1 /*
   2  * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_MEMORY_SHAREDHEAP_HPP
  26 #define SHARE_VM_MEMORY_SHAREDHEAP_HPP
  27 
  28 #include "gc_interface/collectedHeap.hpp"
  29 #include "memory/generation.hpp"
  30 
  31 // A "SharedHeap" is an implementation of a java heap for HotSpot.  This
  32 // is an abstract class: there may be many different kinds of heaps.  This
  33 // class defines the functions that a heap must implement, and contains
  34 // infrastructure common to all heaps.
  35 
  36 class Generation;
  37 class BarrierSet;
  38 class GenRemSet;
  39 class Space;
  40 class SpaceClosure;
  41 class OopClosure;
  42 class OopsInGenClosure;
  43 class ObjectClosure;
  44 class SubTasksDone;
  45 class WorkGang;
  46 class FlexibleWorkGang;
  47 class CollectorPolicy;
  48 class KlassClosure;
  49 
  50 // Note on use of FlexibleWorkGang's for GC.
  51 // There are three places where task completion is determined.
  52 // In
  53 //    1) ParallelTaskTerminator::offer_termination() where _n_threads
  54 //    must be set to the correct value so that count of workers that
  55 //    have offered termination will exactly match the number
  56 //    working on the task.  Tasks such as those derived from GCTask
  57 //    use ParallelTaskTerminator's.  Tasks that want load balancing
  58 //    by work stealing use this method to gauge completion.
  59 //    2) SubTasksDone has a variable _n_threads that is used in
  60 //    all_tasks_completed() to determine completion.  all_tasks_complete()
  61 //    counts the number of tasks that have been done and then reset
  62 //    the SubTasksDone so that it can be used again.  When the number of
  63 //    tasks is set to the number of GC workers, then _n_threads must
  64 //    be set to the number of active GC workers. G1CollectedHeap,
  65 //    HRInto_G1RemSet, GenCollectedHeap and SharedHeap have SubTasksDone.
  66 //    This seems too many.
  67 //    3) SequentialSubTasksDone has an _n_threads that is used in
  68 //    a way similar to SubTasksDone and has the same dependency on the
  69 //    number of active GC workers.  CompactibleFreeListSpace and Space
  70 //    have SequentialSubTasksDone's.
  71 // Example of using SubTasksDone and SequentialSubTasksDone
  72 // G1CollectedHeap::g1_process_strong_roots() calls
  73 //  process_strong_roots(false, // no scoping; this is parallel code
  74 //                       is_scavenging, so,
  75 //                       &buf_scan_non_heap_roots,
  76 //                       &eager_scan_code_roots);
  77 //  which delegates to SharedHeap::process_strong_roots() and uses
  78 //  SubTasksDone* _process_strong_tasks to claim tasks.
  79 //  process_strong_roots() calls
  80 //      rem_set()->younger_refs_iterate()
  81 //  to scan the card table and which eventually calls down into
  82 //  CardTableModRefBS::par_non_clean_card_iterate_work().  This method
  83 //  uses SequentialSubTasksDone* _pst to claim tasks.
  84 //  Both SubTasksDone and SequentialSubTasksDone call their method
  85 //  all_tasks_completed() to count the number of GC workers that have
  86 //  finished their work.  That logic is "when all the workers are
  87 //  finished the tasks are finished".
  88 //
  89 //  The pattern that appears  in the code is to set _n_threads
  90 //  to a value > 1 before a task that you would like executed in parallel
  91 //  and then to set it to 0 after that task has completed.  A value of
  92 //  0 is a "special" value in set_n_threads() which translates to
  93 //  setting _n_threads to 1.
  94 //
  95 //  Some code uses _n_termination to decide if work should be done in
  96 //  parallel.  The notorious possibly_parallel_oops_do() in threads.cpp
  97 //  is an example of such code.  Look for variable "is_par" for other
  98 //  examples.
  99 //
 100 //  The active_workers is not reset to 0 after a parallel phase.  It's
 101 //  value may be used in later phases and in one instance at least
 102 //  (the parallel remark) it has to be used (the parallel remark depends
 103 //  on the partitioning done in the previous parallel scavenge).
 104 
 105 class SharedHeap : public CollectedHeap {
 106   friend class VMStructs;
 107 
 108   friend class VM_GC_Operation;
 109   friend class VM_CGC_Operation;
 110 
 111 private:
 112   // For claiming strong_roots tasks.
 113   SubTasksDone* _process_strong_tasks;
 114 
 115 protected:
 116   // There should be only a single instance of "SharedHeap" in a program.
 117   // This is enforced with the protected constructor below, which will also
 118   // set the static pointer "_sh" to that instance.
 119   static SharedHeap* _sh;
 120 
 121   // and the Gen Remembered Set, at least one good enough to scan the perm
 122   // gen.
 123   GenRemSet* _rem_set;
 124 
 125   // A gc policy, controls global gc resource issues
 126   CollectorPolicy *_collector_policy;
 127 
 128   // See the discussion below, in the specification of the reader function
 129   // for this variable.
 130   int _strong_roots_parity;
 131 
 132   // If we're doing parallel GC, use this gang of threads.
 133   FlexibleWorkGang* _workers;
 134 
 135   // Full initialization is done in a concrete subtype's "initialize"
 136   // function.
 137   SharedHeap(CollectorPolicy* policy_);
 138 
 139   // Returns true if the calling thread holds the heap lock,
 140   // or the calling thread is a par gc thread and the heap_lock is held
 141   // by the vm thread doing a gc operation.
 142   bool heap_lock_held_for_gc();
 143   // True if the heap_lock is held by the a non-gc thread invoking a gc
 144   // operation.
 145   bool _thread_holds_heap_lock_for_gc;
 146 
 147 public:
 148   static SharedHeap* heap() { return _sh; }
 149 
 150   void set_barrier_set(BarrierSet* bs);
 151   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
 152 
 153   // Does operations required after initialization has been done.
 154   virtual void post_initialize();
 155 
 156   // Initialization of ("weak") reference processing support
 157   virtual void ref_processing_init();
 158 
 159   // This function returns the "GenRemSet" object that allows us to scan
 160   // generations in a fully generational heap.
 161   GenRemSet* rem_set() { return _rem_set; }
 162 
 163   // Iteration functions.
 164   void oop_iterate(ExtendedOopClosure* cl) = 0;
 165 
 166   // Same as above, restricted to a memory region.
 167   virtual void oop_iterate(MemRegion mr, ExtendedOopClosure* cl) = 0;
 168 
 169   // Iterate over all spaces in use in the heap, in an undefined order.
 170   virtual void space_iterate(SpaceClosure* cl) = 0;
 171 
 172   // A SharedHeap will contain some number of spaces.  This finds the
 173   // space whose reserved area contains the given address, or else returns
 174   // NULL.
 175   virtual Space* space_containing(const void* addr) const = 0;
 176 
 177   bool no_gc_in_progress() { return !is_gc_active(); }
 178 
 179   // Some collectors will perform "process_strong_roots" in parallel.
 180   // Such a call will involve claiming some fine-grained tasks, such as
 181   // scanning of threads.  To make this process simpler, we provide the
 182   // "strong_roots_parity()" method.  Collectors that start parallel tasks
 183   // whose threads invoke "process_strong_roots" must
 184   // call "change_strong_roots_parity" in sequential code starting such a
 185   // task.  (This also means that a parallel thread may only call
 186   // process_strong_roots once.)
 187   //
 188   // For calls to process_strong_roots by sequential code, the parity is
 189   // updated automatically.
 190   //
 191   // The idea is that objects representing fine-grained tasks, such as
 192   // threads, will contain a "parity" field.  A task will is claimed in the
 193   // current "process_strong_roots" call only if its parity field is the
 194   // same as the "strong_roots_parity"; task claiming is accomplished by
 195   // updating the parity field to the strong_roots_parity with a CAS.
 196   //
 197   // If the client meats this spec, then strong_roots_parity() will have
 198   // the following properties:
 199   //   a) to return a different value than was returned before the last
 200   //      call to change_strong_roots_parity, and
 201   //   c) to never return a distinguished value (zero) with which such
 202   //      task-claiming variables may be initialized, to indicate "never
 203   //      claimed".
 204  private:
 205   void change_strong_roots_parity();
 206  public:
 207   int strong_roots_parity() { return _strong_roots_parity; }
 208 
 209   // Call these in sequential code around process_strong_roots.
 210   // strong_roots_prologue calls change_strong_roots_parity, if
 211   // parallel tasks are enabled.
 212   class StrongRootsScope : public MarkingCodeBlobClosure::MarkScope {
 213   public:
 214     StrongRootsScope(SharedHeap* outer, bool activate = true);
 215     ~StrongRootsScope();
 216   };
 217   friend class StrongRootsScope;
 218 
 219   enum ScanningOption {
 220     SO_None                = 0x0,
 221     SO_AllClasses          = 0x1,
 222     SO_SystemClasses       = 0x2,
 223     SO_Strings             = 0x4,
 224     SO_CodeCache           = 0x8
 225   };
 226 
 227   FlexibleWorkGang* workers() const { return _workers; }
 228 
 229   // Invoke the "do_oop" method the closure "roots" on all root locations.
 230   // The "so" argument determines which roots the closure is applied to:
 231   // "SO_None" does none;
 232   // "SO_AllClasses" applies the closure to all entries in the SystemDictionary;
 233   // "SO_SystemClasses" to all the "system" classes and loaders;
 234   // "SO_Strings" applies the closure to all entries in StringTable;
 235   // "SO_CodeCache" applies the closure to all elements of the CodeCache.
 236   void process_strong_roots(bool activate_scope,
 237                             bool is_scavenging,
 238                             ScanningOption so,
 239                             OopClosure* roots,
 240                             CodeBlobClosure* code_roots,
 241                             KlassClosure* klass_closure);
 242 
 243   // Apply "blk" to all the weak roots of the system.  These include
 244   // JNI weak roots, the code cache, system dictionary, symbol table,
 245   // string table.
 246   void process_weak_roots(OopClosure* root_closure,
 247                           CodeBlobClosure* code_roots);
 248 
 249   // The functions below are helper functions that a subclass of
 250   // "SharedHeap" can use in the implementation of its virtual
 251   // functions.
 252 
 253 public:
 254 
 255   // Do anything common to GC's.
 256   virtual void gc_prologue(bool full) = 0;
 257   virtual void gc_epilogue(bool full) = 0;
 258 
 259   // Sets the number of parallel threads that will be doing tasks
 260   // (such as process strong roots) subsequently.
 261   virtual void set_par_threads(uint t);
 262 
 263   int n_termination();
 264   void set_n_termination(int t);
 265 
 266   //
 267   // New methods from CollectedHeap
 268   //
 269 
 270   // Some utilities.
 271   void print_size_transition(outputStream* out,
 272                              size_t bytes_before,
 273                              size_t bytes_after,
 274                              size_t capacity);
 275 };
 276 
 277 #endif // SHARE_VM_MEMORY_SHAREDHEAP_HPP