src/share/vm/memory/collectorPolicy.cpp
Index Unified diffs Context diffs Sdiffs Patch New Old Previous File Next File hotspot Sdiff src/share/vm/memory

src/share/vm/memory/collectorPolicy.cpp

Print this page




  36 #include "runtime/arguments.hpp"
  37 #include "runtime/globals_extension.hpp"
  38 #include "runtime/handles.inline.hpp"
  39 #include "runtime/java.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 #include "runtime/vmThread.hpp"
  42 #include "utilities/macros.hpp"
  43 #if INCLUDE_ALL_GCS
  44 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  45 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  46 #endif // INCLUDE_ALL_GCS
  47 
  48 // CollectorPolicy methods.
  49 
  50 // Align down. If the aligning result in 0, return 'alignment'.
  51 static size_t restricted_align_down(size_t size, size_t alignment) {
  52   return MAX2(alignment, align_size_down_(size, alignment));
  53 }
  54 
  55 void CollectorPolicy::initialize_flags() {
  56   assert(max_alignment() >= min_alignment(),
  57       err_msg("max_alignment: " SIZE_FORMAT " less than min_alignment: " SIZE_FORMAT,
  58           max_alignment(), min_alignment()));
  59   assert(max_alignment() % min_alignment() == 0,
  60       err_msg("max_alignment: " SIZE_FORMAT " not aligned by min_alignment: " SIZE_FORMAT,
  61           max_alignment(), min_alignment()));
  62 
  63   if (MaxHeapSize < InitialHeapSize) {
  64     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
  65   }
  66 
  67   if (!is_size_aligned(MaxMetaspaceSize, max_alignment())) {
  68     FLAG_SET_ERGO(uintx, MaxMetaspaceSize,
  69         restricted_align_down(MaxMetaspaceSize, max_alignment()));
  70   }
  71 
  72   if (MetaspaceSize > MaxMetaspaceSize) {
  73     FLAG_SET_ERGO(uintx, MetaspaceSize, MaxMetaspaceSize);
  74   }
  75 
  76   if (!is_size_aligned(MetaspaceSize, min_alignment())) {
  77     FLAG_SET_ERGO(uintx, MetaspaceSize,
  78         restricted_align_down(MetaspaceSize, min_alignment()));
  79   }
  80 
  81   assert(MetaspaceSize <= MaxMetaspaceSize, "Must be");
  82 
  83   MinMetaspaceExpansion = restricted_align_down(MinMetaspaceExpansion, min_alignment());
  84   MaxMetaspaceExpansion = restricted_align_down(MaxMetaspaceExpansion, min_alignment());
  85 
  86   MinHeapDeltaBytes = align_size_up(MinHeapDeltaBytes, min_alignment());
  87 
  88   assert(MetaspaceSize    % min_alignment() == 0, "metapace alignment");
  89   assert(MaxMetaspaceSize % max_alignment() == 0, "maximum metaspace alignment");
  90   if (MetaspaceSize < 256*K) {
  91     vm_exit_during_initialization("Too small initial Metaspace size");
  92   }
  93 }
  94 
  95 void CollectorPolicy::initialize_size_info() {
  96   // User inputs from -mx and ms must be aligned
  97   set_min_heap_byte_size(align_size_up(Arguments::min_heap_size(), min_alignment()));
  98   set_initial_heap_byte_size(align_size_up(InitialHeapSize, min_alignment()));
  99   set_max_heap_byte_size(align_size_up(MaxHeapSize, max_alignment()));
 100 
 101   // Check heap parameter properties
 102   if (initial_heap_byte_size() < M) {
 103     vm_exit_during_initialization("Too small initial heap");
 104   }
 105   // Check heap parameter properties
 106   if (min_heap_byte_size() < M) {
 107     vm_exit_during_initialization("Too small minimum heap");
 108   }
 109   if (initial_heap_byte_size() <= NewSize) {
 110      // make sure there is at least some room in old space
 111     vm_exit_during_initialization("Too small initial heap for new size specified");
 112   }
 113   if (max_heap_byte_size() < min_heap_byte_size()) {
 114     vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
 115   }
 116   if (initial_heap_byte_size() < min_heap_byte_size()) {
 117     vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
 118   }
 119   if (max_heap_byte_size() < initial_heap_byte_size()) {
 120     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
 121   }
 122 
 123   if (PrintGCDetails && Verbose) {
 124     gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT "  Initial heap "
 125       SIZE_FORMAT "  Maximum heap " SIZE_FORMAT,
 126       min_heap_byte_size(), initial_heap_byte_size(), max_heap_byte_size());
 127   }
 128 }
 129 
 130 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
 131   bool result = _should_clear_all_soft_refs;
 132   set_should_clear_all_soft_refs(false);
 133   return result;
 134 }
 135 
 136 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
 137                                            int max_covered_regions) {
 138   switch (rem_set_name()) {
 139   case GenRemSet::CardTable: {
 140     CardTableRS* res = new CardTableRS(whole_heap, max_covered_regions);
 141     return res;
 142   }
 143   default:
 144     guarantee(false, "unrecognized GenRemSet::Name");
 145     return NULL;
 146   }
 147 }
 148 
 149 void CollectorPolicy::cleared_all_soft_refs() {
 150   // If near gc overhear limit, continue to clear SoftRefs.  SoftRefs may
 151   // have been cleared in the last collection but if the gc overhear
 152   // limit continues to be near, SoftRefs should still be cleared.
 153   if (size_policy() != NULL) {
 154     _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
 155   }
 156   _all_soft_refs_clear = true;
 157 }
 158 
 159 size_t CollectorPolicy::compute_max_alignment() {
 160   // The card marking array and the offset arrays for old generations are
 161   // committed in os pages as well. Make sure they are entirely full (to
 162   // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
 163   // byte entry and the os page size is 4096, the maximum heap size should
 164   // be 512*4096 = 2MB aligned.
 165 
 166   // There is only the GenRemSet in Hotspot and only the GenRemSet::CardTable


 168   // Requirements of any new remembered set implementations must be added here.
 169   size_t alignment = GenRemSet::max_alignment_constraint(GenRemSet::CardTable);
 170 
 171   // Parallel GC does its own alignment of the generations to avoid requiring a
 172   // large page (256M on some platforms) for the permanent generation.  The
 173   // other collectors should also be updated to do their own alignment and then
 174   // this use of lcm() should be removed.
 175   if (UseLargePages && !UseParallelGC) {
 176       // in presence of large pages we have to make sure that our
 177       // alignment is large page aware
 178       alignment = lcm(os::large_page_size(), alignment);
 179   }
 180 
 181   return alignment;
 182 }
 183 
 184 // GenCollectorPolicy methods.
 185 
 186 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
 187   size_t x = base_size / (NewRatio+1);
 188   size_t new_gen_size = x > min_alignment() ?
 189                      align_size_down(x, min_alignment()) :
 190                      min_alignment();
 191   return new_gen_size;
 192 }
 193 
 194 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
 195                                                  size_t maximum_size) {
 196   size_t alignment = min_alignment();
 197   size_t max_minus = maximum_size - alignment;
 198   return desired_size < max_minus ? desired_size : max_minus;
 199 }
 200 
 201 
 202 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
 203                                                 size_t init_promo_size,
 204                                                 size_t init_survivor_size) {
 205   const double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
 206   _size_policy = new AdaptiveSizePolicy(init_eden_size,
 207                                         init_promo_size,
 208                                         init_survivor_size,
 209                                         max_gc_pause_sec,
 210                                         GCTimeRatio);
 211 }
 212 
 213 void GenCollectorPolicy::initialize_flags() {
 214   // All sizes must be multiples of the generation granularity.
 215   set_min_alignment((uintx) Generation::GenGrain);
 216   set_max_alignment(compute_max_alignment());
 217 
 218   CollectorPolicy::initialize_flags();
 219 
 220   // All generational heaps have a youngest gen; handle those flags here.
 221 
 222   // Adjust max size parameters
 223   if (NewSize > MaxNewSize) {
 224     MaxNewSize = NewSize;
 225   }
 226   NewSize = align_size_down(NewSize, min_alignment());
 227   MaxNewSize = align_size_down(MaxNewSize, min_alignment());
 228 
 229   // Check validity of heap flags
 230   assert(NewSize     % min_alignment() == 0, "eden space alignment");
 231   assert(MaxNewSize  % min_alignment() == 0, "survivor space alignment");
 232 
 233   if (NewSize < 3*min_alignment()) {
 234      // make sure there room for eden and two survivor spaces
 235     vm_exit_during_initialization("Too small new size specified");
 236   }
 237   if (SurvivorRatio < 1 || NewRatio < 1) {
 238     vm_exit_during_initialization("Invalid heap ratio specified");
 239   }
 240 }
 241 
 242 void TwoGenerationCollectorPolicy::initialize_flags() {
 243   GenCollectorPolicy::initialize_flags();
 244 
 245   OldSize = align_size_down(OldSize, min_alignment());
 246 
 247   if (FLAG_IS_CMDLINE(OldSize) && FLAG_IS_DEFAULT(NewSize)) {
 248     // NewRatio will be used later to set the young generation size so we use
 249     // it to calculate how big the heap should be based on the requested OldSize
 250     // and NewRatio.
 251     assert(NewRatio > 0, "NewRatio should have been set up earlier");
 252     size_t calculated_heapsize = (OldSize / NewRatio) * (NewRatio + 1);
 253 
 254     calculated_heapsize = align_size_up(calculated_heapsize, max_alignment());
 255     MaxHeapSize = calculated_heapsize;
 256     InitialHeapSize = calculated_heapsize;
 257   }
 258   MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
 259 
 260   // adjust max heap size if necessary
 261   if (NewSize + OldSize > MaxHeapSize) {
 262     if (FLAG_IS_CMDLINE(MaxHeapSize)) {
 263       // somebody set a maximum heap size with the intention that we should not
 264       // exceed it. Adjust New/OldSize as necessary.
 265       uintx calculated_size = NewSize + OldSize;
 266       double shrink_factor = (double) MaxHeapSize / calculated_size;
 267       // align
 268       NewSize = align_size_down((uintx) (NewSize * shrink_factor), min_alignment());
 269       // OldSize is already aligned because above we aligned MaxHeapSize to
 270       // max_alignment(), and we just made sure that NewSize is aligned to
 271       // min_alignment(). In initialize_flags() we verified that max_alignment()
 272       // is a multiple of min_alignment().
 273       OldSize = MaxHeapSize - NewSize;
 274     } else {
 275       MaxHeapSize = NewSize + OldSize;
 276     }
 277   }
 278   // need to do this again
 279   MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
 280 
 281   // adjust max heap size if necessary
 282   if (NewSize + OldSize > MaxHeapSize) {
 283     if (FLAG_IS_CMDLINE(MaxHeapSize)) {
 284       // somebody set a maximum heap size with the intention that we should not
 285       // exceed it. Adjust New/OldSize as necessary.
 286       uintx calculated_size = NewSize + OldSize;
 287       double shrink_factor = (double) MaxHeapSize / calculated_size;
 288       // align
 289       NewSize = align_size_down((uintx) (NewSize * shrink_factor), min_alignment());
 290       // OldSize is already aligned because above we aligned MaxHeapSize to
 291       // max_alignment(), and we just made sure that NewSize is aligned to
 292       // min_alignment(). In initialize_flags() we verified that max_alignment()
 293       // is a multiple of min_alignment().
 294       OldSize = MaxHeapSize - NewSize;
 295     } else {
 296       MaxHeapSize = NewSize + OldSize;
 297     }
 298   }
 299   // need to do this again
 300   MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
 301 
 302   always_do_update_barrier = UseConcMarkSweepGC;
 303 
 304   // Check validity of heap flags
 305   assert(OldSize     % min_alignment() == 0, "old space alignment");
 306   assert(MaxHeapSize % max_alignment() == 0, "maximum heap alignment");
 307 }
 308 
 309 // Values set on the command line win over any ergonomically
 310 // set command line parameters.
 311 // Ergonomic choice of parameters are done before this
 312 // method is called.  Values for command line parameters such as NewSize
 313 // and MaxNewSize feed those ergonomic choices into this method.
 314 // This method makes the final generation sizings consistent with
 315 // themselves and with overall heap sizings.
 316 // In the absence of explicitly set command line flags, policies
 317 // such as the use of NewRatio are used to size the generation.
 318 void GenCollectorPolicy::initialize_size_info() {
 319   CollectorPolicy::initialize_size_info();
 320 
 321   // min_alignment() is used for alignment within a generation.
 322   // There is additional alignment done down stream for some
 323   // collectors that sometimes causes unwanted rounding up of
 324   // generations sizes.
 325 
 326   // Determine maximum size of gen0
 327 
 328   size_t max_new_size = 0;
 329   if (FLAG_IS_CMDLINE(MaxNewSize) || FLAG_IS_ERGO(MaxNewSize)) {
 330     if (MaxNewSize < min_alignment()) {
 331       max_new_size = min_alignment();
 332     }
 333     if (MaxNewSize >= max_heap_byte_size()) {
 334       max_new_size = align_size_down(max_heap_byte_size() - min_alignment(),
 335                                      min_alignment());
 336       warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or "
 337         "greater than the entire heap (" SIZE_FORMAT "k).  A "
 338         "new generation size of " SIZE_FORMAT "k will be used.",
 339         MaxNewSize/K, max_heap_byte_size()/K, max_new_size/K);
 340     } else {
 341       max_new_size = align_size_down(MaxNewSize, min_alignment());
 342     }
 343 
 344   // The case for FLAG_IS_ERGO(MaxNewSize) could be treated
 345   // specially at this point to just use an ergonomically set
 346   // MaxNewSize to set max_new_size.  For cases with small
 347   // heaps such a policy often did not work because the MaxNewSize
 348   // was larger than the entire heap.  The interpretation given
 349   // to ergonomically set flags is that the flags are set
 350   // by different collectors for their own special needs but
 351   // are not allowed to badly shape the heap.  This allows the
 352   // different collectors to decide what's best for themselves
 353   // without having to factor in the overall heap shape.  It
 354   // can be the case in the future that the collectors would
 355   // only make "wise" ergonomics choices and this policy could
 356   // just accept those choices.  The choices currently made are
 357   // not always "wise".
 358   } else {
 359     max_new_size = scale_by_NewRatio_aligned(max_heap_byte_size());
 360     // Bound the maximum size by NewSize below (since it historically
 361     // would have been NewSize and because the NewRatio calculation could
 362     // yield a size that is too small) and bound it by MaxNewSize above.
 363     // Ergonomics plays here by previously calculating the desired
 364     // NewSize and MaxNewSize.
 365     max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
 366   }
 367   assert(max_new_size > 0, "All paths should set max_new_size");
 368 
 369   // Given the maximum gen0 size, determine the initial and
 370   // minimum gen0 sizes.
 371 
 372   if (max_heap_byte_size() == min_heap_byte_size()) {
 373     // The maximum and minimum heap sizes are the same so
 374     // the generations minimum and initial must be the
 375     // same as its maximum.
 376     set_min_gen0_size(max_new_size);
 377     set_initial_gen0_size(max_new_size);
 378     set_max_gen0_size(max_new_size);
 379   } else {
 380     size_t desired_new_size = 0;
 381     if (!FLAG_IS_DEFAULT(NewSize)) {
 382       // If NewSize is set ergonomically (for example by cms), it
 383       // would make sense to use it.  If it is used, also use it
 384       // to set the initial size.  Although there is no reason
 385       // the minimum size and the initial size have to be the same,
 386       // the current implementation gets into trouble during the calculation
 387       // of the tenured generation sizes if they are different.
 388       // Note that this makes the initial size and the minimum size
 389       // generally small compared to the NewRatio calculation.
 390       _min_gen0_size = NewSize;
 391       desired_new_size = NewSize;
 392       max_new_size = MAX2(max_new_size, NewSize);
 393     } else {
 394       // For the case where NewSize is the default, use NewRatio
 395       // to size the minimum and initial generation sizes.
 396       // Use the default NewSize as the floor for these values.  If
 397       // NewRatio is overly large, the resulting sizes can be too
 398       // small.
 399       _min_gen0_size = MAX2(scale_by_NewRatio_aligned(min_heap_byte_size()),
 400                           NewSize);
 401       desired_new_size =
 402         MAX2(scale_by_NewRatio_aligned(initial_heap_byte_size()),
 403              NewSize);
 404     }
 405 
 406     assert(_min_gen0_size > 0, "Sanity check");
 407     set_initial_gen0_size(desired_new_size);
 408     set_max_gen0_size(max_new_size);
 409 
 410     // At this point the desirable initial and minimum sizes have been
 411     // determined without regard to the maximum sizes.
 412 
 413     // Bound the sizes by the corresponding overall heap sizes.
 414     set_min_gen0_size(
 415       bound_minus_alignment(_min_gen0_size, min_heap_byte_size()));
 416     set_initial_gen0_size(
 417       bound_minus_alignment(_initial_gen0_size, initial_heap_byte_size()));
 418     set_max_gen0_size(
 419       bound_minus_alignment(_max_gen0_size, max_heap_byte_size()));
 420 
 421     // At this point all three sizes have been checked against the
 422     // maximum sizes but have not been checked for consistency
 423     // among the three.
 424 
 425     // Final check min <= initial <= max
 426     set_min_gen0_size(MIN2(_min_gen0_size, _max_gen0_size));
 427     set_initial_gen0_size(
 428       MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size));
 429     set_min_gen0_size(MIN2(_min_gen0_size, _initial_gen0_size));
 430   }
 431 
 432   if (PrintGCDetails && Verbose) {
 433     gclog_or_tty->print_cr("1: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 434       SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 435       min_gen0_size(), initial_gen0_size(), max_gen0_size());
 436   }
 437 }
 438 
 439 // Call this method during the sizing of the gen1 to make
 440 // adjustments to gen0 because of gen1 sizing policy.  gen0 initially has
 441 // the most freedom in sizing because it is done before the
 442 // policy for gen1 is applied.  Once gen1 policies have been applied,
 443 // there may be conflicts in the shape of the heap and this method
 444 // is used to make the needed adjustments.  The application of the
 445 // policies could be more sophisticated (iterative for example) but
 446 // keeping it simple also seems a worthwhile goal.
 447 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
 448                                                      size_t* gen1_size_ptr,
 449                                                      const size_t heap_size,
 450                                                      const size_t min_gen1_size) {
 451   bool result = false;
 452 
 453   if ((*gen1_size_ptr + *gen0_size_ptr) > heap_size) {
 454     if ((heap_size < (*gen0_size_ptr + min_gen1_size)) &&
 455         (heap_size >= min_gen1_size + min_alignment())) {
 456       // Adjust gen0 down to accommodate min_gen1_size
 457       *gen0_size_ptr = heap_size - min_gen1_size;
 458       *gen0_size_ptr =
 459         MAX2((uintx)align_size_down(*gen0_size_ptr, min_alignment()),
 460              min_alignment());
 461       assert(*gen0_size_ptr > 0, "Min gen0 is too large");
 462       result = true;
 463     } else {
 464       *gen1_size_ptr = heap_size - *gen0_size_ptr;
 465       *gen1_size_ptr =
 466         MAX2((uintx)align_size_down(*gen1_size_ptr, min_alignment()),
 467                        min_alignment());
 468     }
 469   }
 470   return result;
 471 }
 472 
 473 // Minimum sizes of the generations may be different than
 474 // the initial sizes.  An inconsistently is permitted here
 475 // in the total size that can be specified explicitly by
 476 // command line specification of OldSize and NewSize and
 477 // also a command line specification of -Xms.  Issue a warning
 478 // but allow the values to pass.
 479 
 480 void TwoGenerationCollectorPolicy::initialize_size_info() {
 481   GenCollectorPolicy::initialize_size_info();
 482 
 483   // At this point the minimum, initial and maximum sizes
 484   // of the overall heap and of gen0 have been determined.
 485   // The maximum gen1 size can be determined from the maximum gen0
 486   // and maximum heap size since no explicit flags exits
 487   // for setting the gen1 maximum.
 488   _max_gen1_size = max_heap_byte_size() - _max_gen0_size;
 489   _max_gen1_size =
 490     MAX2((uintx)align_size_down(_max_gen1_size, min_alignment()),
 491          min_alignment());
 492   // If no explicit command line flag has been set for the
 493   // gen1 size, use what is left for gen1.
 494   if (FLAG_IS_DEFAULT(OldSize) || FLAG_IS_ERGO(OldSize)) {
 495     // The user has not specified any value or ergonomics
 496     // has chosen a value (which may or may not be consistent
 497     // with the overall heap size).  In either case make
 498     // the minimum, maximum and initial sizes consistent
 499     // with the gen0 sizes and the overall heap sizes.
 500     assert(min_heap_byte_size() > _min_gen0_size,
 501       "gen0 has an unexpected minimum size");
 502     set_min_gen1_size(min_heap_byte_size() - min_gen0_size());
 503     set_min_gen1_size(
 504       MAX2((uintx)align_size_down(_min_gen1_size, min_alignment()),
 505            min_alignment()));
 506     set_initial_gen1_size(initial_heap_byte_size() - initial_gen0_size());
 507     set_initial_gen1_size(
 508       MAX2((uintx)align_size_down(_initial_gen1_size, min_alignment()),
 509            min_alignment()));
 510 
 511   } else {
 512     // It's been explicitly set on the command line.  Use the
 513     // OldSize and then determine the consequences.
 514     set_min_gen1_size(OldSize);
 515     set_initial_gen1_size(OldSize);
 516 
 517     // If the user has explicitly set an OldSize that is inconsistent
 518     // with other command line flags, issue a warning.
 519     // The generation minimums and the overall heap mimimum should
 520     // be within one heap alignment.
 521     if ((_min_gen1_size + _min_gen0_size + min_alignment()) <
 522            min_heap_byte_size()) {
 523       warning("Inconsistency between minimum heap size and minimum "
 524           "generation sizes: using minimum heap = " SIZE_FORMAT,
 525           min_heap_byte_size());
 526     }
 527     if ((OldSize > _max_gen1_size)) {
 528       warning("Inconsistency between maximum heap size and maximum "
 529           "generation sizes: using maximum heap = " SIZE_FORMAT
 530           " -XX:OldSize flag is being ignored",
 531           max_heap_byte_size());
 532     }
 533     // If there is an inconsistency between the OldSize and the minimum and/or
 534     // initial size of gen0, since OldSize was explicitly set, OldSize wins.
 535     if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size,
 536                           min_heap_byte_size(), OldSize)) {
 537       if (PrintGCDetails && Verbose) {
 538         gclog_or_tty->print_cr("2: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 539               SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 540               min_gen0_size(), initial_gen0_size(), max_gen0_size());
 541       }
 542     }
 543     // Initial size
 544     if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
 545                          initial_heap_byte_size(), OldSize)) {
 546       if (PrintGCDetails && Verbose) {
 547         gclog_or_tty->print_cr("3: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 548           SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 549           min_gen0_size(), initial_gen0_size(), max_gen0_size());
 550       }
 551     }
 552   }
 553   // Enforce the maximum gen1 size.
 554   set_min_gen1_size(MIN2(_min_gen1_size, _max_gen1_size));
 555 
 556   // Check that min gen1 <= initial gen1 <= max gen1
 557   set_initial_gen1_size(MAX2(_initial_gen1_size, _min_gen1_size));
 558   set_initial_gen1_size(MIN2(_initial_gen1_size, _max_gen1_size));


 559 
 560   if (PrintGCDetails && Verbose) {
 561     gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT "  Initial gen1 "
 562       SIZE_FORMAT "  Maximum gen1 " SIZE_FORMAT,
 563       min_gen1_size(), initial_gen1_size(), max_gen1_size());
 564   }
 565 }
 566 
 567 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
 568                                         bool is_tlab,
 569                                         bool* gc_overhead_limit_was_exceeded) {
 570   GenCollectedHeap *gch = GenCollectedHeap::heap();
 571 
 572   debug_only(gch->check_for_valid_allocation_state());
 573   assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
 574 
 575   // In general gc_overhead_limit_was_exceeded should be false so
 576   // set it so here and reset it to true only if the gc time
 577   // limit is being exceeded as checked below.
 578   *gc_overhead_limit_was_exceeded = false;
 579 
 580   HeapWord* result = NULL;
 581 
 582   // Loop until the allocation is satisified,
 583   // or unsatisfied after GC.
 584   for (int try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
 585     HandleMark hm; // discard any handles allocated in each iteration
 586 
 587     // First allocation attempt is lock-free.
 588     Generation *gen0 = gch->get_gen(0);
 589     assert(gen0->supports_inline_contig_alloc(),
 590       "Otherwise, must do alloc within heap lock");
 591     if (gen0->should_allocate(size, is_tlab)) {
 592       result = gen0->par_allocate(size, is_tlab);
 593       if (result != NULL) {
 594         assert(gch->is_in_reserved(result), "result not in heap");
 595         return result;
 596       }
 597     }
 598     unsigned int gc_count_before;  // read inside the Heap_lock locked region
 599     {
 600       MutexLocker ml(Heap_lock);
 601       if (PrintGC && Verbose) {
 602         gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
 603                       " attempting locked slow path allocation");


 638         JavaThread* jthr = JavaThread::current();
 639         if (!jthr->in_critical()) {
 640           MutexUnlocker mul(Heap_lock);
 641           // Wait for JNI critical section to be exited
 642           GC_locker::stall_until_clear();
 643           gclocker_stalled_count += 1;
 644           continue;
 645         } else {
 646           if (CheckJNICalls) {
 647             fatal("Possible deadlock due to allocating while"
 648                   " in jni critical section");
 649           }
 650           return NULL;
 651         }
 652       }
 653 
 654       // Read the gc count while the heap lock is held.
 655       gc_count_before = Universe::heap()->total_collections();
 656     }
 657 
 658     VM_GenCollectForAllocation op(size,
 659                                   is_tlab,
 660                                   gc_count_before);
 661     VMThread::execute(&op);
 662     if (op.prologue_succeeded()) {
 663       result = op.result();
 664       if (op.gc_locked()) {
 665          assert(result == NULL, "must be NULL if gc_locked() is true");
 666          continue;  // retry and/or stall as necessary
 667       }
 668 
 669       // Allocation has failed and a collection
 670       // has been done.  If the gc time limit was exceeded the
 671       // this time, return NULL so that an out-of-memory
 672       // will be thrown.  Clear gc_overhead_limit_exceeded
 673       // so that the overhead exceeded does not persist.
 674 
 675       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 676       const bool softrefs_clear = all_soft_refs_clear();
 677 
 678       if (limit_exceeded && softrefs_clear) {
 679         *gc_overhead_limit_was_exceeded = true;
 680         size_policy()->set_gc_overhead_limit_exceeded(false);


 875 bool GenCollectorPolicy::should_try_older_generation_allocation(
 876         size_t word_size) const {
 877   GenCollectedHeap* gch = GenCollectedHeap::heap();
 878   size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
 879   return    (word_size > heap_word_size(gen0_capacity))
 880          || GC_locker::is_active_and_needs_gc()
 881          || gch->incremental_collection_failed();
 882 }
 883 
 884 
 885 //
 886 // MarkSweepPolicy methods
 887 //
 888 
 889 MarkSweepPolicy::MarkSweepPolicy() {
 890   initialize_all();
 891 }
 892 
 893 void MarkSweepPolicy::initialize_generations() {
 894   _generations = NEW_C_HEAP_ARRAY3(GenerationSpecPtr, number_of_generations(), mtGC, 0, AllocFailStrategy::RETURN_NULL);
 895   if (_generations == NULL)
 896     vm_exit_during_initialization("Unable to allocate gen spec");

 897 
 898   if (UseParNewGC) {
 899     _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
 900   } else {
 901     _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
 902   }
 903   _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
 904 
 905   if (_generations[0] == NULL || _generations[1] == NULL)
 906     vm_exit_during_initialization("Unable to allocate gen spec");

 907 }
 908 
 909 void MarkSweepPolicy::initialize_gc_policy_counters() {
 910   // initialize the policy counters - 2 collectors, 3 generations
 911   if (UseParNewGC) {
 912     _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
 913   } else {
 914     _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
 915   }
 916 }


  36 #include "runtime/arguments.hpp"
  37 #include "runtime/globals_extension.hpp"
  38 #include "runtime/handles.inline.hpp"
  39 #include "runtime/java.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 #include "runtime/vmThread.hpp"
  42 #include "utilities/macros.hpp"
  43 #if INCLUDE_ALL_GCS
  44 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  45 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  46 #endif // INCLUDE_ALL_GCS
  47 
  48 // CollectorPolicy methods.
  49 
  50 // Align down. If the aligning result in 0, return 'alignment'.
  51 static size_t restricted_align_down(size_t size, size_t alignment) {
  52   return MAX2(alignment, align_size_down_(size, alignment));
  53 }
  54 
  55 void CollectorPolicy::initialize_flags() {
  56   assert(_max_alignment >= _min_alignment,
  57          err_msg("max_alignment: " SIZE_FORMAT " less than min_alignment: " SIZE_FORMAT,
  58                  _max_alignment, _min_alignment));
  59   assert(_max_alignment % _min_alignment == 0,
  60          err_msg("max_alignment: " SIZE_FORMAT " not aligned by min_alignment: " SIZE_FORMAT,
  61                  _max_alignment, _min_alignment));
  62 
  63   if (MaxHeapSize < InitialHeapSize) {
  64     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
  65   }
  66 
  67   if (!is_size_aligned(MaxMetaspaceSize, _max_alignment)) {
  68     FLAG_SET_ERGO(uintx, MaxMetaspaceSize,
  69         restricted_align_down(MaxMetaspaceSize, _max_alignment));
  70   }
  71 
  72   if (MetaspaceSize > MaxMetaspaceSize) {
  73     FLAG_SET_ERGO(uintx, MetaspaceSize, MaxMetaspaceSize);
  74   }
  75 
  76   if (!is_size_aligned(MetaspaceSize, _min_alignment)) {
  77     FLAG_SET_ERGO(uintx, MetaspaceSize,
  78         restricted_align_down(MetaspaceSize, _min_alignment));
  79   }
  80 
  81   assert(MetaspaceSize <= MaxMetaspaceSize, "Must be");
  82 
  83   MinMetaspaceExpansion = restricted_align_down(MinMetaspaceExpansion, _min_alignment);
  84   MaxMetaspaceExpansion = restricted_align_down(MaxMetaspaceExpansion, _min_alignment);
  85 
  86   MinHeapDeltaBytes = align_size_up(MinHeapDeltaBytes, _min_alignment);
  87 
  88   assert(MetaspaceSize    % _min_alignment == 0, "metapace alignment");
  89   assert(MaxMetaspaceSize % _max_alignment == 0, "maximum metaspace alignment");
  90   if (MetaspaceSize < 256*K) {
  91     vm_exit_during_initialization("Too small initial Metaspace size");
  92   }
  93 }
  94 
  95 void CollectorPolicy::initialize_size_info() {
  96   // User inputs from -mx and ms must be aligned
  97   _min_heap_byte_size = align_size_up(Arguments::min_heap_size(), _min_alignment);
  98   _initial_heap_byte_size = align_size_up(InitialHeapSize, _min_alignment);
  99   _max_heap_byte_size = align_size_up(MaxHeapSize, _max_alignment);
 100 
 101   // Check heap parameter properties
 102   if (_initial_heap_byte_size < M) {
 103     vm_exit_during_initialization("Too small initial heap");
 104   }
 105   // Check heap parameter properties
 106   if (_min_heap_byte_size < M) {
 107     vm_exit_during_initialization("Too small minimum heap");
 108   }
 109   if (_initial_heap_byte_size <= NewSize) {
 110      // make sure there is at least some room in old space
 111     vm_exit_during_initialization("Too small initial heap for new size specified");
 112   }
 113   if (_max_heap_byte_size < _min_heap_byte_size) {
 114     vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
 115   }
 116   if (_initial_heap_byte_size < _min_heap_byte_size) {
 117     vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
 118   }
 119   if (_max_heap_byte_size < _initial_heap_byte_size) {
 120     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
 121   }
 122 
 123   if (PrintGCDetails && Verbose) {
 124     gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT "  Initial heap "
 125       SIZE_FORMAT "  Maximum heap " SIZE_FORMAT,
 126       _min_heap_byte_size, _initial_heap_byte_size, _max_heap_byte_size);
 127   }
 128 }
 129 
 130 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
 131   bool result = _should_clear_all_soft_refs;
 132   set_should_clear_all_soft_refs(false);
 133   return result;
 134 }
 135 
 136 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
 137                                            int max_covered_regions) {
 138   assert(rem_set_name() == GenRemSet::CardTable, "unrecognized GenRemSet::Name");
 139   return new CardTableRS(whole_heap, max_covered_regions);







 140 }
 141 
 142 void CollectorPolicy::cleared_all_soft_refs() {
 143   // If near gc overhear limit, continue to clear SoftRefs.  SoftRefs may
 144   // have been cleared in the last collection but if the gc overhear
 145   // limit continues to be near, SoftRefs should still be cleared.
 146   if (size_policy() != NULL) {
 147     _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
 148   }
 149   _all_soft_refs_clear = true;
 150 }
 151 
 152 size_t CollectorPolicy::compute_max_alignment() {
 153   // The card marking array and the offset arrays for old generations are
 154   // committed in os pages as well. Make sure they are entirely full (to
 155   // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
 156   // byte entry and the os page size is 4096, the maximum heap size should
 157   // be 512*4096 = 2MB aligned.
 158 
 159   // There is only the GenRemSet in Hotspot and only the GenRemSet::CardTable


 161   // Requirements of any new remembered set implementations must be added here.
 162   size_t alignment = GenRemSet::max_alignment_constraint(GenRemSet::CardTable);
 163 
 164   // Parallel GC does its own alignment of the generations to avoid requiring a
 165   // large page (256M on some platforms) for the permanent generation.  The
 166   // other collectors should also be updated to do their own alignment and then
 167   // this use of lcm() should be removed.
 168   if (UseLargePages && !UseParallelGC) {
 169       // in presence of large pages we have to make sure that our
 170       // alignment is large page aware
 171       alignment = lcm(os::large_page_size(), alignment);
 172   }
 173 
 174   return alignment;
 175 }
 176 
 177 // GenCollectorPolicy methods.
 178 
 179 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
 180   size_t x = base_size / (NewRatio+1);
 181   size_t new_gen_size = x > _min_alignment ?
 182                      align_size_down(x, _min_alignment) :
 183                      _min_alignment;
 184   return new_gen_size;
 185 }
 186 
 187 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
 188                                                  size_t maximum_size) {
 189   size_t alignment = _min_alignment;
 190   size_t max_minus = maximum_size - alignment;
 191   return desired_size < max_minus ? desired_size : max_minus;
 192 }
 193 
 194 
 195 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
 196                                                 size_t init_promo_size,
 197                                                 size_t init_survivor_size) {
 198   const double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
 199   _size_policy = new AdaptiveSizePolicy(init_eden_size,
 200                                         init_promo_size,
 201                                         init_survivor_size,
 202                                         max_gc_pause_sec,
 203                                         GCTimeRatio);
 204 }
 205 
 206 void GenCollectorPolicy::initialize_flags() {
 207   // All sizes must be multiples of the generation granularity.
 208   _min_alignment = (uintx) Generation::GenGrain;
 209   _max_alignment = compute_max_alignment();
 210 
 211   CollectorPolicy::initialize_flags();
 212 
 213   // All generational heaps have a youngest gen; handle those flags here.
 214 
 215   // Adjust max size parameters
 216   if (NewSize > MaxNewSize) {
 217     MaxNewSize = NewSize;
 218   }
 219   NewSize = align_size_down(NewSize, _min_alignment);
 220   MaxNewSize = align_size_down(MaxNewSize, _min_alignment);
 221 
 222   // Check validity of heap flags
 223   assert(NewSize     % _min_alignment == 0, "eden space alignment");
 224   assert(MaxNewSize  % _min_alignment == 0, "survivor space alignment");
 225 
 226   if (NewSize < 3 * _min_alignment) {
 227      // make sure there room for eden and two survivor spaces
 228     vm_exit_during_initialization("Too small new size specified");
 229   }
 230   if (SurvivorRatio < 1 || NewRatio < 1) {
 231     vm_exit_during_initialization("Invalid young gen ratio specified");
 232   }
 233 }
 234 
 235 void TwoGenerationCollectorPolicy::initialize_flags() {
 236   GenCollectorPolicy::initialize_flags();
 237 
 238   OldSize = align_size_down(OldSize, _min_alignment);
 239 
 240   if (FLAG_IS_CMDLINE(OldSize) && FLAG_IS_DEFAULT(NewSize)) {
 241     // NewRatio will be used later to set the young generation size so we use
 242     // it to calculate how big the heap should be based on the requested OldSize
 243     // and NewRatio.
 244     assert(NewRatio > 0, "NewRatio should have been set up earlier");
 245     size_t calculated_heapsize = (OldSize / NewRatio) * (NewRatio + 1);
 246 
 247     calculated_heapsize = align_size_up(calculated_heapsize, _max_alignment);
 248     MaxHeapSize = calculated_heapsize;
 249     InitialHeapSize = calculated_heapsize;
 250   }
 251   MaxHeapSize = align_size_up(MaxHeapSize, _max_alignment);
 252 
 253   // adjust max heap size if necessary
 254   if (NewSize + OldSize > MaxHeapSize) {
 255     if (FLAG_IS_CMDLINE(MaxHeapSize)) {
 256       // somebody set a maximum heap size with the intention that we should not
 257       // exceed it. Adjust New/OldSize as necessary.
 258       uintx calculated_size = NewSize + OldSize;
 259       double shrink_factor = (double) MaxHeapSize / calculated_size;
 260       // align
 261       NewSize = align_size_down((uintx) (NewSize * shrink_factor), _min_alignment);
 262       // OldSize is already aligned because above we aligned MaxHeapSize to
 263       // _max_alignment, and we just made sure that NewSize is aligned to
 264       // _min_alignment. In initialize_flags() we verified that _max_alignment
 265       // is a multiple of _min_alignment.
 266       OldSize = MaxHeapSize - NewSize;
 267     } else {
 268       MaxHeapSize = NewSize + OldSize;
 269     }
 270   }
 271   // need to do this again
 272   MaxHeapSize = align_size_up(MaxHeapSize, _max_alignment);
 273 
 274   // adjust max heap size if necessary
 275   if (NewSize + OldSize > MaxHeapSize) {
 276     if (FLAG_IS_CMDLINE(MaxHeapSize)) {
 277       // somebody set a maximum heap size with the intention that we should not
 278       // exceed it. Adjust New/OldSize as necessary.
 279       uintx calculated_size = NewSize + OldSize;
 280       double shrink_factor = (double) MaxHeapSize / calculated_size;
 281       // align
 282       NewSize = align_size_down((uintx) (NewSize * shrink_factor), _min_alignment);
 283       // OldSize is already aligned because above we aligned MaxHeapSize to
 284       // _max_alignment, and we just made sure that NewSize is aligned to
 285       // _min_alignment. In initialize_flags() we verified that _max_alignment
 286       // is a multiple of _min_alignment.
 287       OldSize = MaxHeapSize - NewSize;
 288     } else {
 289       MaxHeapSize = NewSize + OldSize;
 290     }
 291   }
 292   // need to do this again
 293   MaxHeapSize = align_size_up(MaxHeapSize, _max_alignment);
 294 
 295   always_do_update_barrier = UseConcMarkSweepGC;
 296 
 297   // Check validity of heap flags
 298   assert(OldSize     % _min_alignment == 0, "old space alignment");
 299   assert(MaxHeapSize % _max_alignment == 0, "maximum heap alignment");
 300 }
 301 
 302 // Values set on the command line win over any ergonomically
 303 // set command line parameters.
 304 // Ergonomic choice of parameters are done before this
 305 // method is called.  Values for command line parameters such as NewSize
 306 // and MaxNewSize feed those ergonomic choices into this method.
 307 // This method makes the final generation sizings consistent with
 308 // themselves and with overall heap sizings.
 309 // In the absence of explicitly set command line flags, policies
 310 // such as the use of NewRatio are used to size the generation.
 311 void GenCollectorPolicy::initialize_size_info() {
 312   CollectorPolicy::initialize_size_info();
 313 
 314   // _min_alignment is used for alignment within a generation.
 315   // There is additional alignment done down stream for some
 316   // collectors that sometimes causes unwanted rounding up of
 317   // generations sizes.
 318 
 319   // Determine maximum size of gen0
 320 
 321   size_t max_new_size = 0;
 322   if (FLAG_IS_CMDLINE(MaxNewSize) || FLAG_IS_ERGO(MaxNewSize)) {
 323     if (MaxNewSize < _min_alignment) {
 324       max_new_size = _min_alignment;
 325     }
 326     if (MaxNewSize >= _max_heap_byte_size) {
 327       max_new_size = align_size_down(_max_heap_byte_size - _min_alignment,
 328                                      _min_alignment);
 329       warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or "
 330         "greater than the entire heap (" SIZE_FORMAT "k).  A "
 331         "new generation size of " SIZE_FORMAT "k will be used.",
 332         MaxNewSize/K, _max_heap_byte_size/K, max_new_size/K);
 333     } else {
 334       max_new_size = align_size_down(MaxNewSize, _min_alignment);
 335     }
 336 
 337   // The case for FLAG_IS_ERGO(MaxNewSize) could be treated
 338   // specially at this point to just use an ergonomically set
 339   // MaxNewSize to set max_new_size.  For cases with small
 340   // heaps such a policy often did not work because the MaxNewSize
 341   // was larger than the entire heap.  The interpretation given
 342   // to ergonomically set flags is that the flags are set
 343   // by different collectors for their own special needs but
 344   // are not allowed to badly shape the heap.  This allows the
 345   // different collectors to decide what's best for themselves
 346   // without having to factor in the overall heap shape.  It
 347   // can be the case in the future that the collectors would
 348   // only make "wise" ergonomics choices and this policy could
 349   // just accept those choices.  The choices currently made are
 350   // not always "wise".
 351   } else {
 352     max_new_size = scale_by_NewRatio_aligned(_max_heap_byte_size);
 353     // Bound the maximum size by NewSize below (since it historically
 354     // would have been NewSize and because the NewRatio calculation could
 355     // yield a size that is too small) and bound it by MaxNewSize above.
 356     // Ergonomics plays here by previously calculating the desired
 357     // NewSize and MaxNewSize.
 358     max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
 359   }
 360   assert(max_new_size > 0, "All paths should set max_new_size");
 361 
 362   // Given the maximum gen0 size, determine the initial and
 363   // minimum gen0 sizes.
 364 
 365   if (_max_heap_byte_size == _min_heap_byte_size) {
 366     // The maximum and minimum heap sizes are the same so
 367     // the generations minimum and initial must be the
 368     // same as its maximum.
 369     _min_gen0_size = max_new_size;
 370     _initial_gen0_size = max_new_size;
 371     _max_gen0_size = max_new_size;
 372   } else {
 373     size_t desired_new_size = 0;
 374     if (!FLAG_IS_DEFAULT(NewSize)) {
 375       // If NewSize is set ergonomically (for example by cms), it
 376       // would make sense to use it.  If it is used, also use it
 377       // to set the initial size.  Although there is no reason
 378       // the minimum size and the initial size have to be the same,
 379       // the current implementation gets into trouble during the calculation
 380       // of the tenured generation sizes if they are different.
 381       // Note that this makes the initial size and the minimum size
 382       // generally small compared to the NewRatio calculation.
 383       _min_gen0_size = NewSize;
 384       desired_new_size = NewSize;
 385       max_new_size = MAX2(max_new_size, NewSize);
 386     } else {
 387       // For the case where NewSize is the default, use NewRatio
 388       // to size the minimum and initial generation sizes.
 389       // Use the default NewSize as the floor for these values.  If
 390       // NewRatio is overly large, the resulting sizes can be too
 391       // small.
 392       _min_gen0_size = MAX2(scale_by_NewRatio_aligned(_min_heap_byte_size), NewSize);

 393       desired_new_size =
 394         MAX2(scale_by_NewRatio_aligned(_initial_heap_byte_size), NewSize);

 395     }
 396 
 397     assert(_min_gen0_size > 0, "Sanity check");
 398     _initial_gen0_size = desired_new_size;
 399     _max_gen0_size = max_new_size;
 400 
 401     // At this point the desirable initial and minimum sizes have been
 402     // determined without regard to the maximum sizes.
 403 
 404     // Bound the sizes by the corresponding overall heap sizes.
 405     _min_gen0_size = bound_minus_alignment(_min_gen0_size, _min_heap_byte_size);
 406     _initial_gen0_size = bound_minus_alignment(_initial_gen0_size, _initial_heap_byte_size);
 407     _max_gen0_size = bound_minus_alignment(_max_gen0_size, _max_heap_byte_size);



 408 
 409     // At this point all three sizes have been checked against the
 410     // maximum sizes but have not been checked for consistency
 411     // among the three.
 412 
 413     // Final check min <= initial <= max
 414     _min_gen0_size = MIN2(_min_gen0_size, _max_gen0_size);
 415     _initial_gen0_size = MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size);
 416     _min_gen0_size = MIN2(_min_gen0_size, _initial_gen0_size);

 417   }
 418 
 419   if (PrintGCDetails && Verbose) {
 420     gclog_or_tty->print_cr("1: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 421       SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 422       _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 423   }
 424 }
 425 
 426 // Call this method during the sizing of the gen1 to make
 427 // adjustments to gen0 because of gen1 sizing policy.  gen0 initially has
 428 // the most freedom in sizing because it is done before the
 429 // policy for gen1 is applied.  Once gen1 policies have been applied,
 430 // there may be conflicts in the shape of the heap and this method
 431 // is used to make the needed adjustments.  The application of the
 432 // policies could be more sophisticated (iterative for example) but
 433 // keeping it simple also seems a worthwhile goal.
 434 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
 435                                                      size_t* gen1_size_ptr,
 436                                                      const size_t heap_size,
 437                                                      const size_t min_gen1_size) {
 438   bool result = false;
 439 
 440   if ((*gen1_size_ptr + *gen0_size_ptr) > heap_size) {
 441     if ((heap_size < (*gen0_size_ptr + min_gen1_size)) &&
 442         (heap_size >= min_gen1_size + _min_alignment)) {
 443       // Adjust gen0 down to accommodate min_gen1_size
 444       *gen0_size_ptr = heap_size - min_gen1_size;
 445       *gen0_size_ptr =
 446         MAX2((uintx)align_size_down(*gen0_size_ptr, _min_alignment), _min_alignment);

 447       assert(*gen0_size_ptr > 0, "Min gen0 is too large");
 448       result = true;
 449     } else {
 450       *gen1_size_ptr = heap_size - *gen0_size_ptr;
 451       *gen1_size_ptr =
 452         MAX2((uintx)align_size_down(*gen1_size_ptr, _min_alignment), _min_alignment);

 453     }
 454   }
 455   return result;
 456 }
 457 
 458 // Minimum sizes of the generations may be different than
 459 // the initial sizes.  An inconsistency is permitted here
 460 // in the total size that can be specified explicitly by
 461 // command line specification of OldSize and NewSize and
 462 // also a command line specification of -Xms.  Issue a warning
 463 // but allow the values to pass.
 464 
 465 void TwoGenerationCollectorPolicy::initialize_size_info() {
 466   GenCollectorPolicy::initialize_size_info();
 467 
 468   // At this point the minimum, initial and maximum sizes
 469   // of the overall heap and of gen0 have been determined.
 470   // The maximum gen1 size can be determined from the maximum gen0
 471   // and maximum heap size since no explicit flags exist
 472   // for setting the gen1 maximum.
 473   _max_gen1_size = _max_heap_byte_size - _max_gen0_size;
 474   _max_gen1_size =
 475     MAX2((uintx)align_size_down(_max_gen1_size, _min_alignment), _min_alignment);

 476   // If no explicit command line flag has been set for the
 477   // gen1 size, use what is left for gen1.
 478   if (FLAG_IS_DEFAULT(OldSize) || FLAG_IS_ERGO(OldSize)) {
 479     // The user has not specified any value or ergonomics
 480     // has chosen a value (which may or may not be consistent
 481     // with the overall heap size).  In either case make
 482     // the minimum, maximum and initial sizes consistent
 483     // with the gen0 sizes and the overall heap sizes.
 484     assert(_min_heap_byte_size > _min_gen0_size,
 485       "gen0 has an unexpected minimum size");
 486     _min_gen1_size = _min_heap_byte_size - _min_gen0_size;
 487     _min_gen1_size = MAX2((uintx)align_size_down(_min_gen1_size, _min_alignment),
 488            _min_alignment);
 489     _initial_gen1_size = _initial_heap_byte_size - _initial_gen0_size;
 490     _initial_gen1_size = MAX2((uintx)align_size_down(_initial_gen1_size, _min_alignment),
 491            _min_alignment);



 492   } else {
 493     // OldSize has been explicitly set on the command line. Use the
 494     // OldSize and then determine the consequences.
 495     _min_gen1_size = OldSize;
 496     _initial_gen1_size = OldSize;
 497 
 498     // If the user has explicitly set an OldSize that is inconsistent
 499     // with other command line flags, issue a warning.
 500     // The generation minimums and the overall heap minimum should
 501     // be within one heap alignment.
 502     if ((_min_gen1_size + _min_gen0_size + _min_alignment) < _min_heap_byte_size) {

 503       warning("Inconsistency between minimum heap size and minimum "
 504               "generation sizes: using minimum heap = " SIZE_FORMAT,
 505               _min_heap_byte_size);
 506     }
 507     if (OldSize > _max_gen1_size) {
 508       warning("Inconsistency between maximum heap size and maximum "
 509               "generation sizes: using maximum heap = " SIZE_FORMAT
 510               " -XX:OldSize flag is being ignored",
 511               _max_heap_byte_size);
 512     }
 513     // If there is an inconsistency between the OldSize and the minimum and/or
 514     // initial size of gen0, since OldSize was explicitly set, OldSize wins.
 515     if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size,
 516                           _min_heap_byte_size, OldSize)) {
 517       if (PrintGCDetails && Verbose) {
 518         gclog_or_tty->print_cr("2: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 519               SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 520               _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 521       }
 522     }
 523     // The same as above for the old gen initial size
 524     if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
 525                           _initial_heap_byte_size, OldSize)) {
 526       if (PrintGCDetails && Verbose) {
 527         gclog_or_tty->print_cr("3: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 528           SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 529           _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 530       }
 531     }
 532   }


 533 
 534   _min_gen1_size = MIN2(_min_gen1_size, _max_gen1_size);
 535 
 536   // Make sure that min gen1 <= initial gen1 <= max gen1
 537   _initial_gen1_size = MAX2(_initial_gen1_size, _min_gen1_size);
 538   _initial_gen1_size = MIN2(_initial_gen1_size, _max_gen1_size);
 539 
 540   if (PrintGCDetails && Verbose) {
 541     gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT "  Initial gen1 "
 542       SIZE_FORMAT "  Maximum gen1 " SIZE_FORMAT,
 543       _min_gen1_size, _initial_gen1_size, _max_gen1_size);
 544   }
 545 }
 546 
 547 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
 548                                         bool is_tlab,
 549                                         bool* gc_overhead_limit_was_exceeded) {
 550   GenCollectedHeap *gch = GenCollectedHeap::heap();
 551 
 552   debug_only(gch->check_for_valid_allocation_state());
 553   assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
 554 
 555   // In general gc_overhead_limit_was_exceeded should be false so
 556   // set it so here and reset it to true only if the gc time
 557   // limit is being exceeded as checked below.
 558   *gc_overhead_limit_was_exceeded = false;
 559 
 560   HeapWord* result = NULL;
 561 
 562   // Loop until the allocation is satisfied, or unsatisfied after GC.

 563   for (int try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
 564     HandleMark hm; // discard any handles allocated in each iteration
 565 
 566     // First allocation attempt is lock-free.
 567     Generation *gen0 = gch->get_gen(0);
 568     assert(gen0->supports_inline_contig_alloc(),
 569       "Otherwise, must do alloc within heap lock");
 570     if (gen0->should_allocate(size, is_tlab)) {
 571       result = gen0->par_allocate(size, is_tlab);
 572       if (result != NULL) {
 573         assert(gch->is_in_reserved(result), "result not in heap");
 574         return result;
 575       }
 576     }
 577     unsigned int gc_count_before;  // read inside the Heap_lock locked region
 578     {
 579       MutexLocker ml(Heap_lock);
 580       if (PrintGC && Verbose) {
 581         gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
 582                       " attempting locked slow path allocation");


 617         JavaThread* jthr = JavaThread::current();
 618         if (!jthr->in_critical()) {
 619           MutexUnlocker mul(Heap_lock);
 620           // Wait for JNI critical section to be exited
 621           GC_locker::stall_until_clear();
 622           gclocker_stalled_count += 1;
 623           continue;
 624         } else {
 625           if (CheckJNICalls) {
 626             fatal("Possible deadlock due to allocating while"
 627                   " in jni critical section");
 628           }
 629           return NULL;
 630         }
 631       }
 632 
 633       // Read the gc count while the heap lock is held.
 634       gc_count_before = Universe::heap()->total_collections();
 635     }
 636 
 637     VM_GenCollectForAllocation op(size, is_tlab, gc_count_before);


 638     VMThread::execute(&op);
 639     if (op.prologue_succeeded()) {
 640       result = op.result();
 641       if (op.gc_locked()) {
 642          assert(result == NULL, "must be NULL if gc_locked() is true");
 643          continue;  // retry and/or stall as necessary
 644       }
 645 
 646       // Allocation has failed and a collection
 647       // has been done.  If the gc time limit was exceeded the
 648       // this time, return NULL so that an out-of-memory
 649       // will be thrown.  Clear gc_overhead_limit_exceeded
 650       // so that the overhead exceeded does not persist.
 651 
 652       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 653       const bool softrefs_clear = all_soft_refs_clear();
 654 
 655       if (limit_exceeded && softrefs_clear) {
 656         *gc_overhead_limit_was_exceeded = true;
 657         size_policy()->set_gc_overhead_limit_exceeded(false);


 852 bool GenCollectorPolicy::should_try_older_generation_allocation(
 853         size_t word_size) const {
 854   GenCollectedHeap* gch = GenCollectedHeap::heap();
 855   size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
 856   return    (word_size > heap_word_size(gen0_capacity))
 857          || GC_locker::is_active_and_needs_gc()
 858          || gch->incremental_collection_failed();
 859 }
 860 
 861 
 862 //
 863 // MarkSweepPolicy methods
 864 //
 865 
 866 MarkSweepPolicy::MarkSweepPolicy() {
 867   initialize_all();
 868 }
 869 
 870 void MarkSweepPolicy::initialize_generations() {
 871   _generations = NEW_C_HEAP_ARRAY3(GenerationSpecPtr, number_of_generations(), mtGC, 0, AllocFailStrategy::RETURN_NULL);
 872   if (_generations == NULL) {
 873     vm_exit_during_initialization("Unable to allocate gen spec");
 874   }
 875 
 876   if (UseParNewGC) {
 877     _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
 878   } else {
 879     _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
 880   }
 881   _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
 882 
 883   if (_generations[0] == NULL || _generations[1] == NULL) {
 884     vm_exit_during_initialization("Unable to allocate gen spec");
 885   }
 886 }
 887 
 888 void MarkSweepPolicy::initialize_gc_policy_counters() {
 889   // initialize the policy counters - 2 collectors, 3 generations
 890   if (UseParNewGC) {
 891     _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
 892   } else {
 893     _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
 894   }
 895 }
src/share/vm/memory/collectorPolicy.cpp
Index Unified diffs Context diffs Sdiffs Patch New Old Previous File Next File