1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  28 #include "gc_implementation/shared/vmGCOperations.hpp"
  29 #include "memory/cardTableRS.hpp"
  30 #include "memory/collectorPolicy.hpp"
  31 #include "memory/gcLocker.inline.hpp"
  32 #include "memory/genCollectedHeap.hpp"
  33 #include "memory/generationSpec.hpp"
  34 #include "memory/space.hpp"
  35 #include "memory/universe.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/globals_extension.hpp"
  38 #include "runtime/handles.inline.hpp"
  39 #include "runtime/java.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 #include "runtime/vmThread.hpp"
  42 #include "utilities/macros.hpp"
  43 #if INCLUDE_ALL_GCS
  44 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  45 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  46 #endif // INCLUDE_ALL_GCS
  47 
  48 // CollectorPolicy methods
  49 
  50 CollectorPolicy::CollectorPolicy() :
  51     _space_alignment(0),
  52     _heap_alignment(0),
  53     _initial_heap_byte_size(InitialHeapSize),
  54     _max_heap_byte_size(MaxHeapSize),
  55     _min_heap_byte_size(Arguments::min_heap_size()),
  56     _max_heap_size_cmdline(false),
  57     _size_policy(NULL),
  58     _should_clear_all_soft_refs(false),
  59     _all_soft_refs_clear(false)
  60 {}
  61 
  62 #ifdef ASSERT
  63 void CollectorPolicy::assert_flags() {
  64   assert(InitialHeapSize <= MaxHeapSize, "Ergonomics decided on incompatible initial and maximum heap sizes");
  65   assert(InitialHeapSize % _heap_alignment == 0, "InitialHeapSize alignment");
  66   assert(MaxHeapSize % _heap_alignment == 0, "MaxHeapSize alignment");
  67 }
  68 
  69 void CollectorPolicy::assert_size_info() {
  70   assert(InitialHeapSize == _initial_heap_byte_size, "Discrepancy between InitialHeapSize flag and local storage");
  71   assert(MaxHeapSize == _max_heap_byte_size, "Discrepancy between MaxHeapSize flag and local storage");
  72   assert(_max_heap_byte_size >= _min_heap_byte_size, "Ergonomics decided on incompatible minimum and maximum heap sizes");
  73   assert(_initial_heap_byte_size >= _min_heap_byte_size, "Ergonomics decided on incompatible initial and minimum heap sizes");
  74   assert(_max_heap_byte_size >= _initial_heap_byte_size, "Ergonomics decided on incompatible initial and maximum heap sizes");
  75   assert(_min_heap_byte_size % _heap_alignment == 0, "min_heap_byte_size alignment");
  76   assert(_initial_heap_byte_size % _heap_alignment == 0, "initial_heap_byte_size alignment");
  77   assert(_max_heap_byte_size % _heap_alignment == 0, "max_heap_byte_size alignment");
  78 }
  79 #endif // ASSERT
  80 
  81 void CollectorPolicy::initialize_flags() {
  82   assert(_space_alignment != 0, "Space alignment not set up properly");
  83   assert(_heap_alignment != 0, "Heap alignment not set up properly");
  84   assert(_heap_alignment >= _space_alignment,
  85          err_msg("heap_alignment: " SIZE_FORMAT " less than space_alignment: " SIZE_FORMAT,
  86                  _heap_alignment, _space_alignment));
  87   assert(_heap_alignment % _space_alignment == 0,
  88          err_msg("heap_alignment: " SIZE_FORMAT " not aligned by space_alignment: " SIZE_FORMAT,
  89                  _heap_alignment, _space_alignment));
  90 
  91   if (FLAG_IS_CMDLINE(MaxHeapSize)) {
  92     if (FLAG_IS_CMDLINE(InitialHeapSize) && InitialHeapSize > MaxHeapSize) {
  93       vm_exit_during_initialization("Initial heap size set to a larger value than the maximum heap size");
  94     }
  95     if (_min_heap_byte_size != 0 && MaxHeapSize < _min_heap_byte_size) {
  96       vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
  97     }
  98     _max_heap_size_cmdline = true;
  99   }
 100 
 101   // Check heap parameter properties
 102   if (InitialHeapSize < M) {
 103     vm_exit_during_initialization("Too small initial heap");
 104   }
 105   if (_min_heap_byte_size < M) {
 106     vm_exit_during_initialization("Too small minimum heap");
 107   }
 108 
 109   // User inputs from -Xmx and -Xms must be aligned
 110   _min_heap_byte_size = align_size_up(_min_heap_byte_size, _heap_alignment);
 111   uintx aligned_initial_heap_size = align_size_up(InitialHeapSize, _heap_alignment);
 112   uintx aligned_max_heap_size = align_size_up(MaxHeapSize, _heap_alignment);
 113 
 114   // Write back to flags if the values changed
 115   if (aligned_initial_heap_size != InitialHeapSize) {
 116     FLAG_SET_ERGO(uintx, InitialHeapSize, aligned_initial_heap_size);
 117   }
 118   if (aligned_max_heap_size != MaxHeapSize) {
 119     FLAG_SET_ERGO(uintx, MaxHeapSize, aligned_max_heap_size);
 120   }
 121 
 122   if (FLAG_IS_CMDLINE(InitialHeapSize) && _min_heap_byte_size != 0 &&
 123       InitialHeapSize < _min_heap_byte_size) {
 124     vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
 125   }
 126   if (!FLAG_IS_DEFAULT(InitialHeapSize) && InitialHeapSize > MaxHeapSize) {
 127     FLAG_SET_ERGO(uintx, MaxHeapSize, InitialHeapSize);
 128   } else if (!FLAG_IS_DEFAULT(MaxHeapSize) && InitialHeapSize > MaxHeapSize) {
 129     FLAG_SET_ERGO(uintx, InitialHeapSize, MaxHeapSize);
 130     if (InitialHeapSize < _min_heap_byte_size) {
 131       _min_heap_byte_size = InitialHeapSize;
 132     }
 133   }
 134 
 135   _initial_heap_byte_size = InitialHeapSize;
 136   _max_heap_byte_size = MaxHeapSize;
 137 
 138   FLAG_SET_ERGO(uintx, MinHeapDeltaBytes, align_size_up(MinHeapDeltaBytes, _space_alignment));
 139 
 140   DEBUG_ONLY(CollectorPolicy::assert_flags();)
 141 }
 142 
 143 void CollectorPolicy::initialize_size_info() {
 144   if (PrintGCDetails && Verbose) {
 145     gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT "  Initial heap "
 146       SIZE_FORMAT "  Maximum heap " SIZE_FORMAT,
 147       _min_heap_byte_size, _initial_heap_byte_size, _max_heap_byte_size);
 148   }
 149 
 150   DEBUG_ONLY(CollectorPolicy::assert_size_info();)
 151 }
 152 
 153 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
 154   bool result = _should_clear_all_soft_refs;
 155   set_should_clear_all_soft_refs(false);
 156   return result;
 157 }
 158 
 159 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
 160                                            int max_covered_regions) {
 161   return new CardTableRS(whole_heap, max_covered_regions);
 162 }
 163 
 164 void CollectorPolicy::cleared_all_soft_refs() {
 165   // If near gc overhear limit, continue to clear SoftRefs.  SoftRefs may
 166   // have been cleared in the last collection but if the gc overhear
 167   // limit continues to be near, SoftRefs should still be cleared.
 168   if (size_policy() != NULL) {
 169     _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
 170   }
 171   _all_soft_refs_clear = true;
 172 }
 173 
 174 size_t CollectorPolicy::compute_heap_alignment() {
 175   // The card marking array and the offset arrays for old generations are
 176   // committed in os pages as well. Make sure they are entirely full (to
 177   // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
 178   // byte entry and the os page size is 4096, the maximum heap size should
 179   // be 512*4096 = 2MB aligned.
 180 
 181   // There is only the GenRemSet in Hotspot and only the GenRemSet::CardTable
 182   // is supported.
 183   // Requirements of any new remembered set implementations must be added here.
 184   size_t alignment = GenRemSet::max_alignment_constraint(GenRemSet::CardTable);
 185 
 186   // Parallel GC does its own alignment of the generations to avoid requiring a
 187   // large page (256M on some platforms) for the permanent generation.  The
 188   // other collectors should also be updated to do their own alignment and then
 189   // this use of lcm() should be removed.
 190   if (UseLargePages && !UseParallelGC) {
 191       // In presence of large pages we have to make sure that our
 192       // alignment is large page aware
 193       alignment = lcm(os::large_page_size(), alignment);
 194   }
 195 
 196   return alignment;
 197 }
 198 
 199 // GenCollectorPolicy methods
 200 
 201 GenCollectorPolicy::GenCollectorPolicy() :
 202     _min_gen0_size(0),
 203     _initial_gen0_size(0),
 204     _max_gen0_size(0),
 205     _gen_alignment(0),
 206     _generations(NULL)
 207 {}
 208 
 209 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
 210   return align_size_down_bounded(base_size / (NewRatio + 1), _gen_alignment);
 211 }
 212 
 213 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
 214                                                  size_t maximum_size) {
 215   size_t max_minus = maximum_size - _gen_alignment;
 216   return desired_size < max_minus ? desired_size : max_minus;
 217 }
 218 
 219 
 220 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
 221                                                 size_t init_promo_size,
 222                                                 size_t init_survivor_size) {
 223   const double max_gc_pause_sec = ((double) MaxGCPauseMillis) / 1000.0;
 224   _size_policy = new AdaptiveSizePolicy(init_eden_size,
 225                                         init_promo_size,
 226                                         init_survivor_size,
 227                                         max_gc_pause_sec,
 228                                         GCTimeRatio);
 229 }
 230 
 231 size_t GenCollectorPolicy::young_gen_size_lower_bound() {
 232   // The young generation must be aligned and have room for eden + two survivors
 233   return align_size_up(3 * _space_alignment, _gen_alignment);
 234 }
 235 
 236 #ifdef ASSERT
 237 void GenCollectorPolicy::assert_flags() {
 238   CollectorPolicy::assert_flags();
 239   assert(NewSize >= _min_gen0_size, "Ergonomics decided on a too small young gen size");
 240   assert(NewSize <= MaxNewSize, "Ergonomics decided on incompatible initial and maximum young gen sizes");
 241   assert(FLAG_IS_DEFAULT(MaxNewSize) || MaxNewSize < MaxHeapSize, "Ergonomics decided on incompatible maximum young gen and heap sizes");
 242   assert(NewSize % _gen_alignment == 0, "NewSize alignment");
 243   assert(FLAG_IS_DEFAULT(MaxNewSize) || MaxNewSize % _gen_alignment == 0, "MaxNewSize alignment");
 244 }
 245 
 246 void TwoGenerationCollectorPolicy::assert_flags() {
 247   GenCollectorPolicy::assert_flags();
 248   assert(OldSize + NewSize <= MaxHeapSize, "Ergonomics decided on incompatible generation and heap sizes");
 249   assert(OldSize % _gen_alignment == 0, "OldSize alignment");
 250 }
 251 
 252 void GenCollectorPolicy::assert_size_info() {
 253   CollectorPolicy::assert_size_info();
 254   // GenCollectorPolicy::initialize_size_info may update the MaxNewSize
 255   assert(MaxNewSize < MaxHeapSize, "Ergonomics decided on incompatible maximum young and heap sizes");
 256   assert(NewSize == _initial_gen0_size, "Discrepancy between NewSize flag and local storage");
 257   assert(MaxNewSize == _max_gen0_size, "Discrepancy between MaxNewSize flag and local storage");
 258   assert(_min_gen0_size <= _initial_gen0_size, "Ergonomics decided on incompatible minimum and initial young gen sizes");
 259   assert(_initial_gen0_size <= _max_gen0_size, "Ergonomics decided on incompatible initial and maximum young gen sizes");
 260   assert(_min_gen0_size % _gen_alignment == 0, "_min_gen0_size alignment");
 261   assert(_initial_gen0_size % _gen_alignment == 0, "_initial_gen0_size alignment");
 262   assert(_max_gen0_size % _gen_alignment == 0, "_max_gen0_size alignment");
 263 }
 264 
 265 void TwoGenerationCollectorPolicy::assert_size_info() {
 266   GenCollectorPolicy::assert_size_info();
 267   assert(OldSize == _initial_gen1_size, "Discrepancy between OldSize flag and local storage");
 268   assert(_min_gen1_size <= _initial_gen1_size, "Ergonomics decided on incompatible minimum and initial old gen sizes");
 269   assert(_initial_gen1_size <= _max_gen1_size, "Ergonomics decided on incompatible initial and maximum old gen sizes");
 270   assert(_max_gen1_size % _gen_alignment == 0, "_max_gen1_size alignment");
 271   assert(_initial_gen1_size % _gen_alignment == 0, "_initial_gen1_size alignment");
 272   assert(_max_heap_byte_size <= (_max_gen0_size + _max_gen1_size), "Total maximum heap sizes must be sum of generation maximum sizes");
 273 }
 274 #endif // ASSERT
 275 
 276 void GenCollectorPolicy::initialize_flags() {
 277   CollectorPolicy::initialize_flags();
 278 
 279   assert(_gen_alignment != 0, "Generation alignment not set up properly");
 280   assert(_heap_alignment >= _gen_alignment,
 281          err_msg("heap_alignment: " SIZE_FORMAT " less than gen_alignment: " SIZE_FORMAT,
 282                  _heap_alignment, _gen_alignment));
 283   assert(_gen_alignment % _space_alignment == 0,
 284          err_msg("gen_alignment: " SIZE_FORMAT " not aligned by space_alignment: " SIZE_FORMAT,
 285                  _gen_alignment, _space_alignment));
 286   assert(_heap_alignment % _gen_alignment == 0,
 287          err_msg("heap_alignment: " SIZE_FORMAT " not aligned by gen_alignment: " SIZE_FORMAT,
 288                  _heap_alignment, _gen_alignment));
 289 
 290   // All generational heaps have a youngest gen; handle those flags here
 291 
 292   // Make sure the heap is large enough for two generations
 293   uintx smallest_new_size = young_gen_size_lower_bound();
 294   uintx smallest_heap_size = align_size_up(smallest_new_size + align_size_up(_space_alignment, _gen_alignment),
 295                                            _heap_alignment);
 296   if (MaxHeapSize < smallest_heap_size) {
 297     FLAG_SET_ERGO(uintx, MaxHeapSize, smallest_heap_size);
 298     _max_heap_byte_size = MaxHeapSize;
 299   }
 300   // If needed, synchronize _min_heap_byte size and _initial_heap_byte_size
 301   if (_min_heap_byte_size < smallest_heap_size) {
 302     _min_heap_byte_size = smallest_heap_size;
 303     if (InitialHeapSize < _min_heap_byte_size) {
 304       FLAG_SET_ERGO(uintx, InitialHeapSize, smallest_heap_size);
 305       _initial_heap_byte_size = smallest_heap_size;
 306     }
 307   }
 308 
 309   // Now take the actual NewSize into account. We will silently increase NewSize
 310   // if the user specified a smaller value.
 311   smallest_new_size = MAX2(smallest_new_size, (uintx)align_size_down(NewSize, _gen_alignment));
 312   if (smallest_new_size != NewSize) {
 313     FLAG_SET_ERGO(uintx, NewSize, smallest_new_size);
 314   }
 315   _initial_gen0_size = NewSize;
 316 
 317   if (!FLAG_IS_DEFAULT(MaxNewSize)) {
 318     uintx min_new_size = MAX2(_gen_alignment, _min_gen0_size);
 319 
 320     if (MaxNewSize >= MaxHeapSize) {
 321       // Make sure there is room for an old generation
 322       uintx smaller_max_new_size = MaxHeapSize - _gen_alignment;
 323       if (FLAG_IS_CMDLINE(MaxNewSize)) {
 324         warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or greater than the entire "
 325                 "heap (" SIZE_FORMAT "k).  A new max generation size of " SIZE_FORMAT "k will be used.",
 326                 MaxNewSize/K, MaxHeapSize/K, smaller_max_new_size/K);
 327       }
 328       FLAG_SET_ERGO(uintx, MaxNewSize, smaller_max_new_size);
 329       if (NewSize > MaxNewSize) {
 330         FLAG_SET_ERGO(uintx, NewSize, MaxNewSize);
 331         _initial_gen0_size = NewSize;
 332       }
 333     } else if (MaxNewSize < min_new_size) {
 334       FLAG_SET_ERGO(uintx, MaxNewSize, min_new_size);
 335     } else if (!is_size_aligned(MaxNewSize, _gen_alignment)) {
 336       FLAG_SET_ERGO(uintx, MaxNewSize, align_size_down(MaxNewSize, _gen_alignment));
 337     }
 338     _max_gen0_size = MaxNewSize;
 339   }
 340 
 341   if (NewSize > MaxNewSize) {
 342     // At this point this should only happen if the user specifies a large NewSize and/or
 343     // a small (but not too small) MaxNewSize.
 344     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 345       warning("NewSize (" SIZE_FORMAT "k) is greater than the MaxNewSize (" SIZE_FORMAT "k). "
 346               "A new max generation size of " SIZE_FORMAT "k will be used.",
 347               NewSize/K, MaxNewSize/K, NewSize/K);
 348     }
 349     FLAG_SET_ERGO(uintx, MaxNewSize, NewSize);
 350     _max_gen0_size = MaxNewSize;
 351   }
 352 
 353   if (SurvivorRatio < 1 || NewRatio < 1) {
 354     vm_exit_during_initialization("Invalid young gen ratio specified");
 355   }
 356 
 357   DEBUG_ONLY(GenCollectorPolicy::assert_flags();)
 358 }
 359 
 360 void TwoGenerationCollectorPolicy::initialize_flags() {
 361   GenCollectorPolicy::initialize_flags();
 362 
 363   if (!is_size_aligned(OldSize, _gen_alignment)) {
 364     FLAG_SET_ERGO(uintx, OldSize, align_size_down(OldSize, _gen_alignment));
 365   }
 366 
 367   if (FLAG_IS_CMDLINE(OldSize) && FLAG_IS_DEFAULT(MaxHeapSize)) {
 368     // NewRatio will be used later to set the young generation size so we use
 369     // it to calculate how big the heap should be based on the requested OldSize
 370     // and NewRatio.
 371     assert(NewRatio > 0, "NewRatio should have been set up earlier");
 372     size_t calculated_heapsize = (OldSize / NewRatio) * (NewRatio + 1);
 373 
 374     calculated_heapsize = align_size_up(calculated_heapsize, _heap_alignment);
 375     FLAG_SET_ERGO(uintx, MaxHeapSize, calculated_heapsize);
 376     _max_heap_byte_size = MaxHeapSize;
 377     FLAG_SET_ERGO(uintx, InitialHeapSize, calculated_heapsize);
 378     _initial_heap_byte_size = InitialHeapSize;
 379   }
 380 
 381   // Adjust NewSize and OldSize or MaxHeapSize to match each other
 382   if (NewSize + OldSize > MaxHeapSize) {
 383     if (_max_heap_size_cmdline) {
 384       // Somebody has set a maximum heap size with the intention that we should not
 385       // exceed it. Adjust New/OldSize as necessary.
 386       uintx calculated_size = NewSize + OldSize;
 387       double shrink_factor = (double) MaxHeapSize / calculated_size;
 388       uintx smaller_new_size = align_size_down((uintx)(NewSize * shrink_factor), _gen_alignment);
 389       FLAG_SET_ERGO(uintx, NewSize, MAX2(young_gen_size_lower_bound(), smaller_new_size));
 390       _initial_gen0_size = NewSize;
 391 
 392       // OldSize is already aligned because above we aligned MaxHeapSize to
 393       // _heap_alignment, and we just made sure that NewSize is aligned to
 394       // _gen_alignment. In initialize_flags() we verified that _heap_alignment
 395       // is a multiple of _gen_alignment.
 396       FLAG_SET_ERGO(uintx, OldSize, MaxHeapSize - NewSize);
 397     } else {
 398       FLAG_SET_ERGO(uintx, MaxHeapSize, align_size_up(NewSize + OldSize, _heap_alignment));
 399       _max_heap_byte_size = MaxHeapSize;
 400     }
 401   }
 402 
 403   always_do_update_barrier = UseConcMarkSweepGC;
 404 
 405   DEBUG_ONLY(TwoGenerationCollectorPolicy::assert_flags();)
 406 }
 407 
 408 // Values set on the command line win over any ergonomically
 409 // set command line parameters.
 410 // Ergonomic choice of parameters are done before this
 411 // method is called.  Values for command line parameters such as NewSize
 412 // and MaxNewSize feed those ergonomic choices into this method.
 413 // This method makes the final generation sizings consistent with
 414 // themselves and with overall heap sizings.
 415 // In the absence of explicitly set command line flags, policies
 416 // such as the use of NewRatio are used to size the generation.
 417 void GenCollectorPolicy::initialize_size_info() {
 418   CollectorPolicy::initialize_size_info();
 419 
 420   // _space_alignment is used for alignment within a generation.
 421   // There is additional alignment done down stream for some
 422   // collectors that sometimes causes unwanted rounding up of
 423   // generations sizes.
 424 
 425   // Determine maximum size of gen0
 426 
 427   size_t max_new_size = 0;
 428   if (!FLAG_IS_DEFAULT(MaxNewSize)) {
 429     max_new_size = MaxNewSize;
 430   } else {
 431     max_new_size = scale_by_NewRatio_aligned(_max_heap_byte_size);
 432     // Bound the maximum size by NewSize below (since it historically
 433     // would have been NewSize and because the NewRatio calculation could
 434     // yield a size that is too small) and bound it by MaxNewSize above.
 435     // Ergonomics plays here by previously calculating the desired
 436     // NewSize and MaxNewSize.
 437     max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
 438   }
 439   assert(max_new_size > 0, "All paths should set max_new_size");
 440 
 441   // Given the maximum gen0 size, determine the initial and
 442   // minimum gen0 sizes.
 443 
 444   if (_max_heap_byte_size == _min_heap_byte_size) {
 445     // The maximum and minimum heap sizes are the same so the generations
 446     // minimum and initial must be the same as its maximum.
 447     _min_gen0_size = max_new_size;
 448     _initial_gen0_size = max_new_size;
 449     _max_gen0_size = max_new_size;
 450   } else {
 451     size_t desired_new_size = 0;
 452     if (!FLAG_IS_DEFAULT(NewSize)) {
 453       // If NewSize is set ergonomically (for example by cms), it
 454       // would make sense to use it.  If it is used, also use it
 455       // to set the initial size.  Although there is no reason
 456       // the minimum size and the initial size have to be the same,
 457       // the current implementation gets into trouble during the calculation
 458       // of the tenured generation sizes if they are different.
 459       // Note that this makes the initial size and the minimum size
 460       // generally small compared to the NewRatio calculation.
 461       _min_gen0_size = NewSize;
 462       desired_new_size = NewSize;
 463       max_new_size = MAX2(max_new_size, NewSize);
 464     } else {
 465       // For the case where NewSize is the default, use NewRatio
 466       // to size the minimum and initial generation sizes.
 467       // Use the default NewSize as the floor for these values.  If
 468       // NewRatio is overly large, the resulting sizes can be too small.
 469       _min_gen0_size = MAX2(scale_by_NewRatio_aligned(_min_heap_byte_size), NewSize);
 470       desired_new_size =
 471         MAX2(scale_by_NewRatio_aligned(_initial_heap_byte_size), NewSize);
 472     }
 473 
 474     assert(_min_gen0_size > 0, "Sanity check");
 475     _initial_gen0_size = desired_new_size;
 476     _max_gen0_size = max_new_size;
 477 
 478     // At this point the desirable initial and minimum sizes have been
 479     // determined without regard to the maximum sizes.
 480 
 481     // Bound the sizes by the corresponding overall heap sizes.
 482     _min_gen0_size = bound_minus_alignment(_min_gen0_size, _min_heap_byte_size);
 483     _initial_gen0_size = bound_minus_alignment(_initial_gen0_size, _initial_heap_byte_size);
 484     _max_gen0_size = bound_minus_alignment(_max_gen0_size, _max_heap_byte_size);
 485 
 486     // At this point all three sizes have been checked against the
 487     // maximum sizes but have not been checked for consistency among the three.
 488 
 489     // Final check min <= initial <= max
 490     _min_gen0_size = MIN2(_min_gen0_size, _max_gen0_size);
 491     _initial_gen0_size = MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size);
 492     _min_gen0_size = MIN2(_min_gen0_size, _initial_gen0_size);
 493   }
 494 
 495   // Write back to flags if necessary.
 496   if (NewSize != _initial_gen0_size) {
 497     FLAG_SET_ERGO(uintx, NewSize, _initial_gen0_size);
 498   }
 499 
 500   if (MaxNewSize != _max_gen0_size) {
 501     FLAG_SET_ERGO(uintx, MaxNewSize, _max_gen0_size);
 502   }
 503 
 504   if (PrintGCDetails && Verbose) {
 505     gclog_or_tty->print_cr("1: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 506       SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 507       _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 508   }
 509 
 510   DEBUG_ONLY(GenCollectorPolicy::assert_size_info();)
 511 }
 512 
 513 // Call this method during the sizing of the gen1 to make
 514 // adjustments to gen0 because of gen1 sizing policy.  gen0 initially has
 515 // the most freedom in sizing because it is done before the
 516 // policy for gen1 is applied.  Once gen1 policies have been applied,
 517 // there may be conflicts in the shape of the heap and this method
 518 // is used to make the needed adjustments.  The application of the
 519 // policies could be more sophisticated (iterative for example) but
 520 // keeping it simple also seems a worthwhile goal.
 521 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
 522                                                      size_t* gen1_size_ptr,
 523                                                      const size_t heap_size) {
 524   bool result = false;
 525 
 526   if ((*gen0_size_ptr + *gen1_size_ptr) > heap_size) {
 527     uintx smallest_new_size = young_gen_size_lower_bound();
 528     if ((heap_size < (*gen0_size_ptr + _min_gen1_size)) &&
 529         (heap_size >= _min_gen1_size + smallest_new_size)) {
 530       // Adjust gen0 down to accommodate _min_gen1_size
 531       *gen0_size_ptr = align_size_down_bounded(heap_size - _min_gen1_size, _gen_alignment);
 532       result = true;
 533     } else {
 534       *gen1_size_ptr = align_size_down_bounded(heap_size - *gen0_size_ptr, _gen_alignment);
 535     }
 536   }
 537   return result;
 538 }
 539 
 540 // Minimum sizes of the generations may be different than
 541 // the initial sizes.  An inconsistency is permitted here
 542 // in the total size that can be specified explicitly by
 543 // command line specification of OldSize and NewSize and
 544 // also a command line specification of -Xms.  Issue a warning
 545 // but allow the values to pass.
 546 
 547 void TwoGenerationCollectorPolicy::initialize_size_info() {
 548   GenCollectorPolicy::initialize_size_info();
 549 
 550   // At this point the minimum, initial and maximum sizes
 551   // of the overall heap and of gen0 have been determined.
 552   // The maximum gen1 size can be determined from the maximum gen0
 553   // and maximum heap size since no explicit flags exist
 554   // for setting the gen1 maximum.
 555   _max_gen1_size = MAX2(_max_heap_byte_size - _max_gen0_size, _gen_alignment);
 556 
 557   // If no explicit command line flag has been set for the
 558   // gen1 size, use what is left for gen1
 559   if (!FLAG_IS_CMDLINE(OldSize)) {
 560     // The user has not specified any value but the ergonomics
 561     // may have chosen a value (which may or may not be consistent
 562     // with the overall heap size).  In either case make
 563     // the minimum, maximum and initial sizes consistent
 564     // with the gen0 sizes and the overall heap sizes.
 565     _min_gen1_size = MAX2(_min_heap_byte_size - _min_gen0_size, _gen_alignment);
 566     _initial_gen1_size = MAX2(_initial_heap_byte_size - _initial_gen0_size, _gen_alignment);
 567     // _max_gen1_size has already been made consistent above
 568     FLAG_SET_ERGO(uintx, OldSize, _initial_gen1_size);
 569   } else {
 570     // OldSize has been explicitly set on the command line. Use the
 571     // OldSize and then determine the consequences.
 572     _min_gen1_size = MIN2(OldSize, _min_heap_byte_size - _min_gen0_size);
 573     _initial_gen1_size = OldSize;
 574 
 575     // If the user has explicitly set an OldSize that is inconsistent
 576     // with other command line flags, issue a warning.
 577     // The generation minimums and the overall heap minimum should
 578     // be within one generation alignment.
 579     if ((_min_gen1_size + _min_gen0_size + _gen_alignment) < _min_heap_byte_size) {
 580       warning("Inconsistency between minimum heap size and minimum "
 581               "generation sizes: using minimum heap = " SIZE_FORMAT,
 582               _min_heap_byte_size);
 583     }
 584     if (OldSize > _max_gen1_size) {
 585       warning("Inconsistency between maximum heap size and maximum "
 586               "generation sizes: using maximum heap = " SIZE_FORMAT
 587               " -XX:OldSize flag is being ignored",
 588               _max_heap_byte_size);
 589     }
 590     // If there is an inconsistency between the OldSize and the minimum and/or
 591     // initial size of gen0, since OldSize was explicitly set, OldSize wins.
 592     if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size, _min_heap_byte_size)) {
 593       if (PrintGCDetails && Verbose) {
 594         gclog_or_tty->print_cr("2: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 595               SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 596               _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 597       }
 598     }
 599     // The same as above for the old gen initial size.
 600     if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
 601                           _initial_heap_byte_size)) {
 602       if (PrintGCDetails && Verbose) {
 603         gclog_or_tty->print_cr("3: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 604           SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 605           _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 606       }
 607     }
 608   }
 609 
 610   _min_gen1_size = MIN2(_min_gen1_size, _max_gen1_size);
 611 
 612   // Make sure that min gen1 <= initial gen1 <= max gen1.
 613   _initial_gen1_size = MAX2(_initial_gen1_size, _min_gen1_size);
 614   _initial_gen1_size = MIN2(_initial_gen1_size, _max_gen1_size);
 615 
 616   // Write back to flags if necessary
 617   if (NewSize != _initial_gen0_size) {
 618     FLAG_SET_ERGO(uintx, NewSize, _initial_gen0_size);
 619   }
 620 
 621   if (MaxNewSize != _max_gen0_size) {
 622     FLAG_SET_ERGO(uintx, MaxNewSize, _max_gen0_size);
 623   }
 624 
 625   if (OldSize != _initial_gen1_size) {
 626     FLAG_SET_ERGO(uintx, OldSize, _initial_gen1_size);
 627   }
 628 
 629   if (PrintGCDetails && Verbose) {
 630     gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT "  Initial gen1 "
 631       SIZE_FORMAT "  Maximum gen1 " SIZE_FORMAT,
 632       _min_gen1_size, _initial_gen1_size, _max_gen1_size);
 633   }
 634 
 635   DEBUG_ONLY(TwoGenerationCollectorPolicy::assert_size_info();)
 636 }
 637 
 638 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
 639                                         bool is_tlab,
 640                                         bool* gc_overhead_limit_was_exceeded) {
 641   GenCollectedHeap *gch = GenCollectedHeap::heap();
 642 
 643   debug_only(gch->check_for_valid_allocation_state());
 644   assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
 645 
 646   // In general gc_overhead_limit_was_exceeded should be false so
 647   // set it so here and reset it to true only if the gc time
 648   // limit is being exceeded as checked below.
 649   *gc_overhead_limit_was_exceeded = false;
 650 
 651   HeapWord* result = NULL;
 652 
 653   // Loop until the allocation is satisfied, or unsatisfied after GC.
 654   for (int try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
 655     HandleMark hm; // Discard any handles allocated in each iteration.
 656 
 657     // First allocation attempt is lock-free.
 658     Generation *gen0 = gch->get_gen(0);
 659     assert(gen0->supports_inline_contig_alloc(),
 660       "Otherwise, must do alloc within heap lock");
 661     if (gen0->should_allocate(size, is_tlab)) {
 662       result = gen0->par_allocate(size, is_tlab);
 663       if (result != NULL) {
 664         assert(gch->is_in_reserved(result), "result not in heap");
 665         return result;
 666       }
 667     }
 668     unsigned int gc_count_before;  // Read inside the Heap_lock locked region.
 669     {
 670       MutexLocker ml(Heap_lock);
 671       if (PrintGC && Verbose) {
 672         gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
 673                       " attempting locked slow path allocation");
 674       }
 675       // Note that only large objects get a shot at being
 676       // allocated in later generations.
 677       bool first_only = ! should_try_older_generation_allocation(size);
 678 
 679       result = gch->attempt_allocation(size, is_tlab, first_only);
 680       if (result != NULL) {
 681         assert(gch->is_in_reserved(result), "result not in heap");
 682         return result;
 683       }
 684 
 685       if (GC_locker::is_active_and_needs_gc()) {
 686         if (is_tlab) {
 687           return NULL;  // Caller will retry allocating individual object.
 688         }
 689         if (!gch->is_maximal_no_gc()) {
 690           // Try and expand heap to satisfy request.
 691           result = expand_heap_and_allocate(size, is_tlab);
 692           // Result could be null if we are out of space.
 693           if (result != NULL) {
 694             return result;
 695           }
 696         }
 697 
 698         if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 699           return NULL; // We didn't get to do a GC and we didn't get any memory.
 700         }
 701 
 702         // If this thread is not in a jni critical section, we stall
 703         // the requestor until the critical section has cleared and
 704         // GC allowed. When the critical section clears, a GC is
 705         // initiated by the last thread exiting the critical section; so
 706         // we retry the allocation sequence from the beginning of the loop,
 707         // rather than causing more, now probably unnecessary, GC attempts.
 708         JavaThread* jthr = JavaThread::current();
 709         if (!jthr->in_critical()) {
 710           MutexUnlocker mul(Heap_lock);
 711           // Wait for JNI critical section to be exited
 712           GC_locker::stall_until_clear();
 713           gclocker_stalled_count += 1;
 714           continue;
 715         } else {
 716           if (CheckJNICalls) {
 717             fatal("Possible deadlock due to allocating while"
 718                   " in jni critical section");
 719           }
 720           return NULL;
 721         }
 722       }
 723 
 724       // Read the gc count while the heap lock is held.
 725       gc_count_before = Universe::heap()->total_collections();
 726     }
 727 
 728     VM_GenCollectForAllocation op(size, is_tlab, gc_count_before);
 729     VMThread::execute(&op);
 730     if (op.prologue_succeeded()) {
 731       result = op.result();
 732       if (op.gc_locked()) {
 733          assert(result == NULL, "must be NULL if gc_locked() is true");
 734          continue;  // Retry and/or stall as necessary.
 735       }
 736 
 737       // Allocation has failed and a collection
 738       // has been done.  If the gc time limit was exceeded the
 739       // this time, return NULL so that an out-of-memory
 740       // will be thrown.  Clear gc_overhead_limit_exceeded
 741       // so that the overhead exceeded does not persist.
 742 
 743       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 744       const bool softrefs_clear = all_soft_refs_clear();
 745 
 746       if (limit_exceeded && softrefs_clear) {
 747         *gc_overhead_limit_was_exceeded = true;
 748         size_policy()->set_gc_overhead_limit_exceeded(false);
 749         if (op.result() != NULL) {
 750           CollectedHeap::fill_with_object(op.result(), size);
 751         }
 752         return NULL;
 753       }
 754       assert(result == NULL || gch->is_in_reserved(result),
 755              "result not in heap");
 756       return result;
 757     }
 758 
 759     // Give a warning if we seem to be looping forever.
 760     if ((QueuedAllocationWarningCount > 0) &&
 761         (try_count % QueuedAllocationWarningCount == 0)) {
 762           warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
 763                   " size=%d %s", try_count, size, is_tlab ? "(TLAB)" : "");
 764     }
 765   }
 766 }
 767 
 768 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
 769                                                        bool   is_tlab) {
 770   GenCollectedHeap *gch = GenCollectedHeap::heap();
 771   HeapWord* result = NULL;
 772   for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
 773     Generation *gen = gch->get_gen(i);
 774     if (gen->should_allocate(size, is_tlab)) {
 775       result = gen->expand_and_allocate(size, is_tlab);
 776     }
 777   }
 778   assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
 779   return result;
 780 }
 781 
 782 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
 783                                                         bool   is_tlab) {
 784   GenCollectedHeap *gch = GenCollectedHeap::heap();
 785   GCCauseSetter x(gch, GCCause::_allocation_failure);
 786   HeapWord* result = NULL;
 787 
 788   assert(size != 0, "Precondition violated");
 789   if (GC_locker::is_active_and_needs_gc()) {
 790     // GC locker is active; instead of a collection we will attempt
 791     // to expand the heap, if there's room for expansion.
 792     if (!gch->is_maximal_no_gc()) {
 793       result = expand_heap_and_allocate(size, is_tlab);
 794     }
 795     return result;   // Could be null if we are out of space.
 796   } else if (!gch->incremental_collection_will_fail(false /* don't consult_young */)) {
 797     // Do an incremental collection.
 798     gch->do_collection(false            /* full */,
 799                        false            /* clear_all_soft_refs */,
 800                        size             /* size */,
 801                        is_tlab          /* is_tlab */,
 802                        number_of_generations() - 1 /* max_level */);
 803   } else {
 804     if (Verbose && PrintGCDetails) {
 805       gclog_or_tty->print(" :: Trying full because partial may fail :: ");
 806     }
 807     // Try a full collection; see delta for bug id 6266275
 808     // for the original code and why this has been simplified
 809     // with from-space allocation criteria modified and
 810     // such allocation moved out of the safepoint path.
 811     gch->do_collection(true             /* full */,
 812                        false            /* clear_all_soft_refs */,
 813                        size             /* size */,
 814                        is_tlab          /* is_tlab */,
 815                        number_of_generations() - 1 /* max_level */);
 816   }
 817 
 818   result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
 819 
 820   if (result != NULL) {
 821     assert(gch->is_in_reserved(result), "result not in heap");
 822     return result;
 823   }
 824 
 825   // OK, collection failed, try expansion.
 826   result = expand_heap_and_allocate(size, is_tlab);
 827   if (result != NULL) {
 828     return result;
 829   }
 830 
 831   // If we reach this point, we're really out of memory. Try every trick
 832   // we can to reclaim memory. Force collection of soft references. Force
 833   // a complete compaction of the heap. Any additional methods for finding
 834   // free memory should be here, especially if they are expensive. If this
 835   // attempt fails, an OOM exception will be thrown.
 836   {
 837     UIntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
 838 
 839     gch->do_collection(true             /* full */,
 840                        true             /* clear_all_soft_refs */,
 841                        size             /* size */,
 842                        is_tlab          /* is_tlab */,
 843                        number_of_generations() - 1 /* max_level */);
 844   }
 845 
 846   result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
 847   if (result != NULL) {
 848     assert(gch->is_in_reserved(result), "result not in heap");
 849     return result;
 850   }
 851 
 852   assert(!should_clear_all_soft_refs(),
 853     "Flag should have been handled and cleared prior to this point");
 854 
 855   // What else?  We might try synchronous finalization later.  If the total
 856   // space available is large enough for the allocation, then a more
 857   // complete compaction phase than we've tried so far might be
 858   // appropriate.
 859   return NULL;
 860 }
 861 
 862 MetaWord* CollectorPolicy::satisfy_failed_metadata_allocation(
 863                                                  ClassLoaderData* loader_data,
 864                                                  size_t word_size,
 865                                                  Metaspace::MetadataType mdtype) {
 866   uint loop_count = 0;
 867   uint gc_count = 0;
 868   uint full_gc_count = 0;
 869 
 870   assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock");
 871 
 872   do {
 873     MetaWord* result = NULL;
 874     if (GC_locker::is_active_and_needs_gc()) {
 875       // If the GC_locker is active, just expand and allocate.
 876       // If that does not succeed, wait if this thread is not
 877       // in a critical section itself.
 878       result =
 879         loader_data->metaspace_non_null()->expand_and_allocate(word_size,
 880                                                                mdtype);
 881       if (result != NULL) {
 882         return result;
 883       }
 884       JavaThread* jthr = JavaThread::current();
 885       if (!jthr->in_critical()) {
 886         // Wait for JNI critical section to be exited
 887         GC_locker::stall_until_clear();
 888         // The GC invoked by the last thread leaving the critical
 889         // section will be a young collection and a full collection
 890         // is (currently) needed for unloading classes so continue
 891         // to the next iteration to get a full GC.
 892         continue;
 893       } else {
 894         if (CheckJNICalls) {
 895           fatal("Possible deadlock due to allocating while"
 896                 " in jni critical section");
 897         }
 898         return NULL;
 899       }
 900     }
 901 
 902     {  // Need lock to get self consistent gc_count's
 903       MutexLocker ml(Heap_lock);
 904       gc_count      = Universe::heap()->total_collections();
 905       full_gc_count = Universe::heap()->total_full_collections();
 906     }
 907 
 908     // Generate a VM operation
 909     VM_CollectForMetadataAllocation op(loader_data,
 910                                        word_size,
 911                                        mdtype,
 912                                        gc_count,
 913                                        full_gc_count,
 914                                        GCCause::_metadata_GC_threshold);
 915     VMThread::execute(&op);
 916 
 917     // If GC was locked out, try again. Check before checking success because the
 918     // prologue could have succeeded and the GC still have been locked out.
 919     if (op.gc_locked()) {
 920       continue;
 921     }
 922 
 923     if (op.prologue_succeeded()) {
 924       return op.result();
 925     }
 926     loop_count++;
 927     if ((QueuedAllocationWarningCount > 0) &&
 928         (loop_count % QueuedAllocationWarningCount == 0)) {
 929       warning("satisfy_failed_metadata_allocation() retries %d times \n\t"
 930               " size=%d", loop_count, word_size);
 931     }
 932   } while (true);  // Until a GC is done
 933 }
 934 
 935 // Return true if any of the following is true:
 936 // . the allocation won't fit into the current young gen heap
 937 // . gc locker is occupied (jni critical section)
 938 // . heap memory is tight -- the most recent previous collection
 939 //   was a full collection because a partial collection (would
 940 //   have) failed and is likely to fail again
 941 bool GenCollectorPolicy::should_try_older_generation_allocation(
 942         size_t word_size) const {
 943   GenCollectedHeap* gch = GenCollectedHeap::heap();
 944   size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
 945   return    (word_size > heap_word_size(gen0_capacity))
 946          || GC_locker::is_active_and_needs_gc()
 947          || gch->incremental_collection_failed();
 948 }
 949 
 950 
 951 //
 952 // MarkSweepPolicy methods
 953 //
 954 
 955 void MarkSweepPolicy::initialize_alignments() {
 956   _space_alignment = _gen_alignment = (uintx)Generation::GenGrain;
 957   _heap_alignment = compute_heap_alignment();
 958 }
 959 
 960 void MarkSweepPolicy::initialize_generations() {
 961   _generations = NEW_C_HEAP_ARRAY3(GenerationSpecPtr, number_of_generations(), mtGC, 0, AllocFailStrategy::RETURN_NULL);
 962   if (_generations == NULL) {
 963     vm_exit_during_initialization("Unable to allocate gen spec");
 964   }
 965 
 966   if (UseParNewGC) {
 967     _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
 968   } else {
 969     _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
 970   }
 971   _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
 972 
 973   if (_generations[0] == NULL || _generations[1] == NULL) {
 974     vm_exit_during_initialization("Unable to allocate gen spec");
 975   }
 976 }
 977 
 978 void MarkSweepPolicy::initialize_gc_policy_counters() {
 979   // Initialize the policy counters - 2 collectors, 3 generations.
 980   if (UseParNewGC) {
 981     _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
 982   } else {
 983     _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
 984   }
 985 }