src/share/vm/memory/collectorPolicy.hpp
Index Unified diffs Context diffs Sdiffs Patch New Old Previous File Next File hotspot Sdiff src/share/vm/memory

src/share/vm/memory/collectorPolicy.hpp

Print this page




  62   GCPolicyCounters* _gc_policy_counters;
  63 
  64   // Requires that the concrete subclass sets the alignment constraints
  65   // before calling.
  66   virtual void initialize_flags();
  67   virtual void initialize_size_info();
  68 
  69   size_t _initial_heap_byte_size;
  70   size_t _max_heap_byte_size;
  71   size_t _min_heap_byte_size;
  72 
  73   size_t _min_alignment;
  74   size_t _max_alignment;
  75 
  76   // The sizing of the heap are controlled by a sizing policy.
  77   AdaptiveSizePolicy* _size_policy;
  78 
  79   // Set to true when policy wants soft refs cleared.
  80   // Reset to false by gc after it clears all soft refs.
  81   bool _should_clear_all_soft_refs;

  82   // Set to true by the GC if the just-completed gc cleared all
  83   // softrefs.  This is set to true whenever a gc clears all softrefs, and
  84   // set to false each time gc returns to the mutator.  For example, in the
  85   // ParallelScavengeHeap case the latter would be done toward the end of
  86   // mem_allocate() where it returns op.result()
  87   bool _all_soft_refs_clear;
  88 
  89   CollectorPolicy() :
  90     _min_alignment(1),
  91     _max_alignment(1),
  92     _initial_heap_byte_size(0),
  93     _max_heap_byte_size(0),
  94     _min_heap_byte_size(0),
  95     _size_policy(NULL),
  96     _should_clear_all_soft_refs(false),
  97     _all_soft_refs_clear(false)
  98   {}
  99 
 100  public:
 101   // Return maximum heap alignment that may be imposed by the policy


 134   virtual TwoGenerationCollectorPolicy* as_two_generation_policy()        { return NULL; }
 135   virtual MarkSweepPolicy*              as_mark_sweep_policy()            { return NULL; }
 136 #if INCLUDE_ALL_GCS
 137   virtual ConcurrentMarkSweepPolicy*    as_concurrent_mark_sweep_policy() { return NULL; }
 138   virtual G1CollectorPolicy*            as_g1_policy()                    { return NULL; }
 139 #endif // INCLUDE_ALL_GCS
 140   // Note that these are not virtual.
 141   bool is_generation_policy()            { return as_generation_policy() != NULL; }
 142   bool is_two_generation_policy()        { return as_two_generation_policy() != NULL; }
 143   bool is_mark_sweep_policy()            { return as_mark_sweep_policy() != NULL; }
 144 #if INCLUDE_ALL_GCS
 145   bool is_concurrent_mark_sweep_policy() { return as_concurrent_mark_sweep_policy() != NULL; }
 146   bool is_g1_policy()                    { return as_g1_policy() != NULL; }
 147 #else  // INCLUDE_ALL_GCS
 148   bool is_concurrent_mark_sweep_policy() { return false; }
 149   bool is_g1_policy()                    { return false; }
 150 #endif // INCLUDE_ALL_GCS
 151 
 152 
 153   virtual BarrierSet::Name barrier_set_name() = 0;
 154   virtual GenRemSet::Name  rem_set_name() = 0;
 155 
 156   // Create the remembered set (to cover the given reserved region,
 157   // allowing breaking up into at most "max_covered_regions").
 158   virtual GenRemSet* create_rem_set(MemRegion reserved,
 159                                     int max_covered_regions);
 160 
 161   // This method controls how a collector satisfies a request
 162   // for a block of memory.  "gc_time_limit_was_exceeded" will
 163   // be set to true if the adaptive size policy determine that
 164   // an excessive amount of time is being spent doing collections
 165   // and caused a NULL to be returned.  If a NULL is not returned,
 166   // "gc_time_limit_was_exceeded" has an undefined meaning.
 167   virtual HeapWord* mem_allocate_work(size_t size,
 168                                       bool is_tlab,
 169                                       bool* gc_overhead_limit_was_exceeded) = 0;
 170 
 171   // This method controls how a collector handles one or more
 172   // of its generations being fully allocated.
 173   virtual HeapWord *satisfy_failed_allocation(size_t size, bool is_tlab) = 0;
 174   // This method controls how a collector handles a metadata allocation


 257   virtual GenCollectorPolicy* as_generation_policy() { return this; }
 258 
 259   virtual void initialize_generations() = 0;
 260 
 261   virtual void initialize_all() {
 262     initialize_flags();
 263     initialize_size_info();
 264     initialize_generations();
 265   }
 266 
 267   HeapWord* mem_allocate_work(size_t size,
 268                               bool is_tlab,
 269                               bool* gc_overhead_limit_was_exceeded);
 270 
 271   HeapWord *satisfy_failed_allocation(size_t size, bool is_tlab);
 272 
 273   // Adaptive size policy
 274   virtual void initialize_size_policy(size_t init_eden_size,
 275                                       size_t init_promo_size,
 276                                       size_t init_survivor_size);






 277 };
 278 
 279 // All of hotspot's current collectors are subtypes of this
 280 // class. Currently, these collectors all use the same gen[0],
 281 // but have different gen[1] types. If we add another subtype
 282 // of CollectorPolicy, this class should be broken out into
 283 // its own file.
 284 
 285 class TwoGenerationCollectorPolicy : public GenCollectorPolicy {
 286  protected:
 287   size_t _min_gen1_size;
 288   size_t _initial_gen1_size;
 289   size_t _max_gen1_size;
 290 
 291   void initialize_flags();
 292   void initialize_size_info();
 293   void initialize_generations()                { ShouldNotReachHere(); }
 294 
 295  public:
 296   // Accessors
 297   size_t min_gen1_size()     { return _min_gen1_size; }
 298   size_t initial_gen1_size() { return _initial_gen1_size; }
 299   size_t max_gen1_size()     { return _max_gen1_size; }
 300 
 301   // Inherited methods
 302   TwoGenerationCollectorPolicy* as_two_generation_policy() { return this; }
 303 
 304   int number_of_generations()                  { return 2; }
 305   BarrierSet::Name barrier_set_name()          { return BarrierSet::CardTableModRef; }
 306   GenRemSet::Name rem_set_name()               { return GenRemSet::CardTable; }
 307 
 308   virtual CollectorPolicy::Name kind() {
 309     return CollectorPolicy::TwoGenerationCollectorPolicyKind;
 310   }
 311 
 312   // Returns true is gen0 sizes were adjusted
 313   bool adjust_gen0_sizes(size_t* gen0_size_ptr, size_t* gen1_size_ptr,
 314                          const size_t heap_size, const size_t min_gen1_size);
 315 };
 316 
 317 class MarkSweepPolicy : public TwoGenerationCollectorPolicy {
 318  protected:
 319   void initialize_generations();
 320 
 321  public:
 322   MarkSweepPolicy();
 323 
 324   MarkSweepPolicy* as_mark_sweep_policy() { return this; }
 325 
 326   void initialize_gc_policy_counters();


  62   GCPolicyCounters* _gc_policy_counters;
  63 
  64   // Requires that the concrete subclass sets the alignment constraints
  65   // before calling.
  66   virtual void initialize_flags();
  67   virtual void initialize_size_info();
  68 
  69   size_t _initial_heap_byte_size;
  70   size_t _max_heap_byte_size;
  71   size_t _min_heap_byte_size;
  72 
  73   size_t _min_alignment;
  74   size_t _max_alignment;
  75 
  76   // The sizing of the heap are controlled by a sizing policy.
  77   AdaptiveSizePolicy* _size_policy;
  78 
  79   // Set to true when policy wants soft refs cleared.
  80   // Reset to false by gc after it clears all soft refs.
  81   bool _should_clear_all_soft_refs;
  82 
  83   // Set to true by the GC if the just-completed gc cleared all
  84   // softrefs.  This is set to true whenever a gc clears all softrefs, and
  85   // set to false each time gc returns to the mutator.  For example, in the
  86   // ParallelScavengeHeap case the latter would be done toward the end of
  87   // mem_allocate() where it returns op.result()
  88   bool _all_soft_refs_clear;
  89 
  90   CollectorPolicy() :
  91     _min_alignment(1),
  92     _max_alignment(1),
  93     _initial_heap_byte_size(0),
  94     _max_heap_byte_size(0),
  95     _min_heap_byte_size(0),
  96     _size_policy(NULL),
  97     _should_clear_all_soft_refs(false),
  98     _all_soft_refs_clear(false)
  99   {}
 100 
 101  public:
 102   // Return maximum heap alignment that may be imposed by the policy


 135   virtual TwoGenerationCollectorPolicy* as_two_generation_policy()        { return NULL; }
 136   virtual MarkSweepPolicy*              as_mark_sweep_policy()            { return NULL; }
 137 #if INCLUDE_ALL_GCS
 138   virtual ConcurrentMarkSweepPolicy*    as_concurrent_mark_sweep_policy() { return NULL; }
 139   virtual G1CollectorPolicy*            as_g1_policy()                    { return NULL; }
 140 #endif // INCLUDE_ALL_GCS
 141   // Note that these are not virtual.
 142   bool is_generation_policy()            { return as_generation_policy() != NULL; }
 143   bool is_two_generation_policy()        { return as_two_generation_policy() != NULL; }
 144   bool is_mark_sweep_policy()            { return as_mark_sweep_policy() != NULL; }
 145 #if INCLUDE_ALL_GCS
 146   bool is_concurrent_mark_sweep_policy() { return as_concurrent_mark_sweep_policy() != NULL; }
 147   bool is_g1_policy()                    { return as_g1_policy() != NULL; }
 148 #else  // INCLUDE_ALL_GCS
 149   bool is_concurrent_mark_sweep_policy() { return false; }
 150   bool is_g1_policy()                    { return false; }
 151 #endif // INCLUDE_ALL_GCS
 152 
 153 
 154   virtual BarrierSet::Name barrier_set_name() = 0;

 155 
 156   // Create the remembered set (to cover the given reserved region,
 157   // allowing breaking up into at most "max_covered_regions").
 158   virtual GenRemSet* create_rem_set(MemRegion reserved,
 159                                     int max_covered_regions);
 160 
 161   // This method controls how a collector satisfies a request
 162   // for a block of memory.  "gc_time_limit_was_exceeded" will
 163   // be set to true if the adaptive size policy determine that
 164   // an excessive amount of time is being spent doing collections
 165   // and caused a NULL to be returned.  If a NULL is not returned,
 166   // "gc_time_limit_was_exceeded" has an undefined meaning.
 167   virtual HeapWord* mem_allocate_work(size_t size,
 168                                       bool is_tlab,
 169                                       bool* gc_overhead_limit_was_exceeded) = 0;
 170 
 171   // This method controls how a collector handles one or more
 172   // of its generations being fully allocated.
 173   virtual HeapWord *satisfy_failed_allocation(size_t size, bool is_tlab) = 0;
 174   // This method controls how a collector handles a metadata allocation


 257   virtual GenCollectorPolicy* as_generation_policy() { return this; }
 258 
 259   virtual void initialize_generations() = 0;
 260 
 261   virtual void initialize_all() {
 262     initialize_flags();
 263     initialize_size_info();
 264     initialize_generations();
 265   }
 266 
 267   HeapWord* mem_allocate_work(size_t size,
 268                               bool is_tlab,
 269                               bool* gc_overhead_limit_was_exceeded);
 270 
 271   HeapWord *satisfy_failed_allocation(size_t size, bool is_tlab);
 272 
 273   // Adaptive size policy
 274   virtual void initialize_size_policy(size_t init_eden_size,
 275                                       size_t init_promo_size,
 276                                       size_t init_survivor_size);
 277 
 278   // The alignment used for eden and survivors within the young gen
 279   // and for boundary between young gen and old gen.
 280   static size_t intra_heap_alignment() {
 281     return 64 * K * HeapWordSize;
 282   }
 283 };
 284 
 285 // All of hotspot's current collectors are subtypes of this
 286 // class. Currently, these collectors all use the same gen[0],
 287 // but have different gen[1] types. If we add another subtype
 288 // of CollectorPolicy, this class should be broken out into
 289 // its own file.
 290 
 291 class TwoGenerationCollectorPolicy : public GenCollectorPolicy {
 292  protected:
 293   size_t _min_gen1_size;
 294   size_t _initial_gen1_size;
 295   size_t _max_gen1_size;
 296 
 297   void initialize_flags();
 298   void initialize_size_info();
 299   void initialize_generations()                { ShouldNotReachHere(); }
 300 
 301  public:
 302   // Accessors
 303   size_t min_gen1_size()     { return _min_gen1_size; }
 304   size_t initial_gen1_size() { return _initial_gen1_size; }
 305   size_t max_gen1_size()     { return _max_gen1_size; }
 306 
 307   // Inherited methods
 308   TwoGenerationCollectorPolicy* as_two_generation_policy() { return this; }
 309 
 310   int number_of_generations()          { return 2; }
 311   BarrierSet::Name barrier_set_name()  { return BarrierSet::CardTableModRef; }

 312 
 313   virtual CollectorPolicy::Name kind() {
 314     return CollectorPolicy::TwoGenerationCollectorPolicyKind;
 315   }
 316 
 317   // Returns true is gen0 sizes were adjusted
 318   bool adjust_gen0_sizes(size_t* gen0_size_ptr, size_t* gen1_size_ptr,
 319                          const size_t heap_size, const size_t min_gen1_size);
 320 };
 321 
 322 class MarkSweepPolicy : public TwoGenerationCollectorPolicy {
 323  protected:
 324   void initialize_generations();
 325 
 326  public:
 327   MarkSweepPolicy();
 328 
 329   MarkSweepPolicy* as_mark_sweep_policy() { return this; }
 330 
 331   void initialize_gc_policy_counters();
src/share/vm/memory/collectorPolicy.hpp
Index Unified diffs Context diffs Sdiffs Patch New Old Previous File Next File