
 394         MAX2(scale_by_NewRatio_aligned(_initial_heap_byte_size), NewSize);
 395     }
 396 
 397     assert(_min_gen0_size > 0, "Sanity check");
 398     _initial_gen0_size = desired_new_size;
 399     _max_gen0_size = max_new_size;
 400 
 401     // At this point the desirable initial and minimum sizes have been
 402     // determined without regard to the maximum sizes.
 403 
 404     // Bound the sizes by the corresponding overall heap sizes.
 405     _min_gen0_size = bound_minus_alignment(_min_gen0_size, _min_heap_byte_size);
 406     _initial_gen0_size = bound_minus_alignment(_initial_gen0_size, _initial_heap_byte_size);
 407     _max_gen0_size = bound_minus_alignment(_max_gen0_size, _max_heap_byte_size);
 408 
 409     // At this point all three sizes have been checked against the
 410     // maximum sizes but have not been checked for consistency
 411     // among the three.
 412 
 413     // Final check min <= initial <= max
 414     _min_gen0_size = MIN2(_min_gen0_size, _max_gen0_size);
 415     _initial_gen0_size = MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size);
 416     _min_gen0_size = MIN2(_min_gen0_size, _initial_gen0_size);
 417   }
 418 
 419   if (PrintGCDetails && Verbose) {
 420     gclog_or_tty->print_cr("1: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 421       SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 422       _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 423   }
 424 }
 425 
 426 // Call this method during the sizing of the gen1 to make
 427 // adjustments to gen0 because of gen1 sizing policy.  gen0 initially has
 428 // the most freedom in sizing because it is done before the
 429 // policy for gen1 is applied.  Once gen1 policies have been applied,
 430 // there may be conflicts in the shape of the heap and this method
 431 // is used to make the needed adjustments.  The application of the
 432 // policies could be more sophisticated (iterative for example) but
 433 // keeping it simple also seems a worthwhile goal.
 434 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
 435                                                      size_t* gen1_size_ptr,
 436                                                      const size_t heap_size,
 437                                                      const size_t min_gen1_size) {
 438   bool result = false;
 439 
 440   if ((*gen1_size_ptr + *gen0_size_ptr) > heap_size) {
 441     if ((heap_size < (*gen0_size_ptr + min_gen1_size)) &&
 442         (heap_size >= min_gen1_size + _min_alignment)) {
 443       // Adjust gen0 down to accommodate min_gen1_size
 444       *gen0_size_ptr = heap_size - min_gen1_size;
 445       *gen0_size_ptr =
 446         MAX2((uintx)align_size_down(*gen0_size_ptr, _min_alignment), _min_alignment);
 447       assert(*gen0_size_ptr > 0, "Min gen0 is too large");
 448       result = true;
 449     } else {
 450       *gen1_size_ptr = heap_size - *gen0_size_ptr;
 451       *gen1_size_ptr =
 452         MAX2((uintx)align_size_down(*gen1_size_ptr, _min_alignment), _min_alignment);
 453     }
 454   }
 455   return result;
 456 }
 457 
 458 // Minimum sizes of the generations may be different than
 459 // the initial sizes.  An inconsistency is permitted here
 460 // in the total size that can be specified explicitly by
 461 // command line specification of OldSize and NewSize and
 462 // also a command line specification of -Xms.  Issue a warning
 463 // but allow the values to pass.
 464 
 465 void TwoGenerationCollectorPolicy::initialize_size_info() {
 466   GenCollectorPolicy::initialize_size_info();
 467 
 468   // At this point the minimum, initial and maximum sizes
 469   // of the overall heap and of gen0 have been determined.
 470   // The maximum gen1 size can be determined from the maximum gen0
 471   // and maximum heap size since no explicit flags exist
 472   // for setting the gen1 maximum.
 473   _max_gen1_size = _max_heap_byte_size - _max_gen0_size;
 474   _max_gen1_size =
 475     MAX2((uintx)align_size_down(_max_gen1_size, _min_alignment), _min_alignment);
 476   // If no explicit command line flag has been set for the
 477   // gen1 size, use what is left for gen1.
 478   if (FLAG_IS_DEFAULT(OldSize) || FLAG_IS_ERGO(OldSize)) {
 479     // The user has not specified any value or ergonomics
 480     // has chosen a value (which may or may not be consistent
 481     // with the overall heap size).  In either case make
 482     // the minimum, maximum and initial sizes consistent
 483     // with the gen0 sizes and the overall heap sizes.
 484     assert(_min_heap_byte_size > _min_gen0_size,
 485       "gen0 has an unexpected minimum size");
 486     _min_gen1_size = _min_heap_byte_size - _min_gen0_size;
 487     _min_gen1_size = MAX2((uintx)align_size_down(_min_gen1_size, _min_alignment),
 488            _min_alignment);
 489     _initial_gen1_size = _initial_heap_byte_size - _initial_gen0_size;
 490     _initial_gen1_size = MAX2((uintx)align_size_down(_initial_gen1_size, _min_alignment),
 491            _min_alignment);
 492   } else {
 493     // OldSize has been explicitly set on the command line. Use the
 494     // OldSize and then determine the consequences.
 495     _min_gen1_size = OldSize;
 496     _initial_gen1_size = OldSize;
 497 
 498     // If the user has explicitly set an OldSize that is inconsistent
 499     // with other command line flags, issue a warning.
 500     // The generation minimums and the overall heap minimum should
 501     // be within one heap alignment.
 502     if ((_min_gen1_size + _min_gen0_size + _min_alignment) < _min_heap_byte_size) {
 503       warning("Inconsistency between minimum heap size and minimum "
 504               "generation sizes: using minimum heap = " SIZE_FORMAT,
 505               _min_heap_byte_size);
 506     }
 507     if (OldSize > _max_gen1_size) {
 508       warning("Inconsistency between maximum heap size and maximum "
 509               "generation sizes: using maximum heap = " SIZE_FORMAT
 510               " -XX:OldSize flag is being ignored",
 511               _max_heap_byte_size);
 512     }
 513     // If there is an inconsistency between the OldSize and the minimum and/or
 514     // initial size of gen0, since OldSize was explicitly set, OldSize wins.
 515     if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size,
 516                           _min_heap_byte_size, OldSize)) {
 517       if (PrintGCDetails && Verbose) {
 518         gclog_or_tty->print_cr("2: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 519               SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 520               _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 521       }
 522     }
 523     // The same as above for the old gen initial size
 524     if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
 525                           _initial_heap_byte_size, OldSize)) {
 526       if (PrintGCDetails && Verbose) {
 527         gclog_or_tty->print_cr("3: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 528           SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 529           _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 530       }
 531     }
 532   }
 533 
 534   _min_gen1_size = MIN2(_min_gen1_size, _max_gen1_size);
 535 
 536   // Make sure that min gen1 <= initial gen1 <= max gen1
 537   _initial_gen1_size = MAX2(_initial_gen1_size, _min_gen1_size);
 538   _initial_gen1_size = MIN2(_initial_gen1_size, _max_gen1_size);
 539 
 540   if (PrintGCDetails && Verbose) {
 541     gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT "  Initial gen1 "
 542       SIZE_FORMAT "  Maximum gen1 " SIZE_FORMAT,
 543       _min_gen1_size, _initial_gen1_size, _max_gen1_size);
 544   }
 545 }
 546 
 547 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
 548                                         bool is_tlab,
 549                                         bool* gc_overhead_limit_was_exceeded) {
 550   GenCollectedHeap *gch = GenCollectedHeap::heap();
 551 
 552   debug_only(gch->check_for_valid_allocation_state());
 553   assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
 554 
 555   // In general gc_overhead_limit_was_exceeded should be false so
 556   // set it so here and reset it to true only if the gc time
 557   // limit is being exceeded as checked below.
 558   *gc_overhead_limit_was_exceeded = false;
 559 
 560   HeapWord* result = NULL;
 561 
 562   // Loop until the allocation is satisfied, or unsatisfied after GC.
 563   for (int try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
 564     HandleMark hm; // discard any handles allocated in each iteration
 565 
 566     // First allocation attempt is lock-free.
 567     Generation *gen0 = gch->get_gen(0);
 568     assert(gen0->supports_inline_contig_alloc(),
 569       "Otherwise, must do alloc within heap lock");
 570     if (gen0->should_allocate(size, is_tlab)) {
 571       result = gen0->par_allocate(size, is_tlab);
 572       if (result != NULL) {
 573         assert(gch->is_in_reserved(result), "result not in heap");
 574         return result;
 575       }
 576     }
 577     unsigned int gc_count_before;  // read inside the Heap_lock locked region
 578     {
 579       MutexLocker ml(Heap_lock);
 580       if (PrintGC && Verbose) {
 581         gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
 582                       " attempting locked slow path allocation");
 583       }
 584       // Note that only large objects get a shot at being
 585       // allocated in later generations.
 586       bool first_only = ! should_try_older_generation_allocation(size);
 587 
 588       result = gch->attempt_allocation(size, is_tlab, first_only);
 589       if (result != NULL) {
 590         assert(gch->is_in_reserved(result), "result not in heap");
 591         return result;
 592       }
 593 
 594       if (GC_locker::is_active_and_needs_gc()) {
 595         if (is_tlab) {
 596           return NULL;  // Caller will retry allocating individual object
 597         }
 598         if (!gch->is_maximal_no_gc()) {
 599           // Try and expand heap to satisfy request
 600           result = expand_heap_and_allocate(size, is_tlab);
 601           // result could be null if we are out of space
 602           if (result != NULL) {
 603             return result;
 604           }
 605         }
 606 
 607         if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 608           return NULL; // we didn't get to do a GC and we didn't get any memory
 609         }
 610 
 611         // If this thread is not in a jni critical section, we stall
 612         // the requestor until the critical section has cleared and
 613         // GC allowed. When the critical section clears, a GC is
 614         // initiated by the last thread exiting the critical section; so
 615         // we retry the allocation sequence from the beginning of the loop,
 616         // rather than causing more, now probably unnecessary, GC attempts.
 617         JavaThread* jthr = JavaThread::current();
 618         if (!jthr->in_critical()) {
 619           MutexUnlocker mul(Heap_lock);
 620           // Wait for JNI critical section to be exited
 621           GC_locker::stall_until_clear();
 622           gclocker_stalled_count += 1;
 623           continue;
 624         } else {
 625           if (CheckJNICalls) {
 626             fatal("Possible deadlock due to allocating while"
 627                   " in jni critical section");
 628           }
 629           return NULL;
 630         }
 631       }
 632 
 633       // Read the gc count while the heap lock is held.
 634       gc_count_before = Universe::heap()->total_collections();
 635     }
 636 
 637     VM_GenCollectForAllocation op(size, is_tlab, gc_count_before);
 638     VMThread::execute(&op);
 639     if (op.prologue_succeeded()) {
 640       result = op.result();
 641       if (op.gc_locked()) {
 642          assert(result == NULL, "must be NULL if gc_locked() is true");
 643          continue;  // retry and/or stall as necessary
 644       }
 645 
 646       // Allocation has failed and a collection
 647       // has been done.  If the gc time limit was exceeded the
 648       // this time, return NULL so that an out-of-memory
 649       // will be thrown.  Clear gc_overhead_limit_exceeded
 650       // so that the overhead exceeded does not persist.
 651 
 652       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 653       const bool softrefs_clear = all_soft_refs_clear();
 654 
 655       if (limit_exceeded && softrefs_clear) {
 656         *gc_overhead_limit_was_exceeded = true;
 657         size_policy()->set_gc_overhead_limit_exceeded(false);
 658         if (op.result() != NULL) {
 659           CollectedHeap::fill_with_object(op.result(), size);
 660         }
 661         return NULL;
 662       }
 663       assert(result == NULL || gch->is_in_reserved(result),
 664              "result not in heap");
 665       return result;
 666     }
 667 
 668     // Give a warning if we seem to be looping forever.
 669     if ((QueuedAllocationWarningCount > 0) &&
 670         (try_count % QueuedAllocationWarningCount == 0)) {
 671           warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
 672                   " size=%d %s", try_count, size, is_tlab ? "(TLAB)" : "");
 673     }
 674   }
 675 }
 676 
 677 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
 678                                                        bool   is_tlab) {
 679   GenCollectedHeap *gch = GenCollectedHeap::heap();
 680   HeapWord* result = NULL;
 681   for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
 682     Generation *gen = gch->get_gen(i);
 683     if (gen->should_allocate(size, is_tlab)) {
 684       result = gen->expand_and_allocate(size, is_tlab);
 685     }
 686   }
 687   assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
 688   return result;
 689 }
 690 
 691 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
 692                                                         bool   is_tlab) {
 693   GenCollectedHeap *gch = GenCollectedHeap::heap();
 694   GCCauseSetter x(gch, GCCause::_allocation_failure);
 695   HeapWord* result = NULL;
 696 
 697   assert(size != 0, "Precondition violated");
 698   if (GC_locker::is_active_and_needs_gc()) {
 699     // GC locker is active; instead of a collection we will attempt
 700     // to expand the heap, if there's room for expansion.
 701     if (!gch->is_maximal_no_gc()) {
 702       result = expand_heap_and_allocate(size, is_tlab);
 703     }
 704     return result;   // could be null if we are out of space
 705   } else if (!gch->incremental_collection_will_fail(false /* don't consult_young */)) {
 706     // Do an incremental collection.
 707     gch->do_collection(false            /* full */,
 708                        false            /* clear_all_soft_refs */,
 709                        size             /* size */,
 710                        is_tlab          /* is_tlab */,
 711                        number_of_generations() - 1 /* max_level */);
 712   } else {
 713     if (Verbose && PrintGCDetails) {
 714       gclog_or_tty->print(" :: Trying full because partial may fail :: ");
 715     }
 716     // Try a full collection; see delta for bug id 6266275
 717     // for the original code and why this has been simplified
 718     // with from-space allocation criteria modified and
 719     // such allocation moved out of the safepoint path.
 720     gch->do_collection(true             /* full */,
 721                        false            /* clear_all_soft_refs */,
 722                        size             /* size */,
 723                        is_tlab          /* is_tlab */,
 724                        number_of_generations() - 1 /* max_level */);
 725   }
 726 
 727   result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
 728 
 729   if (result != NULL) {
 730     assert(gch->is_in_reserved(result), "result not in heap");
 731     return result;
 732   }
 733 
 734   // OK, collection failed, try expansion.
 735   result = expand_heap_and_allocate(size, is_tlab);
 736   if (result != NULL) {
 737     return result;
 738   }
 739 
 740   // If we reach this point, we're really out of memory. Try every trick
 741   // we can to reclaim memory. Force collection of soft references. Force
 742   // a complete compaction of the heap. Any additional methods for finding
 743   // free memory should be here, especially if they are expensive. If this
 744   // attempt fails, an OOM exception will be thrown.
 745   {
 746     UIntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
 747 
 748     gch->do_collection(true             /* full */,
 749                        true             /* clear_all_soft_refs */,
 750                        size             /* size */,
 751                        is_tlab          /* is_tlab */,
 752                        number_of_generations() - 1 /* max_level */);
 753   }
 754 
 755   result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
 756   if (result != NULL) {
 757     assert(gch->is_in_reserved(result), "result not in heap");
 758     return result;
 759   }
 760 
 761   assert(!should_clear_all_soft_refs(),
 762     "Flag should have been handled and cleared prior to this point");
 763 
 764   // What else?  We might try synchronous finalization later.  If the total
 765   // space available is large enough for the allocation, then a more
 766   // complete compaction phase than we've tried so far might be
 767   // appropriate.
 768   return NULL;
 769 }
 770 
 771 MetaWord* CollectorPolicy::satisfy_failed_metadata_allocation(
 772                                                  ClassLoaderData* loader_data,
 773                                                  size_t word_size,
 774                                                  Metaspace::MetadataType mdtype) {
 775   uint loop_count = 0;
 776   uint gc_count = 0;
 777   uint full_gc_count = 0;
 778 
 779   assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock");
 780 
 781   do {
 782     MetaWord* result = NULL;
 783     if (GC_locker::is_active_and_needs_gc()) {
 784       // If the GC_locker is active, just expand and allocate.
 785       // If that does not succeed, wait if this thread is not
 786       // in a critical section itself.
 787       result =
 788         loader_data->metaspace_non_null()->expand_and_allocate(word_size,
 789                                                                mdtype);
 790       if (result != NULL) {
 791         return result;
 792       }
 793       JavaThread* jthr = JavaThread::current();
 794       if (!jthr->in_critical()) {
 795         // Wait for JNI critical section to be exited
 796         GC_locker::stall_until_clear();
 797         // The GC invoked by the last thread leaving the critical
 798         // section will be a young collection and a full collection
 799         // is (currently) needed for unloading classes so continue
 800         // to the next iteration to get a full GC.
 801         continue;
 802       } else {
 803         if (CheckJNICalls) {
 804           fatal("Possible deadlock due to allocating while"
 805                 " in jni critical section");
 806         }
 807         return NULL;
 808       }
 809     }
 810 
 811     {  // Need lock to get self consistent gc_count's
 812       MutexLocker ml(Heap_lock);
 813       gc_count      = Universe::heap()->total_collections();
 814       full_gc_count = Universe::heap()->total_full_collections();
 815     }
 816 
 817     // Generate a VM operation
 818     VM_CollectForMetadataAllocation op(loader_data,
 819                                        word_size,
 820                                        mdtype,
 821                                        gc_count,
 822                                        full_gc_count,
 823                                        GCCause::_metadata_GC_threshold);
 824     VMThread::execute(&op);
 825 
 826     // If GC was locked out, try again.  Check
 827     // before checking success because the prologue
 828     // could have succeeded and the GC still have
 829     // been locked out.
 830     if (op.gc_locked()) {
 831       continue;
 832     }
 833 
 834     if (op.prologue_succeeded()) {
 835       return op.result();
 836     }
 837     loop_count++;
 838     if ((QueuedAllocationWarningCount > 0) &&
 839         (loop_count % QueuedAllocationWarningCount == 0)) {
 840       warning("satisfy_failed_metadata_allocation() retries %d times \n\t"
 841               " size=%d", loop_count, word_size);
 842     }
 843   } while (true);  // Until a GC is done
 844 }
 845 
 846 // Return true if any of the following is true:
 847 // . the allocation won't fit into the current young gen heap
 848 // . gc locker is occupied (jni critical section)
 849 // . heap memory is tight -- the most recent previous collection
 850 //   was a full collection because a partial collection (would
 851 //   have) failed and is likely to fail again
 852 bool GenCollectorPolicy::should_try_older_generation_allocation(
 853         size_t word_size) const {
 854   GenCollectedHeap* gch = GenCollectedHeap::heap();
 855   size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
 856   return    (word_size > heap_word_size(gen0_capacity))
 857          || GC_locker::is_active_and_needs_gc()
 858          || gch->incremental_collection_failed();
 859 }
 860 
 861 
 862 //
 863 // MarkSweepPolicy methods
 864 //
 865 
 866 MarkSweepPolicy::MarkSweepPolicy() {
 867   initialize_all();
 868 }
 869 
 870 void MarkSweepPolicy::initialize_generations() {
 871   _generations = NEW_C_HEAP_ARRAY3(GenerationSpecPtr, number_of_generations(), mtGC, 0, AllocFailStrategy::RETURN_NULL);
 872   if (_generations == NULL) {
 873     vm_exit_during_initialization("Unable to allocate gen spec");
 874   }
 875 
 876   if (UseParNewGC) {
 877     _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
 878   } else {
 879     _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
 880   }
 881   _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
 882 
 883   if (_generations[0] == NULL || _generations[1] == NULL) {
 884     vm_exit_during_initialization("Unable to allocate gen spec");
 885   }
 886 }
 887 
 888 void MarkSweepPolicy::initialize_gc_policy_counters() {
 889   // initialize the policy counters - 2 collectors, 3 generations
 890   if (UseParNewGC) {
 891     _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
 892   } else {
 893     _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
 894   }
 895 }