1 /*
   2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc_implementation/shared/collectorCounters.hpp"
  31 #include "gc_implementation/shared/gcTraceTime.hpp"
  32 #include "gc_implementation/shared/vmGCOperations.hpp"
  33 #include "gc_interface/collectedHeap.inline.hpp"
  34 #include "memory/filemap.hpp"
  35 #include "memory/gcLocker.inline.hpp"
  36 #include "memory/genCollectedHeap.hpp"
  37 #include "memory/genOopClosures.inline.hpp"
  38 #include "memory/generation.inline.hpp"
  39 #include "memory/generationSpec.hpp"
  40 #include "memory/resourceArea.hpp"
  41 #include "memory/sharedHeap.hpp"
  42 #include "memory/space.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "oops/oop.inline2.hpp"
  45 #include "runtime/biasedLocking.hpp"
  46 #include "runtime/fprofiler.hpp"
  47 #include "runtime/handles.hpp"
  48 #include "runtime/handles.inline.hpp"
  49 #include "runtime/java.hpp"
  50 #include "runtime/vmThread.hpp"
  51 #include "services/memoryService.hpp"
  52 #include "utilities/vmError.hpp"
  53 #include "utilities/workgroup.hpp"
  54 #include "utilities/macros.hpp"
  55 #if INCLUDE_ALL_GCS
  56 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  57 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  58 #endif // INCLUDE_ALL_GCS
  59 
  60 GenCollectedHeap* GenCollectedHeap::_gch;
  61 NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)
  62 
  63 // The set of potentially parallel tasks in strong root scanning.
  64 enum GCH_process_strong_roots_tasks {
  65   // We probably want to parallelize both of these internally, but for now...
  66   GCH_PS_younger_gens,
  67   // Leave this one last.
  68   GCH_PS_NumElements
  69 };
  70 
  71 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
  72   SharedHeap(policy),
  73   _gen_policy(policy),
  74   _gen_process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
  75   _full_collections_completed(0)
  76 {
  77   if (_gen_process_strong_tasks == NULL ||
  78       !_gen_process_strong_tasks->valid()) {
  79     vm_exit_during_initialization("Failed necessary allocation.");
  80   }
  81   assert(policy != NULL, "Sanity check");
  82 }
  83 
  84 jint GenCollectedHeap::initialize() {
  85   CollectedHeap::pre_initialize();
  86 
  87   int i;
  88   _n_gens = gen_policy()->number_of_generations();
  89 
  90   // While there are no constraints in the GC code that HeapWordSize
  91   // be any particular value, there are multiple other areas in the
  92   // system which believe this to be true (e.g. oop->object_size in some
  93   // cases incorrectly returns the size in wordSize units rather than
  94   // HeapWordSize).
  95   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  96 
  97   // The heap must be at least as aligned as generations.
  98   size_t gen_alignment = Generation::GenGrain;
  99 
 100   _gen_specs = gen_policy()->generations();
 101 
 102   // Make sure the sizes are all aligned.
 103   for (i = 0; i < _n_gens; i++) {
 104     _gen_specs[i]->align(gen_alignment);
 105   }
 106 
 107   // Allocate space for the heap.
 108 
 109   char* heap_address;
 110   size_t total_reserved = 0;
 111   int n_covered_regions = 0;
 112   ReservedSpace heap_rs;
 113 
 114   size_t heap_alignment = collector_policy()->max_alignment();
 115 
 116   heap_address = allocate(heap_alignment, &total_reserved,
 117                           &n_covered_regions, &heap_rs);
 118 
 119   if (!heap_rs.is_reserved()) {
 120     vm_shutdown_during_initialization(
 121       "Could not reserve enough space for object heap");
 122     return JNI_ENOMEM;
 123   }
 124 
 125   _reserved = MemRegion((HeapWord*)heap_rs.base(),
 126                         (HeapWord*)(heap_rs.base() + heap_rs.size()));
 127 
 128   // It is important to do this in a way such that concurrent readers can't
 129   // temporarily think somethings in the heap.  (Seen this happen in asserts.)
 130   _reserved.set_word_size(0);
 131   _reserved.set_start((HeapWord*)heap_rs.base());
 132   size_t actual_heap_size = heap_rs.size();
 133   _reserved.set_end((HeapWord*)(heap_rs.base() + actual_heap_size));
 134 
 135   _rem_set = collector_policy()->create_rem_set(_reserved, n_covered_regions);
 136   set_barrier_set(rem_set()->bs());
 137 
 138   _gch = this;
 139 
 140   for (i = 0; i < _n_gens; i++) {
 141     ReservedSpace this_rs = heap_rs.first_part(_gen_specs[i]->max_size(), false, false);
 142     _gens[i] = _gen_specs[i]->init(this_rs, i, rem_set());
 143     heap_rs = heap_rs.last_part(_gen_specs[i]->max_size());
 144   }
 145   clear_incremental_collection_failed();
 146 
 147 #if INCLUDE_ALL_GCS
 148   // If we are running CMS, create the collector responsible
 149   // for collecting the CMS generations.
 150   if (collector_policy()->is_concurrent_mark_sweep_policy()) {
 151     bool success = create_cms_collector();
 152     if (!success) return JNI_ENOMEM;
 153   }
 154 #endif // INCLUDE_ALL_GCS
 155 
 156   return JNI_OK;
 157 }
 158 
 159 
 160 char* GenCollectedHeap::allocate(size_t alignment,
 161                                  size_t* _total_reserved,
 162                                  int* _n_covered_regions,
 163                                  ReservedSpace* heap_rs){
 164   const char overflow_msg[] = "The size of the object heap + VM data exceeds "
 165     "the maximum representable size";
 166 
 167   // Now figure out the total size.
 168   size_t total_reserved = 0;
 169   int n_covered_regions = 0;
 170   const size_t pageSize = UseLargePages ?
 171       os::large_page_size() : os::vm_page_size();
 172 
 173   assert(alignment % pageSize == 0, "Must be");
 174 
 175   for (int i = 0; i < _n_gens; i++) {
 176     total_reserved += _gen_specs[i]->max_size();
 177     if (total_reserved < _gen_specs[i]->max_size()) {
 178       vm_exit_during_initialization(overflow_msg);
 179     }
 180     n_covered_regions += _gen_specs[i]->n_covered_regions();
 181   }
 182   assert(total_reserved % alignment == 0,
 183          err_msg("Gen size; total_reserved=" SIZE_FORMAT ", alignment="
 184                  SIZE_FORMAT, total_reserved, alignment));
 185 
 186   // Needed until the cardtable is fixed to have the right number
 187   // of covered regions.
 188   n_covered_regions += 2;
 189 
 190   *_total_reserved = total_reserved;
 191   *_n_covered_regions = n_covered_regions;
 192 
 193   *heap_rs = Universe::reserve_heap(total_reserved, alignment);
 194   return heap_rs->base();
 195 }
 196 
 197 
 198 void GenCollectedHeap::post_initialize() {
 199   SharedHeap::post_initialize();
 200   TwoGenerationCollectorPolicy *policy =
 201     (TwoGenerationCollectorPolicy *)collector_policy();
 202   guarantee(policy->is_two_generation_policy(), "Illegal policy type");
 203   DefNewGeneration* def_new_gen = (DefNewGeneration*) get_gen(0);
 204   assert(def_new_gen->kind() == Generation::DefNew ||
 205          def_new_gen->kind() == Generation::ParNew ||
 206          def_new_gen->kind() == Generation::ASParNew,
 207          "Wrong generation kind");
 208 
 209   Generation* old_gen = get_gen(1);
 210   assert(old_gen->kind() == Generation::ConcurrentMarkSweep ||
 211          old_gen->kind() == Generation::ASConcurrentMarkSweep ||
 212          old_gen->kind() == Generation::MarkSweepCompact,
 213     "Wrong generation kind");
 214 
 215   policy->initialize_size_policy(def_new_gen->eden()->capacity(),
 216                                  old_gen->capacity(),
 217                                  def_new_gen->from()->capacity());
 218   policy->initialize_gc_policy_counters();
 219 }
 220 
 221 void GenCollectedHeap::ref_processing_init() {
 222   SharedHeap::ref_processing_init();
 223   for (int i = 0; i < _n_gens; i++) {
 224     _gens[i]->ref_processor_init();
 225   }
 226 }
 227 
 228 size_t GenCollectedHeap::capacity() const {
 229   size_t res = 0;
 230   for (int i = 0; i < _n_gens; i++) {
 231     res += _gens[i]->capacity();
 232   }
 233   return res;
 234 }
 235 
 236 size_t GenCollectedHeap::used() const {
 237   size_t res = 0;
 238   for (int i = 0; i < _n_gens; i++) {
 239     res += _gens[i]->used();
 240   }
 241   return res;
 242 }
 243 
 244 // Save the "used_region" for generations level and lower.
 245 void GenCollectedHeap::save_used_regions(int level) {
 246   assert(level < _n_gens, "Illegal level parameter");
 247   for (int i = level; i >= 0; i--) {
 248     _gens[i]->save_used_region();
 249   }
 250 }
 251 
 252 size_t GenCollectedHeap::max_capacity() const {
 253   size_t res = 0;
 254   for (int i = 0; i < _n_gens; i++) {
 255     res += _gens[i]->max_capacity();
 256   }
 257   return res;
 258 }
 259 
 260 // Update the _full_collections_completed counter
 261 // at the end of a stop-world full GC.
 262 unsigned int GenCollectedHeap::update_full_collections_completed() {
 263   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 264   assert(_full_collections_completed <= _total_full_collections,
 265          "Can't complete more collections than were started");
 266   _full_collections_completed = _total_full_collections;
 267   ml.notify_all();
 268   return _full_collections_completed;
 269 }
 270 
 271 // Update the _full_collections_completed counter, as appropriate,
 272 // at the end of a concurrent GC cycle. Note the conditional update
 273 // below to allow this method to be called by a concurrent collector
 274 // without synchronizing in any manner with the VM thread (which
 275 // may already have initiated a STW full collection "concurrently").
 276 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
 277   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 278   assert((_full_collections_completed <= _total_full_collections) &&
 279          (count <= _total_full_collections),
 280          "Can't complete more collections than were started");
 281   if (count > _full_collections_completed) {
 282     _full_collections_completed = count;
 283     ml.notify_all();
 284   }
 285   return _full_collections_completed;
 286 }
 287 
 288 
 289 #ifndef PRODUCT
 290 // Override of memory state checking method in CollectedHeap:
 291 // Some collectors (CMS for example) can't have badHeapWordVal written
 292 // in the first two words of an object. (For instance , in the case of
 293 // CMS these words hold state used to synchronize between certain
 294 // (concurrent) GC steps and direct allocating mutators.)
 295 // The skip_header_HeapWords() method below, allows us to skip
 296 // over the requisite number of HeapWord's. Note that (for
 297 // generational collectors) this means that those many words are
 298 // skipped in each object, irrespective of the generation in which
 299 // that object lives. The resultant loss of precision seems to be
 300 // harmless and the pain of avoiding that imprecision appears somewhat
 301 // higher than we are prepared to pay for such rudimentary debugging
 302 // support.
 303 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
 304                                                          size_t size) {
 305   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 306     // We are asked to check a size in HeapWords,
 307     // but the memory is mangled in juint words.
 308     juint* start = (juint*) (addr + skip_header_HeapWords());
 309     juint* end   = (juint*) (addr + size);
 310     for (juint* slot = start; slot < end; slot += 1) {
 311       assert(*slot == badHeapWordVal,
 312              "Found non badHeapWordValue in pre-allocation check");
 313     }
 314   }
 315 }
 316 #endif
 317 
 318 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 319                                                bool is_tlab,
 320                                                bool first_only) {
 321   HeapWord* res;
 322   for (int i = 0; i < _n_gens; i++) {
 323     if (_gens[i]->should_allocate(size, is_tlab)) {
 324       res = _gens[i]->allocate(size, is_tlab);
 325       if (res != NULL) return res;
 326       else if (first_only) break;
 327     }
 328   }
 329   // Otherwise...
 330   return NULL;
 331 }
 332 
 333 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 334                                          bool* gc_overhead_limit_was_exceeded) {
 335   return collector_policy()->mem_allocate_work(size,
 336                                                false /* is_tlab */,
 337                                                gc_overhead_limit_was_exceeded);
 338 }
 339 
 340 bool GenCollectedHeap::must_clear_all_soft_refs() {
 341   return _gc_cause == GCCause::_last_ditch_collection;
 342 }
 343 
 344 bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
 345   return UseConcMarkSweepGC &&
 346          ((cause == GCCause::_gc_locker && GCLockerInvokesConcurrent) ||
 347           (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
 348 }
 349 
 350 void GenCollectedHeap::do_collection(bool  full,
 351                                      bool   clear_all_soft_refs,
 352                                      size_t size,
 353                                      bool   is_tlab,
 354                                      int    max_level) {
 355   bool prepared_for_verification = false;
 356   ResourceMark rm;
 357   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 358 
 359   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 360   assert(my_thread->is_VM_thread() ||
 361          my_thread->is_ConcurrentGC_thread(),
 362          "incorrect thread type capability");
 363   assert(Heap_lock->is_locked(),
 364          "the requesting thread should have the Heap_lock");
 365   guarantee(!is_gc_active(), "collection is not reentrant");
 366   assert(max_level < n_gens(), "sanity check");
 367 
 368   if (GC_locker::check_active_before_gc()) {
 369     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 370   }
 371 
 372   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 373                           collector_policy()->should_clear_all_soft_refs();
 374 
 375   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
 376 
 377   const size_t metadata_prev_used = MetaspaceAux::allocated_used_bytes();
 378 
 379   print_heap_before_gc();
 380 
 381   {
 382     FlagSetting fl(_is_gc_active, true);
 383 
 384     bool complete = full && (max_level == (n_gens()-1));
 385     const char* gc_cause_prefix = complete ? "Full GC" : "GC";
 386     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
 387     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
 388     GCTraceTime t(GCCauseString(gc_cause_prefix, gc_cause()), PrintGCDetails, false, NULL);
 389 
 390     gc_prologue(complete);
 391     increment_total_collections(complete);
 392 
 393     size_t gch_prev_used = used();
 394 
 395     int starting_level = 0;
 396     if (full) {
 397       // Search for the oldest generation which will collect all younger
 398       // generations, and start collection loop there.
 399       for (int i = max_level; i >= 0; i--) {
 400         if (_gens[i]->full_collects_younger_generations()) {
 401           starting_level = i;
 402           break;
 403         }
 404       }
 405     }
 406 
 407     bool must_restore_marks_for_biased_locking = false;
 408 
 409     int max_level_collected = starting_level;
 410     for (int i = starting_level; i <= max_level; i++) {
 411       if (_gens[i]->should_collect(full, size, is_tlab)) {
 412         if (i == n_gens() - 1) {  // a major collection is to happen
 413           if (!complete) {
 414             // The full_collections increment was missed above.
 415             increment_total_full_collections();
 416           }
 417           pre_full_gc_dump(NULL);    // do any pre full gc dumps
 418         }
 419         // Timer for individual generations. Last argument is false: no CR
 420         // FIXME: We should try to start the timing earlier to cover more of the GC pause
 421         GCTraceTime t1(_gens[i]->short_name(), PrintGCDetails, false, NULL);
 422         TraceCollectorStats tcs(_gens[i]->counters());
 423         TraceMemoryManagerStats tmms(_gens[i]->kind(),gc_cause());
 424 
 425         size_t prev_used = _gens[i]->used();
 426         _gens[i]->stat_record()->invocations++;
 427         _gens[i]->stat_record()->accumulated_time.start();
 428 
 429         // Must be done anew before each collection because
 430         // a previous collection will do mangling and will
 431         // change top of some spaces.
 432         record_gen_tops_before_GC();
 433 
 434         if (PrintGC && Verbose) {
 435           gclog_or_tty->print("level=%d invoke=%d size=" SIZE_FORMAT,
 436                      i,
 437                      _gens[i]->stat_record()->invocations,
 438                      size*HeapWordSize);
 439         }
 440 
 441         if (VerifyBeforeGC && i >= VerifyGCLevel &&
 442             total_collections() >= VerifyGCStartAt) {
 443           HandleMark hm;  // Discard invalid handles created during verification
 444           if (!prepared_for_verification) {
 445             prepare_for_verify();
 446             prepared_for_verification = true;
 447           }
 448           Universe::verify(" VerifyBeforeGC:");
 449         }
 450         COMPILER2_PRESENT(DerivedPointerTable::clear());
 451 
 452         if (!must_restore_marks_for_biased_locking &&
 453             _gens[i]->performs_in_place_marking()) {
 454           // We perform this mark word preservation work lazily
 455           // because it's only at this point that we know whether we
 456           // absolutely have to do it; we want to avoid doing it for
 457           // scavenge-only collections where it's unnecessary
 458           must_restore_marks_for_biased_locking = true;
 459           BiasedLocking::preserve_marks();
 460         }
 461 
 462         // Do collection work
 463         {
 464           // Note on ref discovery: For what appear to be historical reasons,
 465           // GCH enables and disabled (by enqueing) refs discovery.
 466           // In the future this should be moved into the generation's
 467           // collect method so that ref discovery and enqueueing concerns
 468           // are local to a generation. The collect method could return
 469           // an appropriate indication in the case that notification on
 470           // the ref lock was needed. This will make the treatment of
 471           // weak refs more uniform (and indeed remove such concerns
 472           // from GCH). XXX
 473 
 474           HandleMark hm;  // Discard invalid handles created during gc
 475           save_marks();   // save marks for all gens
 476           // We want to discover references, but not process them yet.
 477           // This mode is disabled in process_discovered_references if the
 478           // generation does some collection work, or in
 479           // enqueue_discovered_references if the generation returns
 480           // without doing any work.
 481           ReferenceProcessor* rp = _gens[i]->ref_processor();
 482           // If the discovery of ("weak") refs in this generation is
 483           // atomic wrt other collectors in this configuration, we
 484           // are guaranteed to have empty discovered ref lists.
 485           if (rp->discovery_is_atomic()) {
 486             rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
 487             rp->setup_policy(do_clear_all_soft_refs);
 488           } else {
 489             // collect() below will enable discovery as appropriate
 490           }
 491           _gens[i]->collect(full, do_clear_all_soft_refs, size, is_tlab);
 492           if (!rp->enqueuing_is_done()) {
 493             rp->enqueue_discovered_references();
 494           } else {
 495             rp->set_enqueuing_is_done(false);
 496           }
 497           rp->verify_no_references_recorded();
 498         }
 499         max_level_collected = i;
 500 
 501         // Determine if allocation request was met.
 502         if (size > 0) {
 503           if (!is_tlab || _gens[i]->supports_tlab_allocation()) {
 504             if (size*HeapWordSize <= _gens[i]->unsafe_max_alloc_nogc()) {
 505               size = 0;
 506             }
 507           }
 508         }
 509 
 510         COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 511 
 512         _gens[i]->stat_record()->accumulated_time.stop();
 513 
 514         update_gc_stats(i, full);
 515 
 516         if (VerifyAfterGC && i >= VerifyGCLevel &&
 517             total_collections() >= VerifyGCStartAt) {
 518           HandleMark hm;  // Discard invalid handles created during verification
 519           Universe::verify(" VerifyAfterGC:");
 520         }
 521 
 522         if (PrintGCDetails) {
 523           gclog_or_tty->print(":");
 524           _gens[i]->print_heap_change(prev_used);
 525         }
 526       }
 527     }
 528 
 529     // Update "complete" boolean wrt what actually transpired --
 530     // for instance, a promotion failure could have led to
 531     // a whole heap collection.
 532     complete = complete || (max_level_collected == n_gens() - 1);
 533 
 534     if (complete) { // We did a "major" collection
 535       // FIXME: See comment at pre_full_gc_dump call
 536       post_full_gc_dump(NULL);   // do any post full gc dumps
 537     }
 538 
 539     if (PrintGCDetails) {
 540       print_heap_change(gch_prev_used);
 541 
 542       // Print metaspace info for full GC with PrintGCDetails flag.
 543       if (complete) {
 544         MetaspaceAux::print_metaspace_change(metadata_prev_used);
 545       }
 546     }
 547 
 548     for (int j = max_level_collected; j >= 0; j -= 1) {
 549       // Adjust generation sizes.
 550       _gens[j]->compute_new_size();
 551     }
 552 
 553     if (complete) {
 554       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 555       ClassLoaderDataGraph::purge();
 556       MetaspaceAux::verify_metrics();
 557       // Resize the metaspace capacity after full collections
 558       MetaspaceGC::compute_new_size();
 559       update_full_collections_completed();
 560     }
 561 
 562     // Track memory usage and detect low memory after GC finishes
 563     MemoryService::track_memory_usage();
 564 
 565     gc_epilogue(complete);
 566 
 567     if (must_restore_marks_for_biased_locking) {
 568       BiasedLocking::restore_marks();
 569     }
 570   }
 571 
 572   AdaptiveSizePolicy* sp = gen_policy()->size_policy();
 573   AdaptiveSizePolicyOutput(sp, total_collections());
 574 
 575   print_heap_after_gc();
 576 
 577 #ifdef TRACESPINNING
 578   ParallelTaskTerminator::print_termination_counts();
 579 #endif
 580 }
 581 
 582 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 583   return collector_policy()->satisfy_failed_allocation(size, is_tlab);
 584 }
 585 
 586 void GenCollectedHeap::set_par_threads(uint t) {
 587   SharedHeap::set_par_threads(t);
 588   _gen_process_strong_tasks->set_n_threads(t);
 589 }
 590 
 591 void GenCollectedHeap::
 592 gen_process_strong_roots(int level,
 593                          bool younger_gens_as_roots,
 594                          bool activate_scope,
 595                          bool is_scavenging,
 596                          SharedHeap::ScanningOption so,
 597                          OopsInGenClosure* not_older_gens,
 598                          bool do_code_roots,
 599                          OopsInGenClosure* older_gens,
 600                          KlassClosure* klass_closure) {
 601   // General strong roots.
 602 
 603   if (!do_code_roots) {
 604     SharedHeap::process_strong_roots(activate_scope, is_scavenging, so,
 605                                      not_older_gens, NULL, klass_closure);
 606   } else {
 607     bool do_code_marking = (activate_scope || nmethod::oops_do_marking_is_active());
 608     CodeBlobToOopClosure code_roots(not_older_gens, /*do_marking=*/ do_code_marking);
 609     SharedHeap::process_strong_roots(activate_scope, is_scavenging, so,
 610                                      not_older_gens, &code_roots, klass_closure);
 611   }
 612 
 613   if (younger_gens_as_roots) {
 614     if (!_gen_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
 615       for (int i = 0; i < level; i++) {
 616         not_older_gens->set_generation(_gens[i]);
 617         _gens[i]->oop_iterate(not_older_gens);
 618       }
 619       not_older_gens->reset_generation();
 620     }
 621   }
 622   // When collection is parallel, all threads get to cooperate to do
 623   // older-gen scanning.
 624   for (int i = level+1; i < _n_gens; i++) {
 625     older_gens->set_generation(_gens[i]);
 626     rem_set()->younger_refs_iterate(_gens[i], older_gens);
 627     older_gens->reset_generation();
 628   }
 629 
 630   _gen_process_strong_tasks->all_tasks_completed();
 631 }
 632 
 633 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure,
 634                                               CodeBlobClosure* code_roots) {
 635   SharedHeap::process_weak_roots(root_closure, code_roots);
 636   // "Local" "weak" refs
 637   for (int i = 0; i < _n_gens; i++) {
 638     _gens[i]->ref_processor()->weak_oops_do(root_closure);
 639   }
 640 }
 641 
 642 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
 643 void GenCollectedHeap::                                                 \
 644 oop_since_save_marks_iterate(int level,                                 \
 645                              OopClosureType* cur,                       \
 646                              OopClosureType* older) {                   \
 647   _gens[level]->oop_since_save_marks_iterate##nv_suffix(cur);           \
 648   for (int i = level+1; i < n_gens(); i++) {                            \
 649     _gens[i]->oop_since_save_marks_iterate##nv_suffix(older);           \
 650   }                                                                     \
 651 }
 652 
 653 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
 654 
 655 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
 656 
 657 bool GenCollectedHeap::no_allocs_since_save_marks(int level) {
 658   for (int i = level; i < _n_gens; i++) {
 659     if (!_gens[i]->no_allocs_since_save_marks()) return false;
 660   }
 661   return true;
 662 }
 663 
 664 bool GenCollectedHeap::supports_inline_contig_alloc() const {
 665   return _gens[0]->supports_inline_contig_alloc();
 666 }
 667 
 668 HeapWord** GenCollectedHeap::top_addr() const {
 669   return _gens[0]->top_addr();
 670 }
 671 
 672 HeapWord** GenCollectedHeap::end_addr() const {
 673   return _gens[0]->end_addr();
 674 }
 675 
 676 size_t GenCollectedHeap::unsafe_max_alloc() {
 677   return _gens[0]->unsafe_max_alloc_nogc();
 678 }
 679 
 680 // public collection interfaces
 681 
 682 void GenCollectedHeap::collect(GCCause::Cause cause) {
 683   if (should_do_concurrent_full_gc(cause)) {
 684 #if INCLUDE_ALL_GCS
 685     // mostly concurrent full collection
 686     collect_mostly_concurrent(cause);
 687 #else  // INCLUDE_ALL_GCS
 688     ShouldNotReachHere();
 689 #endif // INCLUDE_ALL_GCS
 690   } else {
 691 #ifdef ASSERT
 692     if (cause == GCCause::_scavenge_alot) {
 693       // minor collection only
 694       collect(cause, 0);
 695     } else {
 696       // Stop-the-world full collection
 697       collect(cause, n_gens() - 1);
 698     }
 699 #else
 700     // Stop-the-world full collection
 701     collect(cause, n_gens() - 1);
 702 #endif
 703   }
 704 }
 705 
 706 void GenCollectedHeap::collect(GCCause::Cause cause, int max_level) {
 707   // The caller doesn't have the Heap_lock
 708   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 709   MutexLocker ml(Heap_lock);
 710   collect_locked(cause, max_level);
 711 }
 712 
 713 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
 714   // The caller has the Heap_lock
 715   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
 716   collect_locked(cause, n_gens() - 1);
 717 }
 718 
 719 // this is the private collection interface
 720 // The Heap_lock is expected to be held on entry.
 721 
 722 void GenCollectedHeap::collect_locked(GCCause::Cause cause, int max_level) {
 723   // Read the GC count while holding the Heap_lock
 724   unsigned int gc_count_before      = total_collections();
 725   unsigned int full_gc_count_before = total_full_collections();
 726   {
 727     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
 728     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 729                          cause, max_level);
 730     VMThread::execute(&op);
 731   }
 732 }
 733 
 734 #if INCLUDE_ALL_GCS
 735 bool GenCollectedHeap::create_cms_collector() {
 736 
 737   assert(((_gens[1]->kind() == Generation::ConcurrentMarkSweep) ||
 738          (_gens[1]->kind() == Generation::ASConcurrentMarkSweep)),
 739          "Unexpected generation kinds");
 740   // Skip two header words in the block content verification
 741   NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();)
 742   CMSCollector* collector = new CMSCollector(
 743     (ConcurrentMarkSweepGeneration*)_gens[1],
 744     _rem_set->as_CardTableRS(),
 745     (ConcurrentMarkSweepPolicy*) collector_policy());
 746 
 747   if (collector == NULL || !collector->completed_initialization()) {
 748     if (collector) {
 749       delete collector;  // Be nice in embedded situation
 750     }
 751     vm_shutdown_during_initialization("Could not create CMS collector");
 752     return false;
 753   }
 754   return true;  // success
 755 }
 756 
 757 void GenCollectedHeap::collect_mostly_concurrent(GCCause::Cause cause) {
 758   assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");
 759 
 760   MutexLocker ml(Heap_lock);
 761   // Read the GC counts while holding the Heap_lock
 762   unsigned int full_gc_count_before = total_full_collections();
 763   unsigned int gc_count_before      = total_collections();
 764   {
 765     MutexUnlocker mu(Heap_lock);
 766     VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
 767     VMThread::execute(&op);
 768   }
 769 }
 770 #endif // INCLUDE_ALL_GCS
 771 
 772 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 773    do_full_collection(clear_all_soft_refs, _n_gens - 1);
 774 }
 775 
 776 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
 777                                           int max_level) {
 778   int local_max_level;
 779   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
 780       gc_cause() == GCCause::_gc_locker) {
 781     local_max_level = 0;
 782   } else {
 783     local_max_level = max_level;
 784   }
 785 
 786   do_collection(true                 /* full */,
 787                 clear_all_soft_refs  /* clear_all_soft_refs */,
 788                 0                    /* size */,
 789                 false                /* is_tlab */,
 790                 local_max_level      /* max_level */);
 791   // Hack XXX FIX ME !!!
 792   // A scavenge may not have been attempted, or may have
 793   // been attempted and failed, because the old gen was too full
 794   if (local_max_level == 0 && gc_cause() == GCCause::_gc_locker &&
 795       incremental_collection_will_fail(false /* don't consult_young */)) {
 796     if (PrintGCDetails) {
 797       gclog_or_tty->print_cr("GC locker: Trying a full collection "
 798                              "because scavenge failed");
 799     }
 800     // This time allow the old gen to be collected as well
 801     do_collection(true                 /* full */,
 802                   clear_all_soft_refs  /* clear_all_soft_refs */,
 803                   0                    /* size */,
 804                   false                /* is_tlab */,
 805                   n_gens() - 1         /* max_level */);
 806   }
 807 }
 808 
 809 bool GenCollectedHeap::is_in_young(oop p) {
 810   bool result = ((HeapWord*)p) < _gens[_n_gens - 1]->reserved().start();
 811   assert(result == _gens[0]->is_in_reserved(p),
 812          err_msg("incorrect test - result=%d, p=" PTR_FORMAT, result, (void*)p));
 813   return result;
 814 }
 815 
 816 // Returns "TRUE" iff "p" points into the committed areas of the heap.
 817 bool GenCollectedHeap::is_in(const void* p) const {
 818   #ifndef ASSERT
 819   guarantee(VerifyBeforeGC      ||
 820             VerifyDuringGC      ||
 821             VerifyBeforeExit    ||
 822             VerifyDuringStartup ||
 823             PrintAssembly       ||
 824             tty->count() != 0   ||   // already printing
 825             VerifyAfterGC       ||
 826     VMError::fatal_error_in_progress(), "too expensive");
 827 
 828   #endif
 829   // This might be sped up with a cache of the last generation that
 830   // answered yes.
 831   for (int i = 0; i < _n_gens; i++) {
 832     if (_gens[i]->is_in(p)) return true;
 833   }
 834   // Otherwise...
 835   return false;
 836 }
 837 
 838 #ifdef ASSERT
 839 // Don't implement this by using is_in_young().  This method is used
 840 // in some cases to check that is_in_young() is correct.
 841 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
 842   assert(is_in_reserved(p) || p == NULL,
 843     "Does not work if address is non-null and outside of the heap");
 844   return p < _gens[_n_gens - 2]->reserved().end() && p != NULL;
 845 }
 846 #endif
 847 
 848 void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
 849   for (int i = 0; i < _n_gens; i++) {
 850     _gens[i]->oop_iterate(cl);
 851   }
 852 }
 853 
 854 void GenCollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
 855   for (int i = 0; i < _n_gens; i++) {
 856     _gens[i]->oop_iterate(mr, cl);
 857   }
 858 }
 859 
 860 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
 861   for (int i = 0; i < _n_gens; i++) {
 862     _gens[i]->object_iterate(cl);
 863   }
 864 }
 865 
 866 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
 867   for (int i = 0; i < _n_gens; i++) {
 868     _gens[i]->safe_object_iterate(cl);
 869   }
 870 }
 871 
 872 Space* GenCollectedHeap::space_containing(const void* addr) const {
 873   for (int i = 0; i < _n_gens; i++) {
 874     Space* res = _gens[i]->space_containing(addr);
 875     if (res != NULL) return res;
 876   }
 877   // Otherwise...
 878   assert(false, "Could not find containing space");
 879   return NULL;
 880 }
 881 
 882 
 883 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
 884   assert(is_in_reserved(addr), "block_start of address outside of heap");
 885   for (int i = 0; i < _n_gens; i++) {
 886     if (_gens[i]->is_in_reserved(addr)) {
 887       assert(_gens[i]->is_in(addr),
 888              "addr should be in allocated part of generation");
 889       return _gens[i]->block_start(addr);
 890     }
 891   }
 892   assert(false, "Some generation should contain the address");
 893   return NULL;
 894 }
 895 
 896 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
 897   assert(is_in_reserved(addr), "block_size of address outside of heap");
 898   for (int i = 0; i < _n_gens; i++) {
 899     if (_gens[i]->is_in_reserved(addr)) {
 900       assert(_gens[i]->is_in(addr),
 901              "addr should be in allocated part of generation");
 902       return _gens[i]->block_size(addr);
 903     }
 904   }
 905   assert(false, "Some generation should contain the address");
 906   return 0;
 907 }
 908 
 909 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
 910   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
 911   assert(block_start(addr) == addr, "addr must be a block start");
 912   for (int i = 0; i < _n_gens; i++) {
 913     if (_gens[i]->is_in_reserved(addr)) {
 914       return _gens[i]->block_is_obj(addr);
 915     }
 916   }
 917   assert(false, "Some generation should contain the address");
 918   return false;
 919 }
 920 
 921 bool GenCollectedHeap::supports_tlab_allocation() const {
 922   for (int i = 0; i < _n_gens; i += 1) {
 923     if (_gens[i]->supports_tlab_allocation()) {
 924       return true;
 925     }
 926   }
 927   return false;
 928 }
 929 
 930 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
 931   size_t result = 0;
 932   for (int i = 0; i < _n_gens; i += 1) {
 933     if (_gens[i]->supports_tlab_allocation()) {
 934       result += _gens[i]->tlab_capacity();
 935     }
 936   }
 937   return result;
 938 }
 939 
 940 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
 941   size_t result = 0;
 942   for (int i = 0; i < _n_gens; i += 1) {
 943     if (_gens[i]->supports_tlab_allocation()) {
 944       result += _gens[i]->unsafe_max_tlab_alloc();
 945     }
 946   }
 947   return result;
 948 }
 949 
 950 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
 951   bool gc_overhead_limit_was_exceeded;
 952   return collector_policy()->mem_allocate_work(size /* size */,
 953                                                true /* is_tlab */,
 954                                                &gc_overhead_limit_was_exceeded);
 955 }
 956 
 957 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
 958 // from the list headed by "*prev_ptr".
 959 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
 960   bool first = true;
 961   size_t min_size = 0;   // "first" makes this conceptually infinite.
 962   ScratchBlock **smallest_ptr, *smallest;
 963   ScratchBlock  *cur = *prev_ptr;
 964   while (cur) {
 965     assert(*prev_ptr == cur, "just checking");
 966     if (first || cur->num_words < min_size) {
 967       smallest_ptr = prev_ptr;
 968       smallest     = cur;
 969       min_size     = smallest->num_words;
 970       first        = false;
 971     }
 972     prev_ptr = &cur->next;
 973     cur     =  cur->next;
 974   }
 975   smallest      = *smallest_ptr;
 976   *smallest_ptr = smallest->next;
 977   return smallest;
 978 }
 979 
 980 // Sort the scratch block list headed by res into decreasing size order,
 981 // and set "res" to the result.
 982 static void sort_scratch_list(ScratchBlock*& list) {
 983   ScratchBlock* sorted = NULL;
 984   ScratchBlock* unsorted = list;
 985   while (unsorted) {
 986     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
 987     smallest->next  = sorted;
 988     sorted          = smallest;
 989   }
 990   list = sorted;
 991 }
 992 
 993 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
 994                                                size_t max_alloc_words) {
 995   ScratchBlock* res = NULL;
 996   for (int i = 0; i < _n_gens; i++) {
 997     _gens[i]->contribute_scratch(res, requestor, max_alloc_words);
 998   }
 999   sort_scratch_list(res);
1000   return res;
1001 }
1002 
1003 void GenCollectedHeap::release_scratch() {
1004   for (int i = 0; i < _n_gens; i++) {
1005     _gens[i]->reset_scratch();
1006   }
1007 }
1008 
1009 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
1010   void do_generation(Generation* gen) {
1011     gen->prepare_for_verify();
1012   }
1013 };
1014 
1015 void GenCollectedHeap::prepare_for_verify() {
1016   ensure_parsability(false);        // no need to retire TLABs
1017   GenPrepareForVerifyClosure blk;
1018   generation_iterate(&blk, false);
1019 }
1020 
1021 
1022 void GenCollectedHeap::generation_iterate(GenClosure* cl,
1023                                           bool old_to_young) {
1024   if (old_to_young) {
1025     for (int i = _n_gens-1; i >= 0; i--) {
1026       cl->do_generation(_gens[i]);
1027     }
1028   } else {
1029     for (int i = 0; i < _n_gens; i++) {
1030       cl->do_generation(_gens[i]);
1031     }
1032   }
1033 }
1034 
1035 void GenCollectedHeap::space_iterate(SpaceClosure* cl) {
1036   for (int i = 0; i < _n_gens; i++) {
1037     _gens[i]->space_iterate(cl, true);
1038   }
1039 }
1040 
1041 bool GenCollectedHeap::is_maximal_no_gc() const {
1042   for (int i = 0; i < _n_gens; i++) {
1043     if (!_gens[i]->is_maximal_no_gc()) {
1044       return false;
1045     }
1046   }
1047   return true;
1048 }
1049 
1050 void GenCollectedHeap::save_marks() {
1051   for (int i = 0; i < _n_gens; i++) {
1052     _gens[i]->save_marks();
1053   }
1054 }
1055 
1056 void GenCollectedHeap::compute_new_generation_sizes(int collectedGen) {
1057   for (int i = 0; i <= collectedGen; i++) {
1058     _gens[i]->compute_new_size();
1059   }
1060 }
1061 
1062 GenCollectedHeap* GenCollectedHeap::heap() {
1063   assert(_gch != NULL, "Uninitialized access to GenCollectedHeap::heap()");
1064   assert(_gch->kind() == CollectedHeap::GenCollectedHeap, "not a generational heap");
1065   return _gch;
1066 }
1067 
1068 
1069 void GenCollectedHeap::prepare_for_compaction() {
1070   guarantee(_n_gens = 2, "Wrong number of generations");
1071   Generation* old_gen = _gens[1];
1072   // Start by compacting into same gen.
1073   CompactPoint cp(old_gen, NULL, NULL);
1074   old_gen->prepare_for_compaction(&cp);
1075   Generation* young_gen = _gens[0];
1076   young_gen->prepare_for_compaction(&cp);
1077 }
1078 
1079 GCStats* GenCollectedHeap::gc_stats(int level) const {
1080   return _gens[level]->gc_stats();
1081 }
1082 
1083 void GenCollectedHeap::verify(bool silent, VerifyOption option /* ignored */) {
1084   for (int i = _n_gens-1; i >= 0; i--) {
1085     Generation* g = _gens[i];
1086     if (!silent) {
1087       gclog_or_tty->print(g->name());
1088       gclog_or_tty->print(" ");
1089     }
1090     g->verify();
1091   }
1092   if (!silent) {
1093     gclog_or_tty->print("remset ");
1094   }
1095   rem_set()->verify();
1096 }
1097 
1098 void GenCollectedHeap::print_on(outputStream* st) const {
1099   for (int i = 0; i < _n_gens; i++) {
1100     _gens[i]->print_on(st);
1101   }
1102   MetaspaceAux::print_on(st);
1103 }
1104 
1105 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1106   if (workers() != NULL) {
1107     workers()->threads_do(tc);
1108   }
1109 #if INCLUDE_ALL_GCS
1110   if (UseConcMarkSweepGC) {
1111     ConcurrentMarkSweepThread::threads_do(tc);
1112   }
1113 #endif // INCLUDE_ALL_GCS
1114 }
1115 
1116 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
1117 #if INCLUDE_ALL_GCS
1118   if (UseParNewGC) {
1119     workers()->print_worker_threads_on(st);
1120   }
1121   if (UseConcMarkSweepGC) {
1122     ConcurrentMarkSweepThread::print_all_on(st);
1123   }
1124 #endif // INCLUDE_ALL_GCS
1125 }
1126 
1127 void GenCollectedHeap::print_on_error(outputStream* st) const {
1128   this->CollectedHeap::print_on_error(st);
1129 
1130 #if INCLUDE_ALL_GCS
1131   if (UseConcMarkSweepGC) {
1132     st->cr();
1133     CMSCollector::print_on_error(st);
1134   }
1135 #endif // INCLUDE_ALL_GCS
1136 }
1137 
1138 void GenCollectedHeap::print_tracing_info() const {
1139   if (TraceGen0Time) {
1140     get_gen(0)->print_summary_info();
1141   }
1142   if (TraceGen1Time) {
1143     get_gen(1)->print_summary_info();
1144   }
1145 }
1146 
1147 void GenCollectedHeap::print_heap_change(size_t prev_used) const {
1148   if (PrintGCDetails && Verbose) {
1149     gclog_or_tty->print(" "  SIZE_FORMAT
1150                         "->" SIZE_FORMAT
1151                         "("  SIZE_FORMAT ")",
1152                         prev_used, used(), capacity());
1153   } else {
1154     gclog_or_tty->print(" "  SIZE_FORMAT "K"
1155                         "->" SIZE_FORMAT "K"
1156                         "("  SIZE_FORMAT "K)",
1157                         prev_used / K, used() / K, capacity() / K);
1158   }
1159 }
1160 
1161 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1162  private:
1163   bool _full;
1164  public:
1165   void do_generation(Generation* gen) {
1166     gen->gc_prologue(_full);
1167   }
1168   GenGCPrologueClosure(bool full) : _full(full) {};
1169 };
1170 
1171 void GenCollectedHeap::gc_prologue(bool full) {
1172   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1173 
1174   always_do_update_barrier = false;
1175   // Fill TLAB's and such
1176   CollectedHeap::accumulate_statistics_all_tlabs();
1177   ensure_parsability(true);   // retire TLABs
1178 
1179   // Walk generations
1180   GenGCPrologueClosure blk(full);
1181   generation_iterate(&blk, false);  // not old-to-young.
1182 };
1183 
1184 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1185  private:
1186   bool _full;
1187  public:
1188   void do_generation(Generation* gen) {
1189     gen->gc_epilogue(_full);
1190   }
1191   GenGCEpilogueClosure(bool full) : _full(full) {};
1192 };
1193 
1194 void GenCollectedHeap::gc_epilogue(bool full) {
1195 #ifdef COMPILER2
1196   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1197   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1198   guarantee(actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1199 #endif /* COMPILER2 */
1200 
1201   resize_all_tlabs();
1202 
1203   GenGCEpilogueClosure blk(full);
1204   generation_iterate(&blk, false);  // not old-to-young.
1205 
1206   if (!CleanChunkPoolAsync) {
1207     Chunk::clean_chunk_pool();
1208   }
1209 
1210   MetaspaceCounters::update_performance_counters();
1211   CompressedClassSpaceCounters::update_performance_counters();
1212 
1213   always_do_update_barrier = UseConcMarkSweepGC;
1214 };
1215 
1216 #ifndef PRODUCT
1217 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1218  private:
1219  public:
1220   void do_generation(Generation* gen) {
1221     gen->record_spaces_top();
1222   }
1223 };
1224 
1225 void GenCollectedHeap::record_gen_tops_before_GC() {
1226   if (ZapUnusedHeapArea) {
1227     GenGCSaveTopsBeforeGCClosure blk;
1228     generation_iterate(&blk, false);  // not old-to-young.
1229   }
1230 }
1231 #endif  // not PRODUCT
1232 
1233 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1234  public:
1235   void do_generation(Generation* gen) {
1236     gen->ensure_parsability();
1237   }
1238 };
1239 
1240 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1241   CollectedHeap::ensure_parsability(retire_tlabs);
1242   GenEnsureParsabilityClosure ep_cl;
1243   generation_iterate(&ep_cl, false);
1244 }
1245 
1246 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
1247                                               oop obj,
1248                                               size_t obj_size) {
1249   guarantee(old_gen->level() == 1, "We only get here with an old generation");
1250   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1251   HeapWord* result = NULL;
1252 
1253   result = old_gen->expand_and_allocate(obj_size, false);
1254 
1255   if (result != NULL) {
1256     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
1257   }
1258   return oop(result);
1259 }
1260 
1261 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1262   jlong _time;   // in ms
1263   jlong _now;    // in ms
1264 
1265  public:
1266   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1267 
1268   jlong time() { return _time; }
1269 
1270   void do_generation(Generation* gen) {
1271     _time = MIN2(_time, gen->time_of_last_gc(_now));
1272   }
1273 };
1274 
1275 jlong GenCollectedHeap::millis_since_last_gc() {
1276   // We need a monotonically non-deccreasing time in ms but
1277   // os::javaTimeMillis() does not guarantee monotonicity.
1278   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1279   GenTimeOfLastGCClosure tolgc_cl(now);
1280   // iterate over generations getting the oldest
1281   // time that a generation was collected
1282   generation_iterate(&tolgc_cl, false);
1283 
1284   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
1285   // provided the underlying platform provides such a time source
1286   // (and it is bug free). So we still have to guard against getting
1287   // back a time later than 'now'.
1288   jlong retVal = now - tolgc_cl.time();
1289   if (retVal < 0) {
1290     NOT_PRODUCT(warning("time warp: "INT64_FORMAT, retVal);)
1291     return 0;
1292   }
1293   return retVal;
1294 }