/* * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc_implementation/g1/concurrentG1Refine.hpp" #include "gc_implementation/g1/concurrentG1RefineThread.hpp" #include "gc_implementation/g1/g1CollectedHeap.inline.hpp" #include "gc_implementation/g1/g1CollectorPolicy.hpp" #include "memory/resourceArea.hpp" #include "runtime/handles.inline.hpp" #include "runtime/mutexLocker.hpp" ConcurrentG1RefineThread:: ConcurrentG1RefineThread(ConcurrentG1Refine* cg1r, ConcurrentG1RefineThread *next, int worker_id_offset, int worker_id) : ConcurrentGCThread(), _worker_id_offset(worker_id_offset), _worker_id(worker_id), _active(false), _next(next), _monitor(NULL), _cg1r(cg1r), _vtime_accum(0.0) { // Each thread has its own monitor. The i-th thread is responsible for signaling // to thread i+1 if the number of buffers in the queue exceeds a threshold for this // thread. Monitors are also used to wake up the threads during termination. // The 0th worker in notified by mutator threads and has a special monitor. // The last worker is used for young gen rset size sampling. if (worker_id > 0) { _monitor = new Monitor(Mutex::nonleaf, "Refinement monitor", true); } else { _monitor = DirtyCardQ_CBL_mon; } initialize(); create_and_start(); } void ConcurrentG1RefineThread::initialize() { if (_worker_id < cg1r()->worker_thread_num()) { // Current thread activation threshold _threshold = MIN2(cg1r()->thread_threshold_step() * (_worker_id + 1) + cg1r()->green_zone(), cg1r()->yellow_zone()); // A thread deactivates once the number of buffer reached a deactivation threshold _deactivation_threshold = MAX2(_threshold - cg1r()->thread_threshold_step(), cg1r()->green_zone()); } else { set_active(true); } } void ConcurrentG1RefineThread::sample_young_list_rs_lengths() { G1CollectedHeap* g1h = G1CollectedHeap::heap(); G1CollectorPolicy* g1p = g1h->g1_policy(); if (g1p->adaptive_young_list_length()) { int regions_visited = 0; g1h->young_list()->rs_length_sampling_init(); while (g1h->young_list()->rs_length_sampling_more()) { g1h->young_list()->rs_length_sampling_next(); ++regions_visited; // we try to yield every time we visit 10 regions if (regions_visited == 10) { if (_sts.should_yield()) { _sts.yield("G1 refine"); // we just abandon the iteration break; } regions_visited = 0; } } g1p->revise_young_list_target_length_if_necessary(); } } void ConcurrentG1RefineThread::run_young_rs_sampling() { DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); _vtime_start = os::elapsedVTime(); while(!_should_terminate) { _sts.join(); sample_young_list_rs_lengths(); _sts.leave(); if (os::supports_vtime()) { _vtime_accum = (os::elapsedVTime() - _vtime_start); } else { _vtime_accum = 0.0; } MutexLockerEx x(_monitor, Mutex::_no_safepoint_check_flag); if (_should_terminate) { break; } _monitor->wait(Mutex::_no_safepoint_check_flag, G1ConcRefinementServiceIntervalMillis); } } void ConcurrentG1RefineThread::wait_for_completed_buffers() { DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); MutexLockerEx x(_monitor, Mutex::_no_safepoint_check_flag); while (!_should_terminate && !is_active()) { _monitor->wait(Mutex::_no_safepoint_check_flag); } } bool ConcurrentG1RefineThread::is_active() { DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); return _worker_id > 0 ? _active : dcqs.process_completed_buffers(); } void ConcurrentG1RefineThread::activate() { MutexLockerEx x(_monitor, Mutex::_no_safepoint_check_flag); if (_worker_id > 0) { if (G1TraceConcRefinement) { DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); gclog_or_tty->print_cr("G1-Refine-activated worker %d, on threshold %d, current %d", _worker_id, _threshold, (int)dcqs.completed_buffers_num()); } set_active(true); } else { DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); dcqs.set_process_completed(true); } _monitor->notify(); } void ConcurrentG1RefineThread::deactivate() { MutexLockerEx x(_monitor, Mutex::_no_safepoint_check_flag); if (_worker_id > 0) { if (G1TraceConcRefinement) { DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); gclog_or_tty->print_cr("G1-Refine-deactivated worker %d, off threshold %d, current %d", _worker_id, _deactivation_threshold, (int)dcqs.completed_buffers_num()); } set_active(false); } else { DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); dcqs.set_process_completed(false); } } void ConcurrentG1RefineThread::run() { initialize_in_thread(); wait_for_universe_init(); if (_worker_id >= cg1r()->worker_thread_num()) { run_young_rs_sampling(); terminate(); return; } _vtime_start = os::elapsedVTime(); while (!_should_terminate) { DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); // Wait for work wait_for_completed_buffers(); if (_should_terminate) { break; } _sts.join(); do { int curr_buffer_num = (int)dcqs.completed_buffers_num(); // If the number of the buffers falls down into the yellow zone, // that means that the transition period after the evacuation pause has ended. if (dcqs.completed_queue_padding() > 0 && curr_buffer_num <= cg1r()->yellow_zone()) { dcqs.set_completed_queue_padding(0); } if (_worker_id > 0 && curr_buffer_num <= _deactivation_threshold) { // If the number of the buffer has fallen below our threshold // we should deactivate. The predecessor will reactivate this // thread should the number of the buffers cross the threshold again. deactivate(); break; } // Check if we need to activate the next thread. if (_next != NULL && !_next->is_active() && curr_buffer_num > _next->_threshold) { _next->activate(); } } while (dcqs.apply_closure_to_completed_buffer(_worker_id + _worker_id_offset, cg1r()->green_zone())); // We can exit the loop above while being active if there was a yield request. if (is_active()) { deactivate(); } _sts.leave(); if (os::supports_vtime()) { _vtime_accum = (os::elapsedVTime() - _vtime_start); } else { _vtime_accum = 0.0; } } assert(_should_terminate, "just checking"); terminate(); } void ConcurrentG1RefineThread::yield() { if (G1TraceConcRefinement) { gclog_or_tty->print_cr("G1-Refine-yield"); } _sts.yield("G1 refine"); if (G1TraceConcRefinement) { gclog_or_tty->print_cr("G1-Refine-yield-end"); } } void ConcurrentG1RefineThread::stop() { // it is ok to take late safepoints here, if needed { MutexLockerEx mu(Terminator_lock); _should_terminate = true; } { MutexLockerEx x(_monitor, Mutex::_no_safepoint_check_flag); _monitor->notify(); } { MutexLockerEx mu(Terminator_lock); while (!_has_terminated) { Terminator_lock->wait(); } } if (G1TraceConcRefinement) { gclog_or_tty->print_cr("G1-Refine-stop"); } } void ConcurrentG1RefineThread::print() const { print_on(tty); } void ConcurrentG1RefineThread::print_on(outputStream* st) const { st->print("\"G1 Concurrent Refinement Thread#%d\" ", _worker_id); Thread::print_on(st); st->cr(); }