1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  27 #include "gc_implementation/g1/concurrentMark.hpp"
  28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  32 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  33 #include "gc_implementation/g1/g1Log.hpp"
  34 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  35 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/java.hpp"
  38 #include "runtime/mutexLocker.hpp"
  39 #include "utilities/debug.hpp"
  40 
  41 // Different defaults for different number of GC threads
  42 // They were chosen by running GCOld and SPECjbb on debris with different
  43 //   numbers of GC threads and choosing them based on the results
  44 
  45 // all the same
  46 static double rs_length_diff_defaults[] = {
  47   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  48 };
  49 
  50 static double cost_per_card_ms_defaults[] = {
  51   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
  52 };
  53 
  54 // all the same
  55 static double young_cards_per_entry_ratio_defaults[] = {
  56   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
  57 };
  58 
  59 static double cost_per_entry_ms_defaults[] = {
  60   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
  61 };
  62 
  63 static double cost_per_byte_ms_defaults[] = {
  64   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
  65 };
  66 
  67 // these should be pretty consistent
  68 static double constant_other_time_ms_defaults[] = {
  69   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
  70 };
  71 
  72 
  73 static double young_other_cost_per_region_ms_defaults[] = {
  74   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
  75 };
  76 
  77 static double non_young_other_cost_per_region_ms_defaults[] = {
  78   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
  79 };
  80 
  81 G1CollectorPolicy::G1CollectorPolicy() :
  82   _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
  83                         ? ParallelGCThreads : 1),
  84 
  85   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  86   _stop_world_start(0.0),
  87 
  88   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  89   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  90 
  91   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  92   _prev_collection_pause_end_ms(0.0),
  93   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  94   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  95   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  96   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  97   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  98   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  99   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 100   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
 101   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 102   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 103   _non_young_other_cost_per_region_ms_seq(
 104                                          new TruncatedSeq(TruncatedSeqLength)),
 105 
 106   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 107   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
 108 
 109   _pause_time_target_ms((double) MaxGCPauseMillis),
 110 
 111   _gcs_are_young(true),
 112 
 113   _during_marking(false),
 114   _in_marking_window(false),
 115   _in_marking_window_im(false),
 116 
 117   _recent_prev_end_times_for_all_gcs_sec(
 118                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
 119 
 120   _recent_avg_pause_time_ratio(0.0),
 121 
 122   _initiate_conc_mark_if_possible(false),
 123   _during_initial_mark_pause(false),
 124   _last_young_gc(false),
 125   _last_gc_was_young(false),
 126 
 127   _eden_used_bytes_before_gc(0),
 128   _survivor_used_bytes_before_gc(0),
 129   _heap_used_bytes_before_gc(0),
 130   _metaspace_used_bytes_before_gc(0),
 131   _eden_capacity_bytes_before_gc(0),
 132   _heap_capacity_bytes_before_gc(0),
 133 
 134   _eden_cset_region_length(0),
 135   _survivor_cset_region_length(0),
 136   _old_cset_region_length(0),
 137 
 138   _collection_set(NULL),
 139   _collection_set_bytes_used_before(0),
 140 
 141   // Incremental CSet attributes
 142   _inc_cset_build_state(Inactive),
 143   _inc_cset_head(NULL),
 144   _inc_cset_tail(NULL),
 145   _inc_cset_bytes_used_before(0),
 146   _inc_cset_max_finger(NULL),
 147   _inc_cset_recorded_rs_lengths(0),
 148   _inc_cset_recorded_rs_lengths_diffs(0),
 149   _inc_cset_predicted_elapsed_time_ms(0.0),
 150   _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
 151 
 152 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 153 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 154 #endif // _MSC_VER
 155 
 156   _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
 157                                                  G1YoungSurvRateNumRegionsSummary)),
 158   _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
 159                                               G1YoungSurvRateNumRegionsSummary)),
 160   // add here any more surv rate groups
 161   _recorded_survivor_regions(0),
 162   _recorded_survivor_head(NULL),
 163   _recorded_survivor_tail(NULL),
 164   _survivors_age_table(true),
 165 
 166   _gc_overhead_perc(0.0) {
 167 
 168   // Set up the region size and associated fields. Given that the
 169   // policy is created before the heap, we have to set this up here,
 170   // so it's done as soon as possible.
 171 
 172   // It would have been natural to pass initial_heap_byte_size() and
 173   // max_heap_byte_size() to setup_heap_region_size() but those have
 174   // not been set up at this point since they should be aligned with
 175   // the region size. So, there is a circular dependency here. We base
 176   // the region size on the heap size, but the heap size should be
 177   // aligned with the region size. To get around this we use the
 178   // unaligned values for the heap.
 179   HeapRegion::setup_heap_region_size(InitialHeapSize, MaxHeapSize);
 180   HeapRegionRemSet::setup_remset_size();
 181 
 182   G1ErgoVerbose::initialize();
 183   if (PrintAdaptiveSizePolicy) {
 184     // Currently, we only use a single switch for all the heuristics.
 185     G1ErgoVerbose::set_enabled(true);
 186     // Given that we don't currently have a verboseness level
 187     // parameter, we'll hardcode this to high. This can be easily
 188     // changed in the future.
 189     G1ErgoVerbose::set_level(ErgoHigh);
 190   } else {
 191     G1ErgoVerbose::set_enabled(false);
 192   }
 193 
 194   // Verify PLAB sizes
 195   const size_t region_size = HeapRegion::GrainWords;
 196   if (YoungPLABSize > region_size || OldPLABSize > region_size) {
 197     char buffer[128];
 198     jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
 199                  OldPLABSize > region_size ? "Old" : "Young", region_size);
 200     vm_exit_during_initialization(buffer);
 201   }
 202 
 203   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
 204   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
 205 
 206   _phase_times = new G1GCPhaseTimes(_parallel_gc_threads);
 207 
 208   int index = MIN2(_parallel_gc_threads - 1, 7);
 209 
 210   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
 211   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
 212   _young_cards_per_entry_ratio_seq->add(
 213                                   young_cards_per_entry_ratio_defaults[index]);
 214   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
 215   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
 216   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
 217   _young_other_cost_per_region_ms_seq->add(
 218                                young_other_cost_per_region_ms_defaults[index]);
 219   _non_young_other_cost_per_region_ms_seq->add(
 220                            non_young_other_cost_per_region_ms_defaults[index]);
 221 
 222   // Below, we might need to calculate the pause time target based on
 223   // the pause interval. When we do so we are going to give G1 maximum
 224   // flexibility and allow it to do pauses when it needs to. So, we'll
 225   // arrange that the pause interval to be pause time target + 1 to
 226   // ensure that a) the pause time target is maximized with respect to
 227   // the pause interval and b) we maintain the invariant that pause
 228   // time target < pause interval. If the user does not want this
 229   // maximum flexibility, they will have to set the pause interval
 230   // explicitly.
 231 
 232   // First make sure that, if either parameter is set, its value is
 233   // reasonable.
 234   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 235     if (MaxGCPauseMillis < 1) {
 236       vm_exit_during_initialization("MaxGCPauseMillis should be "
 237                                     "greater than 0");
 238     }
 239   }
 240   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 241     if (GCPauseIntervalMillis < 1) {
 242       vm_exit_during_initialization("GCPauseIntervalMillis should be "
 243                                     "greater than 0");
 244     }
 245   }
 246 
 247   // Then, if the pause time target parameter was not set, set it to
 248   // the default value.
 249   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 250     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 251       // The default pause time target in G1 is 200ms
 252       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
 253     } else {
 254       // We do not allow the pause interval to be set without the
 255       // pause time target
 256       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
 257                                     "without setting MaxGCPauseMillis");
 258     }
 259   }
 260 
 261   // Then, if the interval parameter was not set, set it according to
 262   // the pause time target (this will also deal with the case when the
 263   // pause time target is the default value).
 264   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 265     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
 266   }
 267 
 268   // Finally, make sure that the two parameters are consistent.
 269   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
 270     char buffer[256];
 271     jio_snprintf(buffer, 256,
 272                  "MaxGCPauseMillis (%u) should be less than "
 273                  "GCPauseIntervalMillis (%u)",
 274                  MaxGCPauseMillis, GCPauseIntervalMillis);
 275     vm_exit_during_initialization(buffer);
 276   }
 277 
 278   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
 279   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
 280   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
 281 
 282   uintx confidence_perc = G1ConfidencePercent;
 283   // Put an artificial ceiling on this so that it's not set to a silly value.
 284   if (confidence_perc > 100) {
 285     confidence_perc = 100;
 286     warning("G1ConfidencePercent is set to a value that is too large, "
 287             "it's been updated to %u", confidence_perc);
 288   }
 289   _sigma = (double) confidence_perc / 100.0;
 290 
 291   // start conservatively (around 50ms is about right)
 292   _concurrent_mark_remark_times_ms->add(0.05);
 293   _concurrent_mark_cleanup_times_ms->add(0.20);
 294   _tenuring_threshold = MaxTenuringThreshold;
 295   // _max_survivor_regions will be calculated by
 296   // update_young_list_target_length() during initialization.
 297   _max_survivor_regions = 0;
 298 
 299   assert(GCTimeRatio > 0,
 300          "we should have set it to a default value set_g1_gc_flags() "
 301          "if a user set it to 0");
 302   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
 303 
 304   uintx reserve_perc = G1ReservePercent;
 305   // Put an artificial ceiling on this so that it's not set to a silly value.
 306   if (reserve_perc > 50) {
 307     reserve_perc = 50;
 308     warning("G1ReservePercent is set to a value that is too large, "
 309             "it's been updated to %u", reserve_perc);
 310   }
 311   _reserve_factor = (double) reserve_perc / 100.0;
 312   // This will be set when the heap is expanded
 313   // for the first time during initialization.
 314   _reserve_regions = 0;
 315 
 316   initialize_all();
 317   _collectionSetChooser = new CollectionSetChooser();
 318   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
 319 }
 320 
 321 void G1CollectorPolicy::initialize_flags() {
 322   _min_alignment = HeapRegion::GrainBytes;
 323   size_t card_table_alignment = GenRemSet::max_alignment_constraint(rem_set_name());
 324   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 325   _max_alignment = MAX3(card_table_alignment, _min_alignment, page_size);
 326   if (SurvivorRatio < 1) {
 327     vm_exit_during_initialization("Invalid survivor ratio specified");
 328   }
 329   CollectorPolicy::initialize_flags();
 330 }
 331 
 332 G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true) {
 333   assert(G1NewSizePercent <= G1MaxNewSizePercent, "Min larger than max");
 334   assert(G1NewSizePercent > 0 && G1NewSizePercent < 100, "Min out of bounds");
 335   assert(G1MaxNewSizePercent > 0 && G1MaxNewSizePercent < 100, "Max out of bounds");
 336 
 337   if (FLAG_IS_CMDLINE(NewRatio)) {
 338     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
 339       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
 340     } else {
 341       _sizer_kind = SizerNewRatio;
 342       _adaptive_size = false;
 343       return;
 344     }
 345   }
 346 
 347   if (FLAG_IS_CMDLINE(NewSize) && FLAG_IS_CMDLINE(MaxNewSize) && NewSize > MaxNewSize) {
 348     vm_exit_during_initialization("Initial young gen size set larger than the maximum young gen size");
 349   }
 350 
 351   if (FLAG_IS_CMDLINE(NewSize)) {
 352     _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
 353                                      1U);
 354     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 355       _max_desired_young_length =
 356                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 357                                   1U);
 358       _sizer_kind = SizerMaxAndNewSize;
 359       _adaptive_size = _min_desired_young_length == _max_desired_young_length;
 360     } else {
 361       _sizer_kind = SizerNewSizeOnly;
 362     }
 363   } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
 364     _max_desired_young_length =
 365                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 366                                   1U);
 367     _sizer_kind = SizerMaxNewSizeOnly;
 368   }
 369 }
 370 
 371 uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
 372   uint default_value = (new_number_of_heap_regions * G1NewSizePercent) / 100;
 373   return MAX2(1U, default_value);
 374 }
 375 
 376 uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
 377   uint default_value = (new_number_of_heap_regions * G1MaxNewSizePercent) / 100;
 378   return MAX2(1U, default_value);
 379 }
 380 
 381 void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
 382   assert(new_number_of_heap_regions > 0, "Heap must be initialized");
 383 
 384   switch (_sizer_kind) {
 385     case SizerDefaults:
 386       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
 387       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
 388       break;
 389     case SizerNewSizeOnly:
 390       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
 391       _max_desired_young_length = MAX2(_min_desired_young_length, _max_desired_young_length);
 392       break;
 393     case SizerMaxNewSizeOnly:
 394       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
 395       _min_desired_young_length = MIN2(_min_desired_young_length, _max_desired_young_length);
 396       break;
 397     case SizerMaxAndNewSize:
 398       // Do nothing. Values set on the command line, don't update them at runtime.
 399       break;
 400     case SizerNewRatio:
 401       _min_desired_young_length = new_number_of_heap_regions / (NewRatio + 1);
 402       _max_desired_young_length = _min_desired_young_length;
 403       break;
 404     default:
 405       ShouldNotReachHere();
 406   }
 407 
 408   assert(_min_desired_young_length <= _max_desired_young_length, "Invalid min/max young gen size values");
 409 }
 410 
 411 void G1CollectorPolicy::init() {
 412   // Set aside an initial future to_space.
 413   _g1 = G1CollectedHeap::heap();
 414 
 415   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 416 
 417   initialize_gc_policy_counters();
 418 
 419   if (adaptive_young_list_length()) {
 420     _young_list_fixed_length = 0;
 421   } else {
 422     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
 423   }
 424   _free_regions_at_end_of_collection = _g1->free_regions();
 425   update_young_list_target_length();
 426 
 427   // We may immediately start allocating regions and placing them on the
 428   // collection set list. Initialize the per-collection set info
 429   start_incremental_cset_building();
 430 }
 431 
 432 // Create the jstat counters for the policy.
 433 void G1CollectorPolicy::initialize_gc_policy_counters() {
 434   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
 435 }
 436 
 437 bool G1CollectorPolicy::predict_will_fit(uint young_length,
 438                                          double base_time_ms,
 439                                          uint base_free_regions,
 440                                          double target_pause_time_ms) {
 441   if (young_length >= base_free_regions) {
 442     // end condition 1: not enough space for the young regions
 443     return false;
 444   }
 445 
 446   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
 447   size_t bytes_to_copy =
 448                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 449   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
 450   double young_other_time_ms = predict_young_other_time_ms(young_length);
 451   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
 452   if (pause_time_ms > target_pause_time_ms) {
 453     // end condition 2: prediction is over the target pause time
 454     return false;
 455   }
 456 
 457   size_t free_bytes =
 458                    (base_free_regions - young_length) * HeapRegion::GrainBytes;
 459   if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
 460     // end condition 3: out-of-space (conservatively!)
 461     return false;
 462   }
 463 
 464   // success!
 465   return true;
 466 }
 467 
 468 void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
 469   // re-calculate the necessary reserve
 470   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 471   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 472   // smaller than 1.0) we'll get 1.
 473   _reserve_regions = (uint) ceil(reserve_regions_d);
 474 
 475   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 476 }
 477 
 478 uint G1CollectorPolicy::calculate_young_list_desired_min_length(
 479                                                        uint base_min_length) {
 480   uint desired_min_length = 0;
 481   if (adaptive_young_list_length()) {
 482     if (_alloc_rate_ms_seq->num() > 3) {
 483       double now_sec = os::elapsedTime();
 484       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 485       double alloc_rate_ms = predict_alloc_rate_ms();
 486       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 487     } else {
 488       // otherwise we don't have enough info to make the prediction
 489     }
 490   }
 491   desired_min_length += base_min_length;
 492   // make sure we don't go below any user-defined minimum bound
 493   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
 494 }
 495 
 496 uint G1CollectorPolicy::calculate_young_list_desired_max_length() {
 497   // Here, we might want to also take into account any additional
 498   // constraints (i.e., user-defined minimum bound). Currently, we
 499   // effectively don't set this bound.
 500   return _young_gen_sizer->max_desired_young_length();
 501 }
 502 
 503 void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
 504   if (rs_lengths == (size_t) -1) {
 505     // if it's set to the default value (-1), we should predict it;
 506     // otherwise, use the given value.
 507     rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
 508   }
 509 
 510   // Calculate the absolute and desired min bounds.
 511 
 512   // This is how many young regions we already have (currently: the survivors).
 513   uint base_min_length = recorded_survivor_regions();
 514   // This is the absolute minimum young length, which ensures that we
 515   // can allocate one eden region in the worst-case.
 516   uint absolute_min_length = base_min_length + 1;
 517   uint desired_min_length =
 518                      calculate_young_list_desired_min_length(base_min_length);
 519   if (desired_min_length < absolute_min_length) {
 520     desired_min_length = absolute_min_length;
 521   }
 522 
 523   // Calculate the absolute and desired max bounds.
 524 
 525   // We will try our best not to "eat" into the reserve.
 526   uint absolute_max_length = 0;
 527   if (_free_regions_at_end_of_collection > _reserve_regions) {
 528     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 529   }
 530   uint desired_max_length = calculate_young_list_desired_max_length();
 531   if (desired_max_length > absolute_max_length) {
 532     desired_max_length = absolute_max_length;
 533   }
 534 
 535   uint young_list_target_length = 0;
 536   if (adaptive_young_list_length()) {
 537     if (gcs_are_young()) {
 538       young_list_target_length =
 539                         calculate_young_list_target_length(rs_lengths,
 540                                                            base_min_length,
 541                                                            desired_min_length,
 542                                                            desired_max_length);
 543       _rs_lengths_prediction = rs_lengths;
 544     } else {
 545       // Don't calculate anything and let the code below bound it to
 546       // the desired_min_length, i.e., do the next GC as soon as
 547       // possible to maximize how many old regions we can add to it.
 548     }
 549   } else {
 550     // The user asked for a fixed young gen so we'll fix the young gen
 551     // whether the next GC is young or mixed.
 552     young_list_target_length = _young_list_fixed_length;
 553   }
 554 
 555   // Make sure we don't go over the desired max length, nor under the
 556   // desired min length. In case they clash, desired_min_length wins
 557   // which is why that test is second.
 558   if (young_list_target_length > desired_max_length) {
 559     young_list_target_length = desired_max_length;
 560   }
 561   if (young_list_target_length < desired_min_length) {
 562     young_list_target_length = desired_min_length;
 563   }
 564 
 565   assert(young_list_target_length > recorded_survivor_regions(),
 566          "we should be able to allocate at least one eden region");
 567   assert(young_list_target_length >= absolute_min_length, "post-condition");
 568   _young_list_target_length = young_list_target_length;
 569 
 570   update_max_gc_locker_expansion();
 571 }
 572 
 573 uint
 574 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
 575                                                      uint base_min_length,
 576                                                      uint desired_min_length,
 577                                                      uint desired_max_length) {
 578   assert(adaptive_young_list_length(), "pre-condition");
 579   assert(gcs_are_young(), "only call this for young GCs");
 580 
 581   // In case some edge-condition makes the desired max length too small...
 582   if (desired_max_length <= desired_min_length) {
 583     return desired_min_length;
 584   }
 585 
 586   // We'll adjust min_young_length and max_young_length not to include
 587   // the already allocated young regions (i.e., so they reflect the
 588   // min and max eden regions we'll allocate). The base_min_length
 589   // will be reflected in the predictions by the
 590   // survivor_regions_evac_time prediction.
 591   assert(desired_min_length > base_min_length, "invariant");
 592   uint min_young_length = desired_min_length - base_min_length;
 593   assert(desired_max_length > base_min_length, "invariant");
 594   uint max_young_length = desired_max_length - base_min_length;
 595 
 596   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 597   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
 598   size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
 599   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
 600   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
 601   double base_time_ms =
 602     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
 603     survivor_regions_evac_time;
 604   uint available_free_regions = _free_regions_at_end_of_collection;
 605   uint base_free_regions = 0;
 606   if (available_free_regions > _reserve_regions) {
 607     base_free_regions = available_free_regions - _reserve_regions;
 608   }
 609 
 610   // Here, we will make sure that the shortest young length that
 611   // makes sense fits within the target pause time.
 612 
 613   if (predict_will_fit(min_young_length, base_time_ms,
 614                        base_free_regions, target_pause_time_ms)) {
 615     // The shortest young length will fit into the target pause time;
 616     // we'll now check whether the absolute maximum number of young
 617     // regions will fit in the target pause time. If not, we'll do
 618     // a binary search between min_young_length and max_young_length.
 619     if (predict_will_fit(max_young_length, base_time_ms,
 620                          base_free_regions, target_pause_time_ms)) {
 621       // The maximum young length will fit into the target pause time.
 622       // We are done so set min young length to the maximum length (as
 623       // the result is assumed to be returned in min_young_length).
 624       min_young_length = max_young_length;
 625     } else {
 626       // The maximum possible number of young regions will not fit within
 627       // the target pause time so we'll search for the optimal
 628       // length. The loop invariants are:
 629       //
 630       // min_young_length < max_young_length
 631       // min_young_length is known to fit into the target pause time
 632       // max_young_length is known not to fit into the target pause time
 633       //
 634       // Going into the loop we know the above hold as we've just
 635       // checked them. Every time around the loop we check whether
 636       // the middle value between min_young_length and
 637       // max_young_length fits into the target pause time. If it
 638       // does, it becomes the new min. If it doesn't, it becomes
 639       // the new max. This way we maintain the loop invariants.
 640 
 641       assert(min_young_length < max_young_length, "invariant");
 642       uint diff = (max_young_length - min_young_length) / 2;
 643       while (diff > 0) {
 644         uint young_length = min_young_length + diff;
 645         if (predict_will_fit(young_length, base_time_ms,
 646                              base_free_regions, target_pause_time_ms)) {
 647           min_young_length = young_length;
 648         } else {
 649           max_young_length = young_length;
 650         }
 651         assert(min_young_length <  max_young_length, "invariant");
 652         diff = (max_young_length - min_young_length) / 2;
 653       }
 654       // The results is min_young_length which, according to the
 655       // loop invariants, should fit within the target pause time.
 656 
 657       // These are the post-conditions of the binary search above:
 658       assert(min_young_length < max_young_length,
 659              "otherwise we should have discovered that max_young_length "
 660              "fits into the pause target and not done the binary search");
 661       assert(predict_will_fit(min_young_length, base_time_ms,
 662                               base_free_regions, target_pause_time_ms),
 663              "min_young_length, the result of the binary search, should "
 664              "fit into the pause target");
 665       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
 666                                base_free_regions, target_pause_time_ms),
 667              "min_young_length, the result of the binary search, should be "
 668              "optimal, so no larger length should fit into the pause target");
 669     }
 670   } else {
 671     // Even the minimum length doesn't fit into the pause time
 672     // target, return it as the result nevertheless.
 673   }
 674   return base_min_length + min_young_length;
 675 }
 676 
 677 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
 678   double survivor_regions_evac_time = 0.0;
 679   for (HeapRegion * r = _recorded_survivor_head;
 680        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
 681        r = r->get_next_young_region()) {
 682     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, gcs_are_young());
 683   }
 684   return survivor_regions_evac_time;
 685 }
 686 
 687 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
 688   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 689 
 690   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
 691   if (rs_lengths > _rs_lengths_prediction) {
 692     // add 10% to avoid having to recalculate often
 693     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 694     update_young_list_target_length(rs_lengths_prediction);
 695   }
 696 }
 697 
 698 
 699 
 700 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
 701                                                bool is_tlab,
 702                                                bool* gc_overhead_limit_was_exceeded) {
 703   guarantee(false, "Not using this policy feature yet.");
 704   return NULL;
 705 }
 706 
 707 // This method controls how a collector handles one or more
 708 // of its generations being fully allocated.
 709 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
 710                                                        bool is_tlab) {
 711   guarantee(false, "Not using this policy feature yet.");
 712   return NULL;
 713 }
 714 
 715 
 716 #ifndef PRODUCT
 717 bool G1CollectorPolicy::verify_young_ages() {
 718   HeapRegion* head = _g1->young_list()->first_region();
 719   return
 720     verify_young_ages(head, _short_lived_surv_rate_group);
 721   // also call verify_young_ages on any additional surv rate groups
 722 }
 723 
 724 bool
 725 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
 726                                      SurvRateGroup *surv_rate_group) {
 727   guarantee( surv_rate_group != NULL, "pre-condition" );
 728 
 729   const char* name = surv_rate_group->name();
 730   bool ret = true;
 731   int prev_age = -1;
 732 
 733   for (HeapRegion* curr = head;
 734        curr != NULL;
 735        curr = curr->get_next_young_region()) {
 736     SurvRateGroup* group = curr->surv_rate_group();
 737     if (group == NULL && !curr->is_survivor()) {
 738       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
 739       ret = false;
 740     }
 741 
 742     if (surv_rate_group == group) {
 743       int age = curr->age_in_surv_rate_group();
 744 
 745       if (age < 0) {
 746         gclog_or_tty->print_cr("## %s: encountered negative age", name);
 747         ret = false;
 748       }
 749 
 750       if (age <= prev_age) {
 751         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
 752                                "(%d, %d)", name, age, prev_age);
 753         ret = false;
 754       }
 755       prev_age = age;
 756     }
 757   }
 758 
 759   return ret;
 760 }
 761 #endif // PRODUCT
 762 
 763 void G1CollectorPolicy::record_full_collection_start() {
 764   _full_collection_start_sec = os::elapsedTime();
 765   record_heap_size_info_at_start(true /* full */);
 766   // Release the future to-space so that it is available for compaction into.
 767   _g1->set_full_collection();
 768 }
 769 
 770 void G1CollectorPolicy::record_full_collection_end() {
 771   // Consider this like a collection pause for the purposes of allocation
 772   // since last pause.
 773   double end_sec = os::elapsedTime();
 774   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 775   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 776 
 777   _trace_gen1_time_data.record_full_collection(full_gc_time_ms);
 778 
 779   update_recent_gc_times(end_sec, full_gc_time_ms);
 780 
 781   _g1->clear_full_collection();
 782 
 783   // "Nuke" the heuristics that control the young/mixed GC
 784   // transitions and make sure we start with young GCs after the Full GC.
 785   set_gcs_are_young(true);
 786   _last_young_gc = false;
 787   clear_initiate_conc_mark_if_possible();
 788   clear_during_initial_mark_pause();
 789   _in_marking_window = false;
 790   _in_marking_window_im = false;
 791 
 792   _short_lived_surv_rate_group->start_adding_regions();
 793   // also call this on any additional surv rate groups
 794 
 795   record_survivor_regions(0, NULL, NULL);
 796 
 797   _free_regions_at_end_of_collection = _g1->free_regions();
 798   // Reset survivors SurvRateGroup.
 799   _survivor_surv_rate_group->reset();
 800   update_young_list_target_length();
 801   _collectionSetChooser->clear();
 802 }
 803 
 804 void G1CollectorPolicy::record_stop_world_start() {
 805   _stop_world_start = os::elapsedTime();
 806 }
 807 
 808 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec) {
 809   // We only need to do this here as the policy will only be applied
 810   // to the GC we're about to start. so, no point is calculating this
 811   // every time we calculate / recalculate the target young length.
 812   update_survivors_policy();
 813 
 814   assert(_g1->used() == _g1->recalculate_used(),
 815          err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
 816                  _g1->used(), _g1->recalculate_used()));
 817 
 818   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
 819   _trace_gen0_time_data.record_start_collection(s_w_t_ms);
 820   _stop_world_start = 0.0;
 821 
 822   record_heap_size_info_at_start(false /* full */);
 823 
 824   phase_times()->record_cur_collection_start_sec(start_time_sec);
 825   _pending_cards = _g1->pending_card_num();
 826 
 827   _collection_set_bytes_used_before = 0;
 828   _bytes_copied_during_gc = 0;
 829 
 830   _last_gc_was_young = false;
 831 
 832   // do that for any other surv rate groups
 833   _short_lived_surv_rate_group->stop_adding_regions();
 834   _survivors_age_table.clear();
 835 
 836   assert( verify_young_ages(), "region age verification" );
 837 }
 838 
 839 void G1CollectorPolicy::record_concurrent_mark_init_end(double
 840                                                    mark_init_elapsed_time_ms) {
 841   _during_marking = true;
 842   assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
 843   clear_during_initial_mark_pause();
 844   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
 845 }
 846 
 847 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
 848   _mark_remark_start_sec = os::elapsedTime();
 849   _during_marking = false;
 850 }
 851 
 852 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
 853   double end_time_sec = os::elapsedTime();
 854   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 855   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
 856   _cur_mark_stop_world_time_ms += elapsed_time_ms;
 857   _prev_collection_pause_end_ms += elapsed_time_ms;
 858 
 859   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
 860 }
 861 
 862 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
 863   _mark_cleanup_start_sec = os::elapsedTime();
 864 }
 865 
 866 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
 867   _last_young_gc = true;
 868   _in_marking_window = false;
 869 }
 870 
 871 void G1CollectorPolicy::record_concurrent_pause() {
 872   if (_stop_world_start > 0.0) {
 873     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
 874     _trace_gen0_time_data.record_yield_time(yield_ms);
 875   }
 876 }
 877 
 878 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 879   if (_g1->concurrent_mark()->cmThread()->during_cycle()) {
 880     return false;
 881   }
 882 
 883   size_t marking_initiating_used_threshold =
 884     (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
 885   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
 886   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 887 
 888   if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
 889     if (gcs_are_young() && !_last_young_gc) {
 890       ergo_verbose5(ErgoConcCycles,
 891         "request concurrent cycle initiation",
 892         ergo_format_reason("occupancy higher than threshold")
 893         ergo_format_byte("occupancy")
 894         ergo_format_byte("allocation request")
 895         ergo_format_byte_perc("threshold")
 896         ergo_format_str("source"),
 897         cur_used_bytes,
 898         alloc_byte_size,
 899         marking_initiating_used_threshold,
 900         (double) InitiatingHeapOccupancyPercent,
 901         source);
 902       return true;
 903     } else {
 904       ergo_verbose5(ErgoConcCycles,
 905         "do not request concurrent cycle initiation",
 906         ergo_format_reason("still doing mixed collections")
 907         ergo_format_byte("occupancy")
 908         ergo_format_byte("allocation request")
 909         ergo_format_byte_perc("threshold")
 910         ergo_format_str("source"),
 911         cur_used_bytes,
 912         alloc_byte_size,
 913         marking_initiating_used_threshold,
 914         (double) InitiatingHeapOccupancyPercent,
 915         source);
 916     }
 917   }
 918 
 919   return false;
 920 }
 921 
 922 // Anything below that is considered to be zero
 923 #define MIN_TIMER_GRANULARITY 0.0000001
 924 
 925 void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms, EvacuationInfo& evacuation_info) {
 926   double end_time_sec = os::elapsedTime();
 927   assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
 928          "otherwise, the subtraction below does not make sense");
 929   size_t rs_size =
 930             _cur_collection_pause_used_regions_at_start - cset_region_length();
 931   size_t cur_used_bytes = _g1->used();
 932   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
 933   bool last_pause_included_initial_mark = false;
 934   bool update_stats = !_g1->evacuation_failed();
 935 
 936 #ifndef PRODUCT
 937   if (G1YoungSurvRateVerbose) {
 938     gclog_or_tty->print_cr("");
 939     _short_lived_surv_rate_group->print();
 940     // do that for any other surv rate groups too
 941   }
 942 #endif // PRODUCT
 943 
 944   last_pause_included_initial_mark = during_initial_mark_pause();
 945   if (last_pause_included_initial_mark) {
 946     record_concurrent_mark_init_end(0.0);
 947   } else if (need_to_start_conc_mark("end of GC")) {
 948     // Note: this might have already been set, if during the last
 949     // pause we decided to start a cycle but at the beginning of
 950     // this pause we decided to postpone it. That's OK.
 951     set_initiate_conc_mark_if_possible();
 952   }
 953 
 954   _mmu_tracker->add_pause(end_time_sec - pause_time_ms/1000.0,
 955                           end_time_sec, false);
 956 
 957   evacuation_info.set_collectionset_used_before(_collection_set_bytes_used_before);
 958   evacuation_info.set_bytes_copied(_bytes_copied_during_gc);
 959 
 960   if (update_stats) {
 961     _trace_gen0_time_data.record_end_collection(pause_time_ms, phase_times());
 962     // this is where we update the allocation rate of the application
 963     double app_time_ms =
 964       (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
 965     if (app_time_ms < MIN_TIMER_GRANULARITY) {
 966       // This usually happens due to the timer not having the required
 967       // granularity. Some Linuxes are the usual culprits.
 968       // We'll just set it to something (arbitrarily) small.
 969       app_time_ms = 1.0;
 970     }
 971     // We maintain the invariant that all objects allocated by mutator
 972     // threads will be allocated out of eden regions. So, we can use
 973     // the eden region number allocated since the previous GC to
 974     // calculate the application's allocate rate. The only exception
 975     // to that is humongous objects that are allocated separately. But
 976     // given that humongous object allocations do not really affect
 977     // either the pause's duration nor when the next pause will take
 978     // place we can safely ignore them here.
 979     uint regions_allocated = eden_cset_region_length();
 980     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
 981     _alloc_rate_ms_seq->add(alloc_rate_ms);
 982 
 983     double interval_ms =
 984       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
 985     update_recent_gc_times(end_time_sec, pause_time_ms);
 986     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
 987     if (recent_avg_pause_time_ratio() < 0.0 ||
 988         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
 989 #ifndef PRODUCT
 990       // Dump info to allow post-facto debugging
 991       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
 992       gclog_or_tty->print_cr("-------------------------------------------");
 993       gclog_or_tty->print_cr("Recent GC Times (ms):");
 994       _recent_gc_times_ms->dump();
 995       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
 996       _recent_prev_end_times_for_all_gcs_sec->dump();
 997       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
 998                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
 999       // In debug mode, terminate the JVM if the user wants to debug at this point.
1000       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
1001 #endif  // !PRODUCT
1002       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
1003       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
1004       if (_recent_avg_pause_time_ratio < 0.0) {
1005         _recent_avg_pause_time_ratio = 0.0;
1006       } else {
1007         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
1008         _recent_avg_pause_time_ratio = 1.0;
1009       }
1010     }
1011   }
1012 
1013   bool new_in_marking_window = _in_marking_window;
1014   bool new_in_marking_window_im = false;
1015   if (during_initial_mark_pause()) {
1016     new_in_marking_window = true;
1017     new_in_marking_window_im = true;
1018   }
1019 
1020   if (_last_young_gc) {
1021     // This is supposed to to be the "last young GC" before we start
1022     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
1023 
1024     if (!last_pause_included_initial_mark) {
1025       if (next_gc_should_be_mixed("start mixed GCs",
1026                                   "do not start mixed GCs")) {
1027         set_gcs_are_young(false);
1028       }
1029     } else {
1030       ergo_verbose0(ErgoMixedGCs,
1031                     "do not start mixed GCs",
1032                     ergo_format_reason("concurrent cycle is about to start"));
1033     }
1034     _last_young_gc = false;
1035   }
1036 
1037   if (!_last_gc_was_young) {
1038     // This is a mixed GC. Here we decide whether to continue doing
1039     // mixed GCs or not.
1040 
1041     if (!next_gc_should_be_mixed("continue mixed GCs",
1042                                  "do not continue mixed GCs")) {
1043       set_gcs_are_young(true);
1044     }
1045   }
1046 
1047   _short_lived_surv_rate_group->start_adding_regions();
1048   // do that for any other surv rate groupsx
1049 
1050   if (update_stats) {
1051     double cost_per_card_ms = 0.0;
1052     if (_pending_cards > 0) {
1053       cost_per_card_ms = phase_times()->average_last_update_rs_time() / (double) _pending_cards;
1054       _cost_per_card_ms_seq->add(cost_per_card_ms);
1055     }
1056 
1057     size_t cards_scanned = _g1->cards_scanned();
1058 
1059     double cost_per_entry_ms = 0.0;
1060     if (cards_scanned > 10) {
1061       cost_per_entry_ms = phase_times()->average_last_scan_rs_time() / (double) cards_scanned;
1062       if (_last_gc_was_young) {
1063         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1064       } else {
1065         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
1066       }
1067     }
1068 
1069     if (_max_rs_lengths > 0) {
1070       double cards_per_entry_ratio =
1071         (double) cards_scanned / (double) _max_rs_lengths;
1072       if (_last_gc_was_young) {
1073         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1074       } else {
1075         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1076       }
1077     }
1078 
1079     // This is defensive. For a while _max_rs_lengths could get
1080     // smaller than _recorded_rs_lengths which was causing
1081     // rs_length_diff to get very large and mess up the RSet length
1082     // predictions. The reason was unsafe concurrent updates to the
1083     // _inc_cset_recorded_rs_lengths field which the code below guards
1084     // against (see CR 7118202). This bug has now been fixed (see CR
1085     // 7119027). However, I'm still worried that
1086     // _inc_cset_recorded_rs_lengths might still end up somewhat
1087     // inaccurate. The concurrent refinement thread calculates an
1088     // RSet's length concurrently with other CR threads updating it
1089     // which might cause it to calculate the length incorrectly (if,
1090     // say, it's in mid-coarsening). So I'll leave in the defensive
1091     // conditional below just in case.
1092     size_t rs_length_diff = 0;
1093     if (_max_rs_lengths > _recorded_rs_lengths) {
1094       rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
1095     }
1096     _rs_length_diff_seq->add((double) rs_length_diff);
1097 
1098     size_t freed_bytes = _heap_used_bytes_before_gc - cur_used_bytes;
1099     size_t copied_bytes = _collection_set_bytes_used_before - freed_bytes;
1100     double cost_per_byte_ms = 0.0;
1101 
1102     if (copied_bytes > 0) {
1103       cost_per_byte_ms = phase_times()->average_last_obj_copy_time() / (double) copied_bytes;
1104       if (_in_marking_window) {
1105         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1106       } else {
1107         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1108       }
1109     }
1110 
1111     double all_other_time_ms = pause_time_ms -
1112       (phase_times()->average_last_update_rs_time() + phase_times()->average_last_scan_rs_time()
1113       + phase_times()->average_last_obj_copy_time() + phase_times()->average_last_termination_time());
1114 
1115     double young_other_time_ms = 0.0;
1116     if (young_cset_region_length() > 0) {
1117       young_other_time_ms =
1118         phase_times()->young_cset_choice_time_ms() +
1119         phase_times()->young_free_cset_time_ms();
1120       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
1121                                           (double) young_cset_region_length());
1122     }
1123     double non_young_other_time_ms = 0.0;
1124     if (old_cset_region_length() > 0) {
1125       non_young_other_time_ms =
1126         phase_times()->non_young_cset_choice_time_ms() +
1127         phase_times()->non_young_free_cset_time_ms();
1128 
1129       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
1130                                             (double) old_cset_region_length());
1131     }
1132 
1133     double constant_other_time_ms = all_other_time_ms -
1134       (young_other_time_ms + non_young_other_time_ms);
1135     _constant_other_time_ms_seq->add(constant_other_time_ms);
1136 
1137     double survival_ratio = 0.0;
1138     if (_collection_set_bytes_used_before > 0) {
1139       survival_ratio = (double) _bytes_copied_during_gc /
1140                                    (double) _collection_set_bytes_used_before;
1141     }
1142 
1143     _pending_cards_seq->add((double) _pending_cards);
1144     _rs_lengths_seq->add((double) _max_rs_lengths);
1145   }
1146 
1147   _in_marking_window = new_in_marking_window;
1148   _in_marking_window_im = new_in_marking_window_im;
1149   _free_regions_at_end_of_collection = _g1->free_regions();
1150   update_young_list_target_length();
1151 
1152   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1153   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1154   adjust_concurrent_refinement(phase_times()->average_last_update_rs_time(),
1155                                phase_times()->sum_last_update_rs_processed_buffers(), update_rs_time_goal_ms);
1156 
1157   _collectionSetChooser->verify();
1158 }
1159 
1160 #define EXT_SIZE_FORMAT "%.1f%s"
1161 #define EXT_SIZE_PARAMS(bytes)                                  \
1162   byte_size_in_proper_unit((double)(bytes)),                    \
1163   proper_unit_for_byte_size((bytes))
1164 
1165 void G1CollectorPolicy::record_heap_size_info_at_start(bool full) {
1166   YoungList* young_list = _g1->young_list();
1167   _eden_used_bytes_before_gc = young_list->eden_used_bytes();
1168   _survivor_used_bytes_before_gc = young_list->survivor_used_bytes();
1169   _heap_capacity_bytes_before_gc = _g1->capacity();
1170   _heap_used_bytes_before_gc = _g1->used();
1171   _cur_collection_pause_used_regions_at_start = _g1->used_regions();
1172 
1173   _eden_capacity_bytes_before_gc =
1174          (_young_list_target_length * HeapRegion::GrainBytes) - _survivor_used_bytes_before_gc;
1175 
1176   if (full) {
1177     _metaspace_used_bytes_before_gc = MetaspaceAux::allocated_used_bytes();
1178   }
1179 }
1180 
1181 void G1CollectorPolicy::print_heap_transition() {
1182   _g1->print_size_transition(gclog_or_tty,
1183                              _heap_used_bytes_before_gc,
1184                              _g1->used(),
1185                              _g1->capacity());
1186 }
1187 
1188 void G1CollectorPolicy::print_detailed_heap_transition(bool full) {
1189   YoungList* young_list = _g1->young_list();
1190 
1191   size_t eden_used_bytes_after_gc = young_list->eden_used_bytes();
1192   size_t survivor_used_bytes_after_gc = young_list->survivor_used_bytes();
1193   size_t heap_used_bytes_after_gc = _g1->used();
1194 
1195   size_t heap_capacity_bytes_after_gc = _g1->capacity();
1196   size_t eden_capacity_bytes_after_gc =
1197     (_young_list_target_length * HeapRegion::GrainBytes) - survivor_used_bytes_after_gc;
1198 
1199   gclog_or_tty->print(
1200     "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
1201     "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
1202     "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
1203     EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
1204     EXT_SIZE_PARAMS(_eden_used_bytes_before_gc),
1205     EXT_SIZE_PARAMS(_eden_capacity_bytes_before_gc),
1206     EXT_SIZE_PARAMS(eden_used_bytes_after_gc),
1207     EXT_SIZE_PARAMS(eden_capacity_bytes_after_gc),
1208     EXT_SIZE_PARAMS(_survivor_used_bytes_before_gc),
1209     EXT_SIZE_PARAMS(survivor_used_bytes_after_gc),
1210     EXT_SIZE_PARAMS(_heap_used_bytes_before_gc),
1211     EXT_SIZE_PARAMS(_heap_capacity_bytes_before_gc),
1212     EXT_SIZE_PARAMS(heap_used_bytes_after_gc),
1213     EXT_SIZE_PARAMS(heap_capacity_bytes_after_gc));
1214 
1215   if (full) {
1216     MetaspaceAux::print_metaspace_change(_metaspace_used_bytes_before_gc);
1217   }
1218 
1219   gclog_or_tty->cr();
1220 }
1221 
1222 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
1223                                                      double update_rs_processed_buffers,
1224                                                      double goal_ms) {
1225   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1226   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
1227 
1228   if (G1UseAdaptiveConcRefinement) {
1229     const int k_gy = 3, k_gr = 6;
1230     const double inc_k = 1.1, dec_k = 0.9;
1231 
1232     int g = cg1r->green_zone();
1233     if (update_rs_time > goal_ms) {
1234       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
1235     } else {
1236       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
1237         g = (int)MAX2(g * inc_k, g + 1.0);
1238       }
1239     }
1240     // Change the refinement threads params
1241     cg1r->set_green_zone(g);
1242     cg1r->set_yellow_zone(g * k_gy);
1243     cg1r->set_red_zone(g * k_gr);
1244     cg1r->reinitialize_threads();
1245 
1246     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
1247     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
1248                                     cg1r->yellow_zone());
1249     // Change the barrier params
1250     dcqs.set_process_completed_threshold(processing_threshold);
1251     dcqs.set_max_completed_queue(cg1r->red_zone());
1252   }
1253 
1254   int curr_queue_size = dcqs.completed_buffers_num();
1255   if (curr_queue_size >= cg1r->yellow_zone()) {
1256     dcqs.set_completed_queue_padding(curr_queue_size);
1257   } else {
1258     dcqs.set_completed_queue_padding(0);
1259   }
1260   dcqs.notify_if_necessary();
1261 }
1262 
1263 double
1264 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
1265                                                 size_t scanned_cards) {
1266   return
1267     predict_rs_update_time_ms(pending_cards) +
1268     predict_rs_scan_time_ms(scanned_cards) +
1269     predict_constant_other_time_ms();
1270 }
1271 
1272 double
1273 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
1274   size_t rs_length = predict_rs_length_diff();
1275   size_t card_num;
1276   if (gcs_are_young()) {
1277     card_num = predict_young_card_num(rs_length);
1278   } else {
1279     card_num = predict_non_young_card_num(rs_length);
1280   }
1281   return predict_base_elapsed_time_ms(pending_cards, card_num);
1282 }
1283 
1284 size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
1285   size_t bytes_to_copy;
1286   if (hr->is_marked())
1287     bytes_to_copy = hr->max_live_bytes();
1288   else {
1289     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
1290     int age = hr->age_in_surv_rate_group();
1291     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1292     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
1293   }
1294   return bytes_to_copy;
1295 }
1296 
1297 double
1298 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1299                                                   bool for_young_gc) {
1300   size_t rs_length = hr->rem_set()->occupied();
1301   size_t card_num;
1302 
1303   // Predicting the number of cards is based on which type of GC
1304   // we're predicting for.
1305   if (for_young_gc) {
1306     card_num = predict_young_card_num(rs_length);
1307   } else {
1308     card_num = predict_non_young_card_num(rs_length);
1309   }
1310   size_t bytes_to_copy = predict_bytes_to_copy(hr);
1311 
1312   double region_elapsed_time_ms =
1313     predict_rs_scan_time_ms(card_num) +
1314     predict_object_copy_time_ms(bytes_to_copy);
1315 
1316   // The prediction of the "other" time for this region is based
1317   // upon the region type and NOT the GC type.
1318   if (hr->is_young()) {
1319     region_elapsed_time_ms += predict_young_other_time_ms(1);
1320   } else {
1321     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
1322   }
1323   return region_elapsed_time_ms;
1324 }
1325 
1326 void
1327 G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
1328                                             uint survivor_cset_region_length) {
1329   _eden_cset_region_length     = eden_cset_region_length;
1330   _survivor_cset_region_length = survivor_cset_region_length;
1331   _old_cset_region_length      = 0;
1332 }
1333 
1334 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
1335   _recorded_rs_lengths = rs_lengths;
1336 }
1337 
1338 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
1339                                                double elapsed_ms) {
1340   _recent_gc_times_ms->add(elapsed_ms);
1341   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
1342   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
1343 }
1344 
1345 size_t G1CollectorPolicy::expansion_amount() {
1346   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
1347   double threshold = _gc_overhead_perc;
1348   if (recent_gc_overhead > threshold) {
1349     // We will double the existing space, or take
1350     // G1ExpandByPercentOfAvailable % of the available expansion
1351     // space, whichever is smaller, bounded below by a minimum
1352     // expansion (unless that's all that's left.)
1353     const size_t min_expand_bytes = 1*M;
1354     size_t reserved_bytes = _g1->max_capacity();
1355     size_t committed_bytes = _g1->capacity();
1356     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
1357     size_t expand_bytes;
1358     size_t expand_bytes_via_pct =
1359       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1360     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
1361     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
1362     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1363 
1364     ergo_verbose5(ErgoHeapSizing,
1365                   "attempt heap expansion",
1366                   ergo_format_reason("recent GC overhead higher than "
1367                                      "threshold after GC")
1368                   ergo_format_perc("recent GC overhead")
1369                   ergo_format_perc("threshold")
1370                   ergo_format_byte("uncommitted")
1371                   ergo_format_byte_perc("calculated expansion amount"),
1372                   recent_gc_overhead, threshold,
1373                   uncommitted_bytes,
1374                   expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);
1375 
1376     return expand_bytes;
1377   } else {
1378     return 0;
1379   }
1380 }
1381 
1382 void G1CollectorPolicy::print_tracing_info() const {
1383   _trace_gen0_time_data.print();
1384   _trace_gen1_time_data.print();
1385 }
1386 
1387 void G1CollectorPolicy::print_yg_surv_rate_info() const {
1388 #ifndef PRODUCT
1389   _short_lived_surv_rate_group->print_surv_rate_summary();
1390   // add this call for any other surv rate groups
1391 #endif // PRODUCT
1392 }
1393 
1394 uint G1CollectorPolicy::max_regions(int purpose) {
1395   switch (purpose) {
1396     case GCAllocForSurvived:
1397       return _max_survivor_regions;
1398     case GCAllocForTenured:
1399       return REGIONS_UNLIMITED;
1400     default:
1401       ShouldNotReachHere();
1402       return REGIONS_UNLIMITED;
1403   };
1404 }
1405 
1406 void G1CollectorPolicy::update_max_gc_locker_expansion() {
1407   uint expansion_region_num = 0;
1408   if (GCLockerEdenExpansionPercent > 0) {
1409     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
1410     double expansion_region_num_d = perc * (double) _young_list_target_length;
1411     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
1412     // less than 1.0) we'll get 1.
1413     expansion_region_num = (uint) ceil(expansion_region_num_d);
1414   } else {
1415     assert(expansion_region_num == 0, "sanity");
1416   }
1417   _young_list_max_length = _young_list_target_length + expansion_region_num;
1418   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
1419 }
1420 
1421 // Calculates survivor space parameters.
1422 void G1CollectorPolicy::update_survivors_policy() {
1423   double max_survivor_regions_d =
1424                  (double) _young_list_target_length / (double) SurvivorRatio;
1425   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
1426   // smaller than 1.0) we'll get 1.
1427   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
1428 
1429   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
1430         HeapRegion::GrainWords * _max_survivor_regions);
1431 }
1432 
1433 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
1434                                                      GCCause::Cause gc_cause) {
1435   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1436   if (!during_cycle) {
1437     ergo_verbose1(ErgoConcCycles,
1438                   "request concurrent cycle initiation",
1439                   ergo_format_reason("requested by GC cause")
1440                   ergo_format_str("GC cause"),
1441                   GCCause::to_string(gc_cause));
1442     set_initiate_conc_mark_if_possible();
1443     return true;
1444   } else {
1445     ergo_verbose1(ErgoConcCycles,
1446                   "do not request concurrent cycle initiation",
1447                   ergo_format_reason("concurrent cycle already in progress")
1448                   ergo_format_str("GC cause"),
1449                   GCCause::to_string(gc_cause));
1450     return false;
1451   }
1452 }
1453 
1454 void
1455 G1CollectorPolicy::decide_on_conc_mark_initiation() {
1456   // We are about to decide on whether this pause will be an
1457   // initial-mark pause.
1458 
1459   // First, during_initial_mark_pause() should not be already set. We
1460   // will set it here if we have to. However, it should be cleared by
1461   // the end of the pause (it's only set for the duration of an
1462   // initial-mark pause).
1463   assert(!during_initial_mark_pause(), "pre-condition");
1464 
1465   if (initiate_conc_mark_if_possible()) {
1466     // We had noticed on a previous pause that the heap occupancy has
1467     // gone over the initiating threshold and we should start a
1468     // concurrent marking cycle. So we might initiate one.
1469 
1470     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1471     if (!during_cycle) {
1472       // The concurrent marking thread is not "during a cycle", i.e.,
1473       // it has completed the last one. So we can go ahead and
1474       // initiate a new cycle.
1475 
1476       set_during_initial_mark_pause();
1477       // We do not allow mixed GCs during marking.
1478       if (!gcs_are_young()) {
1479         set_gcs_are_young(true);
1480         ergo_verbose0(ErgoMixedGCs,
1481                       "end mixed GCs",
1482                       ergo_format_reason("concurrent cycle is about to start"));
1483       }
1484 
1485       // And we can now clear initiate_conc_mark_if_possible() as
1486       // we've already acted on it.
1487       clear_initiate_conc_mark_if_possible();
1488 
1489       ergo_verbose0(ErgoConcCycles,
1490                   "initiate concurrent cycle",
1491                   ergo_format_reason("concurrent cycle initiation requested"));
1492     } else {
1493       // The concurrent marking thread is still finishing up the
1494       // previous cycle. If we start one right now the two cycles
1495       // overlap. In particular, the concurrent marking thread might
1496       // be in the process of clearing the next marking bitmap (which
1497       // we will use for the next cycle if we start one). Starting a
1498       // cycle now will be bad given that parts of the marking
1499       // information might get cleared by the marking thread. And we
1500       // cannot wait for the marking thread to finish the cycle as it
1501       // periodically yields while clearing the next marking bitmap
1502       // and, if it's in a yield point, it's waiting for us to
1503       // finish. So, at this point we will not start a cycle and we'll
1504       // let the concurrent marking thread complete the last one.
1505       ergo_verbose0(ErgoConcCycles,
1506                     "do not initiate concurrent cycle",
1507                     ergo_format_reason("concurrent cycle already in progress"));
1508     }
1509   }
1510 }
1511 
1512 class KnownGarbageClosure: public HeapRegionClosure {
1513   G1CollectedHeap* _g1h;
1514   CollectionSetChooser* _hrSorted;
1515 
1516 public:
1517   KnownGarbageClosure(CollectionSetChooser* hrSorted) :
1518     _g1h(G1CollectedHeap::heap()), _hrSorted(hrSorted) { }
1519 
1520   bool doHeapRegion(HeapRegion* r) {
1521     // We only include humongous regions in collection
1522     // sets when concurrent mark shows that their contained object is
1523     // unreachable.
1524 
1525     // Do we have any marking information for this region?
1526     if (r->is_marked()) {
1527       // We will skip any region that's currently used as an old GC
1528       // alloc region (we should not consider those for collection
1529       // before we fill them up).
1530       if (_hrSorted->should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
1531         _hrSorted->add_region(r);
1532       }
1533     }
1534     return false;
1535   }
1536 };
1537 
1538 class ParKnownGarbageHRClosure: public HeapRegionClosure {
1539   G1CollectedHeap* _g1h;
1540   CSetChooserParUpdater _cset_updater;
1541 
1542 public:
1543   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
1544                            uint chunk_size) :
1545     _g1h(G1CollectedHeap::heap()),
1546     _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
1547 
1548   bool doHeapRegion(HeapRegion* r) {
1549     // Do we have any marking information for this region?
1550     if (r->is_marked()) {
1551       // We will skip any region that's currently used as an old GC
1552       // alloc region (we should not consider those for collection
1553       // before we fill them up).
1554       if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
1555         _cset_updater.add_region(r);
1556       }
1557     }
1558     return false;
1559   }
1560 };
1561 
1562 class ParKnownGarbageTask: public AbstractGangTask {
1563   CollectionSetChooser* _hrSorted;
1564   uint _chunk_size;
1565   G1CollectedHeap* _g1;
1566 public:
1567   ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size) :
1568     AbstractGangTask("ParKnownGarbageTask"),
1569     _hrSorted(hrSorted), _chunk_size(chunk_size),
1570     _g1(G1CollectedHeap::heap()) { }
1571 
1572   void work(uint worker_id) {
1573     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);
1574 
1575     // Back to zero for the claim value.
1576     _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, worker_id,
1577                                          _g1->workers()->active_workers(),
1578                                          HeapRegion::InitialClaimValue);
1579   }
1580 };
1581 
1582 void
1583 G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) {
1584   _collectionSetChooser->clear();
1585 
1586   uint region_num = _g1->n_regions();
1587   if (G1CollectedHeap::use_parallel_gc_threads()) {
1588     const uint OverpartitionFactor = 4;
1589     uint WorkUnit;
1590     // The use of MinChunkSize = 8 in the original code
1591     // causes some assertion failures when the total number of
1592     // region is less than 8.  The code here tries to fix that.
1593     // Should the original code also be fixed?
1594     if (no_of_gc_threads > 0) {
1595       const uint MinWorkUnit = MAX2(region_num / no_of_gc_threads, 1U);
1596       WorkUnit = MAX2(region_num / (no_of_gc_threads * OverpartitionFactor),
1597                       MinWorkUnit);
1598     } else {
1599       assert(no_of_gc_threads > 0,
1600         "The active gc workers should be greater than 0");
1601       // In a product build do something reasonable to avoid a crash.
1602       const uint MinWorkUnit = MAX2(region_num / (uint) ParallelGCThreads, 1U);
1603       WorkUnit =
1604         MAX2(region_num / (uint) (ParallelGCThreads * OverpartitionFactor),
1605              MinWorkUnit);
1606     }
1607     _collectionSetChooser->prepare_for_par_region_addition(_g1->n_regions(),
1608                                                            WorkUnit);
1609     ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
1610                                             (int) WorkUnit);
1611     _g1->workers()->run_task(&parKnownGarbageTask);
1612 
1613     assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
1614            "sanity check");
1615   } else {
1616     KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
1617     _g1->heap_region_iterate(&knownGarbagecl);
1618   }
1619 
1620   _collectionSetChooser->sort_regions();
1621 
1622   double end_sec = os::elapsedTime();
1623   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1624   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
1625   _cur_mark_stop_world_time_ms += elapsed_time_ms;
1626   _prev_collection_pause_end_ms += elapsed_time_ms;
1627   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
1628 }
1629 
1630 // Add the heap region at the head of the non-incremental collection set
1631 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
1632   assert(_inc_cset_build_state == Active, "Precondition");
1633   assert(!hr->is_young(), "non-incremental add of young region");
1634 
1635   assert(!hr->in_collection_set(), "should not already be in the CSet");
1636   hr->set_in_collection_set(true);
1637   hr->set_next_in_collection_set(_collection_set);
1638   _collection_set = hr;
1639   _collection_set_bytes_used_before += hr->used();
1640   _g1->register_region_with_in_cset_fast_test(hr);
1641   size_t rs_length = hr->rem_set()->occupied();
1642   _recorded_rs_lengths += rs_length;
1643   _old_cset_region_length += 1;
1644 }
1645 
1646 // Initialize the per-collection-set information
1647 void G1CollectorPolicy::start_incremental_cset_building() {
1648   assert(_inc_cset_build_state == Inactive, "Precondition");
1649 
1650   _inc_cset_head = NULL;
1651   _inc_cset_tail = NULL;
1652   _inc_cset_bytes_used_before = 0;
1653 
1654   _inc_cset_max_finger = 0;
1655   _inc_cset_recorded_rs_lengths = 0;
1656   _inc_cset_recorded_rs_lengths_diffs = 0;
1657   _inc_cset_predicted_elapsed_time_ms = 0.0;
1658   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1659   _inc_cset_build_state = Active;
1660 }
1661 
1662 void G1CollectorPolicy::finalize_incremental_cset_building() {
1663   assert(_inc_cset_build_state == Active, "Precondition");
1664   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1665 
1666   // The two "main" fields, _inc_cset_recorded_rs_lengths and
1667   // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
1668   // that adds a new region to the CSet. Further updates by the
1669   // concurrent refinement thread that samples the young RSet lengths
1670   // are accumulated in the *_diffs fields. Here we add the diffs to
1671   // the "main" fields.
1672 
1673   if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
1674     _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
1675   } else {
1676     // This is defensive. The diff should in theory be always positive
1677     // as RSets can only grow between GCs. However, given that we
1678     // sample their size concurrently with other threads updating them
1679     // it's possible that we might get the wrong size back, which
1680     // could make the calculations somewhat inaccurate.
1681     size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
1682     if (_inc_cset_recorded_rs_lengths >= diffs) {
1683       _inc_cset_recorded_rs_lengths -= diffs;
1684     } else {
1685       _inc_cset_recorded_rs_lengths = 0;
1686     }
1687   }
1688   _inc_cset_predicted_elapsed_time_ms +=
1689                                      _inc_cset_predicted_elapsed_time_ms_diffs;
1690 
1691   _inc_cset_recorded_rs_lengths_diffs = 0;
1692   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1693 }
1694 
1695 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
1696   // This routine is used when:
1697   // * adding survivor regions to the incremental cset at the end of an
1698   //   evacuation pause,
1699   // * adding the current allocation region to the incremental cset
1700   //   when it is retired, and
1701   // * updating existing policy information for a region in the
1702   //   incremental cset via young list RSet sampling.
1703   // Therefore this routine may be called at a safepoint by the
1704   // VM thread, or in-between safepoints by mutator threads (when
1705   // retiring the current allocation region) or a concurrent
1706   // refine thread (RSet sampling).
1707 
1708   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1709   size_t used_bytes = hr->used();
1710   _inc_cset_recorded_rs_lengths += rs_length;
1711   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
1712   _inc_cset_bytes_used_before += used_bytes;
1713 
1714   // Cache the values we have added to the aggregated informtion
1715   // in the heap region in case we have to remove this region from
1716   // the incremental collection set, or it is updated by the
1717   // rset sampling code
1718   hr->set_recorded_rs_length(rs_length);
1719   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
1720 }
1721 
1722 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
1723                                                      size_t new_rs_length) {
1724   // Update the CSet information that is dependent on the new RS length
1725   assert(hr->is_young(), "Precondition");
1726   assert(!SafepointSynchronize::is_at_safepoint(),
1727                                                "should not be at a safepoint");
1728 
1729   // We could have updated _inc_cset_recorded_rs_lengths and
1730   // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
1731   // that atomically, as this code is executed by a concurrent
1732   // refinement thread, potentially concurrently with a mutator thread
1733   // allocating a new region and also updating the same fields. To
1734   // avoid the atomic operations we accumulate these updates on two
1735   // separate fields (*_diffs) and we'll just add them to the "main"
1736   // fields at the start of a GC.
1737 
1738   ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
1739   ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
1740   _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
1741 
1742   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
1743   double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1744   double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
1745   _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
1746 
1747   hr->set_recorded_rs_length(new_rs_length);
1748   hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
1749 }
1750 
1751 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
1752   assert(hr->is_young(), "invariant");
1753   assert(hr->young_index_in_cset() > -1, "should have already been set");
1754   assert(_inc_cset_build_state == Active, "Precondition");
1755 
1756   // We need to clear and set the cached recorded/cached collection set
1757   // information in the heap region here (before the region gets added
1758   // to the collection set). An individual heap region's cached values
1759   // are calculated, aggregated with the policy collection set info,
1760   // and cached in the heap region here (initially) and (subsequently)
1761   // by the Young List sampling code.
1762 
1763   size_t rs_length = hr->rem_set()->occupied();
1764   add_to_incremental_cset_info(hr, rs_length);
1765 
1766   HeapWord* hr_end = hr->end();
1767   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
1768 
1769   assert(!hr->in_collection_set(), "invariant");
1770   hr->set_in_collection_set(true);
1771   assert( hr->next_in_collection_set() == NULL, "invariant");
1772 
1773   _g1->register_region_with_in_cset_fast_test(hr);
1774 }
1775 
1776 // Add the region at the RHS of the incremental cset
1777 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
1778   // We should only ever be appending survivors at the end of a pause
1779   assert( hr->is_survivor(), "Logic");
1780 
1781   // Do the 'common' stuff
1782   add_region_to_incremental_cset_common(hr);
1783 
1784   // Now add the region at the right hand side
1785   if (_inc_cset_tail == NULL) {
1786     assert(_inc_cset_head == NULL, "invariant");
1787     _inc_cset_head = hr;
1788   } else {
1789     _inc_cset_tail->set_next_in_collection_set(hr);
1790   }
1791   _inc_cset_tail = hr;
1792 }
1793 
1794 // Add the region to the LHS of the incremental cset
1795 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
1796   // Survivors should be added to the RHS at the end of a pause
1797   assert(!hr->is_survivor(), "Logic");
1798 
1799   // Do the 'common' stuff
1800   add_region_to_incremental_cset_common(hr);
1801 
1802   // Add the region at the left hand side
1803   hr->set_next_in_collection_set(_inc_cset_head);
1804   if (_inc_cset_head == NULL) {
1805     assert(_inc_cset_tail == NULL, "Invariant");
1806     _inc_cset_tail = hr;
1807   }
1808   _inc_cset_head = hr;
1809 }
1810 
1811 #ifndef PRODUCT
1812 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
1813   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
1814 
1815   st->print_cr("\nCollection_set:");
1816   HeapRegion* csr = list_head;
1817   while (csr != NULL) {
1818     HeapRegion* next = csr->next_in_collection_set();
1819     assert(csr->in_collection_set(), "bad CS");
1820     st->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
1821                  HR_FORMAT_PARAMS(csr),
1822                  csr->prev_top_at_mark_start(), csr->next_top_at_mark_start(),
1823                  csr->age_in_surv_rate_group_cond());
1824     csr = next;
1825   }
1826 }
1827 #endif // !PRODUCT
1828 
1829 double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) {
1830   // Returns the given amount of reclaimable bytes (that represents
1831   // the amount of reclaimable space still to be collected) as a
1832   // percentage of the current heap capacity.
1833   size_t capacity_bytes = _g1->capacity();
1834   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
1835 }
1836 
1837 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
1838                                                 const char* false_action_str) {
1839   CollectionSetChooser* cset_chooser = _collectionSetChooser;
1840   if (cset_chooser->is_empty()) {
1841     ergo_verbose0(ErgoMixedGCs,
1842                   false_action_str,
1843                   ergo_format_reason("candidate old regions not available"));
1844     return false;
1845   }
1846 
1847   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1848   size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
1849   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1850   double threshold = (double) G1HeapWastePercent;
1851   if (reclaimable_perc <= threshold) {
1852     ergo_verbose4(ErgoMixedGCs,
1853               false_action_str,
1854               ergo_format_reason("reclaimable percentage not over threshold")
1855               ergo_format_region("candidate old regions")
1856               ergo_format_byte_perc("reclaimable")
1857               ergo_format_perc("threshold"),
1858               cset_chooser->remaining_regions(),
1859               reclaimable_bytes,
1860               reclaimable_perc, threshold);
1861     return false;
1862   }
1863 
1864   ergo_verbose4(ErgoMixedGCs,
1865                 true_action_str,
1866                 ergo_format_reason("candidate old regions available")
1867                 ergo_format_region("candidate old regions")
1868                 ergo_format_byte_perc("reclaimable")
1869                 ergo_format_perc("threshold"),
1870                 cset_chooser->remaining_regions(),
1871                 reclaimable_bytes,
1872                 reclaimable_perc, threshold);
1873   return true;
1874 }
1875 
1876 uint G1CollectorPolicy::calc_min_old_cset_length() {
1877   // The min old CSet region bound is based on the maximum desired
1878   // number of mixed GCs after a cycle. I.e., even if some old regions
1879   // look expensive, we should add them to the CSet anyway to make
1880   // sure we go through the available old regions in no more than the
1881   // maximum desired number of mixed GCs.
1882   //
1883   // The calculation is based on the number of marked regions we added
1884   // to the CSet chooser in the first place, not how many remain, so
1885   // that the result is the same during all mixed GCs that follow a cycle.
1886 
1887   const size_t region_num = (size_t) _collectionSetChooser->length();
1888   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1889   size_t result = region_num / gc_num;
1890   // emulate ceiling
1891   if (result * gc_num < region_num) {
1892     result += 1;
1893   }
1894   return (uint) result;
1895 }
1896 
1897 uint G1CollectorPolicy::calc_max_old_cset_length() {
1898   // The max old CSet region bound is based on the threshold expressed
1899   // as a percentage of the heap size. I.e., it should bound the
1900   // number of old regions added to the CSet irrespective of how many
1901   // of them are available.
1902 
1903   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1904   const size_t region_num = g1h->n_regions();
1905   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1906   size_t result = region_num * perc / 100;
1907   // emulate ceiling
1908   if (100 * result < region_num * perc) {
1909     result += 1;
1910   }
1911   return (uint) result;
1912 }
1913 
1914 
1915 void G1CollectorPolicy::finalize_cset(double target_pause_time_ms, EvacuationInfo& evacuation_info) {
1916   double young_start_time_sec = os::elapsedTime();
1917 
1918   YoungList* young_list = _g1->young_list();
1919   finalize_incremental_cset_building();
1920 
1921   guarantee(target_pause_time_ms > 0.0,
1922             err_msg("target_pause_time_ms = %1.6lf should be positive",
1923                     target_pause_time_ms));
1924   guarantee(_collection_set == NULL, "Precondition");
1925 
1926   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
1927   double predicted_pause_time_ms = base_time_ms;
1928   double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
1929 
1930   ergo_verbose4(ErgoCSetConstruction | ErgoHigh,
1931                 "start choosing CSet",
1932                 ergo_format_size("_pending_cards")
1933                 ergo_format_ms("predicted base time")
1934                 ergo_format_ms("remaining time")
1935                 ergo_format_ms("target pause time"),
1936                 _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
1937 
1938   _last_gc_was_young = gcs_are_young() ? true : false;
1939 
1940   if (_last_gc_was_young) {
1941     _trace_gen0_time_data.increment_young_collection_count();
1942   } else {
1943     _trace_gen0_time_data.increment_mixed_collection_count();
1944   }
1945 
1946   // The young list is laid with the survivor regions from the previous
1947   // pause are appended to the RHS of the young list, i.e.
1948   //   [Newly Young Regions ++ Survivors from last pause].
1949 
1950   uint survivor_region_length = young_list->survivor_length();
1951   uint eden_region_length = young_list->length() - survivor_region_length;
1952   init_cset_region_lengths(eden_region_length, survivor_region_length);
1953 
1954   HeapRegion* hr = young_list->first_survivor_region();
1955   while (hr != NULL) {
1956     assert(hr->is_survivor(), "badly formed young list");
1957     hr->set_young();
1958     hr = hr->get_next_young_region();
1959   }
1960 
1961   // Clear the fields that point to the survivor list - they are all young now.
1962   young_list->clear_survivors();
1963 
1964   _collection_set = _inc_cset_head;
1965   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
1966   time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
1967   predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
1968 
1969   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
1970                 "add young regions to CSet",
1971                 ergo_format_region("eden")
1972                 ergo_format_region("survivors")
1973                 ergo_format_ms("predicted young region time"),
1974                 eden_region_length, survivor_region_length,
1975                 _inc_cset_predicted_elapsed_time_ms);
1976 
1977   // The number of recorded young regions is the incremental
1978   // collection set's current size
1979   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
1980 
1981   double young_end_time_sec = os::elapsedTime();
1982   phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
1983 
1984   // Set the start of the non-young choice time.
1985   double non_young_start_time_sec = young_end_time_sec;
1986 
1987   if (!gcs_are_young()) {
1988     CollectionSetChooser* cset_chooser = _collectionSetChooser;
1989     cset_chooser->verify();
1990     const uint min_old_cset_length = calc_min_old_cset_length();
1991     const uint max_old_cset_length = calc_max_old_cset_length();
1992 
1993     uint expensive_region_num = 0;
1994     bool check_time_remaining = adaptive_young_list_length();
1995 
1996     HeapRegion* hr = cset_chooser->peek();
1997     while (hr != NULL) {
1998       if (old_cset_region_length() >= max_old_cset_length) {
1999         // Added maximum number of old regions to the CSet.
2000         ergo_verbose2(ErgoCSetConstruction,
2001                       "finish adding old regions to CSet",
2002                       ergo_format_reason("old CSet region num reached max")
2003                       ergo_format_region("old")
2004                       ergo_format_region("max"),
2005                       old_cset_region_length(), max_old_cset_length);
2006         break;
2007       }
2008 
2009 
2010       // Stop adding regions if the remaining reclaimable space is
2011       // not above G1HeapWastePercent.
2012       size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
2013       double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
2014       double threshold = (double) G1HeapWastePercent;
2015       if (reclaimable_perc <= threshold) {
2016         // We've added enough old regions that the amount of uncollected
2017         // reclaimable space is at or below the waste threshold. Stop
2018         // adding old regions to the CSet.
2019         ergo_verbose5(ErgoCSetConstruction,
2020                       "finish adding old regions to CSet",
2021                       ergo_format_reason("reclaimable percentage not over threshold")
2022                       ergo_format_region("old")
2023                       ergo_format_region("max")
2024                       ergo_format_byte_perc("reclaimable")
2025                       ergo_format_perc("threshold"),
2026                       old_cset_region_length(),
2027                       max_old_cset_length,
2028                       reclaimable_bytes,
2029                       reclaimable_perc, threshold);
2030         break;
2031       }
2032 
2033       double predicted_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
2034       if (check_time_remaining) {
2035         if (predicted_time_ms > time_remaining_ms) {
2036           // Too expensive for the current CSet.
2037 
2038           if (old_cset_region_length() >= min_old_cset_length) {
2039             // We have added the minimum number of old regions to the CSet,
2040             // we are done with this CSet.
2041             ergo_verbose4(ErgoCSetConstruction,
2042                           "finish adding old regions to CSet",
2043                           ergo_format_reason("predicted time is too high")
2044                           ergo_format_ms("predicted time")
2045                           ergo_format_ms("remaining time")
2046                           ergo_format_region("old")
2047                           ergo_format_region("min"),
2048                           predicted_time_ms, time_remaining_ms,
2049                           old_cset_region_length(), min_old_cset_length);
2050             break;
2051           }
2052 
2053           // We'll add it anyway given that we haven't reached the
2054           // minimum number of old regions.
2055           expensive_region_num += 1;
2056         }
2057       } else {
2058         if (old_cset_region_length() >= min_old_cset_length) {
2059           // In the non-auto-tuning case, we'll finish adding regions
2060           // to the CSet if we reach the minimum.
2061           ergo_verbose2(ErgoCSetConstruction,
2062                         "finish adding old regions to CSet",
2063                         ergo_format_reason("old CSet region num reached min")
2064                         ergo_format_region("old")
2065                         ergo_format_region("min"),
2066                         old_cset_region_length(), min_old_cset_length);
2067           break;
2068         }
2069       }
2070 
2071       // We will add this region to the CSet.
2072       time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
2073       predicted_pause_time_ms += predicted_time_ms;
2074       cset_chooser->remove_and_move_to_next(hr);
2075       _g1->old_set_remove(hr);
2076       add_old_region_to_cset(hr);
2077 
2078       hr = cset_chooser->peek();
2079     }
2080     if (hr == NULL) {
2081       ergo_verbose0(ErgoCSetConstruction,
2082                     "finish adding old regions to CSet",
2083                     ergo_format_reason("candidate old regions not available"));
2084     }
2085 
2086     if (expensive_region_num > 0) {
2087       // We print the information once here at the end, predicated on
2088       // whether we added any apparently expensive regions or not, to
2089       // avoid generating output per region.
2090       ergo_verbose4(ErgoCSetConstruction,
2091                     "added expensive regions to CSet",
2092                     ergo_format_reason("old CSet region num not reached min")
2093                     ergo_format_region("old")
2094                     ergo_format_region("expensive")
2095                     ergo_format_region("min")
2096                     ergo_format_ms("remaining time"),
2097                     old_cset_region_length(),
2098                     expensive_region_num,
2099                     min_old_cset_length,
2100                     time_remaining_ms);
2101     }
2102 
2103     cset_chooser->verify();
2104   }
2105 
2106   stop_incremental_cset_building();
2107 
2108   ergo_verbose5(ErgoCSetConstruction,
2109                 "finish choosing CSet",
2110                 ergo_format_region("eden")
2111                 ergo_format_region("survivors")
2112                 ergo_format_region("old")
2113                 ergo_format_ms("predicted pause time")
2114                 ergo_format_ms("target pause time"),
2115                 eden_region_length, survivor_region_length,
2116                 old_cset_region_length(),
2117                 predicted_pause_time_ms, target_pause_time_ms);
2118 
2119   double non_young_end_time_sec = os::elapsedTime();
2120   phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
2121   evacuation_info.set_collectionset_regions(cset_region_length());
2122 }
2123 
2124 void TraceGen0TimeData::record_start_collection(double time_to_stop_the_world_ms) {
2125   if(TraceGen0Time) {
2126     _all_stop_world_times_ms.add(time_to_stop_the_world_ms);
2127   }
2128 }
2129 
2130 void TraceGen0TimeData::record_yield_time(double yield_time_ms) {
2131   if(TraceGen0Time) {
2132     _all_yield_times_ms.add(yield_time_ms);
2133   }
2134 }
2135 
2136 void TraceGen0TimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) {
2137   if(TraceGen0Time) {
2138     _total.add(pause_time_ms);
2139     _other.add(pause_time_ms - phase_times->accounted_time_ms());
2140     _root_region_scan_wait.add(phase_times->root_region_scan_wait_time_ms());
2141     _parallel.add(phase_times->cur_collection_par_time_ms());
2142     _ext_root_scan.add(phase_times->average_last_ext_root_scan_time());
2143     _satb_filtering.add(phase_times->average_last_satb_filtering_times_ms());
2144     _update_rs.add(phase_times->average_last_update_rs_time());
2145     _scan_rs.add(phase_times->average_last_scan_rs_time());
2146     _obj_copy.add(phase_times->average_last_obj_copy_time());
2147     _termination.add(phase_times->average_last_termination_time());
2148 
2149     double parallel_known_time = phase_times->average_last_ext_root_scan_time() +
2150       phase_times->average_last_satb_filtering_times_ms() +
2151       phase_times->average_last_update_rs_time() +
2152       phase_times->average_last_scan_rs_time() +
2153       phase_times->average_last_obj_copy_time() +
2154       + phase_times->average_last_termination_time();
2155 
2156     double parallel_other_time = phase_times->cur_collection_par_time_ms() - parallel_known_time;
2157     _parallel_other.add(parallel_other_time);
2158     _clear_ct.add(phase_times->cur_clear_ct_time_ms());
2159   }
2160 }
2161 
2162 void TraceGen0TimeData::increment_young_collection_count() {
2163   if(TraceGen0Time) {
2164     ++_young_pause_num;
2165   }
2166 }
2167 
2168 void TraceGen0TimeData::increment_mixed_collection_count() {
2169   if(TraceGen0Time) {
2170     ++_mixed_pause_num;
2171   }
2172 }
2173 
2174 void TraceGen0TimeData::print_summary(const char* str,
2175                                       const NumberSeq* seq) const {
2176   double sum = seq->sum();
2177   gclog_or_tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)",
2178                 str, sum / 1000.0, seq->avg());
2179 }
2180 
2181 void TraceGen0TimeData::print_summary_sd(const char* str,
2182                                          const NumberSeq* seq) const {
2183   print_summary(str, seq);
2184   gclog_or_tty->print_cr("%+45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
2185                 "(num", seq->num(), seq->sd(), seq->maximum());
2186 }
2187 
2188 void TraceGen0TimeData::print() const {
2189   if (!TraceGen0Time) {
2190     return;
2191   }
2192 
2193   gclog_or_tty->print_cr("ALL PAUSES");
2194   print_summary_sd("   Total", &_total);
2195   gclog_or_tty->print_cr("");
2196   gclog_or_tty->print_cr("");
2197   gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
2198   gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
2199   gclog_or_tty->print_cr("");
2200 
2201   gclog_or_tty->print_cr("EVACUATION PAUSES");
2202 
2203   if (_young_pause_num == 0 && _mixed_pause_num == 0) {
2204     gclog_or_tty->print_cr("none");
2205   } else {
2206     print_summary_sd("   Evacuation Pauses", &_total);
2207     print_summary("      Root Region Scan Wait", &_root_region_scan_wait);
2208     print_summary("      Parallel Time", &_parallel);
2209     print_summary("         Ext Root Scanning", &_ext_root_scan);
2210     print_summary("         SATB Filtering", &_satb_filtering);
2211     print_summary("         Update RS", &_update_rs);
2212     print_summary("         Scan RS", &_scan_rs);
2213     print_summary("         Object Copy", &_obj_copy);
2214     print_summary("         Termination", &_termination);
2215     print_summary("         Parallel Other", &_parallel_other);
2216     print_summary("      Clear CT", &_clear_ct);
2217     print_summary("      Other", &_other);
2218   }
2219   gclog_or_tty->print_cr("");
2220 
2221   gclog_or_tty->print_cr("MISC");
2222   print_summary_sd("   Stop World", &_all_stop_world_times_ms);
2223   print_summary_sd("   Yields", &_all_yield_times_ms);
2224 }
2225 
2226 void TraceGen1TimeData::record_full_collection(double full_gc_time_ms) {
2227   if (TraceGen1Time) {
2228     _all_full_gc_times.add(full_gc_time_ms);
2229   }
2230 }
2231 
2232 void TraceGen1TimeData::print() const {
2233   if (!TraceGen1Time) {
2234     return;
2235   }
2236 
2237   if (_all_full_gc_times.num() > 0) {
2238     gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
2239       _all_full_gc_times.num(),
2240       _all_full_gc_times.sum() / 1000.0);
2241     gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg());
2242     gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
2243       _all_full_gc_times.sd(),
2244       _all_full_gc_times.maximum());
2245   }
2246 }