1 /*
   2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc_implementation/shared/collectorCounters.hpp"
  31 #include "gc_implementation/shared/gcTraceTime.hpp"
  32 #include "gc_implementation/shared/vmGCOperations.hpp"
  33 #include "gc_interface/collectedHeap.inline.hpp"
  34 #include "memory/filemap.hpp"
  35 #include "memory/gcLocker.inline.hpp"
  36 #include "memory/genCollectedHeap.hpp"
  37 #include "memory/genOopClosures.inline.hpp"
  38 #include "memory/generation.inline.hpp"
  39 #include "memory/generationSpec.hpp"
  40 #include "memory/resourceArea.hpp"
  41 #include "memory/sharedHeap.hpp"
  42 #include "memory/space.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "oops/oop.inline2.hpp"
  45 #include "runtime/biasedLocking.hpp"
  46 #include "runtime/fprofiler.hpp"
  47 #include "runtime/handles.hpp"
  48 #include "runtime/handles.inline.hpp"
  49 #include "runtime/java.hpp"
  50 #include "runtime/vmThread.hpp"
  51 #include "services/memoryService.hpp"
  52 #include "utilities/vmError.hpp"
  53 #include "utilities/workgroup.hpp"
  54 #include "utilities/macros.hpp"
  55 #if INCLUDE_ALL_GCS
  56 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  57 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  58 #endif // INCLUDE_ALL_GCS
  59 
  60 GenCollectedHeap* GenCollectedHeap::_gch;
  61 NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)
  62 
  63 // The set of potentially parallel tasks in strong root scanning.
  64 enum GCH_process_strong_roots_tasks {
  65   // We probably want to parallelize both of these internally, but for now...
  66   GCH_PS_younger_gens,
  67   // Leave this one last.
  68   GCH_PS_NumElements
  69 };
  70 
  71 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
  72   SharedHeap(policy),
  73   _gen_policy(policy),
  74   _gen_process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
  75   _full_collections_completed(0)
  76 {
  77   if (_gen_process_strong_tasks == NULL ||
  78       !_gen_process_strong_tasks->valid()) {
  79     vm_exit_during_initialization("Failed necessary allocation.");
  80   }
  81   assert(policy != NULL, "Sanity check");
  82 }
  83 
  84 jint GenCollectedHeap::initialize() {
  85   CollectedHeap::pre_initialize();
  86 
  87   int i;
  88   _n_gens = gen_policy()->number_of_generations();
  89 
  90   // While there are no constraints in the GC code that HeapWordSize
  91   // be any particular value, there are multiple other areas in the
  92   // system which believe this to be true (e.g. oop->object_size in some
  93   // cases incorrectly returns the size in wordSize units rather than
  94   // HeapWordSize).
  95   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  96 
  97   // The heap must be at least as aligned as generations.
  98   size_t gen_alignment = Generation::GenGrain;
  99 
 100   _gen_specs = gen_policy()->generations();
 101 
 102   // Make sure the sizes are all aligned.
 103   for (i = 0; i < _n_gens; i++) {
 104     _gen_specs[i]->align(gen_alignment);
 105   }
 106 
 107   // Allocate space for the heap.
 108 
 109   char* heap_address;
 110   size_t total_reserved = 0;
 111   int n_covered_regions = 0;
 112   ReservedSpace heap_rs;
 113 
 114   size_t heap_alignment = collector_policy()->heap_alignment();
 115 
 116   heap_address = allocate(heap_alignment, &total_reserved,
 117                           &n_covered_regions, &heap_rs);
 118 
 119   if (!heap_rs.is_reserved()) {
 120     vm_shutdown_during_initialization(
 121       "Could not reserve enough space for object heap");
 122     return JNI_ENOMEM;
 123   }
 124 
 125   _reserved = MemRegion((HeapWord*)heap_rs.base(),
 126                         (HeapWord*)(heap_rs.base() + heap_rs.size()));
 127 
 128   // It is important to do this in a way such that concurrent readers can't
 129   // temporarily think something is in the heap.  (Seen this happen in asserts.)
 130   _reserved.set_word_size(0);
 131   _reserved.set_start((HeapWord*)heap_rs.base());
 132   size_t actual_heap_size = heap_rs.size();
 133   _reserved.set_end((HeapWord*)(heap_rs.base() + actual_heap_size));
 134 
 135   _rem_set = collector_policy()->create_rem_set(_reserved, n_covered_regions);
 136   set_barrier_set(rem_set()->bs());
 137 
 138   _gch = this;
 139 
 140   for (i = 0; i < _n_gens; i++) {
 141     ReservedSpace this_rs = heap_rs.first_part(_gen_specs[i]->max_size(), false, false);
 142     _gens[i] = _gen_specs[i]->init(this_rs, i, rem_set());
 143     heap_rs = heap_rs.last_part(_gen_specs[i]->max_size());
 144   }
 145   clear_incremental_collection_failed();
 146 
 147 #if INCLUDE_ALL_GCS
 148   // If we are running CMS, create the collector responsible
 149   // for collecting the CMS generations.
 150   if (collector_policy()->is_concurrent_mark_sweep_policy()) {
 151     bool success = create_cms_collector();
 152     if (!success) return JNI_ENOMEM;
 153   }
 154 #endif // INCLUDE_ALL_GCS
 155 
 156   return JNI_OK;
 157 }
 158 
 159 
 160 char* GenCollectedHeap::allocate(size_t alignment,
 161                                  size_t* _total_reserved,
 162                                  int* _n_covered_regions,
 163                                  ReservedSpace* heap_rs){
 164   const char overflow_msg[] = "The size of the object heap + VM data exceeds "
 165     "the maximum representable size";
 166 
 167   // Now figure out the total size.
 168   size_t total_reserved = 0;
 169   int n_covered_regions = 0;
 170   const size_t pageSize = UseLargePages ?
 171       os::large_page_size() : os::vm_page_size();
 172 
 173   assert(alignment % pageSize == 0, "Must be");
 174 
 175   for (int i = 0; i < _n_gens; i++) {
 176     total_reserved += _gen_specs[i]->max_size();
 177     if (total_reserved < _gen_specs[i]->max_size()) {
 178       vm_exit_during_initialization(overflow_msg);
 179     }
 180     n_covered_regions += _gen_specs[i]->n_covered_regions();
 181   }
 182   assert(total_reserved % alignment == 0,
 183          err_msg("Gen size; total_reserved=" SIZE_FORMAT ", alignment="
 184                  SIZE_FORMAT, total_reserved, alignment));
 185 
 186   // Needed until the cardtable is fixed to have the right number
 187   // of covered regions.
 188   n_covered_regions += 2;
 189 
 190   *_total_reserved = total_reserved;
 191   *_n_covered_regions = n_covered_regions;
 192 
 193   *heap_rs = Universe::reserve_heap(total_reserved, alignment);
 194   return heap_rs->base();
 195 }
 196 
 197 
 198 void GenCollectedHeap::post_initialize() {
 199   SharedHeap::post_initialize();
 200   TwoGenerationCollectorPolicy *policy =
 201     (TwoGenerationCollectorPolicy *)collector_policy();
 202   guarantee(policy->is_two_generation_policy(), "Illegal policy type");
 203   DefNewGeneration* def_new_gen = (DefNewGeneration*) get_gen(0);
 204   assert(def_new_gen->kind() == Generation::DefNew ||
 205          def_new_gen->kind() == Generation::ParNew ||
 206          def_new_gen->kind() == Generation::ASParNew,
 207          "Wrong generation kind");
 208 
 209   Generation* old_gen = get_gen(1);
 210   assert(old_gen->kind() == Generation::ConcurrentMarkSweep ||
 211          old_gen->kind() == Generation::ASConcurrentMarkSweep ||
 212          old_gen->kind() == Generation::MarkSweepCompact,
 213     "Wrong generation kind");
 214 
 215   policy->initialize_size_policy(def_new_gen->eden()->capacity(),
 216                                  old_gen->capacity(),
 217                                  def_new_gen->from()->capacity());
 218   policy->initialize_gc_policy_counters();
 219 }
 220 
 221 void GenCollectedHeap::ref_processing_init() {
 222   SharedHeap::ref_processing_init();
 223   for (int i = 0; i < _n_gens; i++) {
 224     _gens[i]->ref_processor_init();
 225   }
 226 }
 227 
 228 size_t GenCollectedHeap::capacity() const {
 229   size_t res = 0;
 230   for (int i = 0; i < _n_gens; i++) {
 231     res += _gens[i]->capacity();
 232   }
 233   return res;
 234 }
 235 
 236 size_t GenCollectedHeap::used() const {
 237   size_t res = 0;
 238   for (int i = 0; i < _n_gens; i++) {
 239     res += _gens[i]->used();
 240   }
 241   return res;
 242 }
 243 
 244 // Save the "used_region" for generations level and lower.
 245 void GenCollectedHeap::save_used_regions(int level) {
 246   assert(level < _n_gens, "Illegal level parameter");
 247   for (int i = level; i >= 0; i--) {
 248     _gens[i]->save_used_region();
 249   }
 250 }
 251 
 252 size_t GenCollectedHeap::max_capacity() const {
 253   size_t res = 0;
 254   for (int i = 0; i < _n_gens; i++) {
 255     res += _gens[i]->max_capacity();
 256   }
 257   return res;
 258 }
 259 
 260 // Update the _full_collections_completed counter
 261 // at the end of a stop-world full GC.
 262 unsigned int GenCollectedHeap::update_full_collections_completed() {
 263   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 264   assert(_full_collections_completed <= _total_full_collections,
 265          "Can't complete more collections than were started");
 266   _full_collections_completed = _total_full_collections;
 267   ml.notify_all();
 268   return _full_collections_completed;
 269 }
 270 
 271 // Update the _full_collections_completed counter, as appropriate,
 272 // at the end of a concurrent GC cycle. Note the conditional update
 273 // below to allow this method to be called by a concurrent collector
 274 // without synchronizing in any manner with the VM thread (which
 275 // may already have initiated a STW full collection "concurrently").
 276 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
 277   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 278   assert((_full_collections_completed <= _total_full_collections) &&
 279          (count <= _total_full_collections),
 280          "Can't complete more collections than were started");
 281   if (count > _full_collections_completed) {
 282     _full_collections_completed = count;
 283     ml.notify_all();
 284   }
 285   return _full_collections_completed;
 286 }
 287 
 288 
 289 #ifndef PRODUCT
 290 // Override of memory state checking method in CollectedHeap:
 291 // Some collectors (CMS for example) can't have badHeapWordVal written
 292 // in the first two words of an object. (For instance , in the case of
 293 // CMS these words hold state used to synchronize between certain
 294 // (concurrent) GC steps and direct allocating mutators.)
 295 // The skip_header_HeapWords() method below, allows us to skip
 296 // over the requisite number of HeapWord's. Note that (for
 297 // generational collectors) this means that those many words are
 298 // skipped in each object, irrespective of the generation in which
 299 // that object lives. The resultant loss of precision seems to be
 300 // harmless and the pain of avoiding that imprecision appears somewhat
 301 // higher than we are prepared to pay for such rudimentary debugging
 302 // support.
 303 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
 304                                                          size_t size) {
 305   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 306     // We are asked to check a size in HeapWords,
 307     // but the memory is mangled in juint words.
 308     juint* start = (juint*) (addr + skip_header_HeapWords());
 309     juint* end   = (juint*) (addr + size);
 310     for (juint* slot = start; slot < end; slot += 1) {
 311       assert(*slot == badHeapWordVal,
 312              "Found non badHeapWordValue in pre-allocation check");
 313     }
 314   }
 315 }
 316 #endif
 317 
 318 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 319                                                bool is_tlab,
 320                                                bool first_only) {
 321   HeapWord* res;
 322   for (int i = 0; i < _n_gens; i++) {
 323     if (_gens[i]->should_allocate(size, is_tlab)) {
 324       res = _gens[i]->allocate(size, is_tlab);
 325       if (res != NULL) return res;
 326       else if (first_only) break;
 327     }
 328   }
 329   // Otherwise...
 330   return NULL;
 331 }
 332 
 333 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 334                                          bool* gc_overhead_limit_was_exceeded) {
 335   return collector_policy()->mem_allocate_work(size,
 336                                                false /* is_tlab */,
 337                                                gc_overhead_limit_was_exceeded);
 338 }
 339 
 340 bool GenCollectedHeap::must_clear_all_soft_refs() {
 341   return _gc_cause == GCCause::_last_ditch_collection;
 342 }
 343 
 344 bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
 345   return UseConcMarkSweepGC &&
 346          ((cause == GCCause::_gc_locker && GCLockerInvokesConcurrent) ||
 347           (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
 348 }
 349 
 350 void GenCollectedHeap::do_collection(bool  full,
 351                                      bool   clear_all_soft_refs,
 352                                      size_t size,
 353                                      bool   is_tlab,
 354                                      int    max_level) {
 355   bool prepared_for_verification = false;
 356   ResourceMark rm;
 357   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 358 
 359   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 360   assert(my_thread->is_VM_thread() ||
 361          my_thread->is_ConcurrentGC_thread(),
 362          "incorrect thread type capability");
 363   assert(Heap_lock->is_locked(),
 364          "the requesting thread should have the Heap_lock");
 365   guarantee(!is_gc_active(), "collection is not reentrant");
 366   assert(max_level < n_gens(), "sanity check");
 367 
 368   if (GC_locker::check_active_before_gc()) {
 369     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 370   }
 371 
 372   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 373                           collector_policy()->should_clear_all_soft_refs();
 374 
 375   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
 376 
 377   const size_t metadata_prev_used = MetaspaceAux::allocated_used_bytes();
 378 
 379   print_heap_before_gc();
 380 
 381   {
 382     FlagSetting fl(_is_gc_active, true);
 383 
 384     bool complete = full && (max_level == (n_gens()-1));
 385     const char* gc_cause_prefix = complete ? "Full GC" : "GC";
 386     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
 387     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
 388     GCTraceTime t(GCCauseString(gc_cause_prefix, gc_cause()), PrintGCDetails, false, NULL);
 389 
 390     gc_prologue(complete);
 391     increment_total_collections(complete);
 392 
 393     size_t gch_prev_used = used();
 394 
 395     int starting_level = 0;
 396     if (full) {
 397       // Search for the oldest generation which will collect all younger
 398       // generations, and start collection loop there.
 399       for (int i = max_level; i >= 0; i--) {
 400         if (_gens[i]->full_collects_younger_generations()) {
 401           starting_level = i;
 402           break;
 403         }
 404       }
 405     }
 406 
 407     bool must_restore_marks_for_biased_locking = false;
 408 
 409     int max_level_collected = starting_level;
 410     for (int i = starting_level; i <= max_level; i++) {
 411       if (_gens[i]->should_collect(full, size, is_tlab)) {
 412         if (i == n_gens() - 1) {  // a major collection is to happen
 413           if (!complete) {
 414             // The full_collections increment was missed above.
 415             increment_total_full_collections();
 416           }
 417           pre_full_gc_dump(NULL);    // do any pre full gc dumps
 418         }
 419         // Timer for individual generations. Last argument is false: no CR
 420         // FIXME: We should try to start the timing earlier to cover more of the GC pause
 421         GCTraceTime t1(_gens[i]->short_name(), PrintGCDetails, false, NULL);
 422         TraceCollectorStats tcs(_gens[i]->counters());
 423         TraceMemoryManagerStats tmms(_gens[i]->kind(),gc_cause());
 424 
 425         size_t prev_used = _gens[i]->used();
 426         _gens[i]->stat_record()->invocations++;
 427         _gens[i]->stat_record()->accumulated_time.start();
 428 
 429         // Must be done anew before each collection because
 430         // a previous collection will do mangling and will
 431         // change top of some spaces.
 432         record_gen_tops_before_GC();
 433 
 434         if (PrintGC && Verbose) {
 435           gclog_or_tty->print("level=%d invoke=%d size=" SIZE_FORMAT,
 436                      i,
 437                      _gens[i]->stat_record()->invocations,
 438                      size*HeapWordSize);
 439         }
 440 
 441         if (VerifyBeforeGC && i >= VerifyGCLevel &&
 442             total_collections() >= VerifyGCStartAt) {
 443           HandleMark hm;  // Discard invalid handles created during verification
 444           if (!prepared_for_verification) {
 445             prepare_for_verify();
 446             prepared_for_verification = true;
 447           }
 448           Universe::verify(" VerifyBeforeGC:");
 449         }
 450         COMPILER2_PRESENT(DerivedPointerTable::clear());
 451 
 452         if (!must_restore_marks_for_biased_locking &&
 453             _gens[i]->performs_in_place_marking()) {
 454           // We perform this mark word preservation work lazily
 455           // because it's only at this point that we know whether we
 456           // absolutely have to do it; we want to avoid doing it for
 457           // scavenge-only collections where it's unnecessary
 458           must_restore_marks_for_biased_locking = true;
 459           BiasedLocking::preserve_marks();
 460         }
 461 
 462         // Do collection work
 463         {
 464           // Note on ref discovery: For what appear to be historical reasons,
 465           // GCH enables and disabled (by enqueing) refs discovery.
 466           // In the future this should be moved into the generation's
 467           // collect method so that ref discovery and enqueueing concerns
 468           // are local to a generation. The collect method could return
 469           // an appropriate indication in the case that notification on
 470           // the ref lock was needed. This will make the treatment of
 471           // weak refs more uniform (and indeed remove such concerns
 472           // from GCH). XXX
 473 
 474           HandleMark hm;  // Discard invalid handles created during gc
 475           save_marks();   // save marks for all gens
 476           // We want to discover references, but not process them yet.
 477           // This mode is disabled in process_discovered_references if the
 478           // generation does some collection work, or in
 479           // enqueue_discovered_references if the generation returns
 480           // without doing any work.
 481           ReferenceProcessor* rp = _gens[i]->ref_processor();
 482           // If the discovery of ("weak") refs in this generation is
 483           // atomic wrt other collectors in this configuration, we
 484           // are guaranteed to have empty discovered ref lists.
 485           if (rp->discovery_is_atomic()) {
 486             rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
 487             rp->setup_policy(do_clear_all_soft_refs);
 488           } else {
 489             // collect() below will enable discovery as appropriate
 490           }
 491           _gens[i]->collect(full, do_clear_all_soft_refs, size, is_tlab);
 492           if (!rp->enqueuing_is_done()) {
 493             rp->enqueue_discovered_references();
 494           } else {
 495             rp->set_enqueuing_is_done(false);
 496           }
 497           rp->verify_no_references_recorded();
 498         }
 499         max_level_collected = i;
 500 
 501         // Determine if allocation request was met.
 502         if (size > 0) {
 503           if (!is_tlab || _gens[i]->supports_tlab_allocation()) {
 504             if (size*HeapWordSize <= _gens[i]->unsafe_max_alloc_nogc()) {
 505               size = 0;
 506             }
 507           }
 508         }
 509 
 510         COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 511 
 512         _gens[i]->stat_record()->accumulated_time.stop();
 513 
 514         update_gc_stats(i, full);
 515 
 516         if (VerifyAfterGC && i >= VerifyGCLevel &&
 517             total_collections() >= VerifyGCStartAt) {
 518           HandleMark hm;  // Discard invalid handles created during verification
 519           Universe::verify(" VerifyAfterGC:");
 520         }
 521 
 522         if (PrintGCDetails) {
 523           gclog_or_tty->print(":");
 524           _gens[i]->print_heap_change(prev_used);
 525         }
 526       }
 527     }
 528 
 529     // Update "complete" boolean wrt what actually transpired --
 530     // for instance, a promotion failure could have led to
 531     // a whole heap collection.
 532     complete = complete || (max_level_collected == n_gens() - 1);
 533 
 534     if (complete) { // We did a "major" collection
 535       // FIXME: See comment at pre_full_gc_dump call
 536       post_full_gc_dump(NULL);   // do any post full gc dumps
 537     }
 538 
 539     if (PrintGCDetails) {
 540       print_heap_change(gch_prev_used);
 541 
 542       // Print metaspace info for full GC with PrintGCDetails flag.
 543       if (complete) {
 544         MetaspaceAux::print_metaspace_change(metadata_prev_used);
 545       }
 546     }
 547 
 548     for (int j = max_level_collected; j >= 0; j -= 1) {
 549       // Adjust generation sizes.
 550       _gens[j]->compute_new_size();
 551     }
 552 
 553     if (complete) {
 554       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 555       ClassLoaderDataGraph::purge();
 556       MetaspaceAux::verify_metrics();
 557       // Resize the metaspace capacity after full collections
 558       MetaspaceGC::compute_new_size();
 559       update_full_collections_completed();
 560     }
 561 
 562     // Track memory usage and detect low memory after GC finishes
 563     MemoryService::track_memory_usage();
 564 
 565     gc_epilogue(complete);
 566 
 567     if (must_restore_marks_for_biased_locking) {
 568       BiasedLocking::restore_marks();
 569     }
 570   }
 571 
 572   AdaptiveSizePolicy* sp = gen_policy()->size_policy();
 573   AdaptiveSizePolicyOutput(sp, total_collections());
 574 
 575   print_heap_after_gc();
 576 
 577 #ifdef TRACESPINNING
 578   ParallelTaskTerminator::print_termination_counts();
 579 #endif
 580 }
 581 
 582 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 583   return collector_policy()->satisfy_failed_allocation(size, is_tlab);
 584 }
 585 
 586 void GenCollectedHeap::set_par_threads(uint t) {
 587   SharedHeap::set_par_threads(t);
 588   _gen_process_strong_tasks->set_n_threads(t);
 589 }
 590 
 591 void GenCollectedHeap::
 592 gen_process_strong_roots(int level,
 593                          bool younger_gens_as_roots,
 594                          bool activate_scope,
 595                          bool is_scavenging,
 596                          SharedHeap::ScanningOption so,
 597                          OopsInGenClosure* not_older_gens,
 598                          bool do_code_roots,
 599                          OopsInGenClosure* older_gens,
 600                          KlassClosure* klass_closure) {
 601   // General strong roots.
 602 
 603   if (!do_code_roots) {
 604     SharedHeap::process_strong_roots(activate_scope, is_scavenging, so,
 605                                      not_older_gens, NULL, klass_closure);
 606   } else {
 607     bool do_code_marking = (activate_scope || nmethod::oops_do_marking_is_active());
 608     CodeBlobToOopClosure code_roots(not_older_gens, /*do_marking=*/ do_code_marking);
 609     SharedHeap::process_strong_roots(activate_scope, is_scavenging, so,
 610                                      not_older_gens, &code_roots, klass_closure);
 611   }
 612 
 613   if (younger_gens_as_roots) {
 614     if (!_gen_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
 615       for (int i = 0; i < level; i++) {
 616         not_older_gens->set_generation(_gens[i]);
 617         _gens[i]->oop_iterate(not_older_gens);
 618       }
 619       not_older_gens->reset_generation();
 620     }
 621   }
 622   // When collection is parallel, all threads get to cooperate to do
 623   // older-gen scanning.
 624   for (int i = level+1; i < _n_gens; i++) {
 625     older_gens->set_generation(_gens[i]);
 626     rem_set()->younger_refs_iterate(_gens[i], older_gens);
 627     older_gens->reset_generation();
 628   }
 629 
 630   _gen_process_strong_tasks->all_tasks_completed();
 631 }
 632 
 633 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure,
 634                                               CodeBlobClosure* code_roots) {
 635   SharedHeap::process_weak_roots(root_closure, code_roots);
 636   // "Local" "weak" refs
 637   for (int i = 0; i < _n_gens; i++) {
 638     _gens[i]->ref_processor()->weak_oops_do(root_closure);
 639   }
 640 }
 641 
 642 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
 643 void GenCollectedHeap::                                                 \
 644 oop_since_save_marks_iterate(int level,                                 \
 645                              OopClosureType* cur,                       \
 646                              OopClosureType* older) {                   \
 647   _gens[level]->oop_since_save_marks_iterate##nv_suffix(cur);           \
 648   for (int i = level+1; i < n_gens(); i++) {                            \
 649     _gens[i]->oop_since_save_marks_iterate##nv_suffix(older);           \
 650   }                                                                     \
 651 }
 652 
 653 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
 654 
 655 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
 656 
 657 bool GenCollectedHeap::no_allocs_since_save_marks(int level) {
 658   for (int i = level; i < _n_gens; i++) {
 659     if (!_gens[i]->no_allocs_since_save_marks()) return false;
 660   }
 661   return true;
 662 }
 663 
 664 bool GenCollectedHeap::supports_inline_contig_alloc() const {
 665   return _gens[0]->supports_inline_contig_alloc();
 666 }
 667 
 668 HeapWord** GenCollectedHeap::top_addr() const {
 669   return _gens[0]->top_addr();
 670 }
 671 
 672 HeapWord** GenCollectedHeap::end_addr() const {
 673   return _gens[0]->end_addr();
 674 }
 675 
 676 // public collection interfaces
 677 
 678 void GenCollectedHeap::collect(GCCause::Cause cause) {
 679   if (should_do_concurrent_full_gc(cause)) {
 680 #if INCLUDE_ALL_GCS
 681     // mostly concurrent full collection
 682     collect_mostly_concurrent(cause);
 683 #else  // INCLUDE_ALL_GCS
 684     ShouldNotReachHere();
 685 #endif // INCLUDE_ALL_GCS
 686   } else {
 687 #ifdef ASSERT
 688     if (cause == GCCause::_scavenge_alot) {
 689       // minor collection only
 690       collect(cause, 0);
 691     } else {
 692       // Stop-the-world full collection
 693       collect(cause, n_gens() - 1);
 694     }
 695 #else
 696     // Stop-the-world full collection
 697     collect(cause, n_gens() - 1);
 698 #endif
 699   }
 700 }
 701 
 702 void GenCollectedHeap::collect(GCCause::Cause cause, int max_level) {
 703   // The caller doesn't have the Heap_lock
 704   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 705   MutexLocker ml(Heap_lock);
 706   collect_locked(cause, max_level);
 707 }
 708 
 709 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
 710   // The caller has the Heap_lock
 711   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
 712   collect_locked(cause, n_gens() - 1);
 713 }
 714 
 715 // this is the private collection interface
 716 // The Heap_lock is expected to be held on entry.
 717 
 718 void GenCollectedHeap::collect_locked(GCCause::Cause cause, int max_level) {
 719   // Read the GC count while holding the Heap_lock
 720   unsigned int gc_count_before      = total_collections();
 721   unsigned int full_gc_count_before = total_full_collections();
 722   {
 723     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
 724     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 725                          cause, max_level);
 726     VMThread::execute(&op);
 727   }
 728 }
 729 
 730 #if INCLUDE_ALL_GCS
 731 bool GenCollectedHeap::create_cms_collector() {
 732 
 733   assert(((_gens[1]->kind() == Generation::ConcurrentMarkSweep) ||
 734          (_gens[1]->kind() == Generation::ASConcurrentMarkSweep)),
 735          "Unexpected generation kinds");
 736   // Skip two header words in the block content verification
 737   NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();)
 738   CMSCollector* collector = new CMSCollector(
 739     (ConcurrentMarkSweepGeneration*)_gens[1],
 740     _rem_set->as_CardTableRS(),
 741     (ConcurrentMarkSweepPolicy*) collector_policy());
 742 
 743   if (collector == NULL || !collector->completed_initialization()) {
 744     if (collector) {
 745       delete collector;  // Be nice in embedded situation
 746     }
 747     vm_shutdown_during_initialization("Could not create CMS collector");
 748     return false;
 749   }
 750   return true;  // success
 751 }
 752 
 753 void GenCollectedHeap::collect_mostly_concurrent(GCCause::Cause cause) {
 754   assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");
 755 
 756   MutexLocker ml(Heap_lock);
 757   // Read the GC counts while holding the Heap_lock
 758   unsigned int full_gc_count_before = total_full_collections();
 759   unsigned int gc_count_before      = total_collections();
 760   {
 761     MutexUnlocker mu(Heap_lock);
 762     VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
 763     VMThread::execute(&op);
 764   }
 765 }
 766 #endif // INCLUDE_ALL_GCS
 767 
 768 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 769    do_full_collection(clear_all_soft_refs, _n_gens - 1);
 770 }
 771 
 772 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
 773                                           int max_level) {
 774   int local_max_level;
 775   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
 776       gc_cause() == GCCause::_gc_locker) {
 777     local_max_level = 0;
 778   } else {
 779     local_max_level = max_level;
 780   }
 781 
 782   do_collection(true                 /* full */,
 783                 clear_all_soft_refs  /* clear_all_soft_refs */,
 784                 0                    /* size */,
 785                 false                /* is_tlab */,
 786                 local_max_level      /* max_level */);
 787   // Hack XXX FIX ME !!!
 788   // A scavenge may not have been attempted, or may have
 789   // been attempted and failed, because the old gen was too full
 790   if (local_max_level == 0 && gc_cause() == GCCause::_gc_locker &&
 791       incremental_collection_will_fail(false /* don't consult_young */)) {
 792     if (PrintGCDetails) {
 793       gclog_or_tty->print_cr("GC locker: Trying a full collection "
 794                              "because scavenge failed");
 795     }
 796     // This time allow the old gen to be collected as well
 797     do_collection(true                 /* full */,
 798                   clear_all_soft_refs  /* clear_all_soft_refs */,
 799                   0                    /* size */,
 800                   false                /* is_tlab */,
 801                   n_gens() - 1         /* max_level */);
 802   }
 803 }
 804 
 805 bool GenCollectedHeap::is_in_young(oop p) {
 806   bool result = ((HeapWord*)p) < _gens[_n_gens - 1]->reserved().start();
 807   assert(result == _gens[0]->is_in_reserved(p),
 808          err_msg("incorrect test - result=%d, p=" PTR_FORMAT, result, (void*)p));
 809   return result;
 810 }
 811 
 812 // Returns "TRUE" iff "p" points into the committed areas of the heap.
 813 bool GenCollectedHeap::is_in(const void* p) const {
 814   #ifndef ASSERT
 815   guarantee(VerifyBeforeGC      ||
 816             VerifyDuringGC      ||
 817             VerifyBeforeExit    ||
 818             VerifyDuringStartup ||
 819             PrintAssembly       ||
 820             tty->count() != 0   ||   // already printing
 821             VerifyAfterGC       ||
 822     VMError::fatal_error_in_progress(), "too expensive");
 823 
 824   #endif
 825   // This might be sped up with a cache of the last generation that
 826   // answered yes.
 827   for (int i = 0; i < _n_gens; i++) {
 828     if (_gens[i]->is_in(p)) return true;
 829   }
 830   // Otherwise...
 831   return false;
 832 }
 833 
 834 #ifdef ASSERT
 835 // Don't implement this by using is_in_young().  This method is used
 836 // in some cases to check that is_in_young() is correct.
 837 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
 838   assert(is_in_reserved(p) || p == NULL,
 839     "Does not work if address is non-null and outside of the heap");
 840   return p < _gens[_n_gens - 2]->reserved().end() && p != NULL;
 841 }
 842 #endif
 843 
 844 void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
 845   for (int i = 0; i < _n_gens; i++) {
 846     _gens[i]->oop_iterate(cl);
 847   }
 848 }
 849 
 850 void GenCollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
 851   for (int i = 0; i < _n_gens; i++) {
 852     _gens[i]->oop_iterate(mr, cl);
 853   }
 854 }
 855 
 856 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
 857   for (int i = 0; i < _n_gens; i++) {
 858     _gens[i]->object_iterate(cl);
 859   }
 860 }
 861 
 862 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
 863   for (int i = 0; i < _n_gens; i++) {
 864     _gens[i]->safe_object_iterate(cl);
 865   }
 866 }
 867 
 868 Space* GenCollectedHeap::space_containing(const void* addr) const {
 869   for (int i = 0; i < _n_gens; i++) {
 870     Space* res = _gens[i]->space_containing(addr);
 871     if (res != NULL) return res;
 872   }
 873   // Otherwise...
 874   assert(false, "Could not find containing space");
 875   return NULL;
 876 }
 877 
 878 
 879 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
 880   assert(is_in_reserved(addr), "block_start of address outside of heap");
 881   for (int i = 0; i < _n_gens; i++) {
 882     if (_gens[i]->is_in_reserved(addr)) {
 883       assert(_gens[i]->is_in(addr),
 884              "addr should be in allocated part of generation");
 885       return _gens[i]->block_start(addr);
 886     }
 887   }
 888   assert(false, "Some generation should contain the address");
 889   return NULL;
 890 }
 891 
 892 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
 893   assert(is_in_reserved(addr), "block_size of address outside of heap");
 894   for (int i = 0; i < _n_gens; i++) {
 895     if (_gens[i]->is_in_reserved(addr)) {
 896       assert(_gens[i]->is_in(addr),
 897              "addr should be in allocated part of generation");
 898       return _gens[i]->block_size(addr);
 899     }
 900   }
 901   assert(false, "Some generation should contain the address");
 902   return 0;
 903 }
 904 
 905 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
 906   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
 907   assert(block_start(addr) == addr, "addr must be a block start");
 908   for (int i = 0; i < _n_gens; i++) {
 909     if (_gens[i]->is_in_reserved(addr)) {
 910       return _gens[i]->block_is_obj(addr);
 911     }
 912   }
 913   assert(false, "Some generation should contain the address");
 914   return false;
 915 }
 916 
 917 bool GenCollectedHeap::supports_tlab_allocation() const {
 918   for (int i = 0; i < _n_gens; i += 1) {
 919     if (_gens[i]->supports_tlab_allocation()) {
 920       return true;
 921     }
 922   }
 923   return false;
 924 }
 925 
 926 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
 927   size_t result = 0;
 928   for (int i = 0; i < _n_gens; i += 1) {
 929     if (_gens[i]->supports_tlab_allocation()) {
 930       result += _gens[i]->tlab_capacity();
 931     }
 932   }
 933   return result;
 934 }
 935 
 936 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
 937   size_t result = 0;
 938   for (int i = 0; i < _n_gens; i += 1) {
 939     if (_gens[i]->supports_tlab_allocation()) {
 940       result += _gens[i]->unsafe_max_tlab_alloc();
 941     }
 942   }
 943   return result;
 944 }
 945 
 946 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
 947   bool gc_overhead_limit_was_exceeded;
 948   return collector_policy()->mem_allocate_work(size /* size */,
 949                                                true /* is_tlab */,
 950                                                &gc_overhead_limit_was_exceeded);
 951 }
 952 
 953 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
 954 // from the list headed by "*prev_ptr".
 955 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
 956   bool first = true;
 957   size_t min_size = 0;   // "first" makes this conceptually infinite.
 958   ScratchBlock **smallest_ptr, *smallest;
 959   ScratchBlock  *cur = *prev_ptr;
 960   while (cur) {
 961     assert(*prev_ptr == cur, "just checking");
 962     if (first || cur->num_words < min_size) {
 963       smallest_ptr = prev_ptr;
 964       smallest     = cur;
 965       min_size     = smallest->num_words;
 966       first        = false;
 967     }
 968     prev_ptr = &cur->next;
 969     cur     =  cur->next;
 970   }
 971   smallest      = *smallest_ptr;
 972   *smallest_ptr = smallest->next;
 973   return smallest;
 974 }
 975 
 976 // Sort the scratch block list headed by res into decreasing size order,
 977 // and set "res" to the result.
 978 static void sort_scratch_list(ScratchBlock*& list) {
 979   ScratchBlock* sorted = NULL;
 980   ScratchBlock* unsorted = list;
 981   while (unsorted) {
 982     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
 983     smallest->next  = sorted;
 984     sorted          = smallest;
 985   }
 986   list = sorted;
 987 }
 988 
 989 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
 990                                                size_t max_alloc_words) {
 991   ScratchBlock* res = NULL;
 992   for (int i = 0; i < _n_gens; i++) {
 993     _gens[i]->contribute_scratch(res, requestor, max_alloc_words);
 994   }
 995   sort_scratch_list(res);
 996   return res;
 997 }
 998 
 999 void GenCollectedHeap::release_scratch() {
1000   for (int i = 0; i < _n_gens; i++) {
1001     _gens[i]->reset_scratch();
1002   }
1003 }
1004 
1005 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
1006   void do_generation(Generation* gen) {
1007     gen->prepare_for_verify();
1008   }
1009 };
1010 
1011 void GenCollectedHeap::prepare_for_verify() {
1012   ensure_parsability(false);        // no need to retire TLABs
1013   GenPrepareForVerifyClosure blk;
1014   generation_iterate(&blk, false);
1015 }
1016 
1017 
1018 void GenCollectedHeap::generation_iterate(GenClosure* cl,
1019                                           bool old_to_young) {
1020   if (old_to_young) {
1021     for (int i = _n_gens-1; i >= 0; i--) {
1022       cl->do_generation(_gens[i]);
1023     }
1024   } else {
1025     for (int i = 0; i < _n_gens; i++) {
1026       cl->do_generation(_gens[i]);
1027     }
1028   }
1029 }
1030 
1031 void GenCollectedHeap::space_iterate(SpaceClosure* cl) {
1032   for (int i = 0; i < _n_gens; i++) {
1033     _gens[i]->space_iterate(cl, true);
1034   }
1035 }
1036 
1037 bool GenCollectedHeap::is_maximal_no_gc() const {
1038   for (int i = 0; i < _n_gens; i++) {
1039     if (!_gens[i]->is_maximal_no_gc()) {
1040       return false;
1041     }
1042   }
1043   return true;
1044 }
1045 
1046 void GenCollectedHeap::save_marks() {
1047   for (int i = 0; i < _n_gens; i++) {
1048     _gens[i]->save_marks();
1049   }
1050 }
1051 
1052 GenCollectedHeap* GenCollectedHeap::heap() {
1053   assert(_gch != NULL, "Uninitialized access to GenCollectedHeap::heap()");
1054   assert(_gch->kind() == CollectedHeap::GenCollectedHeap, "not a generational heap");
1055   return _gch;
1056 }
1057 
1058 
1059 void GenCollectedHeap::prepare_for_compaction() {
1060   guarantee(_n_gens = 2, "Wrong number of generations");
1061   Generation* old_gen = _gens[1];
1062   // Start by compacting into same gen.
1063   CompactPoint cp(old_gen, NULL, NULL);
1064   old_gen->prepare_for_compaction(&cp);
1065   Generation* young_gen = _gens[0];
1066   young_gen->prepare_for_compaction(&cp);
1067 }
1068 
1069 GCStats* GenCollectedHeap::gc_stats(int level) const {
1070   return _gens[level]->gc_stats();
1071 }
1072 
1073 void GenCollectedHeap::verify(bool silent, VerifyOption option /* ignored */) {
1074   for (int i = _n_gens-1; i >= 0; i--) {
1075     Generation* g = _gens[i];
1076     if (!silent) {
1077       gclog_or_tty->print(g->name());
1078       gclog_or_tty->print(" ");
1079     }
1080     g->verify();
1081   }
1082   if (!silent) {
1083     gclog_or_tty->print("remset ");
1084   }
1085   rem_set()->verify();
1086 }
1087 
1088 void GenCollectedHeap::print_on(outputStream* st) const {
1089   for (int i = 0; i < _n_gens; i++) {
1090     _gens[i]->print_on(st);
1091   }
1092   MetaspaceAux::print_on(st);
1093 }
1094 
1095 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1096   if (workers() != NULL) {
1097     workers()->threads_do(tc);
1098   }
1099 #if INCLUDE_ALL_GCS
1100   if (UseConcMarkSweepGC) {
1101     ConcurrentMarkSweepThread::threads_do(tc);
1102   }
1103 #endif // INCLUDE_ALL_GCS
1104 }
1105 
1106 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
1107 #if INCLUDE_ALL_GCS
1108   if (UseParNewGC) {
1109     workers()->print_worker_threads_on(st);
1110   }
1111   if (UseConcMarkSweepGC) {
1112     ConcurrentMarkSweepThread::print_all_on(st);
1113   }
1114 #endif // INCLUDE_ALL_GCS
1115 }
1116 
1117 void GenCollectedHeap::print_on_error(outputStream* st) const {
1118   this->CollectedHeap::print_on_error(st);
1119 
1120 #if INCLUDE_ALL_GCS
1121   if (UseConcMarkSweepGC) {
1122     st->cr();
1123     CMSCollector::print_on_error(st);
1124   }
1125 #endif // INCLUDE_ALL_GCS
1126 }
1127 
1128 void GenCollectedHeap::print_tracing_info() const {
1129   if (TraceGen0Time) {
1130     get_gen(0)->print_summary_info();
1131   }
1132   if (TraceGen1Time) {
1133     get_gen(1)->print_summary_info();
1134   }
1135 }
1136 
1137 void GenCollectedHeap::print_heap_change(size_t prev_used) const {
1138   if (PrintGCDetails && Verbose) {
1139     gclog_or_tty->print(" "  SIZE_FORMAT
1140                         "->" SIZE_FORMAT
1141                         "("  SIZE_FORMAT ")",
1142                         prev_used, used(), capacity());
1143   } else {
1144     gclog_or_tty->print(" "  SIZE_FORMAT "K"
1145                         "->" SIZE_FORMAT "K"
1146                         "("  SIZE_FORMAT "K)",
1147                         prev_used / K, used() / K, capacity() / K);
1148   }
1149 }
1150 
1151 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1152  private:
1153   bool _full;
1154  public:
1155   void do_generation(Generation* gen) {
1156     gen->gc_prologue(_full);
1157   }
1158   GenGCPrologueClosure(bool full) : _full(full) {};
1159 };
1160 
1161 void GenCollectedHeap::gc_prologue(bool full) {
1162   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1163 
1164   always_do_update_barrier = false;
1165   // Fill TLAB's and such
1166   CollectedHeap::accumulate_statistics_all_tlabs();
1167   ensure_parsability(true);   // retire TLABs
1168 
1169   // Walk generations
1170   GenGCPrologueClosure blk(full);
1171   generation_iterate(&blk, false);  // not old-to-young.
1172 };
1173 
1174 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1175  private:
1176   bool _full;
1177  public:
1178   void do_generation(Generation* gen) {
1179     gen->gc_epilogue(_full);
1180   }
1181   GenGCEpilogueClosure(bool full) : _full(full) {};
1182 };
1183 
1184 void GenCollectedHeap::gc_epilogue(bool full) {
1185 #ifdef COMPILER2
1186   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1187   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1188   guarantee(actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1189 #endif /* COMPILER2 */
1190 
1191   resize_all_tlabs();
1192 
1193   GenGCEpilogueClosure blk(full);
1194   generation_iterate(&blk, false);  // not old-to-young.
1195 
1196   if (!CleanChunkPoolAsync) {
1197     Chunk::clean_chunk_pool();
1198   }
1199 
1200   MetaspaceCounters::update_performance_counters();
1201   CompressedClassSpaceCounters::update_performance_counters();
1202 
1203   always_do_update_barrier = UseConcMarkSweepGC;
1204 };
1205 
1206 #ifndef PRODUCT
1207 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1208  private:
1209  public:
1210   void do_generation(Generation* gen) {
1211     gen->record_spaces_top();
1212   }
1213 };
1214 
1215 void GenCollectedHeap::record_gen_tops_before_GC() {
1216   if (ZapUnusedHeapArea) {
1217     GenGCSaveTopsBeforeGCClosure blk;
1218     generation_iterate(&blk, false);  // not old-to-young.
1219   }
1220 }
1221 #endif  // not PRODUCT
1222 
1223 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1224  public:
1225   void do_generation(Generation* gen) {
1226     gen->ensure_parsability();
1227   }
1228 };
1229 
1230 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1231   CollectedHeap::ensure_parsability(retire_tlabs);
1232   GenEnsureParsabilityClosure ep_cl;
1233   generation_iterate(&ep_cl, false);
1234 }
1235 
1236 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
1237                                               oop obj,
1238                                               size_t obj_size) {
1239   guarantee(old_gen->level() == 1, "We only get here with an old generation");
1240   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1241   HeapWord* result = NULL;
1242 
1243   result = old_gen->expand_and_allocate(obj_size, false);
1244 
1245   if (result != NULL) {
1246     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
1247   }
1248   return oop(result);
1249 }
1250 
1251 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1252   jlong _time;   // in ms
1253   jlong _now;    // in ms
1254 
1255  public:
1256   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1257 
1258   jlong time() { return _time; }
1259 
1260   void do_generation(Generation* gen) {
1261     _time = MIN2(_time, gen->time_of_last_gc(_now));
1262   }
1263 };
1264 
1265 jlong GenCollectedHeap::millis_since_last_gc() {
1266   // We need a monotonically non-decreasing time in ms but
1267   // os::javaTimeMillis() does not guarantee monotonicity.
1268   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1269   GenTimeOfLastGCClosure tolgc_cl(now);
1270   // iterate over generations getting the oldest
1271   // time that a generation was collected
1272   generation_iterate(&tolgc_cl, false);
1273 
1274   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
1275   // provided the underlying platform provides such a time source
1276   // (and it is bug free). So we still have to guard against getting
1277   // back a time later than 'now'.
1278   jlong retVal = now - tolgc_cl.time();
1279   if (retVal < 0) {
1280     NOT_PRODUCT(warning("time warp: "INT64_FORMAT, retVal);)
1281     return 0;
1282   }
1283   return retVal;
1284 }