1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "gc_implementation/shared/liveRange.hpp"
  29 #include "gc_implementation/shared/markSweep.hpp"
  30 #include "gc_implementation/shared/spaceDecorator.hpp"
  31 #include "memory/blockOffsetTable.inline.hpp"
  32 #include "memory/defNewGeneration.hpp"
  33 #include "memory/genCollectedHeap.hpp"
  34 #include "memory/space.hpp"
  35 #include "memory/space.inline.hpp"
  36 #include "memory/universe.inline.hpp"
  37 #include "oops/oop.inline.hpp"
  38 #include "oops/oop.inline2.hpp"
  39 #include "runtime/java.hpp"
  40 #include "runtime/safepoint.hpp"
  41 #include "utilities/copy.hpp"
  42 #include "utilities/globalDefinitions.hpp"
  43 #include "utilities/macros.hpp"
  44 
  45 void SpaceMemRegionOopsIterClosure::do_oop(oop* p)       { SpaceMemRegionOopsIterClosure::do_oop_work(p); }
  46 void SpaceMemRegionOopsIterClosure::do_oop(narrowOop* p) { SpaceMemRegionOopsIterClosure::do_oop_work(p); }
  47 
  48 HeapWord* DirtyCardToOopClosure::get_actual_top(HeapWord* top,
  49                                                 HeapWord* top_obj) {
  50   if (top_obj != NULL) {
  51     if (_sp->block_is_obj(top_obj)) {
  52       if (_precision == CardTableModRefBS::ObjHeadPreciseArray) {
  53         if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
  54           // An arrayOop is starting on the dirty card - since we do exact
  55           // store checks for objArrays we are done.
  56         } else {
  57           // Otherwise, it is possible that the object starting on the dirty
  58           // card spans the entire card, and that the store happened on a
  59           // later card.  Figure out where the object ends.
  60           // Use the block_size() method of the space over which
  61           // the iteration is being done.  That space (e.g. CMS) may have
  62           // specific requirements on object sizes which will
  63           // be reflected in the block_size() method.
  64           top = top_obj + oop(top_obj)->size();
  65         }
  66       }
  67     } else {
  68       top = top_obj;
  69     }
  70   } else {
  71     assert(top == _sp->end(), "only case where top_obj == NULL");
  72   }
  73   return top;
  74 }
  75 
  76 void DirtyCardToOopClosure::walk_mem_region(MemRegion mr,
  77                                             HeapWord* bottom,
  78                                             HeapWord* top) {
  79   // 1. Blocks may or may not be objects.
  80   // 2. Even when a block_is_obj(), it may not entirely
  81   //    occupy the block if the block quantum is larger than
  82   //    the object size.
  83   // We can and should try to optimize by calling the non-MemRegion
  84   // version of oop_iterate() for all but the extremal objects
  85   // (for which we need to call the MemRegion version of
  86   // oop_iterate()) To be done post-beta XXX
  87   for (; bottom < top; bottom += _sp->block_size(bottom)) {
  88     // As in the case of contiguous space above, we'd like to
  89     // just use the value returned by oop_iterate to increment the
  90     // current pointer; unfortunately, that won't work in CMS because
  91     // we'd need an interface change (it seems) to have the space
  92     // "adjust the object size" (for instance pad it up to its
  93     // block alignment or minimum block size restrictions. XXX
  94     if (_sp->block_is_obj(bottom) &&
  95         !_sp->obj_allocated_since_save_marks(oop(bottom))) {
  96       oop(bottom)->oop_iterate(_cl, mr);
  97     }
  98   }
  99 }
 100 
 101 // We get called with "mr" representing the dirty region
 102 // that we want to process. Because of imprecise marking,
 103 // we may need to extend the incoming "mr" to the right,
 104 // and scan more. However, because we may already have
 105 // scanned some of that extended region, we may need to
 106 // trim its right-end back some so we do not scan what
 107 // we (or another worker thread) may already have scanned
 108 // or planning to scan.
 109 void DirtyCardToOopClosure::do_MemRegion(MemRegion mr) {
 110 
 111   // Some collectors need to do special things whenever their dirty
 112   // cards are processed. For instance, CMS must remember mutator updates
 113   // (i.e. dirty cards) so as to re-scan mutated objects.
 114   // Such work can be piggy-backed here on dirty card scanning, so as to make
 115   // it slightly more efficient than doing a complete non-destructive pre-scan
 116   // of the card table.
 117   MemRegionClosure* pCl = _sp->preconsumptionDirtyCardClosure();
 118   if (pCl != NULL) {
 119     pCl->do_MemRegion(mr);
 120   }
 121 
 122   HeapWord* bottom = mr.start();
 123   HeapWord* last = mr.last();
 124   HeapWord* top = mr.end();
 125   HeapWord* bottom_obj;
 126   HeapWord* top_obj;
 127 
 128   assert(_precision == CardTableModRefBS::ObjHeadPreciseArray ||
 129          _precision == CardTableModRefBS::Precise,
 130          "Only ones we deal with for now.");
 131 
 132   assert(_precision != CardTableModRefBS::ObjHeadPreciseArray ||
 133          _cl->idempotent() || _last_bottom == NULL ||
 134          top <= _last_bottom,
 135          "Not decreasing");
 136   NOT_PRODUCT(_last_bottom = mr.start());
 137 
 138   bottom_obj = _sp->block_start(bottom);
 139   top_obj    = _sp->block_start(last);
 140 
 141   assert(bottom_obj <= bottom, "just checking");
 142   assert(top_obj    <= top,    "just checking");
 143 
 144   // Given what we think is the top of the memory region and
 145   // the start of the object at the top, get the actual
 146   // value of the top.
 147   top = get_actual_top(top, top_obj);
 148 
 149   // If the previous call did some part of this region, don't redo.
 150   if (_precision == CardTableModRefBS::ObjHeadPreciseArray &&
 151       _min_done != NULL &&
 152       _min_done < top) {
 153     top = _min_done;
 154   }
 155 
 156   // Top may have been reset, and in fact may be below bottom,
 157   // e.g. the dirty card region is entirely in a now free object
 158   // -- something that could happen with a concurrent sweeper.
 159   bottom = MIN2(bottom, top);
 160   MemRegion extended_mr = MemRegion(bottom, top);
 161   assert(bottom <= top &&
 162          (_precision != CardTableModRefBS::ObjHeadPreciseArray ||
 163           _min_done == NULL ||
 164           top <= _min_done),
 165          "overlap!");
 166 
 167   // Walk the region if it is not empty; otherwise there is nothing to do.
 168   if (!extended_mr.is_empty()) {
 169     walk_mem_region(extended_mr, bottom_obj, top);
 170   }
 171 
 172   // An idempotent closure might be applied in any order, so we don't
 173   // record a _min_done for it.
 174   if (!_cl->idempotent()) {
 175     _min_done = bottom;
 176   } else {
 177     assert(_min_done == _last_explicit_min_done,
 178            "Don't update _min_done for idempotent cl");
 179   }
 180 }
 181 
 182 DirtyCardToOopClosure* Space::new_dcto_cl(ExtendedOopClosure* cl,
 183                                           CardTableModRefBS::PrecisionStyle precision,
 184                                           HeapWord* boundary) {
 185   return new DirtyCardToOopClosure(this, cl, precision, boundary);
 186 }
 187 
 188 HeapWord* ContiguousSpaceDCTOC::get_actual_top(HeapWord* top,
 189                                                HeapWord* top_obj) {
 190   if (top_obj != NULL && top_obj < (_sp->toContiguousSpace())->top()) {
 191     if (_precision == CardTableModRefBS::ObjHeadPreciseArray) {
 192       if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
 193         // An arrayOop is starting on the dirty card - since we do exact
 194         // store checks for objArrays we are done.
 195       } else {
 196         // Otherwise, it is possible that the object starting on the dirty
 197         // card spans the entire card, and that the store happened on a
 198         // later card.  Figure out where the object ends.
 199         assert(_sp->block_size(top_obj) == (size_t) oop(top_obj)->size(),
 200           "Block size and object size mismatch");
 201         top = top_obj + oop(top_obj)->size();
 202       }
 203     }
 204   } else {
 205     top = (_sp->toContiguousSpace())->top();
 206   }
 207   return top;
 208 }
 209 
 210 void Filtering_DCTOC::walk_mem_region(MemRegion mr,
 211                                       HeapWord* bottom,
 212                                       HeapWord* top) {
 213   // Note that this assumption won't hold if we have a concurrent
 214   // collector in this space, which may have freed up objects after
 215   // they were dirtied and before the stop-the-world GC that is
 216   // examining cards here.
 217   assert(bottom < top, "ought to be at least one obj on a dirty card.");
 218 
 219   if (_boundary != NULL) {
 220     // We have a boundary outside of which we don't want to look
 221     // at objects, so create a filtering closure around the
 222     // oop closure before walking the region.
 223     FilteringClosure filter(_boundary, _cl);
 224     walk_mem_region_with_cl(mr, bottom, top, &filter);
 225   } else {
 226     // No boundary, simply walk the heap with the oop closure.
 227     walk_mem_region_with_cl(mr, bottom, top, _cl);
 228   }
 229 
 230 }
 231 
 232 // We must replicate this so that the static type of "FilteringClosure"
 233 // (see above) is apparent at the oop_iterate calls.
 234 #define ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(ClosureType) \
 235 void ContiguousSpaceDCTOC::walk_mem_region_with_cl(MemRegion mr,        \
 236                                                    HeapWord* bottom,    \
 237                                                    HeapWord* top,       \
 238                                                    ClosureType* cl) {   \
 239   bottom += oop(bottom)->oop_iterate(cl, mr);                           \
 240   if (bottom < top) {                                                   \
 241     HeapWord* next_obj = bottom + oop(bottom)->size();                  \
 242     while (next_obj < top) {                                            \
 243       /* Bottom lies entirely below top, so we can call the */          \
 244       /* non-memRegion version of oop_iterate below. */                 \
 245       oop(bottom)->oop_iterate(cl);                                     \
 246       bottom = next_obj;                                                \
 247       next_obj = bottom + oop(bottom)->size();                          \
 248     }                                                                   \
 249     /* Last object. */                                                  \
 250     oop(bottom)->oop_iterate(cl, mr);                                   \
 251   }                                                                     \
 252 }
 253 
 254 // (There are only two of these, rather than N, because the split is due
 255 // only to the introduction of the FilteringClosure, a local part of the
 256 // impl of this abstraction.)
 257 ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(ExtendedOopClosure)
 258 ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(FilteringClosure)
 259 
 260 DirtyCardToOopClosure*
 261 ContiguousSpace::new_dcto_cl(ExtendedOopClosure* cl,
 262                              CardTableModRefBS::PrecisionStyle precision,
 263                              HeapWord* boundary) {
 264   return new ContiguousSpaceDCTOC(this, cl, precision, boundary);
 265 }
 266 
 267 void Space::initialize(MemRegion mr,
 268                        bool clear_space,
 269                        bool mangle_space) {
 270   HeapWord* bottom = mr.start();
 271   HeapWord* end    = mr.end();
 272   assert(Universe::on_page_boundary(bottom) && Universe::on_page_boundary(end),
 273          "invalid space boundaries");
 274   set_bottom(bottom);
 275   set_end(end);
 276   if (clear_space) clear(mangle_space);
 277 }
 278 
 279 void Space::clear(bool mangle_space) {
 280   if (ZapUnusedHeapArea && mangle_space) {
 281     mangle_unused_area();
 282   }
 283 }
 284 
 285 ContiguousSpace::ContiguousSpace(): CompactibleSpace(), _top(NULL),
 286     _concurrent_iteration_safe_limit(NULL) {
 287   _mangler = new GenSpaceMangler(this);
 288 }
 289 
 290 ContiguousSpace::~ContiguousSpace() {
 291   delete _mangler;
 292 }
 293 
 294 void ContiguousSpace::initialize(MemRegion mr,
 295                                  bool clear_space,
 296                                  bool mangle_space)
 297 {
 298   CompactibleSpace::initialize(mr, clear_space, mangle_space);
 299   set_concurrent_iteration_safe_limit(top());
 300 }
 301 
 302 void ContiguousSpace::clear(bool mangle_space) {
 303   set_top(bottom());
 304   set_saved_mark();
 305   CompactibleSpace::clear(mangle_space);
 306 }
 307 
 308 bool ContiguousSpace::is_in(const void* p) const {
 309   return _bottom <= p && p < _top;
 310 }
 311 
 312 bool ContiguousSpace::is_free_block(const HeapWord* p) const {
 313   return p >= _top;
 314 }
 315 
 316 void OffsetTableContigSpace::clear(bool mangle_space) {
 317   ContiguousSpace::clear(mangle_space);
 318   _offsets.initialize_threshold();
 319 }
 320 
 321 void OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
 322   Space::set_bottom(new_bottom);
 323   _offsets.set_bottom(new_bottom);
 324 }
 325 
 326 void OffsetTableContigSpace::set_end(HeapWord* new_end) {
 327   // Space should not advertise an increase in size
 328   // until after the underlying offset table has been enlarged.
 329   _offsets.resize(pointer_delta(new_end, bottom()));
 330   Space::set_end(new_end);
 331 }
 332 
 333 #ifndef PRODUCT
 334 
 335 void ContiguousSpace::set_top_for_allocations(HeapWord* v) {
 336   mangler()->set_top_for_allocations(v);
 337 }
 338 void ContiguousSpace::set_top_for_allocations() {
 339   mangler()->set_top_for_allocations(top());
 340 }
 341 void ContiguousSpace::check_mangled_unused_area(HeapWord* limit) {
 342   mangler()->check_mangled_unused_area(limit);
 343 }
 344 
 345 void ContiguousSpace::check_mangled_unused_area_complete() {
 346   mangler()->check_mangled_unused_area_complete();
 347 }
 348 
 349 // Mangled only the unused space that has not previously
 350 // been mangled and that has not been allocated since being
 351 // mangled.
 352 void ContiguousSpace::mangle_unused_area() {
 353   mangler()->mangle_unused_area();
 354 }
 355 void ContiguousSpace::mangle_unused_area_complete() {
 356   mangler()->mangle_unused_area_complete();
 357 }
 358 void ContiguousSpace::mangle_region(MemRegion mr) {
 359   // Although this method uses SpaceMangler::mangle_region() which
 360   // is not specific to a space, the when the ContiguousSpace version
 361   // is called, it is always with regard to a space and this
 362   // bounds checking is appropriate.
 363   MemRegion space_mr(bottom(), end());
 364   assert(space_mr.contains(mr), "Mangling outside space");
 365   SpaceMangler::mangle_region(mr);
 366 }
 367 #endif  // NOT_PRODUCT
 368 
 369 void CompactibleSpace::initialize(MemRegion mr,
 370                                   bool clear_space,
 371                                   bool mangle_space) {
 372   Space::initialize(mr, clear_space, mangle_space);
 373   set_compaction_top(bottom());
 374   _next_compaction_space = NULL;
 375 }
 376 
 377 void CompactibleSpace::clear(bool mangle_space) {
 378   Space::clear(mangle_space);
 379   _compaction_top = bottom();
 380 }
 381 
 382 HeapWord* CompactibleSpace::forward(oop q, size_t size,
 383                                     CompactPoint* cp, HeapWord* compact_top) {
 384   // q is alive
 385   // First check if we should switch compaction space
 386   assert(this == cp->space, "'this' should be current compaction space.");
 387   size_t compaction_max_size = pointer_delta(end(), compact_top);
 388   while (size > compaction_max_size) {
 389     // switch to next compaction space
 390     cp->space->set_compaction_top(compact_top);
 391     cp->space = cp->space->next_compaction_space();
 392     if (cp->space == NULL) {
 393       cp->gen = GenCollectedHeap::heap()->prev_gen(cp->gen);
 394       assert(cp->gen != NULL, "compaction must succeed");
 395       cp->space = cp->gen->first_compaction_space();
 396       assert(cp->space != NULL, "generation must have a first compaction space");
 397     }
 398     compact_top = cp->space->bottom();
 399     cp->space->set_compaction_top(compact_top);
 400     cp->threshold = cp->space->initialize_threshold();
 401     compaction_max_size = pointer_delta(cp->space->end(), compact_top);
 402   }
 403 
 404   // store the forwarding pointer into the mark word
 405   if ((HeapWord*)q != compact_top) {
 406     q->forward_to(oop(compact_top));
 407     assert(q->is_gc_marked(), "encoding the pointer should preserve the mark");
 408   } else {
 409     // if the object isn't moving we can just set the mark to the default
 410     // mark and handle it specially later on.
 411     q->init_mark();
 412     assert(q->forwardee() == NULL, "should be forwarded to NULL");
 413   }
 414 
 415   compact_top += size;
 416 
 417   // we need to update the offset table so that the beginnings of objects can be
 418   // found during scavenge.  Note that we are updating the offset table based on
 419   // where the object will be once the compaction phase finishes.
 420   if (compact_top > cp->threshold)
 421     cp->threshold =
 422       cp->space->cross_threshold(compact_top - size, compact_top);
 423   return compact_top;
 424 }
 425 
 426 
 427 bool CompactibleSpace::insert_deadspace(size_t& allowed_deadspace_words,
 428                                         HeapWord* q, size_t deadlength) {
 429   if (allowed_deadspace_words >= deadlength) {
 430     allowed_deadspace_words -= deadlength;
 431     CollectedHeap::fill_with_object(q, deadlength);
 432     oop(q)->set_mark(oop(q)->mark()->set_marked());
 433     assert((int) deadlength == oop(q)->size(), "bad filler object size");
 434     // Recall that we required "q == compaction_top".
 435     return true;
 436   } else {
 437     allowed_deadspace_words = 0;
 438     return false;
 439   }
 440 }
 441 
 442 #define block_is_always_obj(q) true
 443 #define obj_size(q) oop(q)->size()
 444 #define adjust_obj_size(s) s
 445 
 446 void CompactibleSpace::prepare_for_compaction(CompactPoint* cp) {
 447   SCAN_AND_FORWARD(cp, end, block_is_obj, block_size);
 448 }
 449 
 450 // Faster object search.
 451 void ContiguousSpace::prepare_for_compaction(CompactPoint* cp) {
 452   SCAN_AND_FORWARD(cp, top, block_is_always_obj, obj_size);
 453 }
 454 
 455 void Space::adjust_pointers() {
 456   // adjust all the interior pointers to point at the new locations of objects
 457   // Used by MarkSweep::mark_sweep_phase3()
 458 
 459   // First check to see if there is any work to be done.
 460   if (used() == 0) {
 461     return;  // Nothing to do.
 462   }
 463 
 464   // Otherwise...
 465   HeapWord* q = bottom();
 466   HeapWord* t = end();
 467 
 468   debug_only(HeapWord* prev_q = NULL);
 469   while (q < t) {
 470     if (oop(q)->is_gc_marked()) {
 471       // q is alive
 472 
 473       // point all the oops to the new location
 474       size_t size = oop(q)->adjust_pointers();
 475 
 476       debug_only(prev_q = q);
 477 
 478       q += size;
 479     } else {
 480       // q is not a live object.  But we're not in a compactible space,
 481       // So we don't have live ranges.
 482       debug_only(prev_q = q);
 483       q += block_size(q);
 484       assert(q > prev_q, "we should be moving forward through memory");
 485     }
 486   }
 487   assert(q == t, "just checking");
 488 }
 489 
 490 void CompactibleSpace::adjust_pointers() {
 491   // Check first is there is any work to do.
 492   if (used() == 0) {
 493     return;   // Nothing to do.
 494   }
 495 
 496   SCAN_AND_ADJUST_POINTERS(adjust_obj_size);
 497 }
 498 
 499 void CompactibleSpace::compact() {
 500   SCAN_AND_COMPACT(obj_size);
 501 }
 502 
 503 void Space::print_short() const { print_short_on(tty); }
 504 
 505 void Space::print_short_on(outputStream* st) const {
 506   st->print(" space " SIZE_FORMAT "K, %3d%% used", capacity() / K,
 507               (int) ((double) used() * 100 / capacity()));
 508 }
 509 
 510 void Space::print() const { print_on(tty); }
 511 
 512 void Space::print_on(outputStream* st) const {
 513   print_short_on(st);
 514   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ")",
 515                 bottom(), end());
 516 }
 517 
 518 void ContiguousSpace::print_on(outputStream* st) const {
 519   print_short_on(st);
 520   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
 521                 bottom(), top(), end());
 522 }
 523 
 524 void OffsetTableContigSpace::print_on(outputStream* st) const {
 525   print_short_on(st);
 526   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
 527                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
 528               bottom(), top(), _offsets.threshold(), end());
 529 }
 530 
 531 void ContiguousSpace::verify() const {
 532   HeapWord* p = bottom();
 533   HeapWord* t = top();
 534   HeapWord* prev_p = NULL;
 535   while (p < t) {
 536     oop(p)->verify();
 537     prev_p = p;
 538     p += oop(p)->size();
 539   }
 540   guarantee(p == top(), "end of last object must match end of space");
 541   if (top() != end()) {
 542     guarantee(top() == block_start_const(end()-1) &&
 543               top() == block_start_const(top()),
 544               "top should be start of unallocated block, if it exists");
 545   }
 546 }
 547 
 548 void Space::oop_iterate(ExtendedOopClosure* blk) {
 549   ObjectToOopClosure blk2(blk);
 550   object_iterate(&blk2);
 551 }
 552 
 553 HeapWord* Space::object_iterate_careful(ObjectClosureCareful* cl) {
 554   guarantee(false, "NYI");
 555   return bottom();
 556 }
 557 
 558 HeapWord* Space::object_iterate_careful_m(MemRegion mr,
 559                                           ObjectClosureCareful* cl) {
 560   guarantee(false, "NYI");
 561   return bottom();
 562 }
 563 
 564 
 565 void Space::object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl) {
 566   assert(!mr.is_empty(), "Should be non-empty");
 567   // We use MemRegion(bottom(), end()) rather than used_region() below
 568   // because the two are not necessarily equal for some kinds of
 569   // spaces, in particular, certain kinds of free list spaces.
 570   // We could use the more complicated but more precise:
 571   // MemRegion(used_region().start(), round_to(used_region().end(), CardSize))
 572   // but the slight imprecision seems acceptable in the assertion check.
 573   assert(MemRegion(bottom(), end()).contains(mr),
 574          "Should be within used space");
 575   HeapWord* prev = cl->previous();   // max address from last time
 576   if (prev >= mr.end()) { // nothing to do
 577     return;
 578   }
 579   // This assert will not work when we go from cms space to perm
 580   // space, and use same closure. Easy fix deferred for later. XXX YSR
 581   // assert(prev == NULL || contains(prev), "Should be within space");
 582 
 583   bool last_was_obj_array = false;
 584   HeapWord *blk_start_addr, *region_start_addr;
 585   if (prev > mr.start()) {
 586     region_start_addr = prev;
 587     blk_start_addr    = prev;
 588     // The previous invocation may have pushed "prev" beyond the
 589     // last allocated block yet there may be still be blocks
 590     // in this region due to a particular coalescing policy.
 591     // Relax the assertion so that the case where the unallocated
 592     // block is maintained and "prev" is beyond the unallocated
 593     // block does not cause the assertion to fire.
 594     assert((BlockOffsetArrayUseUnallocatedBlock &&
 595             (!is_in(prev))) ||
 596            (blk_start_addr == block_start(region_start_addr)), "invariant");
 597   } else {
 598     region_start_addr = mr.start();
 599     blk_start_addr    = block_start(region_start_addr);
 600   }
 601   HeapWord* region_end_addr = mr.end();
 602   MemRegion derived_mr(region_start_addr, region_end_addr);
 603   while (blk_start_addr < region_end_addr) {
 604     const size_t size = block_size(blk_start_addr);
 605     if (block_is_obj(blk_start_addr)) {
 606       last_was_obj_array = cl->do_object_bm(oop(blk_start_addr), derived_mr);
 607     } else {
 608       last_was_obj_array = false;
 609     }
 610     blk_start_addr += size;
 611   }
 612   if (!last_was_obj_array) {
 613     assert((bottom() <= blk_start_addr) && (blk_start_addr <= end()),
 614            "Should be within (closed) used space");
 615     assert(blk_start_addr > prev, "Invariant");
 616     cl->set_previous(blk_start_addr); // min address for next time
 617   }
 618 }
 619 
 620 bool Space::obj_is_alive(const HeapWord* p) const {
 621   assert (block_is_obj(p), "The address should point to an object");
 622   return true;
 623 }
 624 
 625 void ContiguousSpace::object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl) {
 626   assert(!mr.is_empty(), "Should be non-empty");
 627   assert(used_region().contains(mr), "Should be within used space");
 628   HeapWord* prev = cl->previous();   // max address from last time
 629   if (prev >= mr.end()) { // nothing to do
 630     return;
 631   }
 632   // See comment above (in more general method above) in case you
 633   // happen to use this method.
 634   assert(prev == NULL || is_in_reserved(prev), "Should be within space");
 635 
 636   bool last_was_obj_array = false;
 637   HeapWord *obj_start_addr, *region_start_addr;
 638   if (prev > mr.start()) {
 639     region_start_addr = prev;
 640     obj_start_addr    = prev;
 641     assert(obj_start_addr == block_start(region_start_addr), "invariant");
 642   } else {
 643     region_start_addr = mr.start();
 644     obj_start_addr    = block_start(region_start_addr);
 645   }
 646   HeapWord* region_end_addr = mr.end();
 647   MemRegion derived_mr(region_start_addr, region_end_addr);
 648   while (obj_start_addr < region_end_addr) {
 649     oop obj = oop(obj_start_addr);
 650     const size_t size = obj->size();
 651     last_was_obj_array = cl->do_object_bm(obj, derived_mr);
 652     obj_start_addr += size;
 653   }
 654   if (!last_was_obj_array) {
 655     assert((bottom() <= obj_start_addr)  && (obj_start_addr <= end()),
 656            "Should be within (closed) used space");
 657     assert(obj_start_addr > prev, "Invariant");
 658     cl->set_previous(obj_start_addr); // min address for next time
 659   }
 660 }
 661 
 662 #if INCLUDE_ALL_GCS
 663 #define ContigSpace_PAR_OOP_ITERATE_DEFN(OopClosureType, nv_suffix)         \
 664                                                                             \
 665   void ContiguousSpace::par_oop_iterate(MemRegion mr, OopClosureType* blk) {\
 666     HeapWord* obj_addr = mr.start();                                        \
 667     HeapWord* t = mr.end();                                                 \
 668     while (obj_addr < t) {                                                  \
 669       assert(oop(obj_addr)->is_oop(), "Should be an oop");                  \
 670       obj_addr += oop(obj_addr)->oop_iterate(blk);                          \
 671     }                                                                       \
 672   }
 673 
 674   ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DEFN)
 675 
 676 #undef ContigSpace_PAR_OOP_ITERATE_DEFN
 677 #endif // INCLUDE_ALL_GCS
 678 
 679 void ContiguousSpace::oop_iterate(ExtendedOopClosure* blk) {
 680   if (is_empty()) return;
 681   HeapWord* obj_addr = bottom();
 682   HeapWord* t = top();
 683   // Could call objects iterate, but this is easier.
 684   while (obj_addr < t) {
 685     obj_addr += oop(obj_addr)->oop_iterate(blk);
 686   }
 687 }
 688 
 689 void ContiguousSpace::oop_iterate(MemRegion mr, ExtendedOopClosure* blk) {
 690   if (is_empty()) {
 691     return;
 692   }
 693   MemRegion cur = MemRegion(bottom(), top());
 694   mr = mr.intersection(cur);
 695   if (mr.is_empty()) {
 696     return;
 697   }
 698   if (mr.equals(cur)) {
 699     oop_iterate(blk);
 700     return;
 701   }
 702   assert(mr.end() <= top(), "just took an intersection above");
 703   HeapWord* obj_addr = block_start(mr.start());
 704   HeapWord* t = mr.end();
 705 
 706   // Handle first object specially.
 707   oop obj = oop(obj_addr);
 708   SpaceMemRegionOopsIterClosure smr_blk(blk, mr);
 709   obj_addr += obj->oop_iterate(&smr_blk);
 710   while (obj_addr < t) {
 711     oop obj = oop(obj_addr);
 712     assert(obj->is_oop(), "expected an oop");
 713     obj_addr += obj->size();
 714     // If "obj_addr" is not greater than top, then the
 715     // entire object "obj" is within the region.
 716     if (obj_addr <= t) {
 717       obj->oop_iterate(blk);
 718     } else {
 719       // "obj" extends beyond end of region
 720       obj->oop_iterate(&smr_blk);
 721       break;
 722     }
 723   };
 724 }
 725 
 726 void ContiguousSpace::object_iterate(ObjectClosure* blk) {
 727   if (is_empty()) return;
 728   WaterMark bm = bottom_mark();
 729   object_iterate_from(bm, blk);
 730 }
 731 
 732 // For a ContiguousSpace object_iterate() and safe_object_iterate()
 733 // are the same.
 734 void ContiguousSpace::safe_object_iterate(ObjectClosure* blk) {
 735   object_iterate(blk);
 736 }
 737 
 738 void ContiguousSpace::object_iterate_from(WaterMark mark, ObjectClosure* blk) {
 739   assert(mark.space() == this, "Mark does not match space");
 740   HeapWord* p = mark.point();
 741   while (p < top()) {
 742     blk->do_object(oop(p));
 743     p += oop(p)->size();
 744   }
 745 }
 746 
 747 HeapWord*
 748 ContiguousSpace::object_iterate_careful(ObjectClosureCareful* blk) {
 749   HeapWord * limit = concurrent_iteration_safe_limit();
 750   assert(limit <= top(), "sanity check");
 751   for (HeapWord* p = bottom(); p < limit;) {
 752     size_t size = blk->do_object_careful(oop(p));
 753     if (size == 0) {
 754       return p;  // failed at p
 755     } else {
 756       p += size;
 757     }
 758   }
 759   return NULL; // all done
 760 }
 761 
 762 #define ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)  \
 763                                                                           \
 764 void ContiguousSpace::                                                    \
 765 oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk) {            \
 766   HeapWord* t;                                                            \
 767   HeapWord* p = saved_mark_word();                                        \
 768   assert(p != NULL, "expected saved mark");                               \
 769                                                                           \
 770   const intx interval = PrefetchScanIntervalInBytes;                      \
 771   do {                                                                    \
 772     t = top();                                                            \
 773     while (p < t) {                                                       \
 774       Prefetch::write(p, interval);                                       \
 775       debug_only(HeapWord* prev = p);                                     \
 776       oop m = oop(p);                                                     \
 777       p += m->oop_iterate(blk);                                           \
 778     }                                                                     \
 779   } while (t < top());                                                    \
 780                                                                           \
 781   set_saved_mark_word(p);                                                 \
 782 }
 783 
 784 ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN)
 785 
 786 #undef ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN
 787 
 788 // Very general, slow implementation.
 789 HeapWord* ContiguousSpace::block_start_const(const void* p) const {
 790   assert(MemRegion(bottom(), end()).contains(p),
 791          err_msg("p (" PTR_FORMAT ") not in space [" PTR_FORMAT ", " PTR_FORMAT ")",
 792                   p, bottom(), end()));
 793   if (p >= top()) {
 794     return top();
 795   } else {
 796     HeapWord* last = bottom();
 797     HeapWord* cur = last;
 798     while (cur <= p) {
 799       last = cur;
 800       cur += oop(cur)->size();
 801     }
 802     assert(oop(last)->is_oop(),
 803            err_msg(PTR_FORMAT " should be an object start", last));
 804     return last;
 805   }
 806 }
 807 
 808 size_t ContiguousSpace::block_size(const HeapWord* p) const {
 809   assert(MemRegion(bottom(), end()).contains(p),
 810          err_msg("p (" PTR_FORMAT ") not in space [" PTR_FORMAT ", " PTR_FORMAT ")",
 811                   p, bottom(), end()));
 812   HeapWord* current_top = top();
 813   assert(p <= current_top,
 814          err_msg("p > current top - p: " PTR_FORMAT ", current top: " PTR_FORMAT,
 815                   p, current_top));
 816   assert(p == current_top || oop(p)->is_oop(),
 817          err_msg("p (" PTR_FORMAT ") is not a block start - "
 818                  "current_top: " PTR_FORMAT ", is_oop: %s",
 819                  p, current_top, BOOL_TO_STR(oop(p)->is_oop())));
 820   if (p < current_top) {
 821     return oop(p)->size();
 822   } else {
 823     assert(p == current_top, "just checking");
 824     return pointer_delta(end(), (HeapWord*) p);
 825   }
 826 }
 827 
 828 // This version requires locking.
 829 inline HeapWord* ContiguousSpace::allocate_impl(size_t size,
 830                                                 HeapWord* const end_value) {
 831   // In G1 there are places where a GC worker can allocates into a
 832   // region using this serial allocation code without being prone to a
 833   // race with other GC workers (we ensure that no other GC worker can
 834   // access the same region at the same time). So the assert below is
 835   // too strong in the case of G1.
 836   assert(Heap_lock->owned_by_self() ||
 837          (SafepointSynchronize::is_at_safepoint() &&
 838                                (Thread::current()->is_VM_thread() || UseG1GC)),
 839          "not locked");
 840   HeapWord* obj = top();
 841   if (pointer_delta(end_value, obj) >= size) {
 842     HeapWord* new_top = obj + size;
 843     set_top(new_top);
 844     assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
 845     return obj;
 846   } else {
 847     return NULL;
 848   }
 849 }
 850 
 851 // This version is lock-free.
 852 inline HeapWord* ContiguousSpace::par_allocate_impl(size_t size,
 853                                                     HeapWord* const end_value) {
 854   do {
 855     HeapWord* obj = top();
 856     if (pointer_delta(end_value, obj) >= size) {
 857       HeapWord* new_top = obj + size;
 858       HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
 859       // result can be one of two:
 860       //  the old top value: the exchange succeeded
 861       //  otherwise: the new value of the top is returned.
 862       if (result == obj) {
 863         assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
 864         return obj;
 865       }
 866     } else {
 867       return NULL;
 868     }
 869   } while (true);
 870 }
 871 
 872 // Requires locking.
 873 HeapWord* ContiguousSpace::allocate(size_t size) {
 874   return allocate_impl(size, end());
 875 }
 876 
 877 // Lock-free.
 878 HeapWord* ContiguousSpace::par_allocate(size_t size) {
 879   return par_allocate_impl(size, end());
 880 }
 881 
 882 void ContiguousSpace::allocate_temporary_filler(int factor) {
 883   // allocate temporary type array decreasing free size with factor 'factor'
 884   assert(factor >= 0, "just checking");
 885   size_t size = pointer_delta(end(), top());
 886 
 887   // if space is full, return
 888   if (size == 0) return;
 889 
 890   if (factor > 0) {
 891     size -= size/factor;
 892   }
 893   size = align_object_size(size);
 894 
 895   const size_t array_header_size = typeArrayOopDesc::header_size(T_INT);
 896   if (size >= (size_t)align_object_size(array_header_size)) {
 897     size_t length = (size - array_header_size) * (HeapWordSize / sizeof(jint));
 898     // allocate uninitialized int array
 899     typeArrayOop t = (typeArrayOop) allocate(size);
 900     assert(t != NULL, "allocation should succeed");
 901     t->set_mark(markOopDesc::prototype());
 902     t->set_klass(Universe::intArrayKlassObj());
 903     t->set_length((int)length);
 904   } else {
 905     assert(size == CollectedHeap::min_fill_size(),
 906            "size for smallest fake object doesn't match");
 907     instanceOop obj = (instanceOop) allocate(size);
 908     obj->set_mark(markOopDesc::prototype());
 909     obj->set_klass_gap(0);
 910     obj->set_klass(SystemDictionary::Object_klass());
 911   }
 912 }
 913 
 914 void EdenSpace::clear(bool mangle_space) {
 915   ContiguousSpace::clear(mangle_space);
 916   set_soft_end(end());
 917 }
 918 
 919 // Requires locking.
 920 HeapWord* EdenSpace::allocate(size_t size) {
 921   return allocate_impl(size, soft_end());
 922 }
 923 
 924 // Lock-free.
 925 HeapWord* EdenSpace::par_allocate(size_t size) {
 926   return par_allocate_impl(size, soft_end());
 927 }
 928 
 929 HeapWord* ConcEdenSpace::par_allocate(size_t size)
 930 {
 931   do {
 932     // The invariant is top() should be read before end() because
 933     // top() can't be greater than end(), so if an update of _soft_end
 934     // occurs between 'end_val = end();' and 'top_val = top();' top()
 935     // also can grow up to the new end() and the condition
 936     // 'top_val > end_val' is true. To ensure the loading order
 937     // OrderAccess::loadload() is required after top() read.
 938     HeapWord* obj = top();
 939     OrderAccess::loadload();
 940     if (pointer_delta(*soft_end_addr(), obj) >= size) {
 941       HeapWord* new_top = obj + size;
 942       HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
 943       // result can be one of two:
 944       //  the old top value: the exchange succeeded
 945       //  otherwise: the new value of the top is returned.
 946       if (result == obj) {
 947         assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
 948         return obj;
 949       }
 950     } else {
 951       return NULL;
 952     }
 953   } while (true);
 954 }
 955 
 956 
 957 HeapWord* OffsetTableContigSpace::initialize_threshold() {
 958   return _offsets.initialize_threshold();
 959 }
 960 
 961 HeapWord* OffsetTableContigSpace::cross_threshold(HeapWord* start, HeapWord* end) {
 962   _offsets.alloc_block(start, end);
 963   return _offsets.threshold();
 964 }
 965 
 966 OffsetTableContigSpace::OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
 967                                                MemRegion mr) :
 968   _offsets(sharedOffsetArray, mr),
 969   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true)
 970 {
 971   _offsets.set_contig_space(this);
 972   initialize(mr, SpaceDecorator::Clear, SpaceDecorator::Mangle);
 973 }
 974 
 975 #define OBJ_SAMPLE_INTERVAL 0
 976 #define BLOCK_SAMPLE_INTERVAL 100
 977 
 978 void OffsetTableContigSpace::verify() const {
 979   HeapWord* p = bottom();
 980   HeapWord* prev_p = NULL;
 981   int objs = 0;
 982   int blocks = 0;
 983 
 984   if (VerifyObjectStartArray) {
 985     _offsets.verify();
 986   }
 987 
 988   while (p < top()) {
 989     size_t size = oop(p)->size();
 990     // For a sampling of objects in the space, find it using the
 991     // block offset table.
 992     if (blocks == BLOCK_SAMPLE_INTERVAL) {
 993       guarantee(p == block_start_const(p + (size/2)),
 994                 "check offset computation");
 995       blocks = 0;
 996     } else {
 997       blocks++;
 998     }
 999 
1000     if (objs == OBJ_SAMPLE_INTERVAL) {
1001       oop(p)->verify();
1002       objs = 0;
1003     } else {
1004       objs++;
1005     }
1006     prev_p = p;
1007     p += size;
1008   }
1009   guarantee(p == top(), "end of last object must match end of space");
1010 }
1011 
1012 
1013 size_t TenuredSpace::allowed_dead_ratio() const {
1014   return MarkSweepDeadRatio;
1015 }