1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/scopeDesc.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/abstractCompiler.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compilerOracle.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "interpreter/interpreterRuntime.hpp"
  37 #include "memory/gcLocker.inline.hpp"
  38 #include "memory/universe.inline.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "prims/forte.hpp"
  41 #include "prims/jvmtiExport.hpp"
  42 #include "prims/jvmtiRedefineClassesTrace.hpp"
  43 #include "prims/methodHandles.hpp"
  44 #include "prims/nativeLookup.hpp"
  45 #include "runtime/arguments.hpp"
  46 #include "runtime/biasedLocking.hpp"
  47 #include "runtime/handles.inline.hpp"
  48 #include "runtime/init.hpp"
  49 #include "runtime/interfaceSupport.hpp"
  50 #include "runtime/javaCalls.hpp"
  51 #include "runtime/sharedRuntime.hpp"
  52 #include "runtime/stubRoutines.hpp"
  53 #include "runtime/vframe.hpp"
  54 #include "runtime/vframeArray.hpp"
  55 #include "utilities/copy.hpp"
  56 #include "utilities/dtrace.hpp"
  57 #include "utilities/events.hpp"
  58 #include "utilities/hashtable.inline.hpp"
  59 #include "utilities/macros.hpp"
  60 #include "utilities/xmlstream.hpp"
  61 #ifdef TARGET_ARCH_x86
  62 # include "nativeInst_x86.hpp"
  63 # include "vmreg_x86.inline.hpp"
  64 #endif
  65 #ifdef TARGET_ARCH_sparc
  66 # include "nativeInst_sparc.hpp"
  67 # include "vmreg_sparc.inline.hpp"
  68 #endif
  69 #ifdef TARGET_ARCH_zero
  70 # include "nativeInst_zero.hpp"
  71 # include "vmreg_zero.inline.hpp"
  72 #endif
  73 #ifdef TARGET_ARCH_arm
  74 # include "nativeInst_arm.hpp"
  75 # include "vmreg_arm.inline.hpp"
  76 #endif
  77 #ifdef TARGET_ARCH_ppc
  78 # include "nativeInst_ppc.hpp"
  79 # include "vmreg_ppc.inline.hpp"
  80 #endif
  81 #ifdef COMPILER1
  82 #include "c1/c1_Runtime1.hpp"
  83 #endif
  84 
  85 // Shared stub locations
  86 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  87 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  88 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  89 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  90 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  91 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  92 
  93 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  94 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  95 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  96 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  97 
  98 #ifdef COMPILER2
  99 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
 100 #endif // COMPILER2
 101 
 102 
 103 //----------------------------generate_stubs-----------------------------------
 104 void SharedRuntime::generate_stubs() {
 105   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 106   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 107   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 108   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 109   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 110   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 111 
 112 #ifdef COMPILER2
 113   // Vectors are generated only by C2.
 114   if (is_wide_vector(MaxVectorSize)) {
 115     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 116   }
 117 #endif // COMPILER2
 118   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 119   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 120 
 121   generate_deopt_blob();
 122 
 123 #ifdef COMPILER2
 124   generate_uncommon_trap_blob();
 125 #endif // COMPILER2
 126 }
 127 
 128 #include <math.h>
 129 
 130 #ifndef USDT2
 131 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
 132 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
 133                       char*, int, char*, int, char*, int);
 134 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
 135                       char*, int, char*, int, char*, int);
 136 #endif /* !USDT2 */
 137 
 138 // Implementation of SharedRuntime
 139 
 140 #ifndef PRODUCT
 141 // For statistics
 142 int SharedRuntime::_ic_miss_ctr = 0;
 143 int SharedRuntime::_wrong_method_ctr = 0;
 144 int SharedRuntime::_resolve_static_ctr = 0;
 145 int SharedRuntime::_resolve_virtual_ctr = 0;
 146 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 147 int SharedRuntime::_implicit_null_throws = 0;
 148 int SharedRuntime::_implicit_div0_throws = 0;
 149 int SharedRuntime::_throw_null_ctr = 0;
 150 
 151 int SharedRuntime::_nof_normal_calls = 0;
 152 int SharedRuntime::_nof_optimized_calls = 0;
 153 int SharedRuntime::_nof_inlined_calls = 0;
 154 int SharedRuntime::_nof_megamorphic_calls = 0;
 155 int SharedRuntime::_nof_static_calls = 0;
 156 int SharedRuntime::_nof_inlined_static_calls = 0;
 157 int SharedRuntime::_nof_interface_calls = 0;
 158 int SharedRuntime::_nof_optimized_interface_calls = 0;
 159 int SharedRuntime::_nof_inlined_interface_calls = 0;
 160 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 161 int SharedRuntime::_nof_removable_exceptions = 0;
 162 
 163 int SharedRuntime::_new_instance_ctr=0;
 164 int SharedRuntime::_new_array_ctr=0;
 165 int SharedRuntime::_multi1_ctr=0;
 166 int SharedRuntime::_multi2_ctr=0;
 167 int SharedRuntime::_multi3_ctr=0;
 168 int SharedRuntime::_multi4_ctr=0;
 169 int SharedRuntime::_multi5_ctr=0;
 170 int SharedRuntime::_mon_enter_stub_ctr=0;
 171 int SharedRuntime::_mon_exit_stub_ctr=0;
 172 int SharedRuntime::_mon_enter_ctr=0;
 173 int SharedRuntime::_mon_exit_ctr=0;
 174 int SharedRuntime::_partial_subtype_ctr=0;
 175 int SharedRuntime::_jbyte_array_copy_ctr=0;
 176 int SharedRuntime::_jshort_array_copy_ctr=0;
 177 int SharedRuntime::_jint_array_copy_ctr=0;
 178 int SharedRuntime::_jlong_array_copy_ctr=0;
 179 int SharedRuntime::_oop_array_copy_ctr=0;
 180 int SharedRuntime::_checkcast_array_copy_ctr=0;
 181 int SharedRuntime::_unsafe_array_copy_ctr=0;
 182 int SharedRuntime::_generic_array_copy_ctr=0;
 183 int SharedRuntime::_slow_array_copy_ctr=0;
 184 int SharedRuntime::_find_handler_ctr=0;
 185 int SharedRuntime::_rethrow_ctr=0;
 186 
 187 int     SharedRuntime::_ICmiss_index                    = 0;
 188 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 189 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 190 
 191 
 192 void SharedRuntime::trace_ic_miss(address at) {
 193   for (int i = 0; i < _ICmiss_index; i++) {
 194     if (_ICmiss_at[i] == at) {
 195       _ICmiss_count[i]++;
 196       return;
 197     }
 198   }
 199   int index = _ICmiss_index++;
 200   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 201   _ICmiss_at[index] = at;
 202   _ICmiss_count[index] = 1;
 203 }
 204 
 205 void SharedRuntime::print_ic_miss_histogram() {
 206   if (ICMissHistogram) {
 207     tty->print_cr ("IC Miss Histogram:");
 208     int tot_misses = 0;
 209     for (int i = 0; i < _ICmiss_index; i++) {
 210       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
 211       tot_misses += _ICmiss_count[i];
 212     }
 213     tty->print_cr ("Total IC misses: %7d", tot_misses);
 214   }
 215 }
 216 #endif // PRODUCT
 217 
 218 #if INCLUDE_ALL_GCS
 219 
 220 // G1 write-barrier pre: executed before a pointer store.
 221 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 222   if (orig == NULL) {
 223     assert(false, "should be optimized out");
 224     return;
 225   }
 226   assert(orig->is_oop(true /* ignore mark word */), "Error");
 227   // store the original value that was in the field reference
 228   thread->satb_mark_queue().enqueue(orig);
 229 JRT_END
 230 
 231 // G1 write-barrier post: executed after a pointer store.
 232 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 233   thread->dirty_card_queue().enqueue(card_addr);
 234 JRT_END
 235 
 236 #endif // INCLUDE_ALL_GCS
 237 
 238 
 239 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 240   return x * y;
 241 JRT_END
 242 
 243 
 244 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 245   if (x == min_jlong && y == CONST64(-1)) {
 246     return x;
 247   } else {
 248     return x / y;
 249   }
 250 JRT_END
 251 
 252 
 253 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 254   if (x == min_jlong && y == CONST64(-1)) {
 255     return 0;
 256   } else {
 257     return x % y;
 258   }
 259 JRT_END
 260 
 261 
 262 const juint  float_sign_mask  = 0x7FFFFFFF;
 263 const juint  float_infinity   = 0x7F800000;
 264 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 265 const julong double_infinity  = CONST64(0x7FF0000000000000);
 266 
 267 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 268 #ifdef _WIN64
 269   // 64-bit Windows on amd64 returns the wrong values for
 270   // infinity operands.
 271   union { jfloat f; juint i; } xbits, ybits;
 272   xbits.f = x;
 273   ybits.f = y;
 274   // x Mod Infinity == x unless x is infinity
 275   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
 276        ((ybits.i & float_sign_mask) == float_infinity) ) {
 277     return x;
 278   }
 279 #endif
 280   return ((jfloat)fmod((double)x,(double)y));
 281 JRT_END
 282 
 283 
 284 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 285 #ifdef _WIN64
 286   union { jdouble d; julong l; } xbits, ybits;
 287   xbits.d = x;
 288   ybits.d = y;
 289   // x Mod Infinity == x unless x is infinity
 290   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
 291        ((ybits.l & double_sign_mask) == double_infinity) ) {
 292     return x;
 293   }
 294 #endif
 295   return ((jdouble)fmod((double)x,(double)y));
 296 JRT_END
 297 
 298 #ifdef __SOFTFP__
 299 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 300   return x + y;
 301 JRT_END
 302 
 303 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 304   return x - y;
 305 JRT_END
 306 
 307 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 308   return x * y;
 309 JRT_END
 310 
 311 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 312   return x / y;
 313 JRT_END
 314 
 315 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 316   return x + y;
 317 JRT_END
 318 
 319 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 320   return x - y;
 321 JRT_END
 322 
 323 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 324   return x * y;
 325 JRT_END
 326 
 327 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 328   return x / y;
 329 JRT_END
 330 
 331 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 332   return (jfloat)x;
 333 JRT_END
 334 
 335 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 336   return (jdouble)x;
 337 JRT_END
 338 
 339 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 340   return (jdouble)x;
 341 JRT_END
 342 
 343 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 344   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 345 JRT_END
 346 
 347 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 348   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 349 JRT_END
 350 
 351 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 352   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 353 JRT_END
 354 
 355 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 356   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 357 JRT_END
 358 
 359 // Functions to return the opposite of the aeabi functions for nan.
 360 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 361   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 362 JRT_END
 363 
 364 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 365   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 366 JRT_END
 367 
 368 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 369   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 370 JRT_END
 371 
 372 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 373   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 374 JRT_END
 375 
 376 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 377   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 378 JRT_END
 379 
 380 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 381   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 382 JRT_END
 383 
 384 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 385   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 386 JRT_END
 387 
 388 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 389   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 390 JRT_END
 391 
 392 // Intrinsics make gcc generate code for these.
 393 float  SharedRuntime::fneg(float f)   {
 394   return -f;
 395 }
 396 
 397 double SharedRuntime::dneg(double f)  {
 398   return -f;
 399 }
 400 
 401 #endif // __SOFTFP__
 402 
 403 #if defined(__SOFTFP__) || defined(E500V2)
 404 // Intrinsics make gcc generate code for these.
 405 double SharedRuntime::dabs(double f)  {
 406   return (f <= (double)0.0) ? (double)0.0 - f : f;
 407 }
 408 
 409 #endif
 410 
 411 #if defined(__SOFTFP__) || defined(PPC)
 412 double SharedRuntime::dsqrt(double f) {
 413   return sqrt(f);
 414 }
 415 #endif
 416 
 417 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 418   if (g_isnan(x))
 419     return 0;
 420   if (x >= (jfloat) max_jint)
 421     return max_jint;
 422   if (x <= (jfloat) min_jint)
 423     return min_jint;
 424   return (jint) x;
 425 JRT_END
 426 
 427 
 428 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 429   if (g_isnan(x))
 430     return 0;
 431   if (x >= (jfloat) max_jlong)
 432     return max_jlong;
 433   if (x <= (jfloat) min_jlong)
 434     return min_jlong;
 435   return (jlong) x;
 436 JRT_END
 437 
 438 
 439 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 440   if (g_isnan(x))
 441     return 0;
 442   if (x >= (jdouble) max_jint)
 443     return max_jint;
 444   if (x <= (jdouble) min_jint)
 445     return min_jint;
 446   return (jint) x;
 447 JRT_END
 448 
 449 
 450 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 451   if (g_isnan(x))
 452     return 0;
 453   if (x >= (jdouble) max_jlong)
 454     return max_jlong;
 455   if (x <= (jdouble) min_jlong)
 456     return min_jlong;
 457   return (jlong) x;
 458 JRT_END
 459 
 460 
 461 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 462   return (jfloat)x;
 463 JRT_END
 464 
 465 
 466 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 467   return (jfloat)x;
 468 JRT_END
 469 
 470 
 471 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 472   return (jdouble)x;
 473 JRT_END
 474 
 475 // Exception handling across interpreter/compiler boundaries
 476 //
 477 // exception_handler_for_return_address(...) returns the continuation address.
 478 // The continuation address is the entry point of the exception handler of the
 479 // previous frame depending on the return address.
 480 
 481 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 482   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
 483 
 484   // Reset method handle flag.
 485   thread->set_is_method_handle_return(false);
 486 
 487   // The fastest case first
 488   CodeBlob* blob = CodeCache::find_blob(return_address);
 489   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 490   if (nm != NULL) {
 491     // Set flag if return address is a method handle call site.
 492     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 493     // native nmethods don't have exception handlers
 494     assert(!nm->is_native_method(), "no exception handler");
 495     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 496     if (nm->is_deopt_pc(return_address)) {
 497       return SharedRuntime::deopt_blob()->unpack_with_exception();
 498     } else {
 499       return nm->exception_begin();
 500     }
 501   }
 502 
 503   // Entry code
 504   if (StubRoutines::returns_to_call_stub(return_address)) {
 505     return StubRoutines::catch_exception_entry();
 506   }
 507   // Interpreted code
 508   if (Interpreter::contains(return_address)) {
 509     return Interpreter::rethrow_exception_entry();
 510   }
 511 
 512   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 513   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 514 
 515 #ifndef PRODUCT
 516   { ResourceMark rm;
 517     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
 518     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 519     tty->print_cr("b) other problem");
 520   }
 521 #endif // PRODUCT
 522 
 523   ShouldNotReachHere();
 524   return NULL;
 525 }
 526 
 527 
 528 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 529   return raw_exception_handler_for_return_address(thread, return_address);
 530 JRT_END
 531 
 532 
 533 address SharedRuntime::get_poll_stub(address pc) {
 534   address stub;
 535   // Look up the code blob
 536   CodeBlob *cb = CodeCache::find_blob(pc);
 537 
 538   // Should be an nmethod
 539   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
 540 
 541   // Look up the relocation information
 542   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 543     "safepoint polling: type must be poll" );
 544 
 545   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
 546     "Only polling locations are used for safepoint");
 547 
 548   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 549   bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
 550   if (at_poll_return) {
 551     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 552            "polling page return stub not created yet");
 553     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 554   } else if (has_wide_vectors) {
 555     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 556            "polling page vectors safepoint stub not created yet");
 557     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 558   } else {
 559     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 560            "polling page safepoint stub not created yet");
 561     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 562   }
 563 #ifndef PRODUCT
 564   if( TraceSafepoint ) {
 565     char buf[256];
 566     jio_snprintf(buf, sizeof(buf),
 567                  "... found polling page %s exception at pc = "
 568                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 569                  at_poll_return ? "return" : "loop",
 570                  (intptr_t)pc, (intptr_t)stub);
 571     tty->print_raw_cr(buf);
 572   }
 573 #endif // PRODUCT
 574   return stub;
 575 }
 576 
 577 
 578 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 579   assert(caller.is_interpreted_frame(), "");
 580   int args_size = ArgumentSizeComputer(sig).size() + 1;
 581   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 582   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 583   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 584   return result;
 585 }
 586 
 587 
 588 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 589   if (JvmtiExport::can_post_on_exceptions()) {
 590     vframeStream vfst(thread, true);
 591     methodHandle method = methodHandle(thread, vfst.method());
 592     address bcp = method()->bcp_from(vfst.bci());
 593     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 594   }
 595   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 596 }
 597 
 598 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 599   Handle h_exception = Exceptions::new_exception(thread, name, message);
 600   throw_and_post_jvmti_exception(thread, h_exception);
 601 }
 602 
 603 // The interpreter code to call this tracing function is only
 604 // called/generated when TraceRedefineClasses has the right bits
 605 // set. Since obsolete methods are never compiled, we don't have
 606 // to modify the compilers to generate calls to this function.
 607 //
 608 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 609     JavaThread* thread, Method* method))
 610   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 611 
 612   if (method->is_obsolete()) {
 613     // We are calling an obsolete method, but this is not necessarily
 614     // an error. Our method could have been redefined just after we
 615     // fetched the Method* from the constant pool.
 616 
 617     // RC_TRACE macro has an embedded ResourceMark
 618     RC_TRACE_WITH_THREAD(0x00001000, thread,
 619                          ("calling obsolete method '%s'",
 620                           method->name_and_sig_as_C_string()));
 621     if (RC_TRACE_ENABLED(0x00002000)) {
 622       // this option is provided to debug calls to obsolete methods
 623       guarantee(false, "faulting at call to an obsolete method.");
 624     }
 625   }
 626   return 0;
 627 JRT_END
 628 
 629 // ret_pc points into caller; we are returning caller's exception handler
 630 // for given exception
 631 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 632                                                     bool force_unwind, bool top_frame_only) {
 633   assert(nm != NULL, "must exist");
 634   ResourceMark rm;
 635 
 636   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 637   // determine handler bci, if any
 638   EXCEPTION_MARK;
 639 
 640   int handler_bci = -1;
 641   int scope_depth = 0;
 642   if (!force_unwind) {
 643     int bci = sd->bci();
 644     bool recursive_exception = false;
 645     do {
 646       bool skip_scope_increment = false;
 647       // exception handler lookup
 648       KlassHandle ek (THREAD, exception->klass());
 649       methodHandle mh(THREAD, sd->method());
 650       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 651       if (HAS_PENDING_EXCEPTION) {
 652         recursive_exception = true;
 653         // We threw an exception while trying to find the exception handler.
 654         // Transfer the new exception to the exception handle which will
 655         // be set into thread local storage, and do another lookup for an
 656         // exception handler for this exception, this time starting at the
 657         // BCI of the exception handler which caused the exception to be
 658         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 659         // argument to ensure that the correct exception is thrown (4870175).
 660         exception = Handle(THREAD, PENDING_EXCEPTION);
 661         CLEAR_PENDING_EXCEPTION;
 662         if (handler_bci >= 0) {
 663           bci = handler_bci;
 664           handler_bci = -1;
 665           skip_scope_increment = true;
 666         }
 667       }
 668       else {
 669         recursive_exception = false;
 670       }
 671       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 672         sd = sd->sender();
 673         if (sd != NULL) {
 674           bci = sd->bci();
 675         }
 676         ++scope_depth;
 677       }
 678     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 679   }
 680 
 681   // found handling method => lookup exception handler
 682   int catch_pco = ret_pc - nm->code_begin();
 683 
 684   ExceptionHandlerTable table(nm);
 685   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 686   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 687     // Allow abbreviated catch tables.  The idea is to allow a method
 688     // to materialize its exceptions without committing to the exact
 689     // routing of exceptions.  In particular this is needed for adding
 690     // a synthetic handler to unlock monitors when inlining
 691     // synchronized methods since the unlock path isn't represented in
 692     // the bytecodes.
 693     t = table.entry_for(catch_pco, -1, 0);
 694   }
 695 
 696 #ifdef COMPILER1
 697   if (t == NULL && nm->is_compiled_by_c1()) {
 698     assert(nm->unwind_handler_begin() != NULL, "");
 699     return nm->unwind_handler_begin();
 700   }
 701 #endif
 702 
 703   if (t == NULL) {
 704     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
 705     tty->print_cr("   Exception:");
 706     exception->print();
 707     tty->cr();
 708     tty->print_cr(" Compiled exception table :");
 709     table.print();
 710     nm->print_code();
 711     guarantee(false, "missing exception handler");
 712     return NULL;
 713   }
 714 
 715   return nm->code_begin() + t->pco();
 716 }
 717 
 718 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 719   // These errors occur only at call sites
 720   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 721 JRT_END
 722 
 723 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 724   // These errors occur only at call sites
 725   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 726 JRT_END
 727 
 728 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 729   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 730 JRT_END
 731 
 732 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 733   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 734 JRT_END
 735 
 736 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 737   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 738   // cache sites (when the callee activation is not yet set up) so we are at a call site
 739   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 740 JRT_END
 741 
 742 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 743   // We avoid using the normal exception construction in this case because
 744   // it performs an upcall to Java, and we're already out of stack space.
 745   Klass* k = SystemDictionary::StackOverflowError_klass();
 746   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 747   Handle exception (thread, exception_oop);
 748   if (StackTraceInThrowable) {
 749     java_lang_Throwable::fill_in_stack_trace(exception);
 750   }
 751   throw_and_post_jvmti_exception(thread, exception);
 752 JRT_END
 753 
 754 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 755                                                            address pc,
 756                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 757 {
 758   address target_pc = NULL;
 759 
 760   if (Interpreter::contains(pc)) {
 761 #ifdef CC_INTERP
 762     // C++ interpreter doesn't throw implicit exceptions
 763     ShouldNotReachHere();
 764 #else
 765     switch (exception_kind) {
 766       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 767       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 768       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 769       default:                      ShouldNotReachHere();
 770     }
 771 #endif // !CC_INTERP
 772   } else {
 773     switch (exception_kind) {
 774       case STACK_OVERFLOW: {
 775         // Stack overflow only occurs upon frame setup; the callee is
 776         // going to be unwound. Dispatch to a shared runtime stub
 777         // which will cause the StackOverflowError to be fabricated
 778         // and processed.
 779         // For stack overflow in deoptimization blob, cleanup thread.
 780         if (thread->deopt_mark() != NULL) {
 781           Deoptimization::cleanup_deopt_info(thread, NULL);
 782         }
 783         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc);
 784         return StubRoutines::throw_StackOverflowError_entry();
 785       }
 786 
 787       case IMPLICIT_NULL: {
 788         if (VtableStubs::contains(pc)) {
 789           // We haven't yet entered the callee frame. Fabricate an
 790           // exception and begin dispatching it in the caller. Since
 791           // the caller was at a call site, it's safe to destroy all
 792           // caller-saved registers, as these entry points do.
 793           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 794 
 795           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 796           if (vt_stub == NULL) return NULL;
 797 
 798           if (vt_stub->is_abstract_method_error(pc)) {
 799             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 800             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc);
 801             return StubRoutines::throw_AbstractMethodError_entry();
 802           } else {
 803             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc);
 804             return StubRoutines::throw_NullPointerException_at_call_entry();
 805           }
 806         } else {
 807           CodeBlob* cb = CodeCache::find_blob(pc);
 808 
 809           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 810           if (cb == NULL) return NULL;
 811 
 812           // Exception happened in CodeCache. Must be either:
 813           // 1. Inline-cache check in C2I handler blob,
 814           // 2. Inline-cache check in nmethod, or
 815           // 3. Implicit null exception in nmethod
 816 
 817           if (!cb->is_nmethod()) {
 818             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 819             if (!is_in_blob) {
 820               cb->print();
 821               fatal(err_msg("exception happened outside interpreter, nmethods and vtable stubs at pc " INTPTR_FORMAT, pc));
 822             }
 823             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc);
 824             // There is no handler here, so we will simply unwind.
 825             return StubRoutines::throw_NullPointerException_at_call_entry();
 826           }
 827 
 828           // Otherwise, it's an nmethod.  Consult its exception handlers.
 829           nmethod* nm = (nmethod*)cb;
 830           if (nm->inlinecache_check_contains(pc)) {
 831             // exception happened inside inline-cache check code
 832             // => the nmethod is not yet active (i.e., the frame
 833             // is not set up yet) => use return address pushed by
 834             // caller => don't push another return address
 835             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc);
 836             return StubRoutines::throw_NullPointerException_at_call_entry();
 837           }
 838 
 839           if (nm->method()->is_method_handle_intrinsic()) {
 840             // exception happened inside MH dispatch code, similar to a vtable stub
 841             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc);
 842             return StubRoutines::throw_NullPointerException_at_call_entry();
 843           }
 844 
 845 #ifndef PRODUCT
 846           _implicit_null_throws++;
 847 #endif
 848           target_pc = nm->continuation_for_implicit_exception(pc);
 849           // If there's an unexpected fault, target_pc might be NULL,
 850           // in which case we want to fall through into the normal
 851           // error handling code.
 852         }
 853 
 854         break; // fall through
 855       }
 856 
 857 
 858       case IMPLICIT_DIVIDE_BY_ZERO: {
 859         nmethod* nm = CodeCache::find_nmethod(pc);
 860         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
 861 #ifndef PRODUCT
 862         _implicit_div0_throws++;
 863 #endif
 864         target_pc = nm->continuation_for_implicit_exception(pc);
 865         // If there's an unexpected fault, target_pc might be NULL,
 866         // in which case we want to fall through into the normal
 867         // error handling code.
 868         break; // fall through
 869       }
 870 
 871       default: ShouldNotReachHere();
 872     }
 873 
 874     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 875 
 876     // for AbortVMOnException flag
 877     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
 878     if (exception_kind == IMPLICIT_NULL) {
 879       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 880     } else {
 881       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 882     }
 883     return target_pc;
 884   }
 885 
 886   ShouldNotReachHere();
 887   return NULL;
 888 }
 889 
 890 
 891 /**
 892  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 893  * installed in the native function entry of all native Java methods before
 894  * they get linked to their actual native methods.
 895  *
 896  * \note
 897  * This method actually never gets called!  The reason is because
 898  * the interpreter's native entries call NativeLookup::lookup() which
 899  * throws the exception when the lookup fails.  The exception is then
 900  * caught and forwarded on the return from NativeLookup::lookup() call
 901  * before the call to the native function.  This might change in the future.
 902  */
 903 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 904 {
 905   // We return a bad value here to make sure that the exception is
 906   // forwarded before we look at the return value.
 907   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
 908 }
 909 JNI_END
 910 
 911 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 912   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 913 }
 914 
 915 
 916 #ifndef PRODUCT
 917 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 918   const frame f = thread->last_frame();
 919   assert(f.is_interpreted_frame(), "must be an interpreted frame");
 920 #ifndef PRODUCT
 921   methodHandle mh(THREAD, f.interpreter_frame_method());
 922   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
 923 #endif // !PRODUCT
 924   return preserve_this_value;
 925 JRT_END
 926 #endif // !PRODUCT
 927 
 928 
 929 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
 930   os::yield_all(attempts);
 931 JRT_END
 932 
 933 
 934 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 935   assert(obj->is_oop(), "must be a valid oop");
 936   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 937   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 938 JRT_END
 939 
 940 
 941 jlong SharedRuntime::get_java_tid(Thread* thread) {
 942   if (thread != NULL) {
 943     if (thread->is_Java_thread()) {
 944       oop obj = ((JavaThread*)thread)->threadObj();
 945       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 946     }
 947   }
 948   return 0;
 949 }
 950 
 951 /**
 952  * This function ought to be a void function, but cannot be because
 953  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 954  * 6254741.  Once that is fixed we can remove the dummy return value.
 955  */
 956 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
 957   return dtrace_object_alloc_base(Thread::current(), o);
 958 }
 959 
 960 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
 961   assert(DTraceAllocProbes, "wrong call");
 962   Klass* klass = o->klass();
 963   int size = o->size();
 964   Symbol* name = klass->name();
 965 #ifndef USDT2
 966   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
 967                    name->bytes(), name->utf8_length(), size * HeapWordSize);
 968 #else /* USDT2 */
 969   HOTSPOT_OBJECT_ALLOC(
 970                    get_java_tid(thread),
 971                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
 972 #endif /* USDT2 */
 973   return 0;
 974 }
 975 
 976 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 977     JavaThread* thread, Method* method))
 978   assert(DTraceMethodProbes, "wrong call");
 979   Symbol* kname = method->klass_name();
 980   Symbol* name = method->name();
 981   Symbol* sig = method->signature();
 982 #ifndef USDT2
 983   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
 984       kname->bytes(), kname->utf8_length(),
 985       name->bytes(), name->utf8_length(),
 986       sig->bytes(), sig->utf8_length());
 987 #else /* USDT2 */
 988   HOTSPOT_METHOD_ENTRY(
 989       get_java_tid(thread),
 990       (char *) kname->bytes(), kname->utf8_length(),
 991       (char *) name->bytes(), name->utf8_length(),
 992       (char *) sig->bytes(), sig->utf8_length());
 993 #endif /* USDT2 */
 994   return 0;
 995 JRT_END
 996 
 997 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
 998     JavaThread* thread, Method* method))
 999   assert(DTraceMethodProbes, "wrong call");
1000   Symbol* kname = method->klass_name();
1001   Symbol* name = method->name();
1002   Symbol* sig = method->signature();
1003 #ifndef USDT2
1004   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
1005       kname->bytes(), kname->utf8_length(),
1006       name->bytes(), name->utf8_length(),
1007       sig->bytes(), sig->utf8_length());
1008 #else /* USDT2 */
1009   HOTSPOT_METHOD_RETURN(
1010       get_java_tid(thread),
1011       (char *) kname->bytes(), kname->utf8_length(),
1012       (char *) name->bytes(), name->utf8_length(),
1013       (char *) sig->bytes(), sig->utf8_length());
1014 #endif /* USDT2 */
1015   return 0;
1016 JRT_END
1017 
1018 
1019 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1020 // for a call current in progress, i.e., arguments has been pushed on stack
1021 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1022 // vtable updates, etc.  Caller frame must be compiled.
1023 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1024   ResourceMark rm(THREAD);
1025 
1026   // last java frame on stack (which includes native call frames)
1027   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1028 
1029   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
1030 }
1031 
1032 
1033 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1034 // for a call current in progress, i.e., arguments has been pushed on stack
1035 // but callee has not been invoked yet.  Caller frame must be compiled.
1036 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1037                                               vframeStream& vfst,
1038                                               Bytecodes::Code& bc,
1039                                               CallInfo& callinfo, TRAPS) {
1040   Handle receiver;
1041   Handle nullHandle;  //create a handy null handle for exception returns
1042 
1043   assert(!vfst.at_end(), "Java frame must exist");
1044 
1045   // Find caller and bci from vframe
1046   methodHandle caller(THREAD, vfst.method());
1047   int          bci   = vfst.bci();
1048 
1049   // Find bytecode
1050   Bytecode_invoke bytecode(caller, bci);
1051   bc = bytecode.invoke_code();
1052   int bytecode_index = bytecode.index();
1053 
1054   // Find receiver for non-static call
1055   if (bc != Bytecodes::_invokestatic &&
1056       bc != Bytecodes::_invokedynamic &&
1057       bc != Bytecodes::_invokehandle) {
1058     // This register map must be update since we need to find the receiver for
1059     // compiled frames. The receiver might be in a register.
1060     RegisterMap reg_map2(thread);
1061     frame stubFrame   = thread->last_frame();
1062     // Caller-frame is a compiled frame
1063     frame callerFrame = stubFrame.sender(&reg_map2);
1064 
1065     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
1066     if (callee.is_null()) {
1067       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1068     }
1069     // Retrieve from a compiled argument list
1070     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1071 
1072     if (receiver.is_null()) {
1073       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1074     }
1075   }
1076 
1077   // Resolve method. This is parameterized by bytecode.
1078   constantPoolHandle constants(THREAD, caller->constants());
1079   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1080   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
1081 
1082 #ifdef ASSERT
1083   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1084   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic && bc != Bytecodes::_invokehandle) {
1085     assert(receiver.not_null(), "should have thrown exception");
1086     KlassHandle receiver_klass(THREAD, receiver->klass());
1087     Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
1088                             // klass is already loaded
1089     KlassHandle static_receiver_klass(THREAD, rk);
1090     // Method handle invokes might have been optimized to a direct call
1091     // so don't check for the receiver class.
1092     // FIXME this weakens the assert too much
1093     methodHandle callee = callinfo.selected_method();
1094     assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
1095            callee->is_method_handle_intrinsic() ||
1096            callee->is_compiled_lambda_form(),
1097            "actual receiver must be subclass of static receiver klass");
1098     if (receiver_klass->oop_is_instance()) {
1099       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
1100         tty->print_cr("ERROR: Klass not yet initialized!!");
1101         receiver_klass()->print();
1102       }
1103       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1104     }
1105   }
1106 #endif
1107 
1108   return receiver;
1109 }
1110 
1111 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1112   ResourceMark rm(THREAD);
1113   // We need first to check if any Java activations (compiled, interpreted)
1114   // exist on the stack since last JavaCall.  If not, we need
1115   // to get the target method from the JavaCall wrapper.
1116   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1117   methodHandle callee_method;
1118   if (vfst.at_end()) {
1119     // No Java frames were found on stack since we did the JavaCall.
1120     // Hence the stack can only contain an entry_frame.  We need to
1121     // find the target method from the stub frame.
1122     RegisterMap reg_map(thread, false);
1123     frame fr = thread->last_frame();
1124     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1125     fr = fr.sender(&reg_map);
1126     assert(fr.is_entry_frame(), "must be");
1127     // fr is now pointing to the entry frame.
1128     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1129     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1130   } else {
1131     Bytecodes::Code bc;
1132     CallInfo callinfo;
1133     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1134     callee_method = callinfo.selected_method();
1135   }
1136   assert(callee_method()->is_method(), "must be");
1137   return callee_method;
1138 }
1139 
1140 // Resolves a call.
1141 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1142                                            bool is_virtual,
1143                                            bool is_optimized, TRAPS) {
1144   methodHandle callee_method;
1145   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1146   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1147     int retry_count = 0;
1148     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1149            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1150       // If has a pending exception then there is no need to re-try to
1151       // resolve this method.
1152       // If the method has been redefined, we need to try again.
1153       // Hack: we have no way to update the vtables of arrays, so don't
1154       // require that java.lang.Object has been updated.
1155 
1156       // It is very unlikely that method is redefined more than 100 times
1157       // in the middle of resolve. If it is looping here more than 100 times
1158       // means then there could be a bug here.
1159       guarantee((retry_count++ < 100),
1160                 "Could not resolve to latest version of redefined method");
1161       // method is redefined in the middle of resolve so re-try.
1162       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1163     }
1164   }
1165   return callee_method;
1166 }
1167 
1168 // Resolves a call.  The compilers generate code for calls that go here
1169 // and are patched with the real destination of the call.
1170 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1171                                            bool is_virtual,
1172                                            bool is_optimized, TRAPS) {
1173 
1174   ResourceMark rm(thread);
1175   RegisterMap cbl_map(thread, false);
1176   frame caller_frame = thread->last_frame().sender(&cbl_map);
1177 
1178   CodeBlob* caller_cb = caller_frame.cb();
1179   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1180   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1181   // make sure caller is not getting deoptimized
1182   // and removed before we are done with it.
1183   // CLEANUP - with lazy deopt shouldn't need this lock
1184   nmethodLocker caller_lock(caller_nm);
1185 
1186 
1187   // determine call info & receiver
1188   // note: a) receiver is NULL for static calls
1189   //       b) an exception is thrown if receiver is NULL for non-static calls
1190   CallInfo call_info;
1191   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1192   Handle receiver = find_callee_info(thread, invoke_code,
1193                                      call_info, CHECK_(methodHandle()));
1194   methodHandle callee_method = call_info.selected_method();
1195 
1196   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1197          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1198          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1199          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1200 
1201 #ifndef PRODUCT
1202   // tracing/debugging/statistics
1203   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1204                 (is_virtual) ? (&_resolve_virtual_ctr) :
1205                                (&_resolve_static_ctr);
1206   Atomic::inc(addr);
1207 
1208   if (TraceCallFixup) {
1209     ResourceMark rm(thread);
1210     tty->print("resolving %s%s (%s) call to",
1211       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1212       Bytecodes::name(invoke_code));
1213     callee_method->print_short_name(tty);
1214     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code());
1215   }
1216 #endif
1217 
1218   // JSR 292 key invariant:
1219   // If the resolved method is a MethodHandle invoke target the call
1220   // site must be a MethodHandle call site, because the lambda form might tail-call
1221   // leaving the stack in a state unknown to either caller or callee
1222   // TODO detune for now but we might need it again
1223 //  assert(!callee_method->is_compiled_lambda_form() ||
1224 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1225 
1226   // Compute entry points. This might require generation of C2I converter
1227   // frames, so we cannot be holding any locks here. Furthermore, the
1228   // computation of the entry points is independent of patching the call.  We
1229   // always return the entry-point, but we only patch the stub if the call has
1230   // not been deoptimized.  Return values: For a virtual call this is an
1231   // (cached_oop, destination address) pair. For a static call/optimized
1232   // virtual this is just a destination address.
1233 
1234   StaticCallInfo static_call_info;
1235   CompiledICInfo virtual_call_info;
1236 
1237   // Make sure the callee nmethod does not get deoptimized and removed before
1238   // we are done patching the code.
1239   nmethod* callee_nm = callee_method->code();
1240   nmethodLocker nl_callee(callee_nm);
1241 #ifdef ASSERT
1242   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1243 #endif
1244 
1245   if (is_virtual) {
1246     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1247     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1248     KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass());
1249     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1250                      is_optimized, static_bound, virtual_call_info,
1251                      CHECK_(methodHandle()));
1252   } else {
1253     // static call
1254     CompiledStaticCall::compute_entry(callee_method, static_call_info);
1255   }
1256 
1257   // grab lock, check for deoptimization and potentially patch caller
1258   {
1259     MutexLocker ml_patch(CompiledIC_lock);
1260 
1261     // Now that we are ready to patch if the Method* was redefined then
1262     // don't update call site and let the caller retry.
1263 
1264     if (!callee_method->is_old()) {
1265 #ifdef ASSERT
1266       // We must not try to patch to jump to an already unloaded method.
1267       if (dest_entry_point != 0) {
1268         assert(CodeCache::find_blob(dest_entry_point) != NULL,
1269                "should not unload nmethod while locked");
1270       }
1271 #endif
1272       if (is_virtual) {
1273         nmethod* nm = callee_nm;
1274         if (nm == NULL) CodeCache::find_blob(caller_frame.pc());
1275         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1276         if (inline_cache->is_clean()) {
1277           inline_cache->set_to_monomorphic(virtual_call_info);
1278         }
1279       } else {
1280         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1281         if (ssc->is_clean()) ssc->set(static_call_info);
1282       }
1283     }
1284 
1285   } // unlock CompiledIC_lock
1286 
1287   return callee_method;
1288 }
1289 
1290 
1291 // Inline caches exist only in compiled code
1292 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1293 #ifdef ASSERT
1294   RegisterMap reg_map(thread, false);
1295   frame stub_frame = thread->last_frame();
1296   assert(stub_frame.is_runtime_frame(), "sanity check");
1297   frame caller_frame = stub_frame.sender(&reg_map);
1298   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1299 #endif /* ASSERT */
1300 
1301   methodHandle callee_method;
1302   JRT_BLOCK
1303     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1304     // Return Method* through TLS
1305     thread->set_vm_result_2(callee_method());
1306   JRT_BLOCK_END
1307   // return compiled code entry point after potential safepoints
1308   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1309   return callee_method->verified_code_entry();
1310 JRT_END
1311 
1312 
1313 // Handle call site that has been made non-entrant
1314 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1315   // 6243940 We might end up in here if the callee is deoptimized
1316   // as we race to call it.  We don't want to take a safepoint if
1317   // the caller was interpreted because the caller frame will look
1318   // interpreted to the stack walkers and arguments are now
1319   // "compiled" so it is much better to make this transition
1320   // invisible to the stack walking code. The i2c path will
1321   // place the callee method in the callee_target. It is stashed
1322   // there because if we try and find the callee by normal means a
1323   // safepoint is possible and have trouble gc'ing the compiled args.
1324   RegisterMap reg_map(thread, false);
1325   frame stub_frame = thread->last_frame();
1326   assert(stub_frame.is_runtime_frame(), "sanity check");
1327   frame caller_frame = stub_frame.sender(&reg_map);
1328 
1329   if (caller_frame.is_interpreted_frame() ||
1330       caller_frame.is_entry_frame()) {
1331     Method* callee = thread->callee_target();
1332     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1333     thread->set_vm_result_2(callee);
1334     thread->set_callee_target(NULL);
1335     return callee->get_c2i_entry();
1336   }
1337 
1338   // Must be compiled to compiled path which is safe to stackwalk
1339   methodHandle callee_method;
1340   JRT_BLOCK
1341     // Force resolving of caller (if we called from compiled frame)
1342     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1343     thread->set_vm_result_2(callee_method());
1344   JRT_BLOCK_END
1345   // return compiled code entry point after potential safepoints
1346   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1347   return callee_method->verified_code_entry();
1348 JRT_END
1349 
1350 // Handle abstract method call
1351 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1352   return StubRoutines::throw_AbstractMethodError_entry();
1353 JRT_END
1354 
1355 
1356 // resolve a static call and patch code
1357 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1358   methodHandle callee_method;
1359   JRT_BLOCK
1360     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1361     thread->set_vm_result_2(callee_method());
1362   JRT_BLOCK_END
1363   // return compiled code entry point after potential safepoints
1364   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1365   return callee_method->verified_code_entry();
1366 JRT_END
1367 
1368 
1369 // resolve virtual call and update inline cache to monomorphic
1370 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1371   methodHandle callee_method;
1372   JRT_BLOCK
1373     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1374     thread->set_vm_result_2(callee_method());
1375   JRT_BLOCK_END
1376   // return compiled code entry point after potential safepoints
1377   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1378   return callee_method->verified_code_entry();
1379 JRT_END
1380 
1381 
1382 // Resolve a virtual call that can be statically bound (e.g., always
1383 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1384 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1385   methodHandle callee_method;
1386   JRT_BLOCK
1387     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1388     thread->set_vm_result_2(callee_method());
1389   JRT_BLOCK_END
1390   // return compiled code entry point after potential safepoints
1391   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1392   return callee_method->verified_code_entry();
1393 JRT_END
1394 
1395 
1396 
1397 
1398 
1399 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1400   ResourceMark rm(thread);
1401   CallInfo call_info;
1402   Bytecodes::Code bc;
1403 
1404   // receiver is NULL for static calls. An exception is thrown for NULL
1405   // receivers for non-static calls
1406   Handle receiver = find_callee_info(thread, bc, call_info,
1407                                      CHECK_(methodHandle()));
1408   // Compiler1 can produce virtual call sites that can actually be statically bound
1409   // If we fell thru to below we would think that the site was going megamorphic
1410   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1411   // we'd try and do a vtable dispatch however methods that can be statically bound
1412   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1413   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1414   // plain ic_miss) and the site will be converted to an optimized virtual call site
1415   // never to miss again. I don't believe C2 will produce code like this but if it
1416   // did this would still be the correct thing to do for it too, hence no ifdef.
1417   //
1418   if (call_info.resolved_method()->can_be_statically_bound()) {
1419     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1420     if (TraceCallFixup) {
1421       RegisterMap reg_map(thread, false);
1422       frame caller_frame = thread->last_frame().sender(&reg_map);
1423       ResourceMark rm(thread);
1424       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1425       callee_method->print_short_name(tty);
1426       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1427       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1428     }
1429     return callee_method;
1430   }
1431 
1432   methodHandle callee_method = call_info.selected_method();
1433 
1434   bool should_be_mono = false;
1435 
1436 #ifndef PRODUCT
1437   Atomic::inc(&_ic_miss_ctr);
1438 
1439   // Statistics & Tracing
1440   if (TraceCallFixup) {
1441     ResourceMark rm(thread);
1442     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1443     callee_method->print_short_name(tty);
1444     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1445   }
1446 
1447   if (ICMissHistogram) {
1448     MutexLocker m(VMStatistic_lock);
1449     RegisterMap reg_map(thread, false);
1450     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1451     // produce statistics under the lock
1452     trace_ic_miss(f.pc());
1453   }
1454 #endif
1455 
1456   // install an event collector so that when a vtable stub is created the
1457   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1458   // event can't be posted when the stub is created as locks are held
1459   // - instead the event will be deferred until the event collector goes
1460   // out of scope.
1461   JvmtiDynamicCodeEventCollector event_collector;
1462 
1463   // Update inline cache to megamorphic. Skip update if caller has been
1464   // made non-entrant or we are called from interpreted.
1465   { MutexLocker ml_patch (CompiledIC_lock);
1466     RegisterMap reg_map(thread, false);
1467     frame caller_frame = thread->last_frame().sender(&reg_map);
1468     CodeBlob* cb = caller_frame.cb();
1469     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
1470       // Not a non-entrant nmethod, so find inline_cache
1471       CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
1472       bool should_be_mono = false;
1473       if (inline_cache->is_optimized()) {
1474         if (TraceCallFixup) {
1475           ResourceMark rm(thread);
1476           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1477           callee_method->print_short_name(tty);
1478           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1479         }
1480         should_be_mono = true;
1481       } else if (inline_cache->is_icholder_call()) {
1482         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1483         if ( ic_oop != NULL) {
1484 
1485           if (receiver()->klass() == ic_oop->holder_klass()) {
1486             // This isn't a real miss. We must have seen that compiled code
1487             // is now available and we want the call site converted to a
1488             // monomorphic compiled call site.
1489             // We can't assert for callee_method->code() != NULL because it
1490             // could have been deoptimized in the meantime
1491             if (TraceCallFixup) {
1492               ResourceMark rm(thread);
1493               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1494               callee_method->print_short_name(tty);
1495               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1496             }
1497             should_be_mono = true;
1498           }
1499         }
1500       }
1501 
1502       if (should_be_mono) {
1503 
1504         // We have a path that was monomorphic but was going interpreted
1505         // and now we have (or had) a compiled entry. We correct the IC
1506         // by using a new icBuffer.
1507         CompiledICInfo info;
1508         KlassHandle receiver_klass(THREAD, receiver()->klass());
1509         inline_cache->compute_monomorphic_entry(callee_method,
1510                                                 receiver_klass,
1511                                                 inline_cache->is_optimized(),
1512                                                 false,
1513                                                 info, CHECK_(methodHandle()));
1514         inline_cache->set_to_monomorphic(info);
1515       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1516         // Potential change to megamorphic
1517         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1518         if (!successful) {
1519           inline_cache->set_to_clean();
1520         }
1521       } else {
1522         // Either clean or megamorphic
1523       }
1524     }
1525   } // Release CompiledIC_lock
1526 
1527   return callee_method;
1528 }
1529 
1530 //
1531 // Resets a call-site in compiled code so it will get resolved again.
1532 // This routines handles both virtual call sites, optimized virtual call
1533 // sites, and static call sites. Typically used to change a call sites
1534 // destination from compiled to interpreted.
1535 //
1536 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1537   ResourceMark rm(thread);
1538   RegisterMap reg_map(thread, false);
1539   frame stub_frame = thread->last_frame();
1540   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1541   frame caller = stub_frame.sender(&reg_map);
1542 
1543   // Do nothing if the frame isn't a live compiled frame.
1544   // nmethod could be deoptimized by the time we get here
1545   // so no update to the caller is needed.
1546 
1547   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1548 
1549     address pc = caller.pc();
1550 
1551     // Default call_addr is the location of the "basic" call.
1552     // Determine the address of the call we a reresolving. With
1553     // Inline Caches we will always find a recognizable call.
1554     // With Inline Caches disabled we may or may not find a
1555     // recognizable call. We will always find a call for static
1556     // calls and for optimized virtual calls. For vanilla virtual
1557     // calls it depends on the state of the UseInlineCaches switch.
1558     //
1559     // With Inline Caches disabled we can get here for a virtual call
1560     // for two reasons:
1561     //   1 - calling an abstract method. The vtable for abstract methods
1562     //       will run us thru handle_wrong_method and we will eventually
1563     //       end up in the interpreter to throw the ame.
1564     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1565     //       call and between the time we fetch the entry address and
1566     //       we jump to it the target gets deoptimized. Similar to 1
1567     //       we will wind up in the interprter (thru a c2i with c2).
1568     //
1569     address call_addr = NULL;
1570     {
1571       // Get call instruction under lock because another thread may be
1572       // busy patching it.
1573       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1574       // Location of call instruction
1575       if (NativeCall::is_call_before(pc)) {
1576         NativeCall *ncall = nativeCall_before(pc);
1577         call_addr = ncall->instruction_address();
1578       }
1579     }
1580 
1581     // Check for static or virtual call
1582     bool is_static_call = false;
1583     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1584     // Make sure nmethod doesn't get deoptimized and removed until
1585     // this is done with it.
1586     // CLEANUP - with lazy deopt shouldn't need this lock
1587     nmethodLocker nmlock(caller_nm);
1588 
1589     if (call_addr != NULL) {
1590       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1591       int ret = iter.next(); // Get item
1592       if (ret) {
1593         assert(iter.addr() == call_addr, "must find call");
1594         if (iter.type() == relocInfo::static_call_type) {
1595           is_static_call = true;
1596         } else {
1597           assert(iter.type() == relocInfo::virtual_call_type ||
1598                  iter.type() == relocInfo::opt_virtual_call_type
1599                 , "unexpected relocInfo. type");
1600         }
1601       } else {
1602         assert(!UseInlineCaches, "relocation info. must exist for this address");
1603       }
1604 
1605       // Cleaning the inline cache will force a new resolve. This is more robust
1606       // than directly setting it to the new destination, since resolving of calls
1607       // is always done through the same code path. (experience shows that it
1608       // leads to very hard to track down bugs, if an inline cache gets updated
1609       // to a wrong method). It should not be performance critical, since the
1610       // resolve is only done once.
1611 
1612       MutexLocker ml(CompiledIC_lock);
1613       //
1614       // We do not patch the call site if the nmethod has been made non-entrant
1615       // as it is a waste of time
1616       //
1617       if (caller_nm->is_in_use()) {
1618         if (is_static_call) {
1619           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1620           ssc->set_to_clean();
1621         } else {
1622           // compiled, dispatched call (which used to call an interpreted method)
1623           CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1624           inline_cache->set_to_clean();
1625         }
1626       }
1627     }
1628 
1629   }
1630 
1631   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1632 
1633 
1634 #ifndef PRODUCT
1635   Atomic::inc(&_wrong_method_ctr);
1636 
1637   if (TraceCallFixup) {
1638     ResourceMark rm(thread);
1639     tty->print("handle_wrong_method reresolving call to");
1640     callee_method->print_short_name(tty);
1641     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1642   }
1643 #endif
1644 
1645   return callee_method;
1646 }
1647 
1648 #ifdef ASSERT
1649 void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method,
1650                                                                 const BasicType* sig_bt,
1651                                                                 const VMRegPair* regs) {
1652   ResourceMark rm;
1653   const int total_args_passed = method->size_of_parameters();
1654   const VMRegPair*    regs_with_member_name = regs;
1655         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1656 
1657   const int member_arg_pos = total_args_passed - 1;
1658   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1659   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1660 
1661   const bool is_outgoing = method->is_method_handle_intrinsic();
1662   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1663 
1664   for (int i = 0; i < member_arg_pos; i++) {
1665     VMReg a =    regs_with_member_name[i].first();
1666     VMReg b = regs_without_member_name[i].first();
1667     assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value()));
1668   }
1669   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1670 }
1671 #endif
1672 
1673 // ---------------------------------------------------------------------------
1674 // We are calling the interpreter via a c2i. Normally this would mean that
1675 // we were called by a compiled method. However we could have lost a race
1676 // where we went int -> i2c -> c2i and so the caller could in fact be
1677 // interpreted. If the caller is compiled we attempt to patch the caller
1678 // so he no longer calls into the interpreter.
1679 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1680   Method* moop(method);
1681 
1682   address entry_point = moop->from_compiled_entry();
1683 
1684   // It's possible that deoptimization can occur at a call site which hasn't
1685   // been resolved yet, in which case this function will be called from
1686   // an nmethod that has been patched for deopt and we can ignore the
1687   // request for a fixup.
1688   // Also it is possible that we lost a race in that from_compiled_entry
1689   // is now back to the i2c in that case we don't need to patch and if
1690   // we did we'd leap into space because the callsite needs to use
1691   // "to interpreter" stub in order to load up the Method*. Don't
1692   // ask me how I know this...
1693 
1694   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1695   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1696     return;
1697   }
1698 
1699   // The check above makes sure this is a nmethod.
1700   nmethod* nm = cb->as_nmethod_or_null();
1701   assert(nm, "must be");
1702 
1703   // Get the return PC for the passed caller PC.
1704   address return_pc = caller_pc + frame::pc_return_offset;
1705 
1706   // There is a benign race here. We could be attempting to patch to a compiled
1707   // entry point at the same time the callee is being deoptimized. If that is
1708   // the case then entry_point may in fact point to a c2i and we'd patch the
1709   // call site with the same old data. clear_code will set code() to NULL
1710   // at the end of it. If we happen to see that NULL then we can skip trying
1711   // to patch. If we hit the window where the callee has a c2i in the
1712   // from_compiled_entry and the NULL isn't present yet then we lose the race
1713   // and patch the code with the same old data. Asi es la vida.
1714 
1715   if (moop->code() == NULL) return;
1716 
1717   if (nm->is_in_use()) {
1718 
1719     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1720     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1721     if (NativeCall::is_call_before(return_pc)) {
1722       NativeCall *call = nativeCall_before(return_pc);
1723       //
1724       // bug 6281185. We might get here after resolving a call site to a vanilla
1725       // virtual call. Because the resolvee uses the verified entry it may then
1726       // see compiled code and attempt to patch the site by calling us. This would
1727       // then incorrectly convert the call site to optimized and its downhill from
1728       // there. If you're lucky you'll get the assert in the bugid, if not you've
1729       // just made a call site that could be megamorphic into a monomorphic site
1730       // for the rest of its life! Just another racing bug in the life of
1731       // fixup_callers_callsite ...
1732       //
1733       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1734       iter.next();
1735       assert(iter.has_current(), "must have a reloc at java call site");
1736       relocInfo::relocType typ = iter.reloc()->type();
1737       if ( typ != relocInfo::static_call_type &&
1738            typ != relocInfo::opt_virtual_call_type &&
1739            typ != relocInfo::static_stub_type) {
1740         return;
1741       }
1742       address destination = call->destination();
1743       if (destination != entry_point) {
1744         CodeBlob* callee = CodeCache::find_blob(destination);
1745         // callee == cb seems weird. It means calling interpreter thru stub.
1746         if (callee == cb || callee->is_adapter_blob()) {
1747           // static call or optimized virtual
1748           if (TraceCallFixup) {
1749             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
1750             moop->print_short_name(tty);
1751             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1752           }
1753           call->set_destination_mt_safe(entry_point);
1754         } else {
1755           if (TraceCallFixup) {
1756             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1757             moop->print_short_name(tty);
1758             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1759           }
1760           // assert is too strong could also be resolve destinations.
1761           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1762         }
1763       } else {
1764           if (TraceCallFixup) {
1765             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1766             moop->print_short_name(tty);
1767             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1768           }
1769       }
1770     }
1771   }
1772 IRT_END
1773 
1774 
1775 // same as JVM_Arraycopy, but called directly from compiled code
1776 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1777                                                 oopDesc* dest, jint dest_pos,
1778                                                 jint length,
1779                                                 JavaThread* thread)) {
1780 #ifndef PRODUCT
1781   _slow_array_copy_ctr++;
1782 #endif
1783   // Check if we have null pointers
1784   if (src == NULL || dest == NULL) {
1785     THROW(vmSymbols::java_lang_NullPointerException());
1786   }
1787   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1788   // even though the copy_array API also performs dynamic checks to ensure
1789   // that src and dest are truly arrays (and are conformable).
1790   // The copy_array mechanism is awkward and could be removed, but
1791   // the compilers don't call this function except as a last resort,
1792   // so it probably doesn't matter.
1793   src->klass()->copy_array((arrayOopDesc*)src,  src_pos,
1794                                         (arrayOopDesc*)dest, dest_pos,
1795                                         length, thread);
1796 }
1797 JRT_END
1798 
1799 char* SharedRuntime::generate_class_cast_message(
1800     JavaThread* thread, const char* objName) {
1801 
1802   // Get target class name from the checkcast instruction
1803   vframeStream vfst(thread, true);
1804   assert(!vfst.at_end(), "Java frame must exist");
1805   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1806   Klass* targetKlass = vfst.method()->constants()->klass_at(
1807     cc.index(), thread);
1808   return generate_class_cast_message(objName, targetKlass->external_name());
1809 }
1810 
1811 char* SharedRuntime::generate_class_cast_message(
1812     const char* objName, const char* targetKlassName, const char* desc) {
1813   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1814 
1815   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1816   if (NULL == message) {
1817     // Shouldn't happen, but don't cause even more problems if it does
1818     message = const_cast<char*>(objName);
1819   } else {
1820     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1821   }
1822   return message;
1823 }
1824 
1825 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1826   (void) JavaThread::current()->reguard_stack();
1827 JRT_END
1828 
1829 
1830 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1831 #ifndef PRODUCT
1832 int SharedRuntime::_monitor_enter_ctr=0;
1833 #endif
1834 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1835   oop obj(_obj);
1836 #ifndef PRODUCT
1837   _monitor_enter_ctr++;             // monitor enter slow
1838 #endif
1839   if (PrintBiasedLockingStatistics) {
1840     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1841   }
1842   Handle h_obj(THREAD, obj);
1843   if (UseBiasedLocking) {
1844     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1845     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1846   } else {
1847     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1848   }
1849   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1850 JRT_END
1851 
1852 #ifndef PRODUCT
1853 int SharedRuntime::_monitor_exit_ctr=0;
1854 #endif
1855 // Handles the uncommon cases of monitor unlocking in compiled code
1856 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
1857    oop obj(_obj);
1858 #ifndef PRODUCT
1859   _monitor_exit_ctr++;              // monitor exit slow
1860 #endif
1861   Thread* THREAD = JavaThread::current();
1862   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1863   // testing was unable to ever fire the assert that guarded it so I have removed it.
1864   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1865 #undef MIGHT_HAVE_PENDING
1866 #ifdef MIGHT_HAVE_PENDING
1867   // Save and restore any pending_exception around the exception mark.
1868   // While the slow_exit must not throw an exception, we could come into
1869   // this routine with one set.
1870   oop pending_excep = NULL;
1871   const char* pending_file;
1872   int pending_line;
1873   if (HAS_PENDING_EXCEPTION) {
1874     pending_excep = PENDING_EXCEPTION;
1875     pending_file  = THREAD->exception_file();
1876     pending_line  = THREAD->exception_line();
1877     CLEAR_PENDING_EXCEPTION;
1878   }
1879 #endif /* MIGHT_HAVE_PENDING */
1880 
1881   {
1882     // Exit must be non-blocking, and therefore no exceptions can be thrown.
1883     EXCEPTION_MARK;
1884     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1885   }
1886 
1887 #ifdef MIGHT_HAVE_PENDING
1888   if (pending_excep != NULL) {
1889     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1890   }
1891 #endif /* MIGHT_HAVE_PENDING */
1892 JRT_END
1893 
1894 #ifndef PRODUCT
1895 
1896 void SharedRuntime::print_statistics() {
1897   ttyLocker ttyl;
1898   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1899 
1900   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
1901   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
1902   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1903 
1904   SharedRuntime::print_ic_miss_histogram();
1905 
1906   if (CountRemovableExceptions) {
1907     if (_nof_removable_exceptions > 0) {
1908       Unimplemented(); // this counter is not yet incremented
1909       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1910     }
1911   }
1912 
1913   // Dump the JRT_ENTRY counters
1914   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1915   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1916   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1917   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1918   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1919   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1920   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1921 
1922   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
1923   tty->print_cr("%5d wrong method", _wrong_method_ctr );
1924   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
1925   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
1926   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
1927 
1928   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
1929   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
1930   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
1931   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
1932   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
1933   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
1934   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
1935   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
1936   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
1937   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
1938   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
1939   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
1940   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
1941   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
1942   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
1943   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
1944 
1945   AdapterHandlerLibrary::print_statistics();
1946 
1947   if (xtty != NULL)  xtty->tail("statistics");
1948 }
1949 
1950 inline double percent(int x, int y) {
1951   return 100.0 * x / MAX2(y, 1);
1952 }
1953 
1954 class MethodArityHistogram {
1955  public:
1956   enum { MAX_ARITY = 256 };
1957  private:
1958   static int _arity_histogram[MAX_ARITY];     // histogram of #args
1959   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
1960   static int _max_arity;                      // max. arity seen
1961   static int _max_size;                       // max. arg size seen
1962 
1963   static void add_method_to_histogram(nmethod* nm) {
1964     Method* m = nm->method();
1965     ArgumentCount args(m->signature());
1966     int arity   = args.size() + (m->is_static() ? 0 : 1);
1967     int argsize = m->size_of_parameters();
1968     arity   = MIN2(arity, MAX_ARITY-1);
1969     argsize = MIN2(argsize, MAX_ARITY-1);
1970     int count = nm->method()->compiled_invocation_count();
1971     _arity_histogram[arity]  += count;
1972     _size_histogram[argsize] += count;
1973     _max_arity = MAX2(_max_arity, arity);
1974     _max_size  = MAX2(_max_size, argsize);
1975   }
1976 
1977   void print_histogram_helper(int n, int* histo, const char* name) {
1978     const int N = MIN2(5, n);
1979     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1980     double sum = 0;
1981     double weighted_sum = 0;
1982     int i;
1983     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
1984     double rest = sum;
1985     double percent = sum / 100;
1986     for (i = 0; i <= N; i++) {
1987       rest -= histo[i];
1988       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
1989     }
1990     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
1991     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
1992   }
1993 
1994   void print_histogram() {
1995     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1996     print_histogram_helper(_max_arity, _arity_histogram, "arity");
1997     tty->print_cr("\nSame for parameter size (in words):");
1998     print_histogram_helper(_max_size, _size_histogram, "size");
1999     tty->cr();
2000   }
2001 
2002  public:
2003   MethodArityHistogram() {
2004     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2005     _max_arity = _max_size = 0;
2006     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
2007     CodeCache::nmethods_do(add_method_to_histogram);
2008     print_histogram();
2009   }
2010 };
2011 
2012 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2013 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2014 int MethodArityHistogram::_max_arity;
2015 int MethodArityHistogram::_max_size;
2016 
2017 void SharedRuntime::print_call_statistics(int comp_total) {
2018   tty->print_cr("Calls from compiled code:");
2019   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2020   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2021   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2022   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2023   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2024   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2025   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2026   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2027   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2028   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2029   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2030   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2031   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2032   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2033   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2034   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2035   tty->cr();
2036   tty->print_cr("Note 1: counter updates are not MT-safe.");
2037   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2038   tty->print_cr("        %% in nested categories are relative to their category");
2039   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2040   tty->cr();
2041 
2042   MethodArityHistogram h;
2043 }
2044 #endif
2045 
2046 
2047 // A simple wrapper class around the calling convention information
2048 // that allows sharing of adapters for the same calling convention.
2049 class AdapterFingerPrint : public CHeapObj<mtCode> {
2050  private:
2051   enum {
2052     _basic_type_bits = 4,
2053     _basic_type_mask = right_n_bits(_basic_type_bits),
2054     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2055     _compact_int_count = 3
2056   };
2057   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2058   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2059 
2060   union {
2061     int  _compact[_compact_int_count];
2062     int* _fingerprint;
2063   } _value;
2064   int _length; // A negative length indicates the fingerprint is in the compact form,
2065                // Otherwise _value._fingerprint is the array.
2066 
2067   // Remap BasicTypes that are handled equivalently by the adapters.
2068   // These are correct for the current system but someday it might be
2069   // necessary to make this mapping platform dependent.
2070   static int adapter_encoding(BasicType in) {
2071     switch(in) {
2072       case T_BOOLEAN:
2073       case T_BYTE:
2074       case T_SHORT:
2075       case T_CHAR:
2076         // There are all promoted to T_INT in the calling convention
2077         return T_INT;
2078 
2079       case T_OBJECT:
2080       case T_ARRAY:
2081         // In other words, we assume that any register good enough for
2082         // an int or long is good enough for a managed pointer.
2083 #ifdef _LP64
2084         return T_LONG;
2085 #else
2086         return T_INT;
2087 #endif
2088 
2089       case T_INT:
2090       case T_LONG:
2091       case T_FLOAT:
2092       case T_DOUBLE:
2093       case T_VOID:
2094         return in;
2095 
2096       default:
2097         ShouldNotReachHere();
2098         return T_CONFLICT;
2099     }
2100   }
2101 
2102  public:
2103   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2104     // The fingerprint is based on the BasicType signature encoded
2105     // into an array of ints with eight entries per int.
2106     int* ptr;
2107     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2108     if (len <= _compact_int_count) {
2109       assert(_compact_int_count == 3, "else change next line");
2110       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2111       // Storing the signature encoded as signed chars hits about 98%
2112       // of the time.
2113       _length = -len;
2114       ptr = _value._compact;
2115     } else {
2116       _length = len;
2117       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2118       ptr = _value._fingerprint;
2119     }
2120 
2121     // Now pack the BasicTypes with 8 per int
2122     int sig_index = 0;
2123     for (int index = 0; index < len; index++) {
2124       int value = 0;
2125       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2126         int bt = ((sig_index < total_args_passed)
2127                   ? adapter_encoding(sig_bt[sig_index++])
2128                   : 0);
2129         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2130         value = (value << _basic_type_bits) | bt;
2131       }
2132       ptr[index] = value;
2133     }
2134   }
2135 
2136   ~AdapterFingerPrint() {
2137     if (_length > 0) {
2138       FREE_C_HEAP_ARRAY(int, _value._fingerprint, mtCode);
2139     }
2140   }
2141 
2142   int value(int index) {
2143     if (_length < 0) {
2144       return _value._compact[index];
2145     }
2146     return _value._fingerprint[index];
2147   }
2148   int length() {
2149     if (_length < 0) return -_length;
2150     return _length;
2151   }
2152 
2153   bool is_compact() {
2154     return _length <= 0;
2155   }
2156 
2157   unsigned int compute_hash() {
2158     int hash = 0;
2159     for (int i = 0; i < length(); i++) {
2160       int v = value(i);
2161       hash = (hash << 8) ^ v ^ (hash >> 5);
2162     }
2163     return (unsigned int)hash;
2164   }
2165 
2166   const char* as_string() {
2167     stringStream st;
2168     st.print("0x");
2169     for (int i = 0; i < length(); i++) {
2170       st.print("%08x", value(i));
2171     }
2172     return st.as_string();
2173   }
2174 
2175   bool equals(AdapterFingerPrint* other) {
2176     if (other->_length != _length) {
2177       return false;
2178     }
2179     if (_length < 0) {
2180       assert(_compact_int_count == 3, "else change next line");
2181       return _value._compact[0] == other->_value._compact[0] &&
2182              _value._compact[1] == other->_value._compact[1] &&
2183              _value._compact[2] == other->_value._compact[2];
2184     } else {
2185       for (int i = 0; i < _length; i++) {
2186         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2187           return false;
2188         }
2189       }
2190     }
2191     return true;
2192   }
2193 };
2194 
2195 
2196 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2197 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2198   friend class AdapterHandlerTableIterator;
2199 
2200  private:
2201 
2202 #ifndef PRODUCT
2203   static int _lookups; // number of calls to lookup
2204   static int _buckets; // number of buckets checked
2205   static int _equals;  // number of buckets checked with matching hash
2206   static int _hits;    // number of successful lookups
2207   static int _compact; // number of equals calls with compact signature
2208 #endif
2209 
2210   AdapterHandlerEntry* bucket(int i) {
2211     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2212   }
2213 
2214  public:
2215   AdapterHandlerTable()
2216     : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
2217 
2218   // Create a new entry suitable for insertion in the table
2219   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2220     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2221     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2222     return entry;
2223   }
2224 
2225   // Insert an entry into the table
2226   void add(AdapterHandlerEntry* entry) {
2227     int index = hash_to_index(entry->hash());
2228     add_entry(index, entry);
2229   }
2230 
2231   void free_entry(AdapterHandlerEntry* entry) {
2232     entry->deallocate();
2233     BasicHashtable<mtCode>::free_entry(entry);
2234   }
2235 
2236   // Find a entry with the same fingerprint if it exists
2237   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2238     NOT_PRODUCT(_lookups++);
2239     AdapterFingerPrint fp(total_args_passed, sig_bt);
2240     unsigned int hash = fp.compute_hash();
2241     int index = hash_to_index(hash);
2242     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2243       NOT_PRODUCT(_buckets++);
2244       if (e->hash() == hash) {
2245         NOT_PRODUCT(_equals++);
2246         if (fp.equals(e->fingerprint())) {
2247 #ifndef PRODUCT
2248           if (fp.is_compact()) _compact++;
2249           _hits++;
2250 #endif
2251           return e;
2252         }
2253       }
2254     }
2255     return NULL;
2256   }
2257 
2258 #ifndef PRODUCT
2259   void print_statistics() {
2260     ResourceMark rm;
2261     int longest = 0;
2262     int empty = 0;
2263     int total = 0;
2264     int nonempty = 0;
2265     for (int index = 0; index < table_size(); index++) {
2266       int count = 0;
2267       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2268         count++;
2269       }
2270       if (count != 0) nonempty++;
2271       if (count == 0) empty++;
2272       if (count > longest) longest = count;
2273       total += count;
2274     }
2275     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2276                   empty, longest, total, total / (double)nonempty);
2277     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2278                   _lookups, _buckets, _equals, _hits, _compact);
2279   }
2280 #endif
2281 };
2282 
2283 
2284 #ifndef PRODUCT
2285 
2286 int AdapterHandlerTable::_lookups;
2287 int AdapterHandlerTable::_buckets;
2288 int AdapterHandlerTable::_equals;
2289 int AdapterHandlerTable::_hits;
2290 int AdapterHandlerTable::_compact;
2291 
2292 #endif
2293 
2294 class AdapterHandlerTableIterator : public StackObj {
2295  private:
2296   AdapterHandlerTable* _table;
2297   int _index;
2298   AdapterHandlerEntry* _current;
2299 
2300   void scan() {
2301     while (_index < _table->table_size()) {
2302       AdapterHandlerEntry* a = _table->bucket(_index);
2303       _index++;
2304       if (a != NULL) {
2305         _current = a;
2306         return;
2307       }
2308     }
2309   }
2310 
2311  public:
2312   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2313     scan();
2314   }
2315   bool has_next() {
2316     return _current != NULL;
2317   }
2318   AdapterHandlerEntry* next() {
2319     if (_current != NULL) {
2320       AdapterHandlerEntry* result = _current;
2321       _current = _current->next();
2322       if (_current == NULL) scan();
2323       return result;
2324     } else {
2325       return NULL;
2326     }
2327   }
2328 };
2329 
2330 
2331 // ---------------------------------------------------------------------------
2332 // Implementation of AdapterHandlerLibrary
2333 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2334 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2335 const int AdapterHandlerLibrary_size = 16*K;
2336 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2337 
2338 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2339   // Should be called only when AdapterHandlerLibrary_lock is active.
2340   if (_buffer == NULL) // Initialize lazily
2341       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2342   return _buffer;
2343 }
2344 
2345 void AdapterHandlerLibrary::initialize() {
2346   if (_adapters != NULL) return;
2347   _adapters = new AdapterHandlerTable();
2348 
2349   // Create a special handler for abstract methods.  Abstract methods
2350   // are never compiled so an i2c entry is somewhat meaningless, but
2351   // throw AbstractMethodError just in case.
2352   // Pass wrong_method_abstract for the c2i transitions to return
2353   // AbstractMethodError for invalid invocations.
2354   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2355   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2356                                                               StubRoutines::throw_AbstractMethodError_entry(),
2357                                                               wrong_method_abstract, wrong_method_abstract);
2358 }
2359 
2360 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2361                                                       address i2c_entry,
2362                                                       address c2i_entry,
2363                                                       address c2i_unverified_entry) {
2364   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2365 }
2366 
2367 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2368   // Use customized signature handler.  Need to lock around updates to
2369   // the AdapterHandlerTable (it is not safe for concurrent readers
2370   // and a single writer: this could be fixed if it becomes a
2371   // problem).
2372 
2373   // Get the address of the ic_miss handlers before we grab the
2374   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
2375   // was caused by the initialization of the stubs happening
2376   // while we held the lock and then notifying jvmti while
2377   // holding it. This just forces the initialization to be a little
2378   // earlier.
2379   address ic_miss = SharedRuntime::get_ic_miss_stub();
2380   assert(ic_miss != NULL, "must have handler");
2381 
2382   ResourceMark rm;
2383 
2384   NOT_PRODUCT(int insts_size);
2385   AdapterBlob* B = NULL;
2386   AdapterHandlerEntry* entry = NULL;
2387   AdapterFingerPrint* fingerprint = NULL;
2388   {
2389     MutexLocker mu(AdapterHandlerLibrary_lock);
2390     // make sure data structure is initialized
2391     initialize();
2392 
2393     if (method->is_abstract()) {
2394       return _abstract_method_handler;
2395     }
2396 
2397     // Fill in the signature array, for the calling-convention call.
2398     int total_args_passed = method->size_of_parameters(); // All args on stack
2399 
2400     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2401     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2402     int i = 0;
2403     if (!method->is_static())  // Pass in receiver first
2404       sig_bt[i++] = T_OBJECT;
2405     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2406       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2407       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2408         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2409     }
2410     assert(i == total_args_passed, "");
2411 
2412     // Lookup method signature's fingerprint
2413     entry = _adapters->lookup(total_args_passed, sig_bt);
2414 
2415 #ifdef ASSERT
2416     AdapterHandlerEntry* shared_entry = NULL;
2417     if (VerifyAdapterSharing && entry != NULL) {
2418       shared_entry = entry;
2419       entry = NULL;
2420     }
2421 #endif
2422 
2423     if (entry != NULL) {
2424       return entry;
2425     }
2426 
2427     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2428     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2429 
2430     // Make a C heap allocated version of the fingerprint to store in the adapter
2431     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2432 
2433     // Create I2C & C2I handlers
2434 
2435     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2436     if (buf != NULL) {
2437       CodeBuffer buffer(buf);
2438       short buffer_locs[20];
2439       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2440                                              sizeof(buffer_locs)/sizeof(relocInfo));
2441       MacroAssembler _masm(&buffer);
2442 
2443       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2444                                                      total_args_passed,
2445                                                      comp_args_on_stack,
2446                                                      sig_bt,
2447                                                      regs,
2448                                                      fingerprint);
2449 
2450 #ifdef ASSERT
2451       if (VerifyAdapterSharing) {
2452         if (shared_entry != NULL) {
2453           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt),
2454                  "code must match");
2455           // Release the one just created and return the original
2456           _adapters->free_entry(entry);
2457           return shared_entry;
2458         } else  {
2459           entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt);
2460         }
2461       }
2462 #endif
2463 
2464       B = AdapterBlob::create(&buffer);
2465       NOT_PRODUCT(insts_size = buffer.insts_size());
2466     }
2467     if (B == NULL) {
2468       // CodeCache is full, disable compilation
2469       // Ought to log this but compile log is only per compile thread
2470       // and we're some non descript Java thread.
2471       MutexUnlocker mu(AdapterHandlerLibrary_lock);
2472       CompileBroker::handle_full_code_cache();
2473       return NULL; // Out of CodeCache space
2474     }
2475     entry->relocate(B->content_begin());
2476 #ifndef PRODUCT
2477     // debugging suppport
2478     if (PrintAdapterHandlers || PrintStubCode) {
2479       ttyLocker ttyl;
2480       entry->print_adapter_on(tty);
2481       tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
2482                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2483                     method->signature()->as_C_string(), insts_size);
2484       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
2485       if (Verbose || PrintStubCode) {
2486         address first_pc = entry->base_address();
2487         if (first_pc != NULL) {
2488           Disassembler::decode(first_pc, first_pc + insts_size);
2489           tty->cr();
2490         }
2491       }
2492     }
2493 #endif
2494 
2495     _adapters->add(entry);
2496   }
2497   // Outside of the lock
2498   if (B != NULL) {
2499     char blob_id[256];
2500     jio_snprintf(blob_id,
2501                  sizeof(blob_id),
2502                  "%s(%s)@" PTR_FORMAT,
2503                  B->name(),
2504                  fingerprint->as_string(),
2505                  B->content_begin());
2506     Forte::register_stub(blob_id, B->content_begin(), B->content_end());
2507 
2508     if (JvmtiExport::should_post_dynamic_code_generated()) {
2509       JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end());
2510     }
2511   }
2512   return entry;
2513 }
2514 
2515 address AdapterHandlerEntry::base_address() {
2516   address base = _i2c_entry;
2517   if (base == NULL)  base = _c2i_entry;
2518   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2519   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2520   return base;
2521 }
2522 
2523 void AdapterHandlerEntry::relocate(address new_base) {
2524   address old_base = base_address();
2525   assert(old_base != NULL, "");
2526   ptrdiff_t delta = new_base - old_base;
2527   if (_i2c_entry != NULL)
2528     _i2c_entry += delta;
2529   if (_c2i_entry != NULL)
2530     _c2i_entry += delta;
2531   if (_c2i_unverified_entry != NULL)
2532     _c2i_unverified_entry += delta;
2533   assert(base_address() == new_base, "");
2534 }
2535 
2536 
2537 void AdapterHandlerEntry::deallocate() {
2538   delete _fingerprint;
2539 #ifdef ASSERT
2540   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code, mtCode);
2541   if (_saved_sig)  FREE_C_HEAP_ARRAY(Basictype, _saved_sig, mtCode);
2542 #endif
2543 }
2544 
2545 
2546 #ifdef ASSERT
2547 // Capture the code before relocation so that it can be compared
2548 // against other versions.  If the code is captured after relocation
2549 // then relative instructions won't be equivalent.
2550 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2551   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2552   _code_length = length;
2553   memcpy(_saved_code, buffer, length);
2554   _total_args_passed = total_args_passed;
2555   _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed, mtCode);
2556   memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
2557 }
2558 
2559 
2560 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2561   if (length != _code_length) {
2562     return false;
2563   }
2564   for (int i = 0; i < length; i++) {
2565     if (buffer[i] != _saved_code[i]) {
2566       return false;
2567     }
2568   }
2569   return true;
2570 }
2571 #endif
2572 
2573 
2574 // Create a native wrapper for this native method.  The wrapper converts the
2575 // java compiled calling convention to the native convention, handlizes
2576 // arguments, and transitions to native.  On return from the native we transition
2577 // back to java blocking if a safepoint is in progress.
2578 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method, int compile_id) {
2579   ResourceMark rm;
2580   nmethod* nm = NULL;
2581 
2582   assert(method->is_native(), "must be native");
2583   assert(method->is_method_handle_intrinsic() ||
2584          method->has_native_function(), "must have something valid to call!");
2585 
2586   {
2587     // perform the work while holding the lock, but perform any printing outside the lock
2588     MutexLocker mu(AdapterHandlerLibrary_lock);
2589     // See if somebody beat us to it
2590     nm = method->code();
2591     if (nm) {
2592       return nm;
2593     }
2594 
2595     ResourceMark rm;
2596 
2597     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2598     if (buf != NULL) {
2599       CodeBuffer buffer(buf);
2600       double locs_buf[20];
2601       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2602       MacroAssembler _masm(&buffer);
2603 
2604       // Fill in the signature array, for the calling-convention call.
2605       const int total_args_passed = method->size_of_parameters();
2606 
2607       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2608       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2609       int i=0;
2610       if( !method->is_static() )  // Pass in receiver first
2611         sig_bt[i++] = T_OBJECT;
2612       SignatureStream ss(method->signature());
2613       for( ; !ss.at_return_type(); ss.next()) {
2614         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2615         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
2616           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2617       }
2618       assert(i == total_args_passed, "");
2619       BasicType ret_type = ss.type();
2620 
2621       // Now get the compiled-Java layout as input (or output) arguments.
2622       // NOTE: Stubs for compiled entry points of method handle intrinsics
2623       // are just trampolines so the argument registers must be outgoing ones.
2624       const bool is_outgoing = method->is_method_handle_intrinsic();
2625       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2626 
2627       // Generate the compiled-to-native wrapper code
2628       nm = SharedRuntime::generate_native_wrapper(&_masm,
2629                                                   method,
2630                                                   compile_id,
2631                                                   sig_bt,
2632                                                   regs,
2633                                                   ret_type);
2634     }
2635   }
2636 
2637   // Must unlock before calling set_code
2638 
2639   // Install the generated code.
2640   if (nm != NULL) {
2641     if (PrintCompilation) {
2642       ttyLocker ttyl;
2643       CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
2644     }
2645     method->set_code(method, nm);
2646     nm->post_compiled_method_load_event();
2647   } else {
2648     // CodeCache is full, disable compilation
2649     CompileBroker::handle_full_code_cache();
2650   }
2651   return nm;
2652 }
2653 
2654 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2655   assert(thread == JavaThread::current(), "must be");
2656   // The code is about to enter a JNI lazy critical native method and
2657   // _needs_gc is true, so if this thread is already in a critical
2658   // section then just return, otherwise this thread should block
2659   // until needs_gc has been cleared.
2660   if (thread->in_critical()) {
2661     return;
2662   }
2663   // Lock and unlock a critical section to give the system a chance to block
2664   GC_locker::lock_critical(thread);
2665   GC_locker::unlock_critical(thread);
2666 JRT_END
2667 
2668 #ifdef HAVE_DTRACE_H
2669 // Create a dtrace nmethod for this method.  The wrapper converts the
2670 // java compiled calling convention to the native convention, makes a dummy call
2671 // (actually nops for the size of the call instruction, which become a trap if
2672 // probe is enabled). The returns to the caller. Since this all looks like a
2673 // leaf no thread transition is needed.
2674 
2675 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2676   ResourceMark rm;
2677   nmethod* nm = NULL;
2678 
2679   if (PrintCompilation) {
2680     ttyLocker ttyl;
2681     tty->print("---   n%s  ");
2682     method->print_short_name(tty);
2683     if (method->is_static()) {
2684       tty->print(" (static)");
2685     }
2686     tty->cr();
2687   }
2688 
2689   {
2690     // perform the work while holding the lock, but perform any printing
2691     // outside the lock
2692     MutexLocker mu(AdapterHandlerLibrary_lock);
2693     // See if somebody beat us to it
2694     nm = method->code();
2695     if (nm) {
2696       return nm;
2697     }
2698 
2699     ResourceMark rm;
2700 
2701     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2702     if (buf != NULL) {
2703       CodeBuffer buffer(buf);
2704       // Need a few relocation entries
2705       double locs_buf[20];
2706       buffer.insts()->initialize_shared_locs(
2707         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2708       MacroAssembler _masm(&buffer);
2709 
2710       // Generate the compiled-to-native wrapper code
2711       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2712     }
2713   }
2714   return nm;
2715 }
2716 
2717 // the dtrace method needs to convert java lang string to utf8 string.
2718 void SharedRuntime::get_utf(oopDesc* src, address dst) {
2719   typeArrayOop jlsValue  = java_lang_String::value(src);
2720   int          jlsOffset = java_lang_String::offset(src);
2721   int          jlsLen    = java_lang_String::length(src);
2722   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
2723                                            jlsValue->char_at_addr(jlsOffset);
2724   assert(TypeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
2725   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2726 }
2727 #endif // ndef HAVE_DTRACE_H
2728 
2729 // -------------------------------------------------------------------------
2730 // Java-Java calling convention
2731 // (what you use when Java calls Java)
2732 
2733 //------------------------------name_for_receiver----------------------------------
2734 // For a given signature, return the VMReg for parameter 0.
2735 VMReg SharedRuntime::name_for_receiver() {
2736   VMRegPair regs;
2737   BasicType sig_bt = T_OBJECT;
2738   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2739   // Return argument 0 register.  In the LP64 build pointers
2740   // take 2 registers, but the VM wants only the 'main' name.
2741   return regs.first();
2742 }
2743 
2744 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2745   // This method is returning a data structure allocating as a
2746   // ResourceObject, so do not put any ResourceMarks in here.
2747   char *s = sig->as_C_string();
2748   int len = (int)strlen(s);
2749   s++; len--;                   // Skip opening paren
2750   char *t = s+len;
2751   while( *(--t) != ')' ) ;      // Find close paren
2752 
2753   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
2754   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
2755   int cnt = 0;
2756   if (has_receiver) {
2757     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2758   }
2759 
2760   while( s < t ) {
2761     switch( *s++ ) {            // Switch on signature character
2762     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2763     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2764     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2765     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2766     case 'I': sig_bt[cnt++] = T_INT;     break;
2767     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2768     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2769     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2770     case 'V': sig_bt[cnt++] = T_VOID;    break;
2771     case 'L':                   // Oop
2772       while( *s++ != ';'  ) ;   // Skip signature
2773       sig_bt[cnt++] = T_OBJECT;
2774       break;
2775     case '[': {                 // Array
2776       do {                      // Skip optional size
2777         while( *s >= '0' && *s <= '9' ) s++;
2778       } while( *s++ == '[' );   // Nested arrays?
2779       // Skip element type
2780       if( s[-1] == 'L' )
2781         while( *s++ != ';'  ) ; // Skip signature
2782       sig_bt[cnt++] = T_ARRAY;
2783       break;
2784     }
2785     default : ShouldNotReachHere();
2786     }
2787   }
2788 
2789   if (has_appendix) {
2790     sig_bt[cnt++] = T_OBJECT;
2791   }
2792 
2793   assert( cnt < 256, "grow table size" );
2794 
2795   int comp_args_on_stack;
2796   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2797 
2798   // the calling convention doesn't count out_preserve_stack_slots so
2799   // we must add that in to get "true" stack offsets.
2800 
2801   if (comp_args_on_stack) {
2802     for (int i = 0; i < cnt; i++) {
2803       VMReg reg1 = regs[i].first();
2804       if( reg1->is_stack()) {
2805         // Yuck
2806         reg1 = reg1->bias(out_preserve_stack_slots());
2807       }
2808       VMReg reg2 = regs[i].second();
2809       if( reg2->is_stack()) {
2810         // Yuck
2811         reg2 = reg2->bias(out_preserve_stack_slots());
2812       }
2813       regs[i].set_pair(reg2, reg1);
2814     }
2815   }
2816 
2817   // results
2818   *arg_size = cnt;
2819   return regs;
2820 }
2821 
2822 // OSR Migration Code
2823 //
2824 // This code is used convert interpreter frames into compiled frames.  It is
2825 // called from very start of a compiled OSR nmethod.  A temp array is
2826 // allocated to hold the interesting bits of the interpreter frame.  All
2827 // active locks are inflated to allow them to move.  The displaced headers and
2828 // active interpreter locals are copied into the temp buffer.  Then we return
2829 // back to the compiled code.  The compiled code then pops the current
2830 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2831 // copies the interpreter locals and displaced headers where it wants.
2832 // Finally it calls back to free the temp buffer.
2833 //
2834 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2835 
2836 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2837 
2838   //
2839   // This code is dependent on the memory layout of the interpreter local
2840   // array and the monitors. On all of our platforms the layout is identical
2841   // so this code is shared. If some platform lays the their arrays out
2842   // differently then this code could move to platform specific code or
2843   // the code here could be modified to copy items one at a time using
2844   // frame accessor methods and be platform independent.
2845 
2846   frame fr = thread->last_frame();
2847   assert( fr.is_interpreted_frame(), "" );
2848   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
2849 
2850   // Figure out how many monitors are active.
2851   int active_monitor_count = 0;
2852   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2853        kptr < fr.interpreter_frame_monitor_begin();
2854        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2855     if( kptr->obj() != NULL ) active_monitor_count++;
2856   }
2857 
2858   // QQQ we could place number of active monitors in the array so that compiled code
2859   // could double check it.
2860 
2861   Method* moop = fr.interpreter_frame_method();
2862   int max_locals = moop->max_locals();
2863   // Allocate temp buffer, 1 word per local & 2 per active monitor
2864   int buf_size_words = max_locals + active_monitor_count*2;
2865   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
2866 
2867   // Copy the locals.  Order is preserved so that loading of longs works.
2868   // Since there's no GC I can copy the oops blindly.
2869   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2870   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2871                        (HeapWord*)&buf[0],
2872                        max_locals);
2873 
2874   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2875   int i = max_locals;
2876   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2877        kptr2 < fr.interpreter_frame_monitor_begin();
2878        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2879     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2880       BasicLock *lock = kptr2->lock();
2881       // Inflate so the displaced header becomes position-independent
2882       if (lock->displaced_header()->is_unlocked())
2883         ObjectSynchronizer::inflate_helper(kptr2->obj());
2884       // Now the displaced header is free to move
2885       buf[i++] = (intptr_t)lock->displaced_header();
2886       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
2887     }
2888   }
2889   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
2890 
2891   return buf;
2892 JRT_END
2893 
2894 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2895   FREE_C_HEAP_ARRAY(intptr_t,buf, mtCode);
2896 JRT_END
2897 
2898 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2899   AdapterHandlerTableIterator iter(_adapters);
2900   while (iter.has_next()) {
2901     AdapterHandlerEntry* a = iter.next();
2902     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
2903   }
2904   return false;
2905 }
2906 
2907 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
2908   AdapterHandlerTableIterator iter(_adapters);
2909   while (iter.has_next()) {
2910     AdapterHandlerEntry* a = iter.next();
2911     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
2912       st->print("Adapter for signature: ");
2913       a->print_adapter_on(tty);
2914       return;
2915     }
2916   }
2917   assert(false, "Should have found handler");
2918 }
2919 
2920 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
2921   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2922                (intptr_t) this, fingerprint()->as_string(),
2923                get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry());
2924 
2925 }
2926 
2927 #ifndef PRODUCT
2928 
2929 void AdapterHandlerLibrary::print_statistics() {
2930   _adapters->print_statistics();
2931 }
2932 
2933 #endif /* PRODUCT */