1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #ifndef __STDC_FORMAT_MACROS
  29 #define __STDC_FORMAT_MACROS
  30 #endif
  31 
  32 #ifdef TARGET_COMPILER_gcc
  33 # include "utilities/globalDefinitions_gcc.hpp"
  34 #endif
  35 #ifdef TARGET_COMPILER_visCPP
  36 # include "utilities/globalDefinitions_visCPP.hpp"
  37 #endif
  38 #ifdef TARGET_COMPILER_sparcWorks
  39 # include "utilities/globalDefinitions_sparcWorks.hpp"
  40 #endif
  41 
  42 #include "utilities/macros.hpp"
  43 
  44 // This file holds all globally used constants & types, class (forward)
  45 // declarations and a few frequently used utility functions.
  46 
  47 //----------------------------------------------------------------------------------------------------
  48 // Constants
  49 
  50 const int LogBytesPerShort   = 1;
  51 const int LogBytesPerInt     = 2;
  52 #ifdef _LP64
  53 const int LogBytesPerWord    = 3;
  54 #else
  55 const int LogBytesPerWord    = 2;
  56 #endif
  57 const int LogBytesPerLong    = 3;
  58 
  59 const int BytesPerShort      = 1 << LogBytesPerShort;
  60 const int BytesPerInt        = 1 << LogBytesPerInt;
  61 const int BytesPerWord       = 1 << LogBytesPerWord;
  62 const int BytesPerLong       = 1 << LogBytesPerLong;
  63 
  64 const int LogBitsPerByte     = 3;
  65 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
  66 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
  67 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
  68 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
  69 
  70 const int BitsPerByte        = 1 << LogBitsPerByte;
  71 const int BitsPerShort       = 1 << LogBitsPerShort;
  72 const int BitsPerInt         = 1 << LogBitsPerInt;
  73 const int BitsPerWord        = 1 << LogBitsPerWord;
  74 const int BitsPerLong        = 1 << LogBitsPerLong;
  75 
  76 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
  77 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
  78 
  79 const int WordsPerLong       = 2;       // Number of stack entries for longs
  80 
  81 const int oopSize            = sizeof(char*); // Full-width oop
  82 extern int heapOopSize;                       // Oop within a java object
  83 const int wordSize           = sizeof(char*);
  84 const int longSize           = sizeof(jlong);
  85 const int jintSize           = sizeof(jint);
  86 const int size_tSize         = sizeof(size_t);
  87 
  88 const int BytesPerOop        = BytesPerWord;  // Full-width oop
  89 
  90 extern int LogBytesPerHeapOop;                // Oop within a java object
  91 extern int LogBitsPerHeapOop;
  92 extern int BytesPerHeapOop;
  93 extern int BitsPerHeapOop;
  94 
  95 // Oop encoding heap max
  96 extern uint64_t OopEncodingHeapMax;
  97 
  98 const int BitsPerJavaInteger = 32;
  99 const int BitsPerJavaLong    = 64;
 100 const int BitsPerSize_t      = size_tSize * BitsPerByte;
 101 
 102 // Size of a char[] needed to represent a jint as a string in decimal.
 103 const int jintAsStringSize = 12;
 104 
 105 // In fact this should be
 106 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
 107 // see os::set_memory_serialize_page()
 108 #ifdef _LP64
 109 const int SerializePageShiftCount = 4;
 110 #else
 111 const int SerializePageShiftCount = 3;
 112 #endif
 113 
 114 // An opaque struct of heap-word width, so that HeapWord* can be a generic
 115 // pointer into the heap.  We require that object sizes be measured in
 116 // units of heap words, so that that
 117 //   HeapWord* hw;
 118 //   hw += oop(hw)->foo();
 119 // works, where foo is a method (like size or scavenge) that returns the
 120 // object size.
 121 class HeapWord {
 122   friend class VMStructs;
 123  private:
 124   char* i;
 125 #ifndef PRODUCT
 126  public:
 127   char* value() { return i; }
 128 #endif
 129 };
 130 
 131 // Analogous opaque struct for metadata allocated from
 132 // metaspaces.
 133 class MetaWord {
 134   friend class VMStructs;
 135  private:
 136   char* i;
 137 };
 138 
 139 // HeapWordSize must be 2^LogHeapWordSize.
 140 const int HeapWordSize        = sizeof(HeapWord);
 141 #ifdef _LP64
 142 const int LogHeapWordSize     = 3;
 143 #else
 144 const int LogHeapWordSize     = 2;
 145 #endif
 146 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 147 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 148 
 149 // The larger HeapWordSize for 64bit requires larger heaps
 150 // for the same application running in 64bit.  See bug 4967770.
 151 // The minimum alignment to a heap word size is done.  Other
 152 // parts of the memory system may required additional alignment
 153 // and are responsible for those alignments.
 154 #ifdef _LP64
 155 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
 156 #else
 157 #define ScaleForWordSize(x) (x)
 158 #endif
 159 
 160 // The minimum number of native machine words necessary to contain "byte_size"
 161 // bytes.
 162 inline size_t heap_word_size(size_t byte_size) {
 163   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 164 }
 165 
 166 
 167 const size_t K                  = 1024;
 168 const size_t M                  = K*K;
 169 const size_t G                  = M*K;
 170 const size_t HWperKB            = K / sizeof(HeapWord);
 171 
 172 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 173 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 174 
 175 // Constants for converting from a base unit to milli-base units.  For
 176 // example from seconds to milliseconds and microseconds
 177 
 178 const int MILLIUNITS    = 1000;         // milli units per base unit
 179 const int MICROUNITS    = 1000000;      // micro units per base unit
 180 const int NANOUNITS     = 1000000000;   // nano units per base unit
 181 
 182 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
 183 const jint  NANOSECS_PER_MILLISEC = 1000000;
 184 
 185 inline const char* proper_unit_for_byte_size(size_t s) {
 186 #ifdef _LP64
 187   if (s >= 10*G) {
 188     return "G";
 189   }
 190 #endif
 191   if (s >= 10*M) {
 192     return "M";
 193   } else if (s >= 10*K) {
 194     return "K";
 195   } else {
 196     return "B";
 197   }
 198 }
 199 
 200 template <class T>
 201 inline T byte_size_in_proper_unit(T s) {
 202 #ifdef _LP64
 203   if (s >= 10*G) {
 204     return (T)(s/G);
 205   }
 206 #endif
 207   if (s >= 10*M) {
 208     return (T)(s/M);
 209   } else if (s >= 10*K) {
 210     return (T)(s/K);
 211   } else {
 212     return s;
 213   }
 214 }
 215 
 216 //----------------------------------------------------------------------------------------------------
 217 // VM type definitions
 218 
 219 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 220 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 221 
 222 typedef intptr_t  intx;
 223 typedef uintptr_t uintx;
 224 
 225 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 226 const intx  max_intx  = (uintx)min_intx - 1;
 227 const uintx max_uintx = (uintx)-1;
 228 
 229 // Table of values:
 230 //      sizeof intx         4               8
 231 // min_intx             0x80000000      0x8000000000000000
 232 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 233 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 234 
 235 typedef unsigned int uint;   NEEDS_CLEANUP
 236 
 237 
 238 //----------------------------------------------------------------------------------------------------
 239 // Java type definitions
 240 
 241 // All kinds of 'plain' byte addresses
 242 typedef   signed char s_char;
 243 typedef unsigned char u_char;
 244 typedef u_char*       address;
 245 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
 246                                     // except for some implementations of a C++
 247                                     // linkage pointer to function. Should never
 248                                     // need one of those to be placed in this
 249                                     // type anyway.
 250 
 251 //  Utility functions to "portably" (?) bit twiddle pointers
 252 //  Where portable means keep ANSI C++ compilers quiet
 253 
 254 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
 255 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
 256 
 257 //  Utility functions to "portably" make cast to/from function pointers.
 258 
 259 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
 260 inline address_word  castable_address(address x)              { return address_word(x) ; }
 261 inline address_word  castable_address(void* x)                { return address_word(x) ; }
 262 
 263 // Pointer subtraction.
 264 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 265 // the range we might need to find differences from one end of the heap
 266 // to the other.
 267 // A typical use might be:
 268 //     if (pointer_delta(end(), top()) >= size) {
 269 //       // enough room for an object of size
 270 //       ...
 271 // and then additions like
 272 //       ... top() + size ...
 273 // are safe because we know that top() is at least size below end().
 274 inline size_t pointer_delta(const void* left,
 275                             const void* right,
 276                             size_t element_size) {
 277   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 278 }
 279 // A version specialized for HeapWord*'s.
 280 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 281   return pointer_delta(left, right, sizeof(HeapWord));
 282 }
 283 // A version specialized for MetaWord*'s.
 284 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
 285   return pointer_delta(left, right, sizeof(MetaWord));
 286 }
 287 
 288 //
 289 // ANSI C++ does not allow casting from one pointer type to a function pointer
 290 // directly without at best a warning. This macro accomplishes it silently
 291 // In every case that is present at this point the value be cast is a pointer
 292 // to a C linkage function. In somecase the type used for the cast reflects
 293 // that linkage and a picky compiler would not complain. In other cases because
 294 // there is no convenient place to place a typedef with extern C linkage (i.e
 295 // a platform dependent header file) it doesn't. At this point no compiler seems
 296 // picky enough to catch these instances (which are few). It is possible that
 297 // using templates could fix these for all cases. This use of templates is likely
 298 // so far from the middle of the road that it is likely to be problematic in
 299 // many C++ compilers.
 300 //
 301 #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
 302 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
 303 
 304 // Unsigned byte types for os and stream.hpp
 305 
 306 // Unsigned one, two, four and eigth byte quantities used for describing
 307 // the .class file format. See JVM book chapter 4.
 308 
 309 typedef jubyte  u1;
 310 typedef jushort u2;
 311 typedef juint   u4;
 312 typedef julong  u8;
 313 
 314 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 315 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 316 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 317 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 318 
 319 typedef jbyte  s1;
 320 typedef jshort s2;
 321 typedef jint   s4;
 322 typedef jlong  s8;
 323 
 324 //----------------------------------------------------------------------------------------------------
 325 // JVM spec restrictions
 326 
 327 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 328 
 329 
 330 //----------------------------------------------------------------------------------------------------
 331 // Default and minimum StringTableSize values
 332 
 333 const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
 334 const int minimumStringTableSize=1009;
 335 
 336 
 337 //----------------------------------------------------------------------------------------------------
 338 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
 339 //
 340 // Determines whether on-the-fly class replacement and frame popping are enabled.
 341 
 342 #define HOTSWAP
 343 
 344 //----------------------------------------------------------------------------------------------------
 345 // Object alignment, in units of HeapWords.
 346 //
 347 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 348 // reference fields can be naturally aligned.
 349 
 350 extern int MinObjAlignment;
 351 extern int MinObjAlignmentInBytes;
 352 extern int MinObjAlignmentInBytesMask;
 353 
 354 extern int LogMinObjAlignment;
 355 extern int LogMinObjAlignmentInBytes;
 356 
 357 const int LogKlassAlignmentInBytes = 3;
 358 const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
 359 const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
 360 const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
 361 
 362 // Klass encoding metaspace max size
 363 const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
 364 
 365 const jlong CompressedKlassPointersBase = NOT_LP64(0) LP64_ONLY(CONST64(0x800000000));  // 32*G
 366 
 367 // Machine dependent stuff
 368 
 369 #ifdef TARGET_ARCH_x86
 370 # include "globalDefinitions_x86.hpp"
 371 #endif
 372 #ifdef TARGET_ARCH_sparc
 373 # include "globalDefinitions_sparc.hpp"
 374 #endif
 375 #ifdef TARGET_ARCH_zero
 376 # include "globalDefinitions_zero.hpp"
 377 #endif
 378 #ifdef TARGET_ARCH_arm
 379 # include "globalDefinitions_arm.hpp"
 380 #endif
 381 #ifdef TARGET_ARCH_ppc
 382 # include "globalDefinitions_ppc.hpp"
 383 #endif
 384 
 385 /*
 386  * If a platform does not support native stack walking
 387  * the platform specific globalDefinitions (above)
 388  * can set PLATFORM_NATIVE_STACK_WALKING_SUPPORTED to 0
 389  */
 390 #ifndef PLATFORM_NATIVE_STACK_WALKING_SUPPORTED
 391 #define PLATFORM_NATIVE_STACK_WALKING_SUPPORTED 1
 392 #endif
 393 
 394 // The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
 395 // Note: this value must be a power of 2
 396 
 397 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
 398 
 399 // Signed variants of alignment helpers.  There are two versions of each, a macro
 400 // for use in places like enum definitions that require compile-time constant
 401 // expressions and a function for all other places so as to get type checking.
 402 
 403 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
 404 
 405 inline bool is_size_aligned(size_t size, size_t alignment) {
 406   return align_size_up_(size, alignment) == size;
 407 }
 408 
 409 inline bool is_ptr_aligned(void* ptr, size_t alignment) {
 410   return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr;
 411 }
 412 
 413 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
 414   return align_size_up_(size, alignment);
 415 }
 416 
 417 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
 418 
 419 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
 420   return align_size_down_(size, alignment);
 421 }
 422 
 423 #define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment)))
 424 
 425 inline void* align_ptr_up(void* ptr, size_t alignment) {
 426   return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment);
 427 }
 428 
 429 inline void* align_ptr_down(void* ptr, size_t alignment) {
 430   return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
 431 }
 432 
 433 // Align objects by rounding up their size, in HeapWord units.
 434 
 435 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
 436 
 437 inline intptr_t align_object_size(intptr_t size) {
 438   return align_size_up(size, MinObjAlignment);
 439 }
 440 
 441 inline bool is_object_aligned(intptr_t addr) {
 442   return addr == align_object_size(addr);
 443 }
 444 
 445 // Pad out certain offsets to jlong alignment, in HeapWord units.
 446 
 447 inline intptr_t align_object_offset(intptr_t offset) {
 448   return align_size_up(offset, HeapWordsPerLong);
 449 }
 450 
 451 inline void* align_pointer_up(const void* addr, size_t size) {
 452   return (void*) align_size_up_((uintptr_t)addr, size);
 453 }
 454 
 455 // Clamp an address to be within a specific page
 456 // 1. If addr is on the page it is returned as is
 457 // 2. If addr is above the page_address the start of the *next* page will be returned
 458 // 3. Otherwise, if addr is below the page_address the start of the page will be returned
 459 inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) {
 460   if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) {
 461     // address is in the specified page, just return it as is
 462     return addr;
 463   } else if (addr > page_address) {
 464     // address is above specified page, return start of next page
 465     return (address)align_size_down(intptr_t(page_address), page_size) + page_size;
 466   } else {
 467     // address is below specified page, return start of page
 468     return (address)align_size_down(intptr_t(page_address), page_size);
 469   }
 470 }
 471 
 472 
 473 // The expected size in bytes of a cache line, used to pad data structures.
 474 #define DEFAULT_CACHE_LINE_SIZE 64
 475 
 476 
 477 //----------------------------------------------------------------------------------------------------
 478 // Utility macros for compilers
 479 // used to silence compiler warnings
 480 
 481 #define Unused_Variable(var) var
 482 
 483 
 484 //----------------------------------------------------------------------------------------------------
 485 // Miscellaneous
 486 
 487 // 6302670 Eliminate Hotspot __fabsf dependency
 488 // All fabs() callers should call this function instead, which will implicitly
 489 // convert the operand to double, avoiding a dependency on __fabsf which
 490 // doesn't exist in early versions of Solaris 8.
 491 inline double fabsd(double value) {
 492   return fabs(value);
 493 }
 494 
 495 inline jint low (jlong value)                    { return jint(value); }
 496 inline jint high(jlong value)                    { return jint(value >> 32); }
 497 
 498 // the fancy casts are a hopefully portable way
 499 // to do unsigned 32 to 64 bit type conversion
 500 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 501                                                    *value |= (jlong)(julong)(juint)low; }
 502 
 503 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 504                                                    *value |= (jlong)high       << 32; }
 505 
 506 inline jlong jlong_from(jint h, jint l) {
 507   jlong result = 0; // initialization to avoid warning
 508   set_high(&result, h);
 509   set_low(&result,  l);
 510   return result;
 511 }
 512 
 513 union jlong_accessor {
 514   jint  words[2];
 515   jlong long_value;
 516 };
 517 
 518 void basic_types_init(); // cannot define here; uses assert
 519 
 520 
 521 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 522 enum BasicType {
 523   T_BOOLEAN     =  4,
 524   T_CHAR        =  5,
 525   T_FLOAT       =  6,
 526   T_DOUBLE      =  7,
 527   T_BYTE        =  8,
 528   T_SHORT       =  9,
 529   T_INT         = 10,
 530   T_LONG        = 11,
 531   T_OBJECT      = 12,
 532   T_ARRAY       = 13,
 533   T_VOID        = 14,
 534   T_ADDRESS     = 15,
 535   T_NARROWOOP   = 16,
 536   T_METADATA    = 17,
 537   T_NARROWKLASS = 18,
 538   T_CONFLICT    = 19, // for stack value type with conflicting contents
 539   T_ILLEGAL     = 99
 540 };
 541 
 542 inline bool is_java_primitive(BasicType t) {
 543   return T_BOOLEAN <= t && t <= T_LONG;
 544 }
 545 
 546 inline bool is_subword_type(BasicType t) {
 547   // these guys are processed exactly like T_INT in calling sequences:
 548   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 549 }
 550 
 551 inline bool is_signed_subword_type(BasicType t) {
 552   return (t == T_BYTE || t == T_SHORT);
 553 }
 554 
 555 // Convert a char from a classfile signature to a BasicType
 556 inline BasicType char2type(char c) {
 557   switch( c ) {
 558   case 'B': return T_BYTE;
 559   case 'C': return T_CHAR;
 560   case 'D': return T_DOUBLE;
 561   case 'F': return T_FLOAT;
 562   case 'I': return T_INT;
 563   case 'J': return T_LONG;
 564   case 'S': return T_SHORT;
 565   case 'Z': return T_BOOLEAN;
 566   case 'V': return T_VOID;
 567   case 'L': return T_OBJECT;
 568   case '[': return T_ARRAY;
 569   }
 570   return T_ILLEGAL;
 571 }
 572 
 573 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 574 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 575 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 576 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 577 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
 578 extern BasicType name2type(const char* name);
 579 
 580 // Auxilary math routines
 581 // least common multiple
 582 extern size_t lcm(size_t a, size_t b);
 583 
 584 
 585 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 586 enum BasicTypeSize {
 587   T_BOOLEAN_size     = 1,
 588   T_CHAR_size        = 1,
 589   T_FLOAT_size       = 1,
 590   T_DOUBLE_size      = 2,
 591   T_BYTE_size        = 1,
 592   T_SHORT_size       = 1,
 593   T_INT_size         = 1,
 594   T_LONG_size        = 2,
 595   T_OBJECT_size      = 1,
 596   T_ARRAY_size       = 1,
 597   T_NARROWOOP_size   = 1,
 598   T_NARROWKLASS_size = 1,
 599   T_VOID_size        = 0
 600 };
 601 
 602 
 603 // maps a BasicType to its instance field storage type:
 604 // all sub-word integral types are widened to T_INT
 605 extern BasicType type2field[T_CONFLICT+1];
 606 extern BasicType type2wfield[T_CONFLICT+1];
 607 
 608 
 609 // size in bytes
 610 enum ArrayElementSize {
 611   T_BOOLEAN_aelem_bytes     = 1,
 612   T_CHAR_aelem_bytes        = 2,
 613   T_FLOAT_aelem_bytes       = 4,
 614   T_DOUBLE_aelem_bytes      = 8,
 615   T_BYTE_aelem_bytes        = 1,
 616   T_SHORT_aelem_bytes       = 2,
 617   T_INT_aelem_bytes         = 4,
 618   T_LONG_aelem_bytes        = 8,
 619 #ifdef _LP64
 620   T_OBJECT_aelem_bytes      = 8,
 621   T_ARRAY_aelem_bytes       = 8,
 622 #else
 623   T_OBJECT_aelem_bytes      = 4,
 624   T_ARRAY_aelem_bytes       = 4,
 625 #endif
 626   T_NARROWOOP_aelem_bytes   = 4,
 627   T_NARROWKLASS_aelem_bytes = 4,
 628   T_VOID_aelem_bytes        = 0
 629 };
 630 
 631 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 632 #ifdef ASSERT
 633 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 634 #else
 635 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 636 #endif
 637 
 638 
 639 // JavaValue serves as a container for arbitrary Java values.
 640 
 641 class JavaValue {
 642 
 643  public:
 644   typedef union JavaCallValue {
 645     jfloat   f;
 646     jdouble  d;
 647     jint     i;
 648     jlong    l;
 649     jobject  h;
 650   } JavaCallValue;
 651 
 652  private:
 653   BasicType _type;
 654   JavaCallValue _value;
 655 
 656  public:
 657   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 658 
 659   JavaValue(jfloat value) {
 660     _type    = T_FLOAT;
 661     _value.f = value;
 662   }
 663 
 664   JavaValue(jdouble value) {
 665     _type    = T_DOUBLE;
 666     _value.d = value;
 667   }
 668 
 669  jfloat get_jfloat() const { return _value.f; }
 670  jdouble get_jdouble() const { return _value.d; }
 671  jint get_jint() const { return _value.i; }
 672  jlong get_jlong() const { return _value.l; }
 673  jobject get_jobject() const { return _value.h; }
 674  JavaCallValue* get_value_addr() { return &_value; }
 675  BasicType get_type() const { return _type; }
 676 
 677  void set_jfloat(jfloat f) { _value.f = f;}
 678  void set_jdouble(jdouble d) { _value.d = d;}
 679  void set_jint(jint i) { _value.i = i;}
 680  void set_jlong(jlong l) { _value.l = l;}
 681  void set_jobject(jobject h) { _value.h = h;}
 682  void set_type(BasicType t) { _type = t; }
 683 
 684  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 685  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 686  jchar get_jchar() const { return (jchar) (_value.i);}
 687  jshort get_jshort() const { return (jshort) (_value.i);}
 688 
 689 };
 690 
 691 
 692 #define STACK_BIAS      0
 693 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
 694 // in order to extend the reach of the stack pointer.
 695 #if defined(SPARC) && defined(_LP64)
 696 #undef STACK_BIAS
 697 #define STACK_BIAS      0x7ff
 698 #endif
 699 
 700 
 701 // TosState describes the top-of-stack state before and after the execution of
 702 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 703 // registers. The TosState corresponds to the 'machine represention' of this cached
 704 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 705 // as well as a 5th state in case the top-of-stack value is actually on the top
 706 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 707 // state when it comes to machine representation but is used separately for (oop)
 708 // type specific operations (e.g. verification code).
 709 
 710 enum TosState {         // describes the tos cache contents
 711   btos = 0,             // byte, bool tos cached
 712   ctos = 1,             // char tos cached
 713   stos = 2,             // short tos cached
 714   itos = 3,             // int tos cached
 715   ltos = 4,             // long tos cached
 716   ftos = 5,             // float tos cached
 717   dtos = 6,             // double tos cached
 718   atos = 7,             // object cached
 719   vtos = 8,             // tos not cached
 720   number_of_states,
 721   ilgl                  // illegal state: should not occur
 722 };
 723 
 724 
 725 inline TosState as_TosState(BasicType type) {
 726   switch (type) {
 727     case T_BYTE   : return btos;
 728     case T_BOOLEAN: return btos; // FIXME: Add ztos
 729     case T_CHAR   : return ctos;
 730     case T_SHORT  : return stos;
 731     case T_INT    : return itos;
 732     case T_LONG   : return ltos;
 733     case T_FLOAT  : return ftos;
 734     case T_DOUBLE : return dtos;
 735     case T_VOID   : return vtos;
 736     case T_ARRAY  : // fall through
 737     case T_OBJECT : return atos;
 738   }
 739   return ilgl;
 740 }
 741 
 742 inline BasicType as_BasicType(TosState state) {
 743   switch (state) {
 744     //case ztos: return T_BOOLEAN;//FIXME
 745     case btos : return T_BYTE;
 746     case ctos : return T_CHAR;
 747     case stos : return T_SHORT;
 748     case itos : return T_INT;
 749     case ltos : return T_LONG;
 750     case ftos : return T_FLOAT;
 751     case dtos : return T_DOUBLE;
 752     case atos : return T_OBJECT;
 753     case vtos : return T_VOID;
 754   }
 755   return T_ILLEGAL;
 756 }
 757 
 758 
 759 // Helper function to convert BasicType info into TosState
 760 // Note: Cannot define here as it uses global constant at the time being.
 761 TosState as_TosState(BasicType type);
 762 
 763 
 764 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 765 // information is needed by the safepoint code.
 766 //
 767 // There are 4 essential states:
 768 //
 769 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
 770 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
 771 //  _thread_in_vm       : Executing in the vm
 772 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
 773 //
 774 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
 775 // a transition from one state to another. These extra states makes it possible for the safepoint code to
 776 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
 777 //
 778 // Given a state, the xxx_trans state can always be found by adding 1.
 779 //
 780 enum JavaThreadState {
 781   _thread_uninitialized     =  0, // should never happen (missing initialization)
 782   _thread_new               =  2, // just starting up, i.e., in process of being initialized
 783   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
 784   _thread_in_native         =  4, // running in native code
 785   _thread_in_native_trans   =  5, // corresponding transition state
 786   _thread_in_vm             =  6, // running in VM
 787   _thread_in_vm_trans       =  7, // corresponding transition state
 788   _thread_in_Java           =  8, // running in Java or in stub code
 789   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
 790   _thread_blocked           = 10, // blocked in vm
 791   _thread_blocked_trans     = 11, // corresponding transition state
 792   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
 793 };
 794 
 795 
 796 // Handy constants for deciding which compiler mode to use.
 797 enum MethodCompilation {
 798   InvocationEntryBci = -1,     // i.e., not a on-stack replacement compilation
 799   InvalidOSREntryBci = -2
 800 };
 801 
 802 // Enumeration to distinguish tiers of compilation
 803 enum CompLevel {
 804   CompLevel_any               = -1,
 805   CompLevel_all               = -1,
 806   CompLevel_none              = 0,         // Interpreter
 807   CompLevel_simple            = 1,         // C1
 808   CompLevel_limited_profile   = 2,         // C1, invocation & backedge counters
 809   CompLevel_full_profile      = 3,         // C1, invocation & backedge counters + mdo
 810   CompLevel_full_optimization = 4,         // C2 or Shark
 811 
 812 #if defined(COMPILER2) || defined(SHARK)
 813   CompLevel_highest_tier      = CompLevel_full_optimization,  // pure C2 and tiered
 814 #elif defined(COMPILER1)
 815   CompLevel_highest_tier      = CompLevel_simple,             // pure C1
 816 #else
 817   CompLevel_highest_tier      = CompLevel_none,
 818 #endif
 819 
 820 #if defined(TIERED)
 821   CompLevel_initial_compile   = CompLevel_full_profile        // tiered
 822 #elif defined(COMPILER1)
 823   CompLevel_initial_compile   = CompLevel_simple              // pure C1
 824 #elif defined(COMPILER2) || defined(SHARK)
 825   CompLevel_initial_compile   = CompLevel_full_optimization   // pure C2
 826 #else
 827   CompLevel_initial_compile   = CompLevel_none
 828 #endif
 829 };
 830 
 831 inline bool is_c1_compile(int comp_level) {
 832   return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
 833 }
 834 
 835 inline bool is_c2_compile(int comp_level) {
 836   return comp_level == CompLevel_full_optimization;
 837 }
 838 
 839 inline bool is_highest_tier_compile(int comp_level) {
 840   return comp_level == CompLevel_highest_tier;
 841 }
 842 
 843 inline bool is_compile(int comp_level) {
 844   return is_c1_compile(comp_level) || is_c2_compile(comp_level);
 845 }
 846 
 847 //----------------------------------------------------------------------------------------------------
 848 // 'Forward' declarations of frequently used classes
 849 // (in order to reduce interface dependencies & reduce
 850 // number of unnecessary compilations after changes)
 851 
 852 class symbolTable;
 853 class ClassFileStream;
 854 
 855 class Event;
 856 
 857 class Thread;
 858 class  VMThread;
 859 class  JavaThread;
 860 class Threads;
 861 
 862 class VM_Operation;
 863 class VMOperationQueue;
 864 
 865 class CodeBlob;
 866 class  nmethod;
 867 class  OSRAdapter;
 868 class  I2CAdapter;
 869 class  C2IAdapter;
 870 class CompiledIC;
 871 class relocInfo;
 872 class ScopeDesc;
 873 class PcDesc;
 874 
 875 class Recompiler;
 876 class Recompilee;
 877 class RecompilationPolicy;
 878 class RFrame;
 879 class  CompiledRFrame;
 880 class  InterpretedRFrame;
 881 
 882 class frame;
 883 
 884 class vframe;
 885 class   javaVFrame;
 886 class     interpretedVFrame;
 887 class     compiledVFrame;
 888 class     deoptimizedVFrame;
 889 class   externalVFrame;
 890 class     entryVFrame;
 891 
 892 class RegisterMap;
 893 
 894 class Mutex;
 895 class Monitor;
 896 class BasicLock;
 897 class BasicObjectLock;
 898 
 899 class PeriodicTask;
 900 
 901 class JavaCallWrapper;
 902 
 903 class   oopDesc;
 904 class   metaDataOopDesc;
 905 
 906 class NativeCall;
 907 
 908 class zone;
 909 
 910 class StubQueue;
 911 
 912 class outputStream;
 913 
 914 class ResourceArea;
 915 
 916 class DebugInformationRecorder;
 917 class ScopeValue;
 918 class CompressedStream;
 919 class   DebugInfoReadStream;
 920 class   DebugInfoWriteStream;
 921 class LocationValue;
 922 class ConstantValue;
 923 class IllegalValue;
 924 
 925 class PrivilegedElement;
 926 class MonitorArray;
 927 
 928 class MonitorInfo;
 929 
 930 class OffsetClosure;
 931 class OopMapCache;
 932 class InterpreterOopMap;
 933 class OopMapCacheEntry;
 934 class OSThread;
 935 
 936 typedef int (*OSThreadStartFunc)(void*);
 937 
 938 class Space;
 939 
 940 class JavaValue;
 941 class methodHandle;
 942 class JavaCallArguments;
 943 
 944 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
 945 
 946 extern void basic_fatal(const char* msg);
 947 
 948 
 949 //----------------------------------------------------------------------------------------------------
 950 // Special constants for debugging
 951 
 952 const jint     badInt           = -3;                       // generic "bad int" value
 953 const long     badAddressVal    = -2;                       // generic "bad address" value
 954 const long     badOopVal        = -1;                       // generic "bad oop" value
 955 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
 956 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
 957 const int      badResourceValue = 0xAB;                     // value used to zap resource area
 958 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
 959 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
 960 const intptr_t badJNIHandleVal  = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
 961 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
 962 const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
 963 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
 964 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
 965 
 966 
 967 // (These must be implemented as #defines because C++ compilers are
 968 // not obligated to inline non-integral constants!)
 969 #define       badAddress        ((address)::badAddressVal)
 970 #define       badOop            ((oop)::badOopVal)
 971 #define       badHeapWord       (::badHeapWordVal)
 972 #define       badJNIHandle      ((oop)::badJNIHandleVal)
 973 
 974 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
 975 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
 976 
 977 //----------------------------------------------------------------------------------------------------
 978 // Utility functions for bitfield manipulations
 979 
 980 const intptr_t AllBits    = ~0; // all bits set in a word
 981 const intptr_t NoBits     =  0; // no bits set in a word
 982 const jlong    NoLongBits =  0; // no bits set in a long
 983 const intptr_t OneBit     =  1; // only right_most bit set in a word
 984 
 985 // get a word with the n.th or the right-most or left-most n bits set
 986 // (note: #define used only so that they can be used in enum constant definitions)
 987 #define nth_bit(n)        (n >= BitsPerWord ? 0 : OneBit << (n))
 988 #define right_n_bits(n)   (nth_bit(n) - 1)
 989 #define left_n_bits(n)    (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
 990 
 991 // bit-operations using a mask m
 992 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
 993 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
 994 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
 995 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
 996 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
 997 
 998 // bit-operations using the n.th bit
 999 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
1000 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
1001 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
1002 
1003 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
1004 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
1005   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
1006 }
1007 
1008 
1009 //----------------------------------------------------------------------------------------------------
1010 // Utility functions for integers
1011 
1012 // Avoid use of global min/max macros which may cause unwanted double
1013 // evaluation of arguments.
1014 #ifdef max
1015 #undef max
1016 #endif
1017 
1018 #ifdef min
1019 #undef min
1020 #endif
1021 
1022 #define max(a,b) Do_not_use_max_use_MAX2_instead
1023 #define min(a,b) Do_not_use_min_use_MIN2_instead
1024 
1025 // It is necessary to use templates here. Having normal overloaded
1026 // functions does not work because it is necessary to provide both 32-
1027 // and 64-bit overloaded functions, which does not work, and having
1028 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
1029 // will be even more error-prone than macros.
1030 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
1031 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
1032 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
1033 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
1034 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
1035 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
1036 
1037 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
1038 
1039 // true if x is a power of 2, false otherwise
1040 inline bool is_power_of_2(intptr_t x) {
1041   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
1042 }
1043 
1044 // long version of is_power_of_2
1045 inline bool is_power_of_2_long(jlong x) {
1046   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
1047 }
1048 
1049 //* largest i such that 2^i <= x
1050 //  A negative value of 'x' will return '31'
1051 inline int log2_intptr(intptr_t x) {
1052   int i = -1;
1053   uintptr_t p =  1;
1054   while (p != 0 && p <= (uintptr_t)x) {
1055     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1056     i++; p *= 2;
1057   }
1058   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1059   // (if p = 0 then overflow occurred and i = 31)
1060   return i;
1061 }
1062 
1063 //* largest i such that 2^i <= x
1064 //  A negative value of 'x' will return '63'
1065 inline int log2_long(jlong x) {
1066   int i = -1;
1067   julong p =  1;
1068   while (p != 0 && p <= (julong)x) {
1069     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1070     i++; p *= 2;
1071   }
1072   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1073   // (if p = 0 then overflow occurred and i = 63)
1074   return i;
1075 }
1076 
1077 //* the argument must be exactly a power of 2
1078 inline int exact_log2(intptr_t x) {
1079   #ifdef ASSERT
1080     if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
1081   #endif
1082   return log2_intptr(x);
1083 }
1084 
1085 //* the argument must be exactly a power of 2
1086 inline int exact_log2_long(jlong x) {
1087   #ifdef ASSERT
1088     if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
1089   #endif
1090   return log2_long(x);
1091 }
1092 
1093 
1094 // returns integer round-up to the nearest multiple of s (s must be a power of two)
1095 inline intptr_t round_to(intptr_t x, uintx s) {
1096   #ifdef ASSERT
1097     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1098   #endif
1099   const uintx m = s - 1;
1100   return mask_bits(x + m, ~m);
1101 }
1102 
1103 // returns integer round-down to the nearest multiple of s (s must be a power of two)
1104 inline intptr_t round_down(intptr_t x, uintx s) {
1105   #ifdef ASSERT
1106     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1107   #endif
1108   const uintx m = s - 1;
1109   return mask_bits(x, ~m);
1110 }
1111 
1112 
1113 inline bool is_odd (intx x) { return x & 1;      }
1114 inline bool is_even(intx x) { return !is_odd(x); }
1115 
1116 // "to" should be greater than "from."
1117 inline intx byte_size(void* from, void* to) {
1118   return (address)to - (address)from;
1119 }
1120 
1121 //----------------------------------------------------------------------------------------------------
1122 // Avoid non-portable casts with these routines (DEPRECATED)
1123 
1124 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1125 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1126 
1127 // Given sequence of four bytes, build into a 32-bit word
1128 // following the conventions used in class files.
1129 // On the 386, this could be realized with a simple address cast.
1130 //
1131 
1132 // This routine takes eight bytes:
1133 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1134   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
1135        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
1136        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
1137        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
1138        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
1139        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
1140        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
1141        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
1142 }
1143 
1144 // This routine takes four bytes:
1145 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1146   return  (( u4(c1) << 24 )  &  0xff000000)
1147        |  (( u4(c2) << 16 )  &  0x00ff0000)
1148        |  (( u4(c3) <<  8 )  &  0x0000ff00)
1149        |  (( u4(c4) <<  0 )  &  0x000000ff);
1150 }
1151 
1152 // And this one works if the four bytes are contiguous in memory:
1153 inline u4 build_u4_from( u1* p ) {
1154   return  build_u4_from( p[0], p[1], p[2], p[3] );
1155 }
1156 
1157 // Ditto for two-byte ints:
1158 inline u2 build_u2_from( u1 c1, u1 c2 ) {
1159   return  u2((( u2(c1) <<  8 )  &  0xff00)
1160           |  (( u2(c2) <<  0 )  &  0x00ff));
1161 }
1162 
1163 // And this one works if the two bytes are contiguous in memory:
1164 inline u2 build_u2_from( u1* p ) {
1165   return  build_u2_from( p[0], p[1] );
1166 }
1167 
1168 // Ditto for floats:
1169 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1170   u4 u = build_u4_from( c1, c2, c3, c4 );
1171   return  *(jfloat*)&u;
1172 }
1173 
1174 inline jfloat build_float_from( u1* p ) {
1175   u4 u = build_u4_from( p );
1176   return  *(jfloat*)&u;
1177 }
1178 
1179 
1180 // now (64-bit) longs
1181 
1182 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1183   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
1184        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
1185        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
1186        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
1187        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
1188        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
1189        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
1190        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
1191 }
1192 
1193 inline jlong build_long_from( u1* p ) {
1194   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1195 }
1196 
1197 
1198 // Doubles, too!
1199 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1200   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1201   return  *(jdouble*)&u;
1202 }
1203 
1204 inline jdouble build_double_from( u1* p ) {
1205   jlong u = build_long_from( p );
1206   return  *(jdouble*)&u;
1207 }
1208 
1209 
1210 // Portable routines to go the other way:
1211 
1212 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1213   c1 = u1(x >> 8);
1214   c2 = u1(x);
1215 }
1216 
1217 inline void explode_short_to( u2 x, u1* p ) {
1218   explode_short_to( x, p[0], p[1]);
1219 }
1220 
1221 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1222   c1 = u1(x >> 24);
1223   c2 = u1(x >> 16);
1224   c3 = u1(x >>  8);
1225   c4 = u1(x);
1226 }
1227 
1228 inline void explode_int_to( u4 x, u1* p ) {
1229   explode_int_to( x, p[0], p[1], p[2], p[3]);
1230 }
1231 
1232 
1233 // Pack and extract shorts to/from ints:
1234 
1235 inline int extract_low_short_from_int(jint x) {
1236   return x & 0xffff;
1237 }
1238 
1239 inline int extract_high_short_from_int(jint x) {
1240   return (x >> 16) & 0xffff;
1241 }
1242 
1243 inline int build_int_from_shorts( jushort low, jushort high ) {
1244   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1245 }
1246 
1247 // Printf-style formatters for fixed- and variable-width types as pointers and
1248 // integers.  These are derived from the definitions in inttypes.h.  If the platform
1249 // doesn't provide appropriate definitions, they should be provided in
1250 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
1251 
1252 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
1253 
1254 // Format 32-bit quantities.
1255 #define INT32_FORMAT           "%" PRId32
1256 #define UINT32_FORMAT          "%" PRIu32
1257 #define INT32_FORMAT_W(width)  "%" #width PRId32
1258 #define UINT32_FORMAT_W(width) "%" #width PRIu32
1259 
1260 #define PTR32_FORMAT           "0x%08" PRIx32
1261 
1262 // Format 64-bit quantities.
1263 #define INT64_FORMAT           "%" PRId64
1264 #define UINT64_FORMAT          "%" PRIu64
1265 #define INT64_FORMAT_W(width)  "%" #width PRId64
1266 #define UINT64_FORMAT_W(width) "%" #width PRIu64
1267 
1268 #define PTR64_FORMAT           "0x%016" PRIx64
1269 
1270 // Format jlong, if necessary
1271 #ifndef JLONG_FORMAT
1272 #define JLONG_FORMAT           INT64_FORMAT
1273 #endif
1274 #ifndef JULONG_FORMAT
1275 #define JULONG_FORMAT          UINT64_FORMAT
1276 #endif
1277 
1278 // Format pointers which change size between 32- and 64-bit.
1279 #ifdef  _LP64
1280 #define INTPTR_FORMAT "0x%016" PRIxPTR
1281 #define PTR_FORMAT    "0x%016" PRIxPTR
1282 #else   // !_LP64
1283 #define INTPTR_FORMAT "0x%08"  PRIxPTR
1284 #define PTR_FORMAT    "0x%08"  PRIxPTR
1285 #endif  // _LP64
1286 
1287 #define SSIZE_FORMAT          "%" PRIdPTR
1288 #define SIZE_FORMAT           "%" PRIuPTR
1289 #define SSIZE_FORMAT_W(width) "%" #width PRIdPTR
1290 #define SIZE_FORMAT_W(width)  "%" #width PRIuPTR
1291 
1292 #define INTX_FORMAT           "%" PRIdPTR
1293 #define UINTX_FORMAT          "%" PRIuPTR
1294 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
1295 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
1296 
1297 
1298 // Enable zap-a-lot if in debug version.
1299 
1300 # ifdef ASSERT
1301 # ifdef COMPILER2
1302 #   define ENABLE_ZAP_DEAD_LOCALS
1303 #endif /* COMPILER2 */
1304 # endif /* ASSERT */
1305 
1306 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1307 
1308 // Dereference vptr
1309 // All C++ compilers that we know of have the vtbl pointer in the first
1310 // word.  If there are exceptions, this function needs to be made compiler
1311 // specific.
1312 static inline void* dereference_vptr(void* addr) {
1313   return *(void**)addr;
1314 }
1315 
1316 
1317 #ifndef PRODUCT
1318 
1319 // For unit testing only
1320 class GlobalDefinitions {
1321 public:
1322   static void test_globals();
1323 };
1324 
1325 #endif // PRODUCT
1326 
1327 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP