1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/shared/parGCAllocBuffer.hpp"
  27 #include "memory/sharedHeap.hpp"
  28 #include "oops/arrayOop.hpp"
  29 #include "oops/oop.inline.hpp"
  30 
  31 ParGCAllocBuffer::ParGCAllocBuffer(size_t desired_plab_sz_) :
  32   _word_sz(desired_plab_sz_), _bottom(NULL), _top(NULL),
  33   _end(NULL), _hard_end(NULL),
  34   _retained(false), _retained_filler(),
  35   _allocated(0), _wasted(0)
  36 {
  37   assert (min_size() > AlignmentReserve, "Inconsistency!");
  38   // arrayOopDesc::header_size depends on command line initialization.
  39   FillerHeaderSize = align_object_size(arrayOopDesc::header_size(T_INT));
  40   AlignmentReserve = oopDesc::header_size() > MinObjAlignment ? FillerHeaderSize : 0;
  41 }
  42 
  43 size_t ParGCAllocBuffer::FillerHeaderSize;
  44 
  45 // If the minimum object size is greater than MinObjAlignment, we can
  46 // end up with a shard at the end of the buffer that's smaller than
  47 // the smallest object.  We can't allow that because the buffer must
  48 // look like it's full of objects when we retire it, so we make
  49 // sure we have enough space for a filler int array object.
  50 size_t ParGCAllocBuffer::AlignmentReserve;
  51 
  52 void ParGCAllocBuffer::retire(bool end_of_gc, bool retain) {
  53   assert(!retain || end_of_gc, "Can only retain at GC end.");
  54   if (_retained) {
  55     // If the buffer had been retained shorten the previous filler object.
  56     assert(_retained_filler.end() <= _top, "INVARIANT");
  57     CollectedHeap::fill_with_object(_retained_filler);
  58     // Wasted space book-keeping, otherwise (normally) done in invalidate()
  59     _wasted += _retained_filler.word_size();
  60     _retained = false;
  61   }
  62   assert(!end_of_gc || !_retained, "At this point, end_of_gc ==> !_retained.");
  63   if (_top < _hard_end) {
  64     CollectedHeap::fill_with_object(_top, _hard_end);
  65     if (!retain) {
  66       invalidate();
  67     } else {
  68       // Is there wasted space we'd like to retain for the next GC?
  69       if (pointer_delta(_end, _top) > FillerHeaderSize) {
  70         _retained = true;
  71         _retained_filler = MemRegion(_top, FillerHeaderSize);
  72         _top = _top + FillerHeaderSize;
  73       } else {
  74         invalidate();
  75       }
  76     }
  77   }
  78 }
  79 
  80 void ParGCAllocBuffer::flush_stats(PLABStats* stats) {
  81   assert(ResizePLAB, "Wasted work");
  82   stats->add_allocated(_allocated);
  83   stats->add_wasted(_wasted);
  84   stats->add_unused(pointer_delta(_end, _top));
  85 }
  86 
  87 // Compute desired plab size and latch result for later
  88 // use. This should be called once at the end of parallel
  89 // scavenge; it clears the sensor accumulators.
  90 void PLABStats::adjust_desired_plab_sz(uint no_of_gc_workers) {
  91   assert(ResizePLAB, "Not set");
  92   if (_allocated == 0) {
  93     assert(_unused == 0,
  94            err_msg("Inconsistency in PLAB stats: "
  95                    "_allocated: "SIZE_FORMAT", "
  96                    "_wasted: "SIZE_FORMAT", "
  97                    "_unused: "SIZE_FORMAT", "
  98                    "_used  : "SIZE_FORMAT,
  99                    _allocated, _wasted, _unused, _used));
 100 
 101     _allocated = 1;
 102   }
 103   double wasted_frac    = (double)_unused/(double)_allocated;
 104   size_t target_refills = (size_t)((wasted_frac*TargetSurvivorRatio)/
 105                                    TargetPLABWastePct);
 106   if (target_refills == 0) {
 107     target_refills = 1;
 108   }
 109   _used = _allocated - _wasted - _unused;
 110   size_t plab_sz = _used/(target_refills*no_of_gc_workers);
 111   if (PrintPLAB) gclog_or_tty->print(" (plab_sz = %d ", plab_sz);
 112   // Take historical weighted average
 113   _filter.sample(plab_sz);
 114   // Clip from above and below, and align to object boundary
 115   plab_sz = MAX2(min_size(), (size_t)_filter.average());
 116   plab_sz = MIN2(max_size(), plab_sz);
 117   plab_sz = align_object_size(plab_sz);
 118   // Latch the result
 119   if (PrintPLAB) gclog_or_tty->print(" desired_plab_sz = %d) ", plab_sz);
 120   _desired_plab_sz = plab_sz;
 121   // Now clear the accumulators for next round:
 122   // note this needs to be fixed in the case where we
 123   // are retaining across scavenges. FIX ME !!! XXX
 124   _allocated = 0;
 125   _wasted    = 0;
 126   _unused    = 0;
 127 }
 128 
 129 #ifndef PRODUCT
 130 void ParGCAllocBuffer::print() {
 131   gclog_or_tty->print("parGCAllocBuffer: _bottom: %p  _top: %p  _end: %p  _hard_end: %p"
 132              "_retained: %c _retained_filler: [%p,%p)\n",
 133              _bottom, _top, _end, _hard_end,
 134              "FT"[_retained], _retained_filler.start(), _retained_filler.end());
 135 }
 136 #endif // !PRODUCT
 137 
 138 const size_t ParGCAllocBufferWithBOT::ChunkSizeInWords =
 139 MIN2(CardTableModRefBS::par_chunk_heapword_alignment(),
 140      ((size_t)Generation::GenGrain)/HeapWordSize);
 141 const size_t ParGCAllocBufferWithBOT::ChunkSizeInBytes =
 142 MIN2(CardTableModRefBS::par_chunk_heapword_alignment() * HeapWordSize,
 143      (size_t)Generation::GenGrain);
 144 
 145 ParGCAllocBufferWithBOT::ParGCAllocBufferWithBOT(size_t word_sz,
 146                                                  BlockOffsetSharedArray* bsa) :
 147   ParGCAllocBuffer(word_sz),
 148   _bsa(bsa),
 149   _bt(bsa, MemRegion(_bottom, _hard_end)),
 150   _true_end(_hard_end)
 151 {}
 152 
 153 // The buffer comes with its own BOT, with a shared (obviously) underlying
 154 // BlockOffsetSharedArray. We manipulate this BOT in the normal way
 155 // as we would for any contiguous space. However, on accasion we
 156 // need to do some buffer surgery at the extremities before we
 157 // start using the body of the buffer for allocations. Such surgery
 158 // (as explained elsewhere) is to prevent allocation on a card that
 159 // is in the process of being walked concurrently by another GC thread.
 160 // When such surgery happens at a point that is far removed (to the
 161 // right of the current allocation point, top), we use the "contig"
 162 // parameter below to directly manipulate the shared array without
 163 // modifying the _next_threshold state in the BOT.
 164 void ParGCAllocBufferWithBOT::fill_region_with_block(MemRegion mr,
 165                                                      bool contig) {
 166   CollectedHeap::fill_with_object(mr);
 167   if (contig) {
 168     _bt.alloc_block(mr.start(), mr.end());
 169   } else {
 170     _bt.BlockOffsetArray::alloc_block(mr.start(), mr.end());
 171   }
 172 }
 173 
 174 HeapWord* ParGCAllocBufferWithBOT::allocate_slow(size_t word_sz) {
 175   HeapWord* res = NULL;
 176   if (_true_end > _hard_end) {
 177     assert((HeapWord*)align_size_down(intptr_t(_hard_end),
 178                                       ChunkSizeInBytes) == _hard_end,
 179            "or else _true_end should be equal to _hard_end");
 180     assert(_retained, "or else _true_end should be equal to _hard_end");
 181     assert(_retained_filler.end() <= _top, "INVARIANT");
 182     CollectedHeap::fill_with_object(_retained_filler);
 183     if (_top < _hard_end) {
 184       fill_region_with_block(MemRegion(_top, _hard_end), true);
 185     }
 186     HeapWord* next_hard_end = MIN2(_true_end, _hard_end + ChunkSizeInWords);
 187     _retained_filler = MemRegion(_hard_end, FillerHeaderSize);
 188     _bt.alloc_block(_retained_filler.start(), _retained_filler.word_size());
 189     _top      = _retained_filler.end();
 190     _hard_end = next_hard_end;
 191     _end      = _hard_end - AlignmentReserve;
 192     res       = ParGCAllocBuffer::allocate(word_sz);
 193     if (res != NULL) {
 194       _bt.alloc_block(res, word_sz);
 195     }
 196   }
 197   return res;
 198 }
 199 
 200 void
 201 ParGCAllocBufferWithBOT::undo_allocation(HeapWord* obj, size_t word_sz) {
 202   ParGCAllocBuffer::undo_allocation(obj, word_sz);
 203   // This may back us up beyond the previous threshold, so reset.
 204   _bt.set_region(MemRegion(_top, _hard_end));
 205   _bt.initialize_threshold();
 206 }
 207 
 208 void ParGCAllocBufferWithBOT::retire(bool end_of_gc, bool retain) {
 209   assert(!retain || end_of_gc, "Can only retain at GC end.");
 210   if (_retained) {
 211     // We're about to make the retained_filler into a block.
 212     _bt.BlockOffsetArray::alloc_block(_retained_filler.start(),
 213                                       _retained_filler.end());
 214   }
 215   // Reset _hard_end to _true_end (and update _end)
 216   if (retain && _hard_end != NULL) {
 217     assert(_hard_end <= _true_end, "Invariant.");
 218     _hard_end = _true_end;
 219     _end      = MAX2(_top, _hard_end - AlignmentReserve);
 220     assert(_end <= _hard_end, "Invariant.");
 221   }
 222   _true_end = _hard_end;
 223   HeapWord* pre_top = _top;
 224 
 225   ParGCAllocBuffer::retire(end_of_gc, retain);
 226   // Now any old _retained_filler is cut back to size, the free part is
 227   // filled with a filler object, and top is past the header of that
 228   // object.
 229 
 230   if (retain && _top < _end) {
 231     assert(end_of_gc && retain, "Or else retain should be false.");
 232     // If the lab does not start on a card boundary, we don't want to
 233     // allocate onto that card, since that might lead to concurrent
 234     // allocation and card scanning, which we don't support.  So we fill
 235     // the first card with a garbage object.
 236     size_t first_card_index = _bsa->index_for(pre_top);
 237     HeapWord* first_card_start = _bsa->address_for_index(first_card_index);
 238     if (first_card_start < pre_top) {
 239       HeapWord* second_card_start =
 240         _bsa->inc_by_region_size(first_card_start);
 241 
 242       // Ensure enough room to fill with the smallest block
 243       second_card_start = MAX2(second_card_start, pre_top + AlignmentReserve);
 244 
 245       // If the end is already in the first card, don't go beyond it!
 246       // Or if the remainder is too small for a filler object, gobble it up.
 247       if (_hard_end < second_card_start ||
 248           pointer_delta(_hard_end, second_card_start) < AlignmentReserve) {
 249         second_card_start = _hard_end;
 250       }
 251       if (pre_top < second_card_start) {
 252         MemRegion first_card_suffix(pre_top, second_card_start);
 253         fill_region_with_block(first_card_suffix, true);
 254       }
 255       pre_top = second_card_start;
 256       _top = pre_top;
 257       _end = MAX2(_top, _hard_end - AlignmentReserve);
 258     }
 259 
 260     // If the lab does not end on a card boundary, we don't want to
 261     // allocate onto that card, since that might lead to concurrent
 262     // allocation and card scanning, which we don't support.  So we fill
 263     // the last card with a garbage object.
 264     size_t last_card_index = _bsa->index_for(_hard_end);
 265     HeapWord* last_card_start = _bsa->address_for_index(last_card_index);
 266     if (last_card_start < _hard_end) {
 267 
 268       // Ensure enough room to fill with the smallest block
 269       last_card_start = MIN2(last_card_start, _hard_end - AlignmentReserve);
 270 
 271       // If the top is already in the last card, don't go back beyond it!
 272       // Or if the remainder is too small for a filler object, gobble it up.
 273       if (_top > last_card_start ||
 274           pointer_delta(last_card_start, _top) < AlignmentReserve) {
 275         last_card_start = _top;
 276       }
 277       if (last_card_start < _hard_end) {
 278         MemRegion last_card_prefix(last_card_start, _hard_end);
 279         fill_region_with_block(last_card_prefix, false);
 280       }
 281       _hard_end = last_card_start;
 282       _end      = MAX2(_top, _hard_end - AlignmentReserve);
 283       _true_end = _hard_end;
 284       assert(_end <= _hard_end, "Invariant.");
 285     }
 286 
 287     // At this point:
 288     //   1) we had a filler object from the original top to hard_end.
 289     //   2) We've filled in any partial cards at the front and back.
 290     if (pre_top < _hard_end) {
 291       // Now we can reset the _bt to do allocation in the given area.
 292       MemRegion new_filler(pre_top, _hard_end);
 293       fill_region_with_block(new_filler, false);
 294       _top = pre_top + ParGCAllocBuffer::FillerHeaderSize;
 295       // If there's no space left, don't retain.
 296       if (_top >= _end) {
 297         _retained = false;
 298         invalidate();
 299         return;
 300       }
 301       _retained_filler = MemRegion(pre_top, _top);
 302       _bt.set_region(MemRegion(_top, _hard_end));
 303       _bt.initialize_threshold();
 304       assert(_bt.threshold() > _top, "initialize_threshold failed!");
 305 
 306       // There may be other reasons for queries into the middle of the
 307       // filler object.  When such queries are done in parallel with
 308       // allocation, bad things can happen, if the query involves object
 309       // iteration.  So we ensure that such queries do not involve object
 310       // iteration, by putting another filler object on the boundaries of
 311       // such queries.  One such is the object spanning a parallel card
 312       // chunk boundary.
 313 
 314       // "chunk_boundary" is the address of the first chunk boundary less
 315       // than "hard_end".
 316       HeapWord* chunk_boundary =
 317         (HeapWord*)align_size_down(intptr_t(_hard_end-1), ChunkSizeInBytes);
 318       assert(chunk_boundary < _hard_end, "Or else above did not work.");
 319       assert(pointer_delta(_true_end, chunk_boundary) >= AlignmentReserve,
 320              "Consequence of last card handling above.");
 321 
 322       if (_top <= chunk_boundary) {
 323         assert(_true_end == _hard_end, "Invariant.");
 324         while (_top <= chunk_boundary) {
 325           assert(pointer_delta(_hard_end, chunk_boundary) >= AlignmentReserve,
 326                  "Consequence of last card handling above.");
 327           _bt.BlockOffsetArray::alloc_block(chunk_boundary, _hard_end);
 328           CollectedHeap::fill_with_object(chunk_boundary, _hard_end);
 329           _hard_end = chunk_boundary;
 330           chunk_boundary -= ChunkSizeInWords;
 331         }
 332         _end = _hard_end - AlignmentReserve;
 333         assert(_top <= _end, "Invariant.");
 334         // Now reset the initial filler chunk so it doesn't overlap with
 335         // the one(s) inserted above.
 336         MemRegion new_filler(pre_top, _hard_end);
 337         fill_region_with_block(new_filler, false);
 338       }
 339     } else {
 340       _retained = false;
 341       invalidate();
 342     }
 343   } else {
 344     assert(!end_of_gc ||
 345            (!_retained && _true_end == _hard_end), "Checking.");
 346   }
 347   assert(_end <= _hard_end, "Invariant.");
 348   assert(_top < _end || _top == _hard_end, "Invariant");
 349 }