1 /*
   2  * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "memory/resourceArea.hpp"
  28 #include "oops/markOop.hpp"
  29 #include "oops/oop.inline.hpp"
  30 #include "runtime/handles.inline.hpp"
  31 #include "runtime/interfaceSupport.hpp"
  32 #include "runtime/mutexLocker.hpp"
  33 #include "runtime/objectMonitor.hpp"
  34 #include "runtime/objectMonitor.inline.hpp"
  35 #include "runtime/osThread.hpp"
  36 #include "runtime/stubRoutines.hpp"
  37 #include "runtime/thread.inline.hpp"
  38 #include "services/threadService.hpp"
  39 #include "trace/tracing.hpp"
  40 #include "trace/traceMacros.hpp"
  41 #include "utilities/dtrace.hpp"
  42 #include "utilities/macros.hpp"
  43 #include "utilities/preserveException.hpp"
  44 #ifdef TARGET_OS_FAMILY_linux
  45 # include "os_linux.inline.hpp"
  46 #endif
  47 #ifdef TARGET_OS_FAMILY_solaris
  48 # include "os_solaris.inline.hpp"
  49 #endif
  50 #ifdef TARGET_OS_FAMILY_windows
  51 # include "os_windows.inline.hpp"
  52 #endif
  53 #ifdef TARGET_OS_FAMILY_bsd
  54 # include "os_bsd.inline.hpp"
  55 #endif
  56 
  57 #if defined(__GNUC__) && !defined(IA64)
  58   // Need to inhibit inlining for older versions of GCC to avoid build-time failures
  59   #define ATTR __attribute__((noinline))
  60 #else
  61   #define ATTR
  62 #endif
  63 
  64 
  65 #ifdef DTRACE_ENABLED
  66 
  67 // Only bother with this argument setup if dtrace is available
  68 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  69 
  70 
  71 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  72   char* bytes = NULL;                                                      \
  73   int len = 0;                                                             \
  74   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  75   Symbol* klassname = ((oop)obj)->klass()->name();                         \
  76   if (klassname != NULL) {                                                 \
  77     bytes = (char*)klassname->bytes();                                     \
  78     len = klassname->utf8_length();                                        \
  79   }
  80 
  81 #ifndef USDT2
  82 
  83 HS_DTRACE_PROBE_DECL4(hotspot, monitor__notify,
  84   jlong, uintptr_t, char*, int);
  85 HS_DTRACE_PROBE_DECL4(hotspot, monitor__notifyAll,
  86   jlong, uintptr_t, char*, int);
  87 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__enter,
  88   jlong, uintptr_t, char*, int);
  89 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__entered,
  90   jlong, uintptr_t, char*, int);
  91 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__exit,
  92   jlong, uintptr_t, char*, int);
  93 
  94 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)       \
  95   {                                                                        \
  96     if (DTraceMonitorProbes) {                                            \
  97       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                       \
  98       HS_DTRACE_PROBE5(hotspot, monitor__wait, jtid,                       \
  99                        (monitor), bytes, len, (millis));                   \
 100     }                                                                      \
 101   }
 102 
 103 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)             \
 104   {                                                                        \
 105     if (DTraceMonitorProbes) {                                            \
 106       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                       \
 107       HS_DTRACE_PROBE4(hotspot, monitor__##probe, jtid,                    \
 108                        (uintptr_t)(monitor), bytes, len);                  \
 109     }                                                                      \
 110   }
 111 
 112 #else /* USDT2 */
 113 
 114 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
 115   {                                                                        \
 116     if (DTraceMonitorProbes) {                                            \
 117       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 118       HOTSPOT_MONITOR_WAIT(jtid,                                           \
 119                        (monitor), bytes, len, (millis));                   \
 120     }                                                                      \
 121   }
 122 
 123 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
 124 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
 125 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
 126 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
 127 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
 128 
 129 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
 130   {                                                                        \
 131     if (DTraceMonitorProbes) {                                            \
 132       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 133       HOTSPOT_MONITOR_##probe(jtid,                                               \
 134                        (uintptr_t)(monitor), bytes, len);                  \
 135     }                                                                      \
 136   }
 137 
 138 #endif /* USDT2 */
 139 #else //  ndef DTRACE_ENABLED
 140 
 141 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 142 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 143 
 144 #endif // ndef DTRACE_ENABLED
 145 
 146 // Tunables ...
 147 // The knob* variables are effectively final.  Once set they should
 148 // never be modified hence.  Consider using __read_mostly with GCC.
 149 
 150 int ObjectMonitor::Knob_Verbose    = 0 ;
 151 int ObjectMonitor::Knob_SpinLimit  = 5000 ;    // derived by an external tool -
 152 static int Knob_LogSpins           = 0 ;       // enable jvmstat tally for spins
 153 static int Knob_HandOff            = 0 ;
 154 static int Knob_ReportSettings     = 0 ;
 155 
 156 static int Knob_SpinBase           = 0 ;       // Floor AKA SpinMin
 157 static int Knob_SpinBackOff        = 0 ;       // spin-loop backoff
 158 static int Knob_CASPenalty         = -1 ;      // Penalty for failed CAS
 159 static int Knob_OXPenalty          = -1 ;      // Penalty for observed _owner change
 160 static int Knob_SpinSetSucc        = 1 ;       // spinners set the _succ field
 161 static int Knob_SpinEarly          = 1 ;
 162 static int Knob_SuccEnabled        = 1 ;       // futile wake throttling
 163 static int Knob_SuccRestrict       = 0 ;       // Limit successors + spinners to at-most-one
 164 static int Knob_MaxSpinners        = -1 ;      // Should be a function of # CPUs
 165 static int Knob_Bonus              = 100 ;     // spin success bonus
 166 static int Knob_BonusB             = 100 ;     // spin success bonus
 167 static int Knob_Penalty            = 200 ;     // spin failure penalty
 168 static int Knob_Poverty            = 1000 ;
 169 static int Knob_SpinAfterFutile    = 1 ;       // Spin after returning from park()
 170 static int Knob_FixedSpin          = 0 ;
 171 static int Knob_OState             = 3 ;       // Spinner checks thread state of _owner
 172 static int Knob_UsePause           = 1 ;
 173 static int Knob_ExitPolicy         = 0 ;
 174 static int Knob_PreSpin            = 10 ;      // 20-100 likely better
 175 static int Knob_ResetEvent         = 0 ;
 176 static int BackOffMask             = 0 ;
 177 
 178 static int Knob_FastHSSEC          = 0 ;
 179 static int Knob_MoveNotifyee       = 2 ;       // notify() - disposition of notifyee
 180 static int Knob_QMode              = 0 ;       // EntryList-cxq policy - queue discipline
 181 static volatile int InitDone       = 0 ;
 182 
 183 #define TrySpin TrySpin_VaryDuration
 184 
 185 // -----------------------------------------------------------------------------
 186 // Theory of operations -- Monitors lists, thread residency, etc:
 187 //
 188 // * A thread acquires ownership of a monitor by successfully
 189 //   CAS()ing the _owner field from null to non-null.
 190 //
 191 // * Invariant: A thread appears on at most one monitor list --
 192 //   cxq, EntryList or WaitSet -- at any one time.
 193 //
 194 // * Contending threads "push" themselves onto the cxq with CAS
 195 //   and then spin/park.
 196 //
 197 // * After a contending thread eventually acquires the lock it must
 198 //   dequeue itself from either the EntryList or the cxq.
 199 //
 200 // * The exiting thread identifies and unparks an "heir presumptive"
 201 //   tentative successor thread on the EntryList.  Critically, the
 202 //   exiting thread doesn't unlink the successor thread from the EntryList.
 203 //   After having been unparked, the wakee will recontend for ownership of
 204 //   the monitor.   The successor (wakee) will either acquire the lock or
 205 //   re-park itself.
 206 //
 207 //   Succession is provided for by a policy of competitive handoff.
 208 //   The exiting thread does _not_ grant or pass ownership to the
 209 //   successor thread.  (This is also referred to as "handoff" succession").
 210 //   Instead the exiting thread releases ownership and possibly wakes
 211 //   a successor, so the successor can (re)compete for ownership of the lock.
 212 //   If the EntryList is empty but the cxq is populated the exiting
 213 //   thread will drain the cxq into the EntryList.  It does so by
 214 //   by detaching the cxq (installing null with CAS) and folding
 215 //   the threads from the cxq into the EntryList.  The EntryList is
 216 //   doubly linked, while the cxq is singly linked because of the
 217 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
 218 //
 219 // * Concurrency invariants:
 220 //
 221 //   -- only the monitor owner may access or mutate the EntryList.
 222 //      The mutex property of the monitor itself protects the EntryList
 223 //      from concurrent interference.
 224 //   -- Only the monitor owner may detach the cxq.
 225 //
 226 // * The monitor entry list operations avoid locks, but strictly speaking
 227 //   they're not lock-free.  Enter is lock-free, exit is not.
 228 //   See http://j2se.east/~dice/PERSIST/040825-LockFreeQueues.html
 229 //
 230 // * The cxq can have multiple concurrent "pushers" but only one concurrent
 231 //   detaching thread.  This mechanism is immune from the ABA corruption.
 232 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
 233 //
 234 // * Taken together, the cxq and the EntryList constitute or form a
 235 //   single logical queue of threads stalled trying to acquire the lock.
 236 //   We use two distinct lists to improve the odds of a constant-time
 237 //   dequeue operation after acquisition (in the ::enter() epilogue) and
 238 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
 239 //   A key desideratum is to minimize queue & monitor metadata manipulation
 240 //   that occurs while holding the monitor lock -- that is, we want to
 241 //   minimize monitor lock holds times.  Note that even a small amount of
 242 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
 243 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
 244 //   locks and monitor metadata.
 245 //
 246 //   Cxq points to the the set of Recently Arrived Threads attempting entry.
 247 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
 248 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
 249 //   the unlocking thread notices that EntryList is null but _cxq is != null.
 250 //
 251 //   The EntryList is ordered by the prevailing queue discipline and
 252 //   can be organized in any convenient fashion, such as a doubly-linked list or
 253 //   a circular doubly-linked list.  Critically, we want insert and delete operations
 254 //   to operate in constant-time.  If we need a priority queue then something akin
 255 //   to Solaris' sleepq would work nicely.  Viz.,
 256 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
 257 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
 258 //   drains the cxq into the EntryList, and orders or reorders the threads on the
 259 //   EntryList accordingly.
 260 //
 261 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
 262 //   somewhat similar to an elevator-scan.
 263 //
 264 // * The monitor synchronization subsystem avoids the use of native
 265 //   synchronization primitives except for the narrow platform-specific
 266 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
 267 //   the semantics of park-unpark.  Put another way, this monitor implementation
 268 //   depends only on atomic operations and park-unpark.  The monitor subsystem
 269 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
 270 //   underlying OS manages the READY<->RUN transitions.
 271 //
 272 // * Waiting threads reside on the WaitSet list -- wait() puts
 273 //   the caller onto the WaitSet.
 274 //
 275 // * notify() or notifyAll() simply transfers threads from the WaitSet to
 276 //   either the EntryList or cxq.  Subsequent exit() operations will
 277 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
 278 //   it's likely the notifyee would simply impale itself on the lock held
 279 //   by the notifier.
 280 //
 281 // * An interesting alternative is to encode cxq as (List,LockByte) where
 282 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
 283 //   variable, like _recursions, in the scheme.  The threads or Events that form
 284 //   the list would have to be aligned in 256-byte addresses.  A thread would
 285 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
 286 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
 287 //   Note that is is *not* word-tearing, but it does presume that full-word
 288 //   CAS operations are coherent with intermix with STB operations.  That's true
 289 //   on most common processors.
 290 //
 291 // * See also http://blogs.sun.com/dave
 292 
 293 
 294 // -----------------------------------------------------------------------------
 295 // Enter support
 296 
 297 bool ObjectMonitor::try_enter(Thread* THREAD) {
 298   if (THREAD != _owner) {
 299     if (THREAD->is_lock_owned ((address)_owner)) {
 300        assert(_recursions == 0, "internal state error");
 301        _owner = THREAD ;
 302        _recursions = 1 ;
 303        OwnerIsThread = 1 ;
 304        return true;
 305     }
 306     if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
 307       return false;
 308     }
 309     return true;
 310   } else {
 311     _recursions++;
 312     return true;
 313   }
 314 }
 315 
 316 void ATTR ObjectMonitor::enter(TRAPS) {
 317   // The following code is ordered to check the most common cases first
 318   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
 319   Thread * const Self = THREAD ;
 320   void * cur ;
 321 
 322   cur = Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
 323   if (cur == NULL) {
 324      // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
 325      assert (_recursions == 0   , "invariant") ;
 326      assert (_owner      == Self, "invariant") ;
 327      // CONSIDER: set or assert OwnerIsThread == 1
 328      return ;
 329   }
 330 
 331   if (cur == Self) {
 332      // TODO-FIXME: check for integer overflow!  BUGID 6557169.
 333      _recursions ++ ;
 334      return ;
 335   }
 336 
 337   if (Self->is_lock_owned ((address)cur)) {
 338     assert (_recursions == 0, "internal state error");
 339     _recursions = 1 ;
 340     // Commute owner from a thread-specific on-stack BasicLockObject address to
 341     // a full-fledged "Thread *".
 342     _owner = Self ;
 343     OwnerIsThread = 1 ;
 344     return ;
 345   }
 346 
 347   // We've encountered genuine contention.
 348   assert (Self->_Stalled == 0, "invariant") ;
 349   Self->_Stalled = intptr_t(this) ;
 350 
 351   // Try one round of spinning *before* enqueueing Self
 352   // and before going through the awkward and expensive state
 353   // transitions.  The following spin is strictly optional ...
 354   // Note that if we acquire the monitor from an initial spin
 355   // we forgo posting JVMTI events and firing DTRACE probes.
 356   if (Knob_SpinEarly && TrySpin (Self) > 0) {
 357      assert (_owner == Self      , "invariant") ;
 358      assert (_recursions == 0    , "invariant") ;
 359      assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 360      Self->_Stalled = 0 ;
 361      return ;
 362   }
 363 
 364   assert (_owner != Self          , "invariant") ;
 365   assert (_succ  != Self          , "invariant") ;
 366   assert (Self->is_Java_thread()  , "invariant") ;
 367   JavaThread * jt = (JavaThread *) Self ;
 368   assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
 369   assert (jt->thread_state() != _thread_blocked   , "invariant") ;
 370   assert (this->object() != NULL  , "invariant") ;
 371   assert (_count >= 0, "invariant") ;
 372 
 373   // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
 374   // Ensure the object-monitor relationship remains stable while there's contention.
 375   Atomic::inc_ptr(&_count);
 376 
 377   EventJavaMonitorEnter event;
 378 
 379   { // Change java thread status to indicate blocked on monitor enter.
 380     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
 381 
 382     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
 383     if (JvmtiExport::should_post_monitor_contended_enter()) {
 384       JvmtiExport::post_monitor_contended_enter(jt, this);
 385     }
 386 
 387     OSThreadContendState osts(Self->osthread());
 388     ThreadBlockInVM tbivm(jt);
 389 
 390     Self->set_current_pending_monitor(this);
 391 
 392     // TODO-FIXME: change the following for(;;) loop to straight-line code.
 393     for (;;) {
 394       jt->set_suspend_equivalent();
 395       // cleared by handle_special_suspend_equivalent_condition()
 396       // or java_suspend_self()
 397 
 398       EnterI (THREAD) ;
 399 
 400       if (!ExitSuspendEquivalent(jt)) break ;
 401 
 402       //
 403       // We have acquired the contended monitor, but while we were
 404       // waiting another thread suspended us. We don't want to enter
 405       // the monitor while suspended because that would surprise the
 406       // thread that suspended us.
 407       //
 408           _recursions = 0 ;
 409       _succ = NULL ;
 410       exit (false, Self) ;
 411 
 412       jt->java_suspend_self();
 413     }
 414     Self->set_current_pending_monitor(NULL);
 415   }
 416 
 417   Atomic::dec_ptr(&_count);
 418   assert (_count >= 0, "invariant") ;
 419   Self->_Stalled = 0 ;
 420 
 421   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 422   assert (_recursions == 0     , "invariant") ;
 423   assert (_owner == Self       , "invariant") ;
 424   assert (_succ  != Self       , "invariant") ;
 425   assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 426 
 427   // The thread -- now the owner -- is back in vm mode.
 428   // Report the glorious news via TI,DTrace and jvmstat.
 429   // The probe effect is non-trivial.  All the reportage occurs
 430   // while we hold the monitor, increasing the length of the critical
 431   // section.  Amdahl's parallel speedup law comes vividly into play.
 432   //
 433   // Another option might be to aggregate the events (thread local or
 434   // per-monitor aggregation) and defer reporting until a more opportune
 435   // time -- such as next time some thread encounters contention but has
 436   // yet to acquire the lock.  While spinning that thread could
 437   // spinning we could increment JVMStat counters, etc.
 438 
 439   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
 440   if (JvmtiExport::should_post_monitor_contended_entered()) {
 441     JvmtiExport::post_monitor_contended_entered(jt, this);
 442   }
 443 
 444   if (event.should_commit()) {
 445     event.set_klass(((oop)this->object())->klass());
 446     event.set_previousOwner((TYPE_JAVALANGTHREAD)_previous_owner_tid);
 447     event.set_address((TYPE_ADDRESS)(uintptr_t)(this->object_addr()));
 448     event.commit();
 449   }
 450 
 451   if (ObjectMonitor::_sync_ContendedLockAttempts != NULL) {
 452      ObjectMonitor::_sync_ContendedLockAttempts->inc() ;
 453   }
 454 }
 455 
 456 
 457 // Caveat: TryLock() is not necessarily serializing if it returns failure.
 458 // Callers must compensate as needed.
 459 
 460 int ObjectMonitor::TryLock (Thread * Self) {
 461    for (;;) {
 462       void * own = _owner ;
 463       if (own != NULL) return 0 ;
 464       if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
 465          // Either guarantee _recursions == 0 or set _recursions = 0.
 466          assert (_recursions == 0, "invariant") ;
 467          assert (_owner == Self, "invariant") ;
 468          // CONSIDER: set or assert that OwnerIsThread == 1
 469          return 1 ;
 470       }
 471       // The lock had been free momentarily, but we lost the race to the lock.
 472       // Interference -- the CAS failed.
 473       // We can either return -1 or retry.
 474       // Retry doesn't make as much sense because the lock was just acquired.
 475       if (true) return -1 ;
 476    }
 477 }
 478 
 479 void ATTR ObjectMonitor::EnterI (TRAPS) {
 480     Thread * Self = THREAD ;
 481     assert (Self->is_Java_thread(), "invariant") ;
 482     assert (((JavaThread *) Self)->thread_state() == _thread_blocked   , "invariant") ;
 483 
 484     // Try the lock - TATAS
 485     if (TryLock (Self) > 0) {
 486         assert (_succ != Self              , "invariant") ;
 487         assert (_owner == Self             , "invariant") ;
 488         assert (_Responsible != Self       , "invariant") ;
 489         return ;
 490     }
 491 
 492     DeferredInitialize () ;
 493 
 494     // We try one round of spinning *before* enqueueing Self.
 495     //
 496     // If the _owner is ready but OFFPROC we could use a YieldTo()
 497     // operation to donate the remainder of this thread's quantum
 498     // to the owner.  This has subtle but beneficial affinity
 499     // effects.
 500 
 501     if (TrySpin (Self) > 0) {
 502         assert (_owner == Self        , "invariant") ;
 503         assert (_succ != Self         , "invariant") ;
 504         assert (_Responsible != Self  , "invariant") ;
 505         return ;
 506     }
 507 
 508     // The Spin failed -- Enqueue and park the thread ...
 509     assert (_succ  != Self            , "invariant") ;
 510     assert (_owner != Self            , "invariant") ;
 511     assert (_Responsible != Self      , "invariant") ;
 512 
 513     // Enqueue "Self" on ObjectMonitor's _cxq.
 514     //
 515     // Node acts as a proxy for Self.
 516     // As an aside, if were to ever rewrite the synchronization code mostly
 517     // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 518     // Java objects.  This would avoid awkward lifecycle and liveness issues,
 519     // as well as eliminate a subset of ABA issues.
 520     // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 521     //
 522 
 523     ObjectWaiter node(Self) ;
 524     Self->_ParkEvent->reset() ;
 525     node._prev   = (ObjectWaiter *) 0xBAD ;
 526     node.TState  = ObjectWaiter::TS_CXQ ;
 527 
 528     // Push "Self" onto the front of the _cxq.
 529     // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
 530     // Note that spinning tends to reduce the rate at which threads
 531     // enqueue and dequeue on EntryList|cxq.
 532     ObjectWaiter * nxt ;
 533     for (;;) {
 534         node._next = nxt = _cxq ;
 535         if (Atomic::cmpxchg_ptr (&node, &_cxq, nxt) == nxt) break ;
 536 
 537         // Interference - the CAS failed because _cxq changed.  Just retry.
 538         // As an optional optimization we retry the lock.
 539         if (TryLock (Self) > 0) {
 540             assert (_succ != Self         , "invariant") ;
 541             assert (_owner == Self        , "invariant") ;
 542             assert (_Responsible != Self  , "invariant") ;
 543             return ;
 544         }
 545     }
 546 
 547     // Check for cxq|EntryList edge transition to non-null.  This indicates
 548     // the onset of contention.  While contention persists exiting threads
 549     // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
 550     // operations revert to the faster 1-0 mode.  This enter operation may interleave
 551     // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
 552     // arrange for one of the contending thread to use a timed park() operations
 553     // to detect and recover from the race.  (Stranding is form of progress failure
 554     // where the monitor is unlocked but all the contending threads remain parked).
 555     // That is, at least one of the contended threads will periodically poll _owner.
 556     // One of the contending threads will become the designated "Responsible" thread.
 557     // The Responsible thread uses a timed park instead of a normal indefinite park
 558     // operation -- it periodically wakes and checks for and recovers from potential
 559     // strandings admitted by 1-0 exit operations.   We need at most one Responsible
 560     // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
 561     // be responsible for a monitor.
 562     //
 563     // Currently, one of the contended threads takes on the added role of "Responsible".
 564     // A viable alternative would be to use a dedicated "stranding checker" thread
 565     // that periodically iterated over all the threads (or active monitors) and unparked
 566     // successors where there was risk of stranding.  This would help eliminate the
 567     // timer scalability issues we see on some platforms as we'd only have one thread
 568     // -- the checker -- parked on a timer.
 569 
 570     if ((SyncFlags & 16) == 0 && nxt == NULL && _EntryList == NULL) {
 571         // Try to assume the role of responsible thread for the monitor.
 572         // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
 573         Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
 574     }
 575 
 576     // The lock have been released while this thread was occupied queueing
 577     // itself onto _cxq.  To close the race and avoid "stranding" and
 578     // progress-liveness failure we must resample-retry _owner before parking.
 579     // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
 580     // In this case the ST-MEMBAR is accomplished with CAS().
 581     //
 582     // TODO: Defer all thread state transitions until park-time.
 583     // Since state transitions are heavy and inefficient we'd like
 584     // to defer the state transitions until absolutely necessary,
 585     // and in doing so avoid some transitions ...
 586 
 587     TEVENT (Inflated enter - Contention) ;
 588     int nWakeups = 0 ;
 589     int RecheckInterval = 1 ;
 590 
 591     for (;;) {
 592 
 593         if (TryLock (Self) > 0) break ;
 594         assert (_owner != Self, "invariant") ;
 595 
 596         if ((SyncFlags & 2) && _Responsible == NULL) {
 597            Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
 598         }
 599 
 600         // park self
 601         if (_Responsible == Self || (SyncFlags & 1)) {
 602             TEVENT (Inflated enter - park TIMED) ;
 603             Self->_ParkEvent->park ((jlong) RecheckInterval) ;
 604             // Increase the RecheckInterval, but clamp the value.
 605             RecheckInterval *= 8 ;
 606             if (RecheckInterval > 1000) RecheckInterval = 1000 ;
 607         } else {
 608             TEVENT (Inflated enter - park UNTIMED) ;
 609             Self->_ParkEvent->park() ;
 610         }
 611 
 612         if (TryLock(Self) > 0) break ;
 613 
 614         // The lock is still contested.
 615         // Keep a tally of the # of futile wakeups.
 616         // Note that the counter is not protected by a lock or updated by atomics.
 617         // That is by design - we trade "lossy" counters which are exposed to
 618         // races during updates for a lower probe effect.
 619         TEVENT (Inflated enter - Futile wakeup) ;
 620         if (ObjectMonitor::_sync_FutileWakeups != NULL) {
 621            ObjectMonitor::_sync_FutileWakeups->inc() ;
 622         }
 623         ++ nWakeups ;
 624 
 625         // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
 626         // We can defer clearing _succ until after the spin completes
 627         // TrySpin() must tolerate being called with _succ == Self.
 628         // Try yet another round of adaptive spinning.
 629         if ((Knob_SpinAfterFutile & 1) && TrySpin (Self) > 0) break ;
 630 
 631         // We can find that we were unpark()ed and redesignated _succ while
 632         // we were spinning.  That's harmless.  If we iterate and call park(),
 633         // park() will consume the event and return immediately and we'll
 634         // just spin again.  This pattern can repeat, leaving _succ to simply
 635         // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
 636         // Alternately, we can sample fired() here, and if set, forgo spinning
 637         // in the next iteration.
 638 
 639         if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
 640            Self->_ParkEvent->reset() ;
 641            OrderAccess::fence() ;
 642         }
 643         if (_succ == Self) _succ = NULL ;
 644 
 645         // Invariant: after clearing _succ a thread *must* retry _owner before parking.
 646         OrderAccess::fence() ;
 647     }
 648 
 649     // Egress :
 650     // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
 651     // Normally we'll find Self on the EntryList .
 652     // From the perspective of the lock owner (this thread), the
 653     // EntryList is stable and cxq is prepend-only.
 654     // The head of cxq is volatile but the interior is stable.
 655     // In addition, Self.TState is stable.
 656 
 657     assert (_owner == Self      , "invariant") ;
 658     assert (object() != NULL    , "invariant") ;
 659     // I'd like to write:
 660     //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 661     // but as we're at a safepoint that's not safe.
 662 
 663     UnlinkAfterAcquire (Self, &node) ;
 664     if (_succ == Self) _succ = NULL ;
 665 
 666     assert (_succ != Self, "invariant") ;
 667     if (_Responsible == Self) {
 668         _Responsible = NULL ;
 669         OrderAccess::fence(); // Dekker pivot-point
 670 
 671         // We may leave threads on cxq|EntryList without a designated
 672         // "Responsible" thread.  This is benign.  When this thread subsequently
 673         // exits the monitor it can "see" such preexisting "old" threads --
 674         // threads that arrived on the cxq|EntryList before the fence, above --
 675         // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
 676         // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
 677         // non-null and elect a new "Responsible" timer thread.
 678         //
 679         // This thread executes:
 680         //    ST Responsible=null; MEMBAR    (in enter epilogue - here)
 681         //    LD cxq|EntryList               (in subsequent exit)
 682         //
 683         // Entering threads in the slow/contended path execute:
 684         //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
 685         //    The (ST cxq; MEMBAR) is accomplished with CAS().
 686         //
 687         // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
 688         // exit operation from floating above the ST Responsible=null.
 689     }
 690 
 691     // We've acquired ownership with CAS().
 692     // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
 693     // But since the CAS() this thread may have also stored into _succ,
 694     // EntryList, cxq or Responsible.  These meta-data updates must be
 695     // visible __before this thread subsequently drops the lock.
 696     // Consider what could occur if we didn't enforce this constraint --
 697     // STs to monitor meta-data and user-data could reorder with (become
 698     // visible after) the ST in exit that drops ownership of the lock.
 699     // Some other thread could then acquire the lock, but observe inconsistent
 700     // or old monitor meta-data and heap data.  That violates the JMM.
 701     // To that end, the 1-0 exit() operation must have at least STST|LDST
 702     // "release" barrier semantics.  Specifically, there must be at least a
 703     // STST|LDST barrier in exit() before the ST of null into _owner that drops
 704     // the lock.   The barrier ensures that changes to monitor meta-data and data
 705     // protected by the lock will be visible before we release the lock, and
 706     // therefore before some other thread (CPU) has a chance to acquire the lock.
 707     // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
 708     //
 709     // Critically, any prior STs to _succ or EntryList must be visible before
 710     // the ST of null into _owner in the *subsequent* (following) corresponding
 711     // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
 712     // execute a serializing instruction.
 713 
 714     if (SyncFlags & 8) {
 715        OrderAccess::fence() ;
 716     }
 717     return ;
 718 }
 719 
 720 // ReenterI() is a specialized inline form of the latter half of the
 721 // contended slow-path from EnterI().  We use ReenterI() only for
 722 // monitor reentry in wait().
 723 //
 724 // In the future we should reconcile EnterI() and ReenterI(), adding
 725 // Knob_Reset and Knob_SpinAfterFutile support and restructuring the
 726 // loop accordingly.
 727 
 728 void ATTR ObjectMonitor::ReenterI (Thread * Self, ObjectWaiter * SelfNode) {
 729     assert (Self != NULL                , "invariant") ;
 730     assert (SelfNode != NULL            , "invariant") ;
 731     assert (SelfNode->_thread == Self   , "invariant") ;
 732     assert (_waiters > 0                , "invariant") ;
 733     assert (((oop)(object()))->mark() == markOopDesc::encode(this) , "invariant") ;
 734     assert (((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
 735     JavaThread * jt = (JavaThread *) Self ;
 736 
 737     int nWakeups = 0 ;
 738     for (;;) {
 739         ObjectWaiter::TStates v = SelfNode->TState ;
 740         guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
 741         assert    (_owner != Self, "invariant") ;
 742 
 743         if (TryLock (Self) > 0) break ;
 744         if (TrySpin (Self) > 0) break ;
 745 
 746         TEVENT (Wait Reentry - parking) ;
 747 
 748         // State transition wrappers around park() ...
 749         // ReenterI() wisely defers state transitions until
 750         // it's clear we must park the thread.
 751         {
 752            OSThreadContendState osts(Self->osthread());
 753            ThreadBlockInVM tbivm(jt);
 754 
 755            // cleared by handle_special_suspend_equivalent_condition()
 756            // or java_suspend_self()
 757            jt->set_suspend_equivalent();
 758            if (SyncFlags & 1) {
 759               Self->_ParkEvent->park ((jlong)1000) ;
 760            } else {
 761               Self->_ParkEvent->park () ;
 762            }
 763 
 764            // were we externally suspended while we were waiting?
 765            for (;;) {
 766               if (!ExitSuspendEquivalent (jt)) break ;
 767               if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
 768               jt->java_suspend_self();
 769               jt->set_suspend_equivalent();
 770            }
 771         }
 772 
 773         // Try again, but just so we distinguish between futile wakeups and
 774         // successful wakeups.  The following test isn't algorithmically
 775         // necessary, but it helps us maintain sensible statistics.
 776         if (TryLock(Self) > 0) break ;
 777 
 778         // The lock is still contested.
 779         // Keep a tally of the # of futile wakeups.
 780         // Note that the counter is not protected by a lock or updated by atomics.
 781         // That is by design - we trade "lossy" counters which are exposed to
 782         // races during updates for a lower probe effect.
 783         TEVENT (Wait Reentry - futile wakeup) ;
 784         ++ nWakeups ;
 785 
 786         // Assuming this is not a spurious wakeup we'll normally
 787         // find that _succ == Self.
 788         if (_succ == Self) _succ = NULL ;
 789 
 790         // Invariant: after clearing _succ a contending thread
 791         // *must* retry  _owner before parking.
 792         OrderAccess::fence() ;
 793 
 794         if (ObjectMonitor::_sync_FutileWakeups != NULL) {
 795           ObjectMonitor::_sync_FutileWakeups->inc() ;
 796         }
 797     }
 798 
 799     // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
 800     // Normally we'll find Self on the EntryList.
 801     // Unlinking from the EntryList is constant-time and atomic-free.
 802     // From the perspective of the lock owner (this thread), the
 803     // EntryList is stable and cxq is prepend-only.
 804     // The head of cxq is volatile but the interior is stable.
 805     // In addition, Self.TState is stable.
 806 
 807     assert (_owner == Self, "invariant") ;
 808     assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 809     UnlinkAfterAcquire (Self, SelfNode) ;
 810     if (_succ == Self) _succ = NULL ;
 811     assert (_succ != Self, "invariant") ;
 812     SelfNode->TState = ObjectWaiter::TS_RUN ;
 813     OrderAccess::fence() ;      // see comments at the end of EnterI()
 814 }
 815 
 816 // after the thread acquires the lock in ::enter().  Equally, we could defer
 817 // unlinking the thread until ::exit()-time.
 818 
 819 void ObjectMonitor::UnlinkAfterAcquire (Thread * Self, ObjectWaiter * SelfNode)
 820 {
 821     assert (_owner == Self, "invariant") ;
 822     assert (SelfNode->_thread == Self, "invariant") ;
 823 
 824     if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
 825         // Normal case: remove Self from the DLL EntryList .
 826         // This is a constant-time operation.
 827         ObjectWaiter * nxt = SelfNode->_next ;
 828         ObjectWaiter * prv = SelfNode->_prev ;
 829         if (nxt != NULL) nxt->_prev = prv ;
 830         if (prv != NULL) prv->_next = nxt ;
 831         if (SelfNode == _EntryList ) _EntryList = nxt ;
 832         assert (nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant") ;
 833         assert (prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant") ;
 834         TEVENT (Unlink from EntryList) ;
 835     } else {
 836         guarantee (SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant") ;
 837         // Inopportune interleaving -- Self is still on the cxq.
 838         // This usually means the enqueue of self raced an exiting thread.
 839         // Normally we'll find Self near the front of the cxq, so
 840         // dequeueing is typically fast.  If needbe we can accelerate
 841         // this with some MCS/CHL-like bidirectional list hints and advisory
 842         // back-links so dequeueing from the interior will normally operate
 843         // in constant-time.
 844         // Dequeue Self from either the head (with CAS) or from the interior
 845         // with a linear-time scan and normal non-atomic memory operations.
 846         // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
 847         // and then unlink Self from EntryList.  We have to drain eventually,
 848         // so it might as well be now.
 849 
 850         ObjectWaiter * v = _cxq ;
 851         assert (v != NULL, "invariant") ;
 852         if (v != SelfNode || Atomic::cmpxchg_ptr (SelfNode->_next, &_cxq, v) != v) {
 853             // The CAS above can fail from interference IFF a "RAT" arrived.
 854             // In that case Self must be in the interior and can no longer be
 855             // at the head of cxq.
 856             if (v == SelfNode) {
 857                 assert (_cxq != v, "invariant") ;
 858                 v = _cxq ;          // CAS above failed - start scan at head of list
 859             }
 860             ObjectWaiter * p ;
 861             ObjectWaiter * q = NULL ;
 862             for (p = v ; p != NULL && p != SelfNode; p = p->_next) {
 863                 q = p ;
 864                 assert (p->TState == ObjectWaiter::TS_CXQ, "invariant") ;
 865             }
 866             assert (v != SelfNode,  "invariant") ;
 867             assert (p == SelfNode,  "Node not found on cxq") ;
 868             assert (p != _cxq,      "invariant") ;
 869             assert (q != NULL,      "invariant") ;
 870             assert (q->_next == p,  "invariant") ;
 871             q->_next = p->_next ;
 872         }
 873         TEVENT (Unlink from cxq) ;
 874     }
 875 
 876     // Diagnostic hygiene ...
 877     SelfNode->_prev  = (ObjectWaiter *) 0xBAD ;
 878     SelfNode->_next  = (ObjectWaiter *) 0xBAD ;
 879     SelfNode->TState = ObjectWaiter::TS_RUN ;
 880 }
 881 
 882 // -----------------------------------------------------------------------------
 883 // Exit support
 884 //
 885 // exit()
 886 // ~~~~~~
 887 // Note that the collector can't reclaim the objectMonitor or deflate
 888 // the object out from underneath the thread calling ::exit() as the
 889 // thread calling ::exit() never transitions to a stable state.
 890 // This inhibits GC, which in turn inhibits asynchronous (and
 891 // inopportune) reclamation of "this".
 892 //
 893 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
 894 // There's one exception to the claim above, however.  EnterI() can call
 895 // exit() to drop a lock if the acquirer has been externally suspended.
 896 // In that case exit() is called with _thread_state as _thread_blocked,
 897 // but the monitor's _count field is > 0, which inhibits reclamation.
 898 //
 899 // 1-0 exit
 900 // ~~~~~~~~
 901 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
 902 // the fast-path operators have been optimized so the common ::exit()
 903 // operation is 1-0.  See i486.ad fast_unlock(), for instance.
 904 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
 905 // greatly improves latency -- MEMBAR and CAS having considerable local
 906 // latency on modern processors -- but at the cost of "stranding".  Absent the
 907 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
 908 // ::enter() path, resulting in the entering thread being stranding
 909 // and a progress-liveness failure.   Stranding is extremely rare.
 910 // We use timers (timed park operations) & periodic polling to detect
 911 // and recover from stranding.  Potentially stranded threads periodically
 912 // wake up and poll the lock.  See the usage of the _Responsible variable.
 913 //
 914 // The CAS() in enter provides for safety and exclusion, while the CAS or
 915 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
 916 // eliminates the CAS/MEMBAR from the exist path, but it admits stranding.
 917 // We detect and recover from stranding with timers.
 918 //
 919 // If a thread transiently strands it'll park until (a) another
 920 // thread acquires the lock and then drops the lock, at which time the
 921 // exiting thread will notice and unpark the stranded thread, or, (b)
 922 // the timer expires.  If the lock is high traffic then the stranding latency
 923 // will be low due to (a).  If the lock is low traffic then the odds of
 924 // stranding are lower, although the worst-case stranding latency
 925 // is longer.  Critically, we don't want to put excessive load in the
 926 // platform's timer subsystem.  We want to minimize both the timer injection
 927 // rate (timers created/sec) as well as the number of timers active at
 928 // any one time.  (more precisely, we want to minimize timer-seconds, which is
 929 // the integral of the # of active timers at any instant over time).
 930 // Both impinge on OS scalability.  Given that, at most one thread parked on
 931 // a monitor will use a timer.
 932 
 933 void ATTR ObjectMonitor::exit(bool not_suspended, TRAPS) {
 934    Thread * Self = THREAD ;
 935    if (THREAD != _owner) {
 936      if (THREAD->is_lock_owned((address) _owner)) {
 937        // Transmute _owner from a BasicLock pointer to a Thread address.
 938        // We don't need to hold _mutex for this transition.
 939        // Non-null to Non-null is safe as long as all readers can
 940        // tolerate either flavor.
 941        assert (_recursions == 0, "invariant") ;
 942        _owner = THREAD ;
 943        _recursions = 0 ;
 944        OwnerIsThread = 1 ;
 945      } else {
 946        // NOTE: we need to handle unbalanced monitor enter/exit
 947        // in native code by throwing an exception.
 948        // TODO: Throw an IllegalMonitorStateException ?
 949        TEVENT (Exit - Throw IMSX) ;
 950        assert(false, "Non-balanced monitor enter/exit!");
 951        if (false) {
 952           THROW(vmSymbols::java_lang_IllegalMonitorStateException());
 953        }
 954        return;
 955      }
 956    }
 957 
 958    if (_recursions != 0) {
 959      _recursions--;        // this is simple recursive enter
 960      TEVENT (Inflated exit - recursive) ;
 961      return ;
 962    }
 963 
 964    // Invariant: after setting Responsible=null an thread must execute
 965    // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
 966    if ((SyncFlags & 4) == 0) {
 967       _Responsible = NULL ;
 968    }
 969 
 970 #if INCLUDE_TRACE
 971    // get the owner's thread id for the MonitorEnter event
 972    // if it is enabled and the thread isn't suspended
 973    if (not_suspended && Tracing::is_event_enabled(TraceJavaMonitorEnterEvent)) {
 974      _previous_owner_tid = SharedRuntime::get_java_tid(Self);
 975    }
 976 #endif
 977 
 978    for (;;) {
 979       assert (THREAD == _owner, "invariant") ;
 980 
 981 
 982       if (Knob_ExitPolicy == 0) {
 983          // release semantics: prior loads and stores from within the critical section
 984          // must not float (reorder) past the following store that drops the lock.
 985          // On SPARC that requires MEMBAR #loadstore|#storestore.
 986          // But of course in TSO #loadstore|#storestore is not required.
 987          // I'd like to write one of the following:
 988          // A.  OrderAccess::release() ; _owner = NULL
 989          // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
 990          // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
 991          // store into a _dummy variable.  That store is not needed, but can result
 992          // in massive wasteful coherency traffic on classic SMP systems.
 993          // Instead, I use release_store(), which is implemented as just a simple
 994          // ST on x64, x86 and SPARC.
 995          OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
 996          OrderAccess::storeload() ;                         // See if we need to wake a successor
 997          if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
 998             TEVENT (Inflated exit - simple egress) ;
 999             return ;
1000          }
1001          TEVENT (Inflated exit - complex egress) ;
1002 
1003          // Normally the exiting thread is responsible for ensuring succession,
1004          // but if other successors are ready or other entering threads are spinning
1005          // then this thread can simply store NULL into _owner and exit without
1006          // waking a successor.  The existence of spinners or ready successors
1007          // guarantees proper succession (liveness).  Responsibility passes to the
1008          // ready or running successors.  The exiting thread delegates the duty.
1009          // More precisely, if a successor already exists this thread is absolved
1010          // of the responsibility of waking (unparking) one.
1011          //
1012          // The _succ variable is critical to reducing futile wakeup frequency.
1013          // _succ identifies the "heir presumptive" thread that has been made
1014          // ready (unparked) but that has not yet run.  We need only one such
1015          // successor thread to guarantee progress.
1016          // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
1017          // section 3.3 "Futile Wakeup Throttling" for details.
1018          //
1019          // Note that spinners in Enter() also set _succ non-null.
1020          // In the current implementation spinners opportunistically set
1021          // _succ so that exiting threads might avoid waking a successor.
1022          // Another less appealing alternative would be for the exiting thread
1023          // to drop the lock and then spin briefly to see if a spinner managed
1024          // to acquire the lock.  If so, the exiting thread could exit
1025          // immediately without waking a successor, otherwise the exiting
1026          // thread would need to dequeue and wake a successor.
1027          // (Note that we'd need to make the post-drop spin short, but no
1028          // shorter than the worst-case round-trip cache-line migration time.
1029          // The dropped lock needs to become visible to the spinner, and then
1030          // the acquisition of the lock by the spinner must become visible to
1031          // the exiting thread).
1032          //
1033 
1034          // It appears that an heir-presumptive (successor) must be made ready.
1035          // Only the current lock owner can manipulate the EntryList or
1036          // drain _cxq, so we need to reacquire the lock.  If we fail
1037          // to reacquire the lock the responsibility for ensuring succession
1038          // falls to the new owner.
1039          //
1040          if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
1041             return ;
1042          }
1043          TEVENT (Exit - Reacquired) ;
1044       } else {
1045          if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
1046             OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
1047             OrderAccess::storeload() ;
1048             // Ratify the previously observed values.
1049             if (_cxq == NULL || _succ != NULL) {
1050                 TEVENT (Inflated exit - simple egress) ;
1051                 return ;
1052             }
1053 
1054             // inopportune interleaving -- the exiting thread (this thread)
1055             // in the fast-exit path raced an entering thread in the slow-enter
1056             // path.
1057             // We have two choices:
1058             // A.  Try to reacquire the lock.
1059             //     If the CAS() fails return immediately, otherwise
1060             //     we either restart/rerun the exit operation, or simply
1061             //     fall-through into the code below which wakes a successor.
1062             // B.  If the elements forming the EntryList|cxq are TSM
1063             //     we could simply unpark() the lead thread and return
1064             //     without having set _succ.
1065             if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
1066                TEVENT (Inflated exit - reacquired succeeded) ;
1067                return ;
1068             }
1069             TEVENT (Inflated exit - reacquired failed) ;
1070          } else {
1071             TEVENT (Inflated exit - complex egress) ;
1072          }
1073       }
1074 
1075       guarantee (_owner == THREAD, "invariant") ;
1076 
1077       ObjectWaiter * w = NULL ;
1078       int QMode = Knob_QMode ;
1079 
1080       if (QMode == 2 && _cxq != NULL) {
1081           // QMode == 2 : cxq has precedence over EntryList.
1082           // Try to directly wake a successor from the cxq.
1083           // If successful, the successor will need to unlink itself from cxq.
1084           w = _cxq ;
1085           assert (w != NULL, "invariant") ;
1086           assert (w->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1087           ExitEpilog (Self, w) ;
1088           return ;
1089       }
1090 
1091       if (QMode == 3 && _cxq != NULL) {
1092           // Aggressively drain cxq into EntryList at the first opportunity.
1093           // This policy ensure that recently-run threads live at the head of EntryList.
1094           // Drain _cxq into EntryList - bulk transfer.
1095           // First, detach _cxq.
1096           // The following loop is tantamount to: w = swap (&cxq, NULL)
1097           w = _cxq ;
1098           for (;;) {
1099              assert (w != NULL, "Invariant") ;
1100              ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1101              if (u == w) break ;
1102              w = u ;
1103           }
1104           assert (w != NULL              , "invariant") ;
1105 
1106           ObjectWaiter * q = NULL ;
1107           ObjectWaiter * p ;
1108           for (p = w ; p != NULL ; p = p->_next) {
1109               guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1110               p->TState = ObjectWaiter::TS_ENTER ;
1111               p->_prev = q ;
1112               q = p ;
1113           }
1114 
1115           // Append the RATs to the EntryList
1116           // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
1117           ObjectWaiter * Tail ;
1118           for (Tail = _EntryList ; Tail != NULL && Tail->_next != NULL ; Tail = Tail->_next) ;
1119           if (Tail == NULL) {
1120               _EntryList = w ;
1121           } else {
1122               Tail->_next = w ;
1123               w->_prev = Tail ;
1124           }
1125 
1126           // Fall thru into code that tries to wake a successor from EntryList
1127       }
1128 
1129       if (QMode == 4 && _cxq != NULL) {
1130           // Aggressively drain cxq into EntryList at the first opportunity.
1131           // This policy ensure that recently-run threads live at the head of EntryList.
1132 
1133           // Drain _cxq into EntryList - bulk transfer.
1134           // First, detach _cxq.
1135           // The following loop is tantamount to: w = swap (&cxq, NULL)
1136           w = _cxq ;
1137           for (;;) {
1138              assert (w != NULL, "Invariant") ;
1139              ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1140              if (u == w) break ;
1141              w = u ;
1142           }
1143           assert (w != NULL              , "invariant") ;
1144 
1145           ObjectWaiter * q = NULL ;
1146           ObjectWaiter * p ;
1147           for (p = w ; p != NULL ; p = p->_next) {
1148               guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1149               p->TState = ObjectWaiter::TS_ENTER ;
1150               p->_prev = q ;
1151               q = p ;
1152           }
1153 
1154           // Prepend the RATs to the EntryList
1155           if (_EntryList != NULL) {
1156               q->_next = _EntryList ;
1157               _EntryList->_prev = q ;
1158           }
1159           _EntryList = w ;
1160 
1161           // Fall thru into code that tries to wake a successor from EntryList
1162       }
1163 
1164       w = _EntryList  ;
1165       if (w != NULL) {
1166           // I'd like to write: guarantee (w->_thread != Self).
1167           // But in practice an exiting thread may find itself on the EntryList.
1168           // Lets say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1169           // then calls exit().  Exit release the lock by setting O._owner to NULL.
1170           // Lets say T1 then stalls.  T2 acquires O and calls O.notify().  The
1171           // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1172           // release the lock "O".  T2 resumes immediately after the ST of null into
1173           // _owner, above.  T2 notices that the EntryList is populated, so it
1174           // reacquires the lock and then finds itself on the EntryList.
1175           // Given all that, we have to tolerate the circumstance where "w" is
1176           // associated with Self.
1177           assert (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1178           ExitEpilog (Self, w) ;
1179           return ;
1180       }
1181 
1182       // If we find that both _cxq and EntryList are null then just
1183       // re-run the exit protocol from the top.
1184       w = _cxq ;
1185       if (w == NULL) continue ;
1186 
1187       // Drain _cxq into EntryList - bulk transfer.
1188       // First, detach _cxq.
1189       // The following loop is tantamount to: w = swap (&cxq, NULL)
1190       for (;;) {
1191           assert (w != NULL, "Invariant") ;
1192           ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1193           if (u == w) break ;
1194           w = u ;
1195       }
1196       TEVENT (Inflated exit - drain cxq into EntryList) ;
1197 
1198       assert (w != NULL              , "invariant") ;
1199       assert (_EntryList  == NULL    , "invariant") ;
1200 
1201       // Convert the LIFO SLL anchored by _cxq into a DLL.
1202       // The list reorganization step operates in O(LENGTH(w)) time.
1203       // It's critical that this step operate quickly as
1204       // "Self" still holds the outer-lock, restricting parallelism
1205       // and effectively lengthening the critical section.
1206       // Invariant: s chases t chases u.
1207       // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1208       // we have faster access to the tail.
1209 
1210       if (QMode == 1) {
1211          // QMode == 1 : drain cxq to EntryList, reversing order
1212          // We also reverse the order of the list.
1213          ObjectWaiter * s = NULL ;
1214          ObjectWaiter * t = w ;
1215          ObjectWaiter * u = NULL ;
1216          while (t != NULL) {
1217              guarantee (t->TState == ObjectWaiter::TS_CXQ, "invariant") ;
1218              t->TState = ObjectWaiter::TS_ENTER ;
1219              u = t->_next ;
1220              t->_prev = u ;
1221              t->_next = s ;
1222              s = t;
1223              t = u ;
1224          }
1225          _EntryList  = s ;
1226          assert (s != NULL, "invariant") ;
1227       } else {
1228          // QMode == 0 or QMode == 2
1229          _EntryList = w ;
1230          ObjectWaiter * q = NULL ;
1231          ObjectWaiter * p ;
1232          for (p = w ; p != NULL ; p = p->_next) {
1233              guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1234              p->TState = ObjectWaiter::TS_ENTER ;
1235              p->_prev = q ;
1236              q = p ;
1237          }
1238       }
1239 
1240       // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
1241       // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1242 
1243       // See if we can abdicate to a spinner instead of waking a thread.
1244       // A primary goal of the implementation is to reduce the
1245       // context-switch rate.
1246       if (_succ != NULL) continue;
1247 
1248       w = _EntryList  ;
1249       if (w != NULL) {
1250           guarantee (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1251           ExitEpilog (Self, w) ;
1252           return ;
1253       }
1254    }
1255 }
1256 
1257 // ExitSuspendEquivalent:
1258 // A faster alternate to handle_special_suspend_equivalent_condition()
1259 //
1260 // handle_special_suspend_equivalent_condition() unconditionally
1261 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
1262 // operations have high latency.  Note that in ::enter() we call HSSEC
1263 // while holding the monitor, so we effectively lengthen the critical sections.
1264 //
1265 // There are a number of possible solutions:
1266 //
1267 // A.  To ameliorate the problem we might also defer state transitions
1268 //     to as late as possible -- just prior to parking.
1269 //     Given that, we'd call HSSEC after having returned from park(),
1270 //     but before attempting to acquire the monitor.  This is only a
1271 //     partial solution.  It avoids calling HSSEC while holding the
1272 //     monitor (good), but it still increases successor reacquisition latency --
1273 //     the interval between unparking a successor and the time the successor
1274 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
1275 //     If we use this technique we can also avoid EnterI()-exit() loop
1276 //     in ::enter() where we iteratively drop the lock and then attempt
1277 //     to reacquire it after suspending.
1278 //
1279 // B.  In the future we might fold all the suspend bits into a
1280 //     composite per-thread suspend flag and then update it with CAS().
1281 //     Alternately, a Dekker-like mechanism with multiple variables
1282 //     would suffice:
1283 //       ST Self->_suspend_equivalent = false
1284 //       MEMBAR
1285 //       LD Self_>_suspend_flags
1286 //
1287 
1288 
1289 bool ObjectMonitor::ExitSuspendEquivalent (JavaThread * jSelf) {
1290    int Mode = Knob_FastHSSEC ;
1291    if (Mode && !jSelf->is_external_suspend()) {
1292       assert (jSelf->is_suspend_equivalent(), "invariant") ;
1293       jSelf->clear_suspend_equivalent() ;
1294       if (2 == Mode) OrderAccess::storeload() ;
1295       if (!jSelf->is_external_suspend()) return false ;
1296       // We raced a suspension -- fall thru into the slow path
1297       TEVENT (ExitSuspendEquivalent - raced) ;
1298       jSelf->set_suspend_equivalent() ;
1299    }
1300    return jSelf->handle_special_suspend_equivalent_condition() ;
1301 }
1302 
1303 
1304 void ObjectMonitor::ExitEpilog (Thread * Self, ObjectWaiter * Wakee) {
1305    assert (_owner == Self, "invariant") ;
1306 
1307    // Exit protocol:
1308    // 1. ST _succ = wakee
1309    // 2. membar #loadstore|#storestore;
1310    // 2. ST _owner = NULL
1311    // 3. unpark(wakee)
1312 
1313    _succ = Knob_SuccEnabled ? Wakee->_thread : NULL ;
1314    ParkEvent * Trigger = Wakee->_event ;
1315 
1316    // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
1317    // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1318    // out-of-scope (non-extant).
1319    Wakee  = NULL ;
1320 
1321    // Drop the lock
1322    OrderAccess::release_store_ptr (&_owner, NULL) ;
1323    OrderAccess::fence() ;                               // ST _owner vs LD in unpark()
1324 
1325    if (SafepointSynchronize::do_call_back()) {
1326       TEVENT (unpark before SAFEPOINT) ;
1327    }
1328 
1329    DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
1330    Trigger->unpark() ;
1331 
1332    // Maintain stats and report events to JVMTI
1333    if (ObjectMonitor::_sync_Parks != NULL) {
1334       ObjectMonitor::_sync_Parks->inc() ;
1335    }
1336 }
1337 
1338 
1339 // -----------------------------------------------------------------------------
1340 // Class Loader deadlock handling.
1341 //
1342 // complete_exit exits a lock returning recursion count
1343 // complete_exit/reenter operate as a wait without waiting
1344 // complete_exit requires an inflated monitor
1345 // The _owner field is not always the Thread addr even with an
1346 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1347 // thread due to contention.
1348 intptr_t ObjectMonitor::complete_exit(TRAPS) {
1349    Thread * const Self = THREAD;
1350    assert(Self->is_Java_thread(), "Must be Java thread!");
1351    JavaThread *jt = (JavaThread *)THREAD;
1352 
1353    DeferredInitialize();
1354 
1355    if (THREAD != _owner) {
1356     if (THREAD->is_lock_owned ((address)_owner)) {
1357        assert(_recursions == 0, "internal state error");
1358        _owner = THREAD ;   /* Convert from basiclock addr to Thread addr */
1359        _recursions = 0 ;
1360        OwnerIsThread = 1 ;
1361     }
1362    }
1363 
1364    guarantee(Self == _owner, "complete_exit not owner");
1365    intptr_t save = _recursions; // record the old recursion count
1366    _recursions = 0;        // set the recursion level to be 0
1367    exit (true, Self) ;           // exit the monitor
1368    guarantee (_owner != Self, "invariant");
1369    return save;
1370 }
1371 
1372 // reenter() enters a lock and sets recursion count
1373 // complete_exit/reenter operate as a wait without waiting
1374 void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
1375    Thread * const Self = THREAD;
1376    assert(Self->is_Java_thread(), "Must be Java thread!");
1377    JavaThread *jt = (JavaThread *)THREAD;
1378 
1379    guarantee(_owner != Self, "reenter already owner");
1380    enter (THREAD);       // enter the monitor
1381    guarantee (_recursions == 0, "reenter recursion");
1382    _recursions = recursions;
1383    return;
1384 }
1385 
1386 
1387 // -----------------------------------------------------------------------------
1388 // A macro is used below because there may already be a pending
1389 // exception which should not abort the execution of the routines
1390 // which use this (which is why we don't put this into check_slow and
1391 // call it with a CHECK argument).
1392 
1393 #define CHECK_OWNER()                                                             \
1394   do {                                                                            \
1395     if (THREAD != _owner) {                                                       \
1396       if (THREAD->is_lock_owned((address) _owner)) {                              \
1397         _owner = THREAD ;  /* Convert from basiclock addr to Thread addr */       \
1398         _recursions = 0;                                                          \
1399         OwnerIsThread = 1 ;                                                       \
1400       } else {                                                                    \
1401         TEVENT (Throw IMSX) ;                                                     \
1402         THROW(vmSymbols::java_lang_IllegalMonitorStateException());               \
1403       }                                                                           \
1404     }                                                                             \
1405   } while (false)
1406 
1407 // check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
1408 // TODO-FIXME: remove check_slow() -- it's likely dead.
1409 
1410 void ObjectMonitor::check_slow(TRAPS) {
1411   TEVENT (check_slow - throw IMSX) ;
1412   assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
1413   THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
1414 }
1415 
1416 static int Adjust (volatile int * adr, int dx) {
1417   int v ;
1418   for (v = *adr ; Atomic::cmpxchg (v + dx, adr, v) != v; v = *adr) ;
1419   return v ;
1420 }
1421 
1422 // helper method for posting a monitor wait event
1423 void ObjectMonitor::post_monitor_wait_event(EventJavaMonitorWait* event,
1424                                                            jlong notifier_tid,
1425                                                            jlong timeout,
1426                                                            bool timedout) {
1427   event->set_klass(((oop)this->object())->klass());
1428   event->set_timeout((TYPE_ULONG)timeout);
1429   event->set_address((TYPE_ADDRESS)(uintptr_t)(this->object_addr()));
1430   event->set_notifier((TYPE_OSTHREAD)notifier_tid);
1431   event->set_timedOut((TYPE_BOOLEAN)timedout);
1432   event->commit();
1433 }
1434 
1435 // -----------------------------------------------------------------------------
1436 // Wait/Notify/NotifyAll
1437 //
1438 // Note: a subset of changes to ObjectMonitor::wait()
1439 // will need to be replicated in complete_exit above
1440 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1441    Thread * const Self = THREAD ;
1442    assert(Self->is_Java_thread(), "Must be Java thread!");
1443    JavaThread *jt = (JavaThread *)THREAD;
1444 
1445    DeferredInitialize () ;
1446 
1447    // Throw IMSX or IEX.
1448    CHECK_OWNER();
1449 
1450    EventJavaMonitorWait event;
1451 
1452    // check for a pending interrupt
1453    if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1454      // post monitor waited event.  Note that this is past-tense, we are done waiting.
1455      if (JvmtiExport::should_post_monitor_waited()) {
1456         // Note: 'false' parameter is passed here because the
1457         // wait was not timed out due to thread interrupt.
1458         JvmtiExport::post_monitor_waited(jt, this, false);
1459      }
1460      if (event.should_commit()) {
1461        post_monitor_wait_event(&event, 0, millis, false);
1462      }
1463      TEVENT (Wait - Throw IEX) ;
1464      THROW(vmSymbols::java_lang_InterruptedException());
1465      return ;
1466    }
1467 
1468    TEVENT (Wait) ;
1469 
1470    assert (Self->_Stalled == 0, "invariant") ;
1471    Self->_Stalled = intptr_t(this) ;
1472    jt->set_current_waiting_monitor(this);
1473 
1474    // create a node to be put into the queue
1475    // Critically, after we reset() the event but prior to park(), we must check
1476    // for a pending interrupt.
1477    ObjectWaiter node(Self);
1478    node.TState = ObjectWaiter::TS_WAIT ;
1479    Self->_ParkEvent->reset() ;
1480    OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1481 
1482    // Enter the waiting queue, which is a circular doubly linked list in this case
1483    // but it could be a priority queue or any data structure.
1484    // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1485    // by the the owner of the monitor *except* in the case where park()
1486    // returns because of a timeout of interrupt.  Contention is exceptionally rare
1487    // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1488 
1489    Thread::SpinAcquire (&_WaitSetLock, "WaitSet - add") ;
1490    AddWaiter (&node) ;
1491    Thread::SpinRelease (&_WaitSetLock) ;
1492 
1493    if ((SyncFlags & 4) == 0) {
1494       _Responsible = NULL ;
1495    }
1496    intptr_t save = _recursions; // record the old recursion count
1497    _waiters++;                  // increment the number of waiters
1498    _recursions = 0;             // set the recursion level to be 1
1499    exit (true, Self) ;                    // exit the monitor
1500    guarantee (_owner != Self, "invariant") ;
1501 
1502    // As soon as the ObjectMonitor's ownership is dropped in the exit()
1503    // call above, another thread can enter() the ObjectMonitor, do the
1504    // notify(), and exit() the ObjectMonitor. If the other thread's
1505    // exit() call chooses this thread as the successor and the unpark()
1506    // call happens to occur while this thread is posting a
1507    // MONITOR_CONTENDED_EXIT event, then we run the risk of the event
1508    // handler using RawMonitors and consuming the unpark().
1509    //
1510    // To avoid the problem, we re-post the event. This does no harm
1511    // even if the original unpark() was not consumed because we are the
1512    // chosen successor for this monitor.
1513    if (node._notified != 0 && _succ == Self) {
1514       node._event->unpark();
1515    }
1516 
1517    // The thread is on the WaitSet list - now park() it.
1518    // On MP systems it's conceivable that a brief spin before we park
1519    // could be profitable.
1520    //
1521    // TODO-FIXME: change the following logic to a loop of the form
1522    //   while (!timeout && !interrupted && _notified == 0) park()
1523 
1524    int ret = OS_OK ;
1525    int WasNotified = 0 ;
1526    { // State transition wrappers
1527      OSThread* osthread = Self->osthread();
1528      OSThreadWaitState osts(osthread, true);
1529      {
1530        ThreadBlockInVM tbivm(jt);
1531        // Thread is in thread_blocked state and oop access is unsafe.
1532        jt->set_suspend_equivalent();
1533 
1534        if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
1535            // Intentionally empty
1536        } else
1537        if (node._notified == 0) {
1538          if (millis <= 0) {
1539             Self->_ParkEvent->park () ;
1540          } else {
1541             ret = Self->_ParkEvent->park (millis) ;
1542          }
1543        }
1544 
1545        // were we externally suspended while we were waiting?
1546        if (ExitSuspendEquivalent (jt)) {
1547           // TODO-FIXME: add -- if succ == Self then succ = null.
1548           jt->java_suspend_self();
1549        }
1550 
1551      } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
1552 
1553 
1554      // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1555      // from the WaitSet to the EntryList.
1556      // See if we need to remove Node from the WaitSet.
1557      // We use double-checked locking to avoid grabbing _WaitSetLock
1558      // if the thread is not on the wait queue.
1559      //
1560      // Note that we don't need a fence before the fetch of TState.
1561      // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1562      // written by the is thread. (perhaps the fetch might even be satisfied
1563      // by a look-aside into the processor's own store buffer, although given
1564      // the length of the code path between the prior ST and this load that's
1565      // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1566      // then we'll acquire the lock and then re-fetch a fresh TState value.
1567      // That is, we fail toward safety.
1568 
1569      if (node.TState == ObjectWaiter::TS_WAIT) {
1570          Thread::SpinAcquire (&_WaitSetLock, "WaitSet - unlink") ;
1571          if (node.TState == ObjectWaiter::TS_WAIT) {
1572             DequeueSpecificWaiter (&node) ;       // unlink from WaitSet
1573             assert(node._notified == 0, "invariant");
1574             node.TState = ObjectWaiter::TS_RUN ;
1575          }
1576          Thread::SpinRelease (&_WaitSetLock) ;
1577      }
1578 
1579      // The thread is now either on off-list (TS_RUN),
1580      // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1581      // The Node's TState variable is stable from the perspective of this thread.
1582      // No other threads will asynchronously modify TState.
1583      guarantee (node.TState != ObjectWaiter::TS_WAIT, "invariant") ;
1584      OrderAccess::loadload() ;
1585      if (_succ == Self) _succ = NULL ;
1586      WasNotified = node._notified ;
1587 
1588      // Reentry phase -- reacquire the monitor.
1589      // re-enter contended monitor after object.wait().
1590      // retain OBJECT_WAIT state until re-enter successfully completes
1591      // Thread state is thread_in_vm and oop access is again safe,
1592      // although the raw address of the object may have changed.
1593      // (Don't cache naked oops over safepoints, of course).
1594 
1595      // post monitor waited event. Note that this is past-tense, we are done waiting.
1596      if (JvmtiExport::should_post_monitor_waited()) {
1597        JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
1598      }
1599 
1600      if (event.should_commit()) {
1601        post_monitor_wait_event(&event, node._notifier_tid, millis, ret == OS_TIMEOUT);
1602      }
1603 
1604      OrderAccess::fence() ;
1605 
1606      assert (Self->_Stalled != 0, "invariant") ;
1607      Self->_Stalled = 0 ;
1608 
1609      assert (_owner != Self, "invariant") ;
1610      ObjectWaiter::TStates v = node.TState ;
1611      if (v == ObjectWaiter::TS_RUN) {
1612          enter (Self) ;
1613      } else {
1614          guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
1615          ReenterI (Self, &node) ;
1616          node.wait_reenter_end(this);
1617      }
1618 
1619      // Self has reacquired the lock.
1620      // Lifecycle - the node representing Self must not appear on any queues.
1621      // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1622      // want residual elements associated with this thread left on any lists.
1623      guarantee (node.TState == ObjectWaiter::TS_RUN, "invariant") ;
1624      assert    (_owner == Self, "invariant") ;
1625      assert    (_succ != Self , "invariant") ;
1626    } // OSThreadWaitState()
1627 
1628    jt->set_current_waiting_monitor(NULL);
1629 
1630    guarantee (_recursions == 0, "invariant") ;
1631    _recursions = save;     // restore the old recursion count
1632    _waiters--;             // decrement the number of waiters
1633 
1634    // Verify a few postconditions
1635    assert (_owner == Self       , "invariant") ;
1636    assert (_succ  != Self       , "invariant") ;
1637    assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
1638 
1639    if (SyncFlags & 32) {
1640       OrderAccess::fence() ;
1641    }
1642 
1643    // check if the notification happened
1644    if (!WasNotified) {
1645      // no, it could be timeout or Thread.interrupt() or both
1646      // check for interrupt event, otherwise it is timeout
1647      if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1648        TEVENT (Wait - throw IEX from epilog) ;
1649        THROW(vmSymbols::java_lang_InterruptedException());
1650      }
1651    }
1652 
1653    // NOTE: Spurious wake up will be consider as timeout.
1654    // Monitor notify has precedence over thread interrupt.
1655 }
1656 
1657 
1658 // Consider:
1659 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1660 // then instead of transferring a thread from the WaitSet to the EntryList
1661 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1662 
1663 void ObjectMonitor::notify(TRAPS) {
1664   CHECK_OWNER();
1665   if (_WaitSet == NULL) {
1666      TEVENT (Empty-Notify) ;
1667      return ;
1668   }
1669   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
1670 
1671   int Policy = Knob_MoveNotifyee ;
1672 
1673   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notify") ;
1674   ObjectWaiter * iterator = DequeueWaiter() ;
1675   if (iterator != NULL) {
1676      TEVENT (Notify1 - Transfer) ;
1677      guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
1678      guarantee (iterator->_notified == 0, "invariant") ;
1679      if (Policy != 4) {
1680         iterator->TState = ObjectWaiter::TS_ENTER ;
1681      }
1682      iterator->_notified = 1 ;
1683      Thread * Self = THREAD;
1684      iterator->_notifier_tid = Self->osthread()->thread_id();
1685 
1686      ObjectWaiter * List = _EntryList ;
1687      if (List != NULL) {
1688         assert (List->_prev == NULL, "invariant") ;
1689         assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1690         assert (List != iterator, "invariant") ;
1691      }
1692 
1693      if (Policy == 0) {       // prepend to EntryList
1694          if (List == NULL) {
1695              iterator->_next = iterator->_prev = NULL ;
1696              _EntryList = iterator ;
1697          } else {
1698              List->_prev = iterator ;
1699              iterator->_next = List ;
1700              iterator->_prev = NULL ;
1701              _EntryList = iterator ;
1702         }
1703      } else
1704      if (Policy == 1) {      // append to EntryList
1705          if (List == NULL) {
1706              iterator->_next = iterator->_prev = NULL ;
1707              _EntryList = iterator ;
1708          } else {
1709             // CONSIDER:  finding the tail currently requires a linear-time walk of
1710             // the EntryList.  We can make tail access constant-time by converting to
1711             // a CDLL instead of using our current DLL.
1712             ObjectWaiter * Tail ;
1713             for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
1714             assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
1715             Tail->_next = iterator ;
1716             iterator->_prev = Tail ;
1717             iterator->_next = NULL ;
1718         }
1719      } else
1720      if (Policy == 2) {      // prepend to cxq
1721          // prepend to cxq
1722          if (List == NULL) {
1723              iterator->_next = iterator->_prev = NULL ;
1724              _EntryList = iterator ;
1725          } else {
1726             iterator->TState = ObjectWaiter::TS_CXQ ;
1727             for (;;) {
1728                 ObjectWaiter * Front = _cxq ;
1729                 iterator->_next = Front ;
1730                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
1731                     break ;
1732                 }
1733             }
1734          }
1735      } else
1736      if (Policy == 3) {      // append to cxq
1737         iterator->TState = ObjectWaiter::TS_CXQ ;
1738         for (;;) {
1739             ObjectWaiter * Tail ;
1740             Tail = _cxq ;
1741             if (Tail == NULL) {
1742                 iterator->_next = NULL ;
1743                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
1744                    break ;
1745                 }
1746             } else {
1747                 while (Tail->_next != NULL) Tail = Tail->_next ;
1748                 Tail->_next = iterator ;
1749                 iterator->_prev = Tail ;
1750                 iterator->_next = NULL ;
1751                 break ;
1752             }
1753         }
1754      } else {
1755         ParkEvent * ev = iterator->_event ;
1756         iterator->TState = ObjectWaiter::TS_RUN ;
1757         OrderAccess::fence() ;
1758         ev->unpark() ;
1759      }
1760 
1761      if (Policy < 4) {
1762        iterator->wait_reenter_begin(this);
1763      }
1764 
1765      // _WaitSetLock protects the wait queue, not the EntryList.  We could
1766      // move the add-to-EntryList operation, above, outside the critical section
1767      // protected by _WaitSetLock.  In practice that's not useful.  With the
1768      // exception of  wait() timeouts and interrupts the monitor owner
1769      // is the only thread that grabs _WaitSetLock.  There's almost no contention
1770      // on _WaitSetLock so it's not profitable to reduce the length of the
1771      // critical section.
1772   }
1773 
1774   Thread::SpinRelease (&_WaitSetLock) ;
1775 
1776   if (iterator != NULL && ObjectMonitor::_sync_Notifications != NULL) {
1777      ObjectMonitor::_sync_Notifications->inc() ;
1778   }
1779 }
1780 
1781 
1782 void ObjectMonitor::notifyAll(TRAPS) {
1783   CHECK_OWNER();
1784   ObjectWaiter* iterator;
1785   if (_WaitSet == NULL) {
1786       TEVENT (Empty-NotifyAll) ;
1787       return ;
1788   }
1789   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
1790 
1791   int Policy = Knob_MoveNotifyee ;
1792   int Tally = 0 ;
1793   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notifyall") ;
1794 
1795   for (;;) {
1796      iterator = DequeueWaiter () ;
1797      if (iterator == NULL) break ;
1798      TEVENT (NotifyAll - Transfer1) ;
1799      ++Tally ;
1800 
1801      // Disposition - what might we do with iterator ?
1802      // a.  add it directly to the EntryList - either tail or head.
1803      // b.  push it onto the front of the _cxq.
1804      // For now we use (a).
1805 
1806      guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
1807      guarantee (iterator->_notified == 0, "invariant") ;
1808      iterator->_notified = 1 ;
1809      Thread * Self = THREAD;
1810      iterator->_notifier_tid = Self->osthread()->thread_id();
1811      if (Policy != 4) {
1812         iterator->TState = ObjectWaiter::TS_ENTER ;
1813      }
1814 
1815      ObjectWaiter * List = _EntryList ;
1816      if (List != NULL) {
1817         assert (List->_prev == NULL, "invariant") ;
1818         assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1819         assert (List != iterator, "invariant") ;
1820      }
1821 
1822      if (Policy == 0) {       // prepend to EntryList
1823          if (List == NULL) {
1824              iterator->_next = iterator->_prev = NULL ;
1825              _EntryList = iterator ;
1826          } else {
1827              List->_prev = iterator ;
1828              iterator->_next = List ;
1829              iterator->_prev = NULL ;
1830              _EntryList = iterator ;
1831         }
1832      } else
1833      if (Policy == 1) {      // append to EntryList
1834          if (List == NULL) {
1835              iterator->_next = iterator->_prev = NULL ;
1836              _EntryList = iterator ;
1837          } else {
1838             // CONSIDER:  finding the tail currently requires a linear-time walk of
1839             // the EntryList.  We can make tail access constant-time by converting to
1840             // a CDLL instead of using our current DLL.
1841             ObjectWaiter * Tail ;
1842             for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
1843             assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
1844             Tail->_next = iterator ;
1845             iterator->_prev = Tail ;
1846             iterator->_next = NULL ;
1847         }
1848      } else
1849      if (Policy == 2) {      // prepend to cxq
1850          // prepend to cxq
1851          iterator->TState = ObjectWaiter::TS_CXQ ;
1852          for (;;) {
1853              ObjectWaiter * Front = _cxq ;
1854              iterator->_next = Front ;
1855              if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
1856                  break ;
1857              }
1858          }
1859      } else
1860      if (Policy == 3) {      // append to cxq
1861         iterator->TState = ObjectWaiter::TS_CXQ ;
1862         for (;;) {
1863             ObjectWaiter * Tail ;
1864             Tail = _cxq ;
1865             if (Tail == NULL) {
1866                 iterator->_next = NULL ;
1867                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
1868                    break ;
1869                 }
1870             } else {
1871                 while (Tail->_next != NULL) Tail = Tail->_next ;
1872                 Tail->_next = iterator ;
1873                 iterator->_prev = Tail ;
1874                 iterator->_next = NULL ;
1875                 break ;
1876             }
1877         }
1878      } else {
1879         ParkEvent * ev = iterator->_event ;
1880         iterator->TState = ObjectWaiter::TS_RUN ;
1881         OrderAccess::fence() ;
1882         ev->unpark() ;
1883      }
1884 
1885      if (Policy < 4) {
1886        iterator->wait_reenter_begin(this);
1887      }
1888 
1889      // _WaitSetLock protects the wait queue, not the EntryList.  We could
1890      // move the add-to-EntryList operation, above, outside the critical section
1891      // protected by _WaitSetLock.  In practice that's not useful.  With the
1892      // exception of  wait() timeouts and interrupts the monitor owner
1893      // is the only thread that grabs _WaitSetLock.  There's almost no contention
1894      // on _WaitSetLock so it's not profitable to reduce the length of the
1895      // critical section.
1896   }
1897 
1898   Thread::SpinRelease (&_WaitSetLock) ;
1899 
1900   if (Tally != 0 && ObjectMonitor::_sync_Notifications != NULL) {
1901      ObjectMonitor::_sync_Notifications->inc(Tally) ;
1902   }
1903 }
1904 
1905 // -----------------------------------------------------------------------------
1906 // Adaptive Spinning Support
1907 //
1908 // Adaptive spin-then-block - rational spinning
1909 //
1910 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1911 // algorithm.  On high order SMP systems it would be better to start with
1912 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1913 // a contending thread could enqueue itself on the cxq and then spin locally
1914 // on a thread-specific variable such as its ParkEvent._Event flag.
1915 // That's left as an exercise for the reader.  Note that global spinning is
1916 // not problematic on Niagara, as the L2$ serves the interconnect and has both
1917 // low latency and massive bandwidth.
1918 //
1919 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
1920 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
1921 // (duration) or we can fix the count at approximately the duration of
1922 // a context switch and vary the frequency.   Of course we could also
1923 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1924 // See http://j2se.east/~dice/PERSIST/040824-AdaptiveSpinning.html.
1925 //
1926 // This implementation varies the duration "D", where D varies with
1927 // the success rate of recent spin attempts. (D is capped at approximately
1928 // length of a round-trip context switch).  The success rate for recent
1929 // spin attempts is a good predictor of the success rate of future spin
1930 // attempts.  The mechanism adapts automatically to varying critical
1931 // section length (lock modality), system load and degree of parallelism.
1932 // D is maintained per-monitor in _SpinDuration and is initialized
1933 // optimistically.  Spin frequency is fixed at 100%.
1934 //
1935 // Note that _SpinDuration is volatile, but we update it without locks
1936 // or atomics.  The code is designed so that _SpinDuration stays within
1937 // a reasonable range even in the presence of races.  The arithmetic
1938 // operations on _SpinDuration are closed over the domain of legal values,
1939 // so at worst a race will install and older but still legal value.
1940 // At the very worst this introduces some apparent non-determinism.
1941 // We might spin when we shouldn't or vice-versa, but since the spin
1942 // count are relatively short, even in the worst case, the effect is harmless.
1943 //
1944 // Care must be taken that a low "D" value does not become an
1945 // an absorbing state.  Transient spinning failures -- when spinning
1946 // is overall profitable -- should not cause the system to converge
1947 // on low "D" values.  We want spinning to be stable and predictable
1948 // and fairly responsive to change and at the same time we don't want
1949 // it to oscillate, become metastable, be "too" non-deterministic,
1950 // or converge on or enter undesirable stable absorbing states.
1951 //
1952 // We implement a feedback-based control system -- using past behavior
1953 // to predict future behavior.  We face two issues: (a) if the
1954 // input signal is random then the spin predictor won't provide optimal
1955 // results, and (b) if the signal frequency is too high then the control
1956 // system, which has some natural response lag, will "chase" the signal.
1957 // (b) can arise from multimodal lock hold times.  Transient preemption
1958 // can also result in apparent bimodal lock hold times.
1959 // Although sub-optimal, neither condition is particularly harmful, as
1960 // in the worst-case we'll spin when we shouldn't or vice-versa.
1961 // The maximum spin duration is rather short so the failure modes aren't bad.
1962 // To be conservative, I've tuned the gain in system to bias toward
1963 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
1964 // "rings" or oscillates between spinning and not spinning.  This happens
1965 // when spinning is just on the cusp of profitability, however, so the
1966 // situation is not dire.  The state is benign -- there's no need to add
1967 // hysteresis control to damp the transition rate between spinning and
1968 // not spinning.
1969 //
1970 
1971 intptr_t ObjectMonitor::SpinCallbackArgument = 0 ;
1972 int (*ObjectMonitor::SpinCallbackFunction)(intptr_t, int) = NULL ;
1973 
1974 // Spinning: Fixed frequency (100%), vary duration
1975 
1976 
1977 int ObjectMonitor::TrySpin_VaryDuration (Thread * Self) {
1978 
1979     // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
1980     int ctr = Knob_FixedSpin ;
1981     if (ctr != 0) {
1982         while (--ctr >= 0) {
1983             if (TryLock (Self) > 0) return 1 ;
1984             SpinPause () ;
1985         }
1986         return 0 ;
1987     }
1988 
1989     for (ctr = Knob_PreSpin + 1; --ctr >= 0 ; ) {
1990       if (TryLock(Self) > 0) {
1991         // Increase _SpinDuration ...
1992         // Note that we don't clamp SpinDuration precisely at SpinLimit.
1993         // Raising _SpurDuration to the poverty line is key.
1994         int x = _SpinDuration ;
1995         if (x < Knob_SpinLimit) {
1996            if (x < Knob_Poverty) x = Knob_Poverty ;
1997            _SpinDuration = x + Knob_BonusB ;
1998         }
1999         return 1 ;
2000       }
2001       SpinPause () ;
2002     }
2003 
2004     // Admission control - verify preconditions for spinning
2005     //
2006     // We always spin a little bit, just to prevent _SpinDuration == 0 from
2007     // becoming an absorbing state.  Put another way, we spin briefly to
2008     // sample, just in case the system load, parallelism, contention, or lock
2009     // modality changed.
2010     //
2011     // Consider the following alternative:
2012     // Periodically set _SpinDuration = _SpinLimit and try a long/full
2013     // spin attempt.  "Periodically" might mean after a tally of
2014     // the # of failed spin attempts (or iterations) reaches some threshold.
2015     // This takes us into the realm of 1-out-of-N spinning, where we
2016     // hold the duration constant but vary the frequency.
2017 
2018     ctr = _SpinDuration  ;
2019     if (ctr < Knob_SpinBase) ctr = Knob_SpinBase ;
2020     if (ctr <= 0) return 0 ;
2021 
2022     if (Knob_SuccRestrict && _succ != NULL) return 0 ;
2023     if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
2024        TEVENT (Spin abort - notrunnable [TOP]);
2025        return 0 ;
2026     }
2027 
2028     int MaxSpin = Knob_MaxSpinners ;
2029     if (MaxSpin >= 0) {
2030        if (_Spinner > MaxSpin) {
2031           TEVENT (Spin abort -- too many spinners) ;
2032           return 0 ;
2033        }
2034        // Slightly racy, but benign ...
2035        Adjust (&_Spinner, 1) ;
2036     }
2037 
2038     // We're good to spin ... spin ingress.
2039     // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
2040     // when preparing to LD...CAS _owner, etc and the CAS is likely
2041     // to succeed.
2042     int hits    = 0 ;
2043     int msk     = 0 ;
2044     int caspty  = Knob_CASPenalty ;
2045     int oxpty   = Knob_OXPenalty ;
2046     int sss     = Knob_SpinSetSucc ;
2047     if (sss && _succ == NULL ) _succ = Self ;
2048     Thread * prv = NULL ;
2049 
2050     // There are three ways to exit the following loop:
2051     // 1.  A successful spin where this thread has acquired the lock.
2052     // 2.  Spin failure with prejudice
2053     // 3.  Spin failure without prejudice
2054 
2055     while (--ctr >= 0) {
2056 
2057       // Periodic polling -- Check for pending GC
2058       // Threads may spin while they're unsafe.
2059       // We don't want spinning threads to delay the JVM from reaching
2060       // a stop-the-world safepoint or to steal cycles from GC.
2061       // If we detect a pending safepoint we abort in order that
2062       // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
2063       // this thread, if safe, doesn't steal cycles from GC.
2064       // This is in keeping with the "no loitering in runtime" rule.
2065       // We periodically check to see if there's a safepoint pending.
2066       if ((ctr & 0xFF) == 0) {
2067          if (SafepointSynchronize::do_call_back()) {
2068             TEVENT (Spin: safepoint) ;
2069             goto Abort ;           // abrupt spin egress
2070          }
2071          if (Knob_UsePause & 1) SpinPause () ;
2072 
2073          int (*scb)(intptr_t,int) = SpinCallbackFunction ;
2074          if (hits > 50 && scb != NULL) {
2075             int abend = (*scb)(SpinCallbackArgument, 0) ;
2076          }
2077       }
2078 
2079       if (Knob_UsePause & 2) SpinPause() ;
2080 
2081       // Exponential back-off ...  Stay off the bus to reduce coherency traffic.
2082       // This is useful on classic SMP systems, but is of less utility on
2083       // N1-style CMT platforms.
2084       //
2085       // Trade-off: lock acquisition latency vs coherency bandwidth.
2086       // Lock hold times are typically short.  A histogram
2087       // of successful spin attempts shows that we usually acquire
2088       // the lock early in the spin.  That suggests we want to
2089       // sample _owner frequently in the early phase of the spin,
2090       // but then back-off and sample less frequently as the spin
2091       // progresses.  The back-off makes a good citizen on SMP big
2092       // SMP systems.  Oversampling _owner can consume excessive
2093       // coherency bandwidth.  Relatedly, if we _oversample _owner we
2094       // can inadvertently interfere with the the ST m->owner=null.
2095       // executed by the lock owner.
2096       if (ctr & msk) continue ;
2097       ++hits ;
2098       if ((hits & 0xF) == 0) {
2099         // The 0xF, above, corresponds to the exponent.
2100         // Consider: (msk+1)|msk
2101         msk = ((msk << 2)|3) & BackOffMask ;
2102       }
2103 
2104       // Probe _owner with TATAS
2105       // If this thread observes the monitor transition or flicker
2106       // from locked to unlocked to locked, then the odds that this
2107       // thread will acquire the lock in this spin attempt go down
2108       // considerably.  The same argument applies if the CAS fails
2109       // or if we observe _owner change from one non-null value to
2110       // another non-null value.   In such cases we might abort
2111       // the spin without prejudice or apply a "penalty" to the
2112       // spin count-down variable "ctr", reducing it by 100, say.
2113 
2114       Thread * ox = (Thread *) _owner ;
2115       if (ox == NULL) {
2116          ox = (Thread *) Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
2117          if (ox == NULL) {
2118             // The CAS succeeded -- this thread acquired ownership
2119             // Take care of some bookkeeping to exit spin state.
2120             if (sss && _succ == Self) {
2121                _succ = NULL ;
2122             }
2123             if (MaxSpin > 0) Adjust (&_Spinner, -1) ;
2124 
2125             // Increase _SpinDuration :
2126             // The spin was successful (profitable) so we tend toward
2127             // longer spin attempts in the future.
2128             // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
2129             // If we acquired the lock early in the spin cycle it
2130             // makes sense to increase _SpinDuration proportionally.
2131             // Note that we don't clamp SpinDuration precisely at SpinLimit.
2132             int x = _SpinDuration ;
2133             if (x < Knob_SpinLimit) {
2134                 if (x < Knob_Poverty) x = Knob_Poverty ;
2135                 _SpinDuration = x + Knob_Bonus ;
2136             }
2137             return 1 ;
2138          }
2139 
2140          // The CAS failed ... we can take any of the following actions:
2141          // * penalize: ctr -= Knob_CASPenalty
2142          // * exit spin with prejudice -- goto Abort;
2143          // * exit spin without prejudice.
2144          // * Since CAS is high-latency, retry again immediately.
2145          prv = ox ;
2146          TEVENT (Spin: cas failed) ;
2147          if (caspty == -2) break ;
2148          if (caspty == -1) goto Abort ;
2149          ctr -= caspty ;
2150          continue ;
2151       }
2152 
2153       // Did lock ownership change hands ?
2154       if (ox != prv && prv != NULL ) {
2155           TEVENT (spin: Owner changed)
2156           if (oxpty == -2) break ;
2157           if (oxpty == -1) goto Abort ;
2158           ctr -= oxpty ;
2159       }
2160       prv = ox ;
2161 
2162       // Abort the spin if the owner is not executing.
2163       // The owner must be executing in order to drop the lock.
2164       // Spinning while the owner is OFFPROC is idiocy.
2165       // Consider: ctr -= RunnablePenalty ;
2166       if (Knob_OState && NotRunnable (Self, ox)) {
2167          TEVENT (Spin abort - notrunnable);
2168          goto Abort ;
2169       }
2170       if (sss && _succ == NULL ) _succ = Self ;
2171    }
2172 
2173    // Spin failed with prejudice -- reduce _SpinDuration.
2174    // TODO: Use an AIMD-like policy to adjust _SpinDuration.
2175    // AIMD is globally stable.
2176    TEVENT (Spin failure) ;
2177    {
2178      int x = _SpinDuration ;
2179      if (x > 0) {
2180         // Consider an AIMD scheme like: x -= (x >> 3) + 100
2181         // This is globally sample and tends to damp the response.
2182         x -= Knob_Penalty ;
2183         if (x < 0) x = 0 ;
2184         _SpinDuration = x ;
2185      }
2186    }
2187 
2188  Abort:
2189    if (MaxSpin >= 0) Adjust (&_Spinner, -1) ;
2190    if (sss && _succ == Self) {
2191       _succ = NULL ;
2192       // Invariant: after setting succ=null a contending thread
2193       // must recheck-retry _owner before parking.  This usually happens
2194       // in the normal usage of TrySpin(), but it's safest
2195       // to make TrySpin() as foolproof as possible.
2196       OrderAccess::fence() ;
2197       if (TryLock(Self) > 0) return 1 ;
2198    }
2199    return 0 ;
2200 }
2201 
2202 // NotRunnable() -- informed spinning
2203 //
2204 // Don't bother spinning if the owner is not eligible to drop the lock.
2205 // Peek at the owner's schedctl.sc_state and Thread._thread_values and
2206 // spin only if the owner thread is _thread_in_Java or _thread_in_vm.
2207 // The thread must be runnable in order to drop the lock in timely fashion.
2208 // If the _owner is not runnable then spinning will not likely be
2209 // successful (profitable).
2210 //
2211 // Beware -- the thread referenced by _owner could have died
2212 // so a simply fetch from _owner->_thread_state might trap.
2213 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
2214 // Because of the lifecycle issues the schedctl and _thread_state values
2215 // observed by NotRunnable() might be garbage.  NotRunnable must
2216 // tolerate this and consider the observed _thread_state value
2217 // as advisory.
2218 //
2219 // Beware too, that _owner is sometimes a BasicLock address and sometimes
2220 // a thread pointer.  We differentiate the two cases with OwnerIsThread.
2221 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
2222 // with the LSB of _owner.  Another option would be to probablistically probe
2223 // the putative _owner->TypeTag value.
2224 //
2225 // Checking _thread_state isn't perfect.  Even if the thread is
2226 // in_java it might be blocked on a page-fault or have been preempted
2227 // and sitting on a ready/dispatch queue.  _thread state in conjunction
2228 // with schedctl.sc_state gives us a good picture of what the
2229 // thread is doing, however.
2230 //
2231 // TODO: check schedctl.sc_state.
2232 // We'll need to use SafeFetch32() to read from the schedctl block.
2233 // See RFE #5004247 and http://sac.sfbay.sun.com/Archives/CaseLog/arc/PSARC/2005/351/
2234 //
2235 // The return value from NotRunnable() is *advisory* -- the
2236 // result is based on sampling and is not necessarily coherent.
2237 // The caller must tolerate false-negative and false-positive errors.
2238 // Spinning, in general, is probabilistic anyway.
2239 
2240 
2241 int ObjectMonitor::NotRunnable (Thread * Self, Thread * ox) {
2242     // Check either OwnerIsThread or ox->TypeTag == 2BAD.
2243     if (!OwnerIsThread) return 0 ;
2244 
2245     if (ox == NULL) return 0 ;
2246 
2247     // Avoid transitive spinning ...
2248     // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
2249     // Immediately after T1 acquires L it's possible that T2, also
2250     // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
2251     // This occurs transiently after T1 acquired L but before
2252     // T1 managed to clear T1.Stalled.  T2 does not need to abort
2253     // its spin in this circumstance.
2254     intptr_t BlockedOn = SafeFetchN ((intptr_t *) &ox->_Stalled, intptr_t(1)) ;
2255 
2256     if (BlockedOn == 1) return 1 ;
2257     if (BlockedOn != 0) {
2258       return BlockedOn != intptr_t(this) && _owner == ox ;
2259     }
2260 
2261     assert (sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant") ;
2262     int jst = SafeFetch32 ((int *) &((JavaThread *) ox)->_thread_state, -1) ; ;
2263     // consider also: jst != _thread_in_Java -- but that's overspecific.
2264     return jst == _thread_blocked || jst == _thread_in_native ;
2265 }
2266 
2267 
2268 // -----------------------------------------------------------------------------
2269 // WaitSet management ...
2270 
2271 ObjectWaiter::ObjectWaiter(Thread* thread) {
2272   _next     = NULL;
2273   _prev     = NULL;
2274   _notified = 0;
2275   TState    = TS_RUN ;
2276   _thread   = thread;
2277   _event    = thread->_ParkEvent ;
2278   _active   = false;
2279   assert (_event != NULL, "invariant") ;
2280 }
2281 
2282 void ObjectWaiter::wait_reenter_begin(ObjectMonitor *mon) {
2283   JavaThread *jt = (JavaThread *)this->_thread;
2284   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
2285 }
2286 
2287 void ObjectWaiter::wait_reenter_end(ObjectMonitor *mon) {
2288   JavaThread *jt = (JavaThread *)this->_thread;
2289   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
2290 }
2291 
2292 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
2293   assert(node != NULL, "should not dequeue NULL node");
2294   assert(node->_prev == NULL, "node already in list");
2295   assert(node->_next == NULL, "node already in list");
2296   // put node at end of queue (circular doubly linked list)
2297   if (_WaitSet == NULL) {
2298     _WaitSet = node;
2299     node->_prev = node;
2300     node->_next = node;
2301   } else {
2302     ObjectWaiter* head = _WaitSet ;
2303     ObjectWaiter* tail = head->_prev;
2304     assert(tail->_next == head, "invariant check");
2305     tail->_next = node;
2306     head->_prev = node;
2307     node->_next = head;
2308     node->_prev = tail;
2309   }
2310 }
2311 
2312 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
2313   // dequeue the very first waiter
2314   ObjectWaiter* waiter = _WaitSet;
2315   if (waiter) {
2316     DequeueSpecificWaiter(waiter);
2317   }
2318   return waiter;
2319 }
2320 
2321 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
2322   assert(node != NULL, "should not dequeue NULL node");
2323   assert(node->_prev != NULL, "node already removed from list");
2324   assert(node->_next != NULL, "node already removed from list");
2325   // when the waiter has woken up because of interrupt,
2326   // timeout or other spurious wake-up, dequeue the
2327   // waiter from waiting list
2328   ObjectWaiter* next = node->_next;
2329   if (next == node) {
2330     assert(node->_prev == node, "invariant check");
2331     _WaitSet = NULL;
2332   } else {
2333     ObjectWaiter* prev = node->_prev;
2334     assert(prev->_next == node, "invariant check");
2335     assert(next->_prev == node, "invariant check");
2336     next->_prev = prev;
2337     prev->_next = next;
2338     if (_WaitSet == node) {
2339       _WaitSet = next;
2340     }
2341   }
2342   node->_next = NULL;
2343   node->_prev = NULL;
2344 }
2345 
2346 // -----------------------------------------------------------------------------
2347 // PerfData support
2348 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL ;
2349 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL ;
2350 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL ;
2351 PerfCounter * ObjectMonitor::_sync_EmptyNotifications          = NULL ;
2352 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL ;
2353 PerfCounter * ObjectMonitor::_sync_PrivateA                    = NULL ;
2354 PerfCounter * ObjectMonitor::_sync_PrivateB                    = NULL ;
2355 PerfCounter * ObjectMonitor::_sync_SlowExit                    = NULL ;
2356 PerfCounter * ObjectMonitor::_sync_SlowEnter                   = NULL ;
2357 PerfCounter * ObjectMonitor::_sync_SlowNotify                  = NULL ;
2358 PerfCounter * ObjectMonitor::_sync_SlowNotifyAll               = NULL ;
2359 PerfCounter * ObjectMonitor::_sync_FailedSpins                 = NULL ;
2360 PerfCounter * ObjectMonitor::_sync_SuccessfulSpins             = NULL ;
2361 PerfCounter * ObjectMonitor::_sync_MonInCirculation            = NULL ;
2362 PerfCounter * ObjectMonitor::_sync_MonScavenged                = NULL ;
2363 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL ;
2364 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL ;
2365 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL ;
2366 
2367 // One-shot global initialization for the sync subsystem.
2368 // We could also defer initialization and initialize on-demand
2369 // the first time we call inflate().  Initialization would
2370 // be protected - like so many things - by the MonitorCache_lock.
2371 
2372 void ObjectMonitor::Initialize () {
2373   static int InitializationCompleted = 0 ;
2374   assert (InitializationCompleted == 0, "invariant") ;
2375   InitializationCompleted = 1 ;
2376   if (UsePerfData) {
2377       EXCEPTION_MARK ;
2378       #define NEWPERFCOUNTER(n)   {n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,CHECK); }
2379       #define NEWPERFVARIABLE(n)  {n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,CHECK); }
2380       NEWPERFCOUNTER(_sync_Inflations) ;
2381       NEWPERFCOUNTER(_sync_Deflations) ;
2382       NEWPERFCOUNTER(_sync_ContendedLockAttempts) ;
2383       NEWPERFCOUNTER(_sync_FutileWakeups) ;
2384       NEWPERFCOUNTER(_sync_Parks) ;
2385       NEWPERFCOUNTER(_sync_EmptyNotifications) ;
2386       NEWPERFCOUNTER(_sync_Notifications) ;
2387       NEWPERFCOUNTER(_sync_SlowEnter) ;
2388       NEWPERFCOUNTER(_sync_SlowExit) ;
2389       NEWPERFCOUNTER(_sync_SlowNotify) ;
2390       NEWPERFCOUNTER(_sync_SlowNotifyAll) ;
2391       NEWPERFCOUNTER(_sync_FailedSpins) ;
2392       NEWPERFCOUNTER(_sync_SuccessfulSpins) ;
2393       NEWPERFCOUNTER(_sync_PrivateA) ;
2394       NEWPERFCOUNTER(_sync_PrivateB) ;
2395       NEWPERFCOUNTER(_sync_MonInCirculation) ;
2396       NEWPERFCOUNTER(_sync_MonScavenged) ;
2397       NEWPERFVARIABLE(_sync_MonExtant) ;
2398       #undef NEWPERFCOUNTER
2399   }
2400 }
2401 
2402 
2403 // Compile-time asserts
2404 // When possible, it's better to catch errors deterministically at
2405 // compile-time than at runtime.  The down-side to using compile-time
2406 // asserts is that error message -- often something about negative array
2407 // indices -- is opaque.
2408 
2409 #define CTASSERT(x) { int tag[1-(2*!(x))]; printf ("Tag @" INTPTR_FORMAT "\n", (intptr_t)tag); }
2410 
2411 void ObjectMonitor::ctAsserts() {
2412   CTASSERT(offset_of (ObjectMonitor, _header) == 0);
2413 }
2414 
2415 
2416 static char * kvGet (char * kvList, const char * Key) {
2417     if (kvList == NULL) return NULL ;
2418     size_t n = strlen (Key) ;
2419     char * Search ;
2420     for (Search = kvList ; *Search ; Search += strlen(Search) + 1) {
2421         if (strncmp (Search, Key, n) == 0) {
2422             if (Search[n] == '=') return Search + n + 1 ;
2423             if (Search[n] == 0)   return (char *) "1" ;
2424         }
2425     }
2426     return NULL ;
2427 }
2428 
2429 static int kvGetInt (char * kvList, const char * Key, int Default) {
2430     char * v = kvGet (kvList, Key) ;
2431     int rslt = v ? ::strtol (v, NULL, 0) : Default ;
2432     if (Knob_ReportSettings && v != NULL) {
2433         ::printf ("  SyncKnob: %s %d(%d)\n", Key, rslt, Default) ;
2434         ::fflush (stdout) ;
2435     }
2436     return rslt ;
2437 }
2438 
2439 void ObjectMonitor::DeferredInitialize () {
2440   if (InitDone > 0) return ;
2441   if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
2442       while (InitDone != 1) ;
2443       return ;
2444   }
2445 
2446   // One-shot global initialization ...
2447   // The initialization is idempotent, so we don't need locks.
2448   // In the future consider doing this via os::init_2().
2449   // SyncKnobs consist of <Key>=<Value> pairs in the style
2450   // of environment variables.  Start by converting ':' to NUL.
2451 
2452   if (SyncKnobs == NULL) SyncKnobs = "" ;
2453 
2454   size_t sz = strlen (SyncKnobs) ;
2455   char * knobs = (char *) malloc (sz + 2) ;
2456   if (knobs == NULL) {
2457      vm_exit_out_of_memory (sz + 2, OOM_MALLOC_ERROR, "Parse SyncKnobs") ;
2458      guarantee (0, "invariant") ;
2459   }
2460   strcpy (knobs, SyncKnobs) ;
2461   knobs[sz+1] = 0 ;
2462   for (char * p = knobs ; *p ; p++) {
2463      if (*p == ':') *p = 0 ;
2464   }
2465 
2466   #define SETKNOB(x) { Knob_##x = kvGetInt (knobs, #x, Knob_##x); }
2467   SETKNOB(ReportSettings) ;
2468   SETKNOB(Verbose) ;
2469   SETKNOB(FixedSpin) ;
2470   SETKNOB(SpinLimit) ;
2471   SETKNOB(SpinBase) ;
2472   SETKNOB(SpinBackOff);
2473   SETKNOB(CASPenalty) ;
2474   SETKNOB(OXPenalty) ;
2475   SETKNOB(LogSpins) ;
2476   SETKNOB(SpinSetSucc) ;
2477   SETKNOB(SuccEnabled) ;
2478   SETKNOB(SuccRestrict) ;
2479   SETKNOB(Penalty) ;
2480   SETKNOB(Bonus) ;
2481   SETKNOB(BonusB) ;
2482   SETKNOB(Poverty) ;
2483   SETKNOB(SpinAfterFutile) ;
2484   SETKNOB(UsePause) ;
2485   SETKNOB(SpinEarly) ;
2486   SETKNOB(OState) ;
2487   SETKNOB(MaxSpinners) ;
2488   SETKNOB(PreSpin) ;
2489   SETKNOB(ExitPolicy) ;
2490   SETKNOB(QMode);
2491   SETKNOB(ResetEvent) ;
2492   SETKNOB(MoveNotifyee) ;
2493   SETKNOB(FastHSSEC) ;
2494   #undef SETKNOB
2495 
2496   if (os::is_MP()) {
2497      BackOffMask = (1 << Knob_SpinBackOff) - 1 ;
2498      if (Knob_ReportSettings) ::printf ("BackOffMask=%X\n", BackOffMask) ;
2499      // CONSIDER: BackOffMask = ROUNDUP_NEXT_POWER2 (ncpus-1)
2500   } else {
2501      Knob_SpinLimit = 0 ;
2502      Knob_SpinBase  = 0 ;
2503      Knob_PreSpin   = 0 ;
2504      Knob_FixedSpin = -1 ;
2505   }
2506 
2507   if (Knob_LogSpins == 0) {
2508      ObjectMonitor::_sync_FailedSpins = NULL ;
2509   }
2510 
2511   free (knobs) ;
2512   OrderAccess::fence() ;
2513   InitDone = 1 ;
2514 }
2515 
2516 #ifndef PRODUCT
2517 void ObjectMonitor::verify() {
2518 }
2519 
2520 void ObjectMonitor::print() {
2521 }
2522 #endif