1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  31 #include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp"
  32 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  33 #include "gc_implementation/concurrentMarkSweep/cmsOopClosures.inline.hpp"
  34 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
  35 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp"
  36 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  37 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  38 #include "gc_implementation/parNew/parNewGeneration.hpp"
  39 #include "gc_implementation/shared/collectorCounters.hpp"
  40 #include "gc_implementation/shared/gcTimer.hpp"
  41 #include "gc_implementation/shared/gcTrace.hpp"
  42 #include "gc_implementation/shared/gcTraceTime.hpp"
  43 #include "gc_implementation/shared/isGCActiveMark.hpp"
  44 #include "gc_interface/collectedHeap.inline.hpp"
  45 #include "memory/allocation.hpp"
  46 #include "memory/cardTableRS.hpp"
  47 #include "memory/collectorPolicy.hpp"
  48 #include "memory/gcLocker.inline.hpp"
  49 #include "memory/genCollectedHeap.hpp"
  50 #include "memory/genMarkSweep.hpp"
  51 #include "memory/genOopClosures.inline.hpp"
  52 #include "memory/iterator.hpp"
  53 #include "memory/padded.hpp"
  54 #include "memory/referencePolicy.hpp"
  55 #include "memory/resourceArea.hpp"
  56 #include "memory/tenuredGeneration.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "prims/jvmtiExport.hpp"
  59 #include "runtime/globals_extension.hpp"
  60 #include "runtime/handles.inline.hpp"
  61 #include "runtime/java.hpp"
  62 #include "runtime/vmThread.hpp"
  63 #include "services/memoryService.hpp"
  64 #include "services/runtimeService.hpp"
  65 
  66 // statics
  67 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  68 bool CMSCollector::_full_gc_requested = false;
  69 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  70 
  71 //////////////////////////////////////////////////////////////////
  72 // In support of CMS/VM thread synchronization
  73 //////////////////////////////////////////////////////////////////
  74 // We split use of the CGC_lock into 2 "levels".
  75 // The low-level locking is of the usual CGC_lock monitor. We introduce
  76 // a higher level "token" (hereafter "CMS token") built on top of the
  77 // low level monitor (hereafter "CGC lock").
  78 // The token-passing protocol gives priority to the VM thread. The
  79 // CMS-lock doesn't provide any fairness guarantees, but clients
  80 // should ensure that it is only held for very short, bounded
  81 // durations.
  82 //
  83 // When either of the CMS thread or the VM thread is involved in
  84 // collection operations during which it does not want the other
  85 // thread to interfere, it obtains the CMS token.
  86 //
  87 // If either thread tries to get the token while the other has
  88 // it, that thread waits. However, if the VM thread and CMS thread
  89 // both want the token, then the VM thread gets priority while the
  90 // CMS thread waits. This ensures, for instance, that the "concurrent"
  91 // phases of the CMS thread's work do not block out the VM thread
  92 // for long periods of time as the CMS thread continues to hog
  93 // the token. (See bug 4616232).
  94 //
  95 // The baton-passing functions are, however, controlled by the
  96 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
  97 // and here the low-level CMS lock, not the high level token,
  98 // ensures mutual exclusion.
  99 //
 100 // Two important conditions that we have to satisfy:
 101 // 1. if a thread does a low-level wait on the CMS lock, then it
 102 //    relinquishes the CMS token if it were holding that token
 103 //    when it acquired the low-level CMS lock.
 104 // 2. any low-level notifications on the low-level lock
 105 //    should only be sent when a thread has relinquished the token.
 106 //
 107 // In the absence of either property, we'd have potential deadlock.
 108 //
 109 // We protect each of the CMS (concurrent and sequential) phases
 110 // with the CMS _token_, not the CMS _lock_.
 111 //
 112 // The only code protected by CMS lock is the token acquisition code
 113 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 114 // baton-passing code.
 115 //
 116 // Unfortunately, i couldn't come up with a good abstraction to factor and
 117 // hide the naked CGC_lock manipulation in the baton-passing code
 118 // further below. That's something we should try to do. Also, the proof
 119 // of correctness of this 2-level locking scheme is far from obvious,
 120 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 121 // that there may be a theoretical possibility of delay/starvation in the
 122 // low-level lock/wait/notify scheme used for the baton-passing because of
 123 // potential interference with the priority scheme embodied in the
 124 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 125 // invocation further below and marked with "XXX 20011219YSR".
 126 // Indeed, as we note elsewhere, this may become yet more slippery
 127 // in the presence of multiple CMS and/or multiple VM threads. XXX
 128 
 129 class CMSTokenSync: public StackObj {
 130  private:
 131   bool _is_cms_thread;
 132  public:
 133   CMSTokenSync(bool is_cms_thread):
 134     _is_cms_thread(is_cms_thread) {
 135     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 136            "Incorrect argument to constructor");
 137     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 138   }
 139 
 140   ~CMSTokenSync() {
 141     assert(_is_cms_thread ?
 142              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 143              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 144           "Incorrect state");
 145     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 146   }
 147 };
 148 
 149 // Convenience class that does a CMSTokenSync, and then acquires
 150 // upto three locks.
 151 class CMSTokenSyncWithLocks: public CMSTokenSync {
 152  private:
 153   // Note: locks are acquired in textual declaration order
 154   // and released in the opposite order
 155   MutexLockerEx _locker1, _locker2, _locker3;
 156  public:
 157   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 158                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 159     CMSTokenSync(is_cms_thread),
 160     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 161     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 162     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 163   { }
 164 };
 165 
 166 
 167 // Wrapper class to temporarily disable icms during a foreground cms collection.
 168 class ICMSDisabler: public StackObj {
 169  public:
 170   // The ctor disables icms and wakes up the thread so it notices the change;
 171   // the dtor re-enables icms.  Note that the CMSCollector methods will check
 172   // CMSIncrementalMode.
 173   ICMSDisabler()  { CMSCollector::disable_icms(); CMSCollector::start_icms(); }
 174   ~ICMSDisabler() { CMSCollector::enable_icms(); }
 175 };
 176 
 177 //////////////////////////////////////////////////////////////////
 178 //  Concurrent Mark-Sweep Generation /////////////////////////////
 179 //////////////////////////////////////////////////////////////////
 180 
 181 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 182 
 183 // This struct contains per-thread things necessary to support parallel
 184 // young-gen collection.
 185 class CMSParGCThreadState: public CHeapObj<mtGC> {
 186  public:
 187   CFLS_LAB lab;
 188   PromotionInfo promo;
 189 
 190   // Constructor.
 191   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 192     promo.setSpace(cfls);
 193   }
 194 };
 195 
 196 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 197      ReservedSpace rs, size_t initial_byte_size, int level,
 198      CardTableRS* ct, bool use_adaptive_freelists,
 199      FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
 200   CardGeneration(rs, initial_byte_size, level, ct),
 201   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 202   _debug_collection_type(Concurrent_collection_type),
 203   _did_compact(false)
 204 {
 205   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 206   HeapWord* end    = (HeapWord*) _virtual_space.high();
 207 
 208   _direct_allocated_words = 0;
 209   NOT_PRODUCT(
 210     _numObjectsPromoted = 0;
 211     _numWordsPromoted = 0;
 212     _numObjectsAllocated = 0;
 213     _numWordsAllocated = 0;
 214   )
 215 
 216   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
 217                                            use_adaptive_freelists,
 218                                            dictionaryChoice);
 219   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 220   if (_cmsSpace == NULL) {
 221     vm_exit_during_initialization(
 222       "CompactibleFreeListSpace allocation failure");
 223   }
 224   _cmsSpace->_gen = this;
 225 
 226   _gc_stats = new CMSGCStats();
 227 
 228   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 229   // offsets match. The ability to tell free chunks from objects
 230   // depends on this property.
 231   debug_only(
 232     FreeChunk* junk = NULL;
 233     assert(UseCompressedClassPointers ||
 234            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 235            "Offset of FreeChunk::_prev within FreeChunk must match"
 236            "  that of OopDesc::_klass within OopDesc");
 237   )
 238   if (CollectedHeap::use_parallel_gc_threads()) {
 239     typedef CMSParGCThreadState* CMSParGCThreadStatePtr;
 240     _par_gc_thread_states =
 241       NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads, mtGC);
 242     if (_par_gc_thread_states == NULL) {
 243       vm_exit_during_initialization("Could not allocate par gc structs");
 244     }
 245     for (uint i = 0; i < ParallelGCThreads; i++) {
 246       _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 247       if (_par_gc_thread_states[i] == NULL) {
 248         vm_exit_during_initialization("Could not allocate par gc structs");
 249       }
 250     }
 251   } else {
 252     _par_gc_thread_states = NULL;
 253   }
 254   _incremental_collection_failed = false;
 255   // The "dilatation_factor" is the expansion that can occur on
 256   // account of the fact that the minimum object size in the CMS
 257   // generation may be larger than that in, say, a contiguous young
 258   //  generation.
 259   // Ideally, in the calculation below, we'd compute the dilatation
 260   // factor as: MinChunkSize/(promoting_gen's min object size)
 261   // Since we do not have such a general query interface for the
 262   // promoting generation, we'll instead just use the minimum
 263   // object size (which today is a header's worth of space);
 264   // note that all arithmetic is in units of HeapWords.
 265   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 266   assert(_dilatation_factor >= 1.0, "from previous assert");
 267 }
 268 
 269 
 270 // The field "_initiating_occupancy" represents the occupancy percentage
 271 // at which we trigger a new collection cycle.  Unless explicitly specified
 272 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 273 // is calculated by:
 274 //
 275 //   Let "f" be MinHeapFreeRatio in
 276 //
 277 //    _initiating_occupancy = 100-f +
 278 //                           f * (CMSTriggerRatio/100)
 279 //   where CMSTriggerRatio is the argument "tr" below.
 280 //
 281 // That is, if we assume the heap is at its desired maximum occupancy at the
 282 // end of a collection, we let CMSTriggerRatio of the (purported) free
 283 // space be allocated before initiating a new collection cycle.
 284 //
 285 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 286   assert(io <= 100 && tr <= 100, "Check the arguments");
 287   if (io >= 0) {
 288     _initiating_occupancy = (double)io / 100.0;
 289   } else {
 290     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 291                              (double)(tr * MinHeapFreeRatio) / 100.0)
 292                             / 100.0;
 293   }
 294 }
 295 
 296 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 297   assert(collector() != NULL, "no collector");
 298   collector()->ref_processor_init();
 299 }
 300 
 301 void CMSCollector::ref_processor_init() {
 302   if (_ref_processor == NULL) {
 303     // Allocate and initialize a reference processor
 304     _ref_processor =
 305       new ReferenceProcessor(_span,                               // span
 306                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 307                              (int) ParallelGCThreads,             // mt processing degree
 308                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 309                              (int) MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 310                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 311                              &_is_alive_closure,                  // closure for liveness info
 312                              false);                              // next field updates do not need write barrier
 313     // Initialize the _ref_processor field of CMSGen
 314     _cmsGen->set_ref_processor(_ref_processor);
 315 
 316   }
 317 }
 318 
 319 CMSAdaptiveSizePolicy* CMSCollector::size_policy() {
 320   GenCollectedHeap* gch = GenCollectedHeap::heap();
 321   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
 322     "Wrong type of heap");
 323   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
 324     gch->gen_policy()->size_policy();
 325   assert(sp->is_gc_cms_adaptive_size_policy(),
 326     "Wrong type of size policy");
 327   return sp;
 328 }
 329 
 330 CMSGCAdaptivePolicyCounters* CMSCollector::gc_adaptive_policy_counters() {
 331   CMSGCAdaptivePolicyCounters* results =
 332     (CMSGCAdaptivePolicyCounters*) collector_policy()->counters();
 333   assert(
 334     results->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
 335     "Wrong gc policy counter kind");
 336   return results;
 337 }
 338 
 339 
 340 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 341 
 342   const char* gen_name = "old";
 343 
 344   // Generation Counters - generation 1, 1 subspace
 345   _gen_counters = new GenerationCounters(gen_name, 1, 1, &_virtual_space);
 346 
 347   _space_counters = new GSpaceCounters(gen_name, 0,
 348                                        _virtual_space.reserved_size(),
 349                                        this, _gen_counters);
 350 }
 351 
 352 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 353   _cms_gen(cms_gen)
 354 {
 355   assert(alpha <= 100, "bad value");
 356   _saved_alpha = alpha;
 357 
 358   // Initialize the alphas to the bootstrap value of 100.
 359   _gc0_alpha = _cms_alpha = 100;
 360 
 361   _cms_begin_time.update();
 362   _cms_end_time.update();
 363 
 364   _gc0_duration = 0.0;
 365   _gc0_period = 0.0;
 366   _gc0_promoted = 0;
 367 
 368   _cms_duration = 0.0;
 369   _cms_period = 0.0;
 370   _cms_allocated = 0;
 371 
 372   _cms_used_at_gc0_begin = 0;
 373   _cms_used_at_gc0_end = 0;
 374   _allow_duty_cycle_reduction = false;
 375   _valid_bits = 0;
 376   _icms_duty_cycle = CMSIncrementalDutyCycle;
 377 }
 378 
 379 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 380   // TBD: CR 6909490
 381   return 1.0;
 382 }
 383 
 384 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 385 }
 386 
 387 // If promotion failure handling is on use
 388 // the padded average size of the promotion for each
 389 // young generation collection.
 390 double CMSStats::time_until_cms_gen_full() const {
 391   size_t cms_free = _cms_gen->cmsSpace()->free();
 392   GenCollectedHeap* gch = GenCollectedHeap::heap();
 393   size_t expected_promotion = MIN2(gch->get_gen(0)->capacity(),
 394                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 395   if (cms_free > expected_promotion) {
 396     // Start a cms collection if there isn't enough space to promote
 397     // for the next minor collection.  Use the padded average as
 398     // a safety factor.
 399     cms_free -= expected_promotion;
 400 
 401     // Adjust by the safety factor.
 402     double cms_free_dbl = (double)cms_free;
 403     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0;
 404     // Apply a further correction factor which tries to adjust
 405     // for recent occurance of concurrent mode failures.
 406     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 407     cms_free_dbl = cms_free_dbl * cms_adjustment;
 408 
 409     if (PrintGCDetails && Verbose) {
 410       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
 411         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 412         cms_free, expected_promotion);
 413       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
 414         cms_free_dbl, cms_consumption_rate() + 1.0);
 415     }
 416     // Add 1 in case the consumption rate goes to zero.
 417     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 418   }
 419   return 0.0;
 420 }
 421 
 422 // Compare the duration of the cms collection to the
 423 // time remaining before the cms generation is empty.
 424 // Note that the time from the start of the cms collection
 425 // to the start of the cms sweep (less than the total
 426 // duration of the cms collection) can be used.  This
 427 // has been tried and some applications experienced
 428 // promotion failures early in execution.  This was
 429 // possibly because the averages were not accurate
 430 // enough at the beginning.
 431 double CMSStats::time_until_cms_start() const {
 432   // We add "gc0_period" to the "work" calculation
 433   // below because this query is done (mostly) at the
 434   // end of a scavenge, so we need to conservatively
 435   // account for that much possible delay
 436   // in the query so as to avoid concurrent mode failures
 437   // due to starting the collection just a wee bit too
 438   // late.
 439   double work = cms_duration() + gc0_period();
 440   double deadline = time_until_cms_gen_full();
 441   // If a concurrent mode failure occurred recently, we want to be
 442   // more conservative and halve our expected time_until_cms_gen_full()
 443   if (work > deadline) {
 444     if (Verbose && PrintGCDetails) {
 445       gclog_or_tty->print(
 446         " CMSCollector: collect because of anticipated promotion "
 447         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
 448         gc0_period(), time_until_cms_gen_full());
 449     }
 450     return 0.0;
 451   }
 452   return work - deadline;
 453 }
 454 
 455 // Return a duty cycle based on old_duty_cycle and new_duty_cycle, limiting the
 456 // amount of change to prevent wild oscillation.
 457 unsigned int CMSStats::icms_damped_duty_cycle(unsigned int old_duty_cycle,
 458                                               unsigned int new_duty_cycle) {
 459   assert(old_duty_cycle <= 100, "bad input value");
 460   assert(new_duty_cycle <= 100, "bad input value");
 461 
 462   // Note:  use subtraction with caution since it may underflow (values are
 463   // unsigned).  Addition is safe since we're in the range 0-100.
 464   unsigned int damped_duty_cycle = new_duty_cycle;
 465   if (new_duty_cycle < old_duty_cycle) {
 466     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 5U);
 467     if (new_duty_cycle + largest_delta < old_duty_cycle) {
 468       damped_duty_cycle = old_duty_cycle - largest_delta;
 469     }
 470   } else if (new_duty_cycle > old_duty_cycle) {
 471     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 15U);
 472     if (new_duty_cycle > old_duty_cycle + largest_delta) {
 473       damped_duty_cycle = MIN2(old_duty_cycle + largest_delta, 100U);
 474     }
 475   }
 476   assert(damped_duty_cycle <= 100, "invalid duty cycle computed");
 477 
 478   if (CMSTraceIncrementalPacing) {
 479     gclog_or_tty->print(" [icms_damped_duty_cycle(%d,%d) = %d] ",
 480                            old_duty_cycle, new_duty_cycle, damped_duty_cycle);
 481   }
 482   return damped_duty_cycle;
 483 }
 484 
 485 unsigned int CMSStats::icms_update_duty_cycle_impl() {
 486   assert(CMSIncrementalPacing && valid(),
 487          "should be handled in icms_update_duty_cycle()");
 488 
 489   double cms_time_so_far = cms_timer().seconds();
 490   double scaled_duration = cms_duration_per_mb() * _cms_used_at_gc0_end / M;
 491   double scaled_duration_remaining = fabsd(scaled_duration - cms_time_so_far);
 492 
 493   // Avoid division by 0.
 494   double time_until_full = MAX2(time_until_cms_gen_full(), 0.01);
 495   double duty_cycle_dbl = 100.0 * scaled_duration_remaining / time_until_full;
 496 
 497   unsigned int new_duty_cycle = MIN2((unsigned int)duty_cycle_dbl, 100U);
 498   if (new_duty_cycle > _icms_duty_cycle) {
 499     // Avoid very small duty cycles (1 or 2); 0 is allowed.
 500     if (new_duty_cycle > 2) {
 501       _icms_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle,
 502                                                 new_duty_cycle);
 503     }
 504   } else if (_allow_duty_cycle_reduction) {
 505     // The duty cycle is reduced only once per cms cycle (see record_cms_end()).
 506     new_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, new_duty_cycle);
 507     // Respect the minimum duty cycle.
 508     unsigned int min_duty_cycle = (unsigned int)CMSIncrementalDutyCycleMin;
 509     _icms_duty_cycle = MAX2(new_duty_cycle, min_duty_cycle);
 510   }
 511 
 512   if (PrintGCDetails || CMSTraceIncrementalPacing) {
 513     gclog_or_tty->print(" icms_dc=%d ", _icms_duty_cycle);
 514   }
 515 
 516   _allow_duty_cycle_reduction = false;
 517   return _icms_duty_cycle;
 518 }
 519 
 520 #ifndef PRODUCT
 521 void CMSStats::print_on(outputStream *st) const {
 522   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 523   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 524                gc0_duration(), gc0_period(), gc0_promoted());
 525   st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 526             cms_duration(), cms_duration_per_mb(),
 527             cms_period(), cms_allocated());
 528   st->print(",cms_since_beg=%g,cms_since_end=%g",
 529             cms_time_since_begin(), cms_time_since_end());
 530   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 531             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 532   if (CMSIncrementalMode) {
 533     st->print(",dc=%d", icms_duty_cycle());
 534   }
 535 
 536   if (valid()) {
 537     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 538               promotion_rate(), cms_allocation_rate());
 539     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 540               cms_consumption_rate(), time_until_cms_gen_full());
 541   }
 542   st->print(" ");
 543 }
 544 #endif // #ifndef PRODUCT
 545 
 546 CMSCollector::CollectorState CMSCollector::_collectorState =
 547                              CMSCollector::Idling;
 548 bool CMSCollector::_foregroundGCIsActive = false;
 549 bool CMSCollector::_foregroundGCShouldWait = false;
 550 
 551 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 552                            CardTableRS*                   ct,
 553                            ConcurrentMarkSweepPolicy*     cp):
 554   _cmsGen(cmsGen),
 555   _ct(ct),
 556   _ref_processor(NULL),    // will be set later
 557   _conc_workers(NULL),     // may be set later
 558   _abort_preclean(false),
 559   _start_sampling(false),
 560   _between_prologue_and_epilogue(false),
 561   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 562   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 563                  -1 /* lock-free */, "No_lock" /* dummy */),
 564   _modUnionClosure(&_modUnionTable),
 565   _modUnionClosurePar(&_modUnionTable),
 566   // Adjust my span to cover old (cms) gen
 567   _span(cmsGen->reserved()),
 568   // Construct the is_alive_closure with _span & markBitMap
 569   _is_alive_closure(_span, &_markBitMap),
 570   _restart_addr(NULL),
 571   _overflow_list(NULL),
 572   _stats(cmsGen),
 573   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true)),
 574   _eden_chunk_array(NULL),     // may be set in ctor body
 575   _eden_chunk_capacity(0),     // -- ditto --
 576   _eden_chunk_index(0),        // -- ditto --
 577   _survivor_plab_array(NULL),  // -- ditto --
 578   _survivor_chunk_array(NULL), // -- ditto --
 579   _survivor_chunk_capacity(0), // -- ditto --
 580   _survivor_chunk_index(0),    // -- ditto --
 581   _ser_pmc_preclean_ovflw(0),
 582   _ser_kac_preclean_ovflw(0),
 583   _ser_pmc_remark_ovflw(0),
 584   _par_pmc_remark_ovflw(0),
 585   _ser_kac_ovflw(0),
 586   _par_kac_ovflw(0),
 587 #ifndef PRODUCT
 588   _num_par_pushes(0),
 589 #endif
 590   _collection_count_start(0),
 591   _verifying(false),
 592   _icms_start_limit(NULL),
 593   _icms_stop_limit(NULL),
 594   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 595   _completed_initialization(false),
 596   _collector_policy(cp),
 597   _should_unload_classes(CMSClassUnloadingEnabled),
 598   _concurrent_cycles_since_last_unload(0),
 599   _roots_scanning_options(SharedHeap::SO_None),
 600   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 601   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 602   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 603   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 604   _cms_start_registered(false)
 605 {
 606   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 607     ExplicitGCInvokesConcurrent = true;
 608   }
 609   // Now expand the span and allocate the collection support structures
 610   // (MUT, marking bit map etc.) to cover both generations subject to
 611   // collection.
 612 
 613   // For use by dirty card to oop closures.
 614   _cmsGen->cmsSpace()->set_collector(this);
 615 
 616   // Allocate MUT and marking bit map
 617   {
 618     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 619     if (!_markBitMap.allocate(_span)) {
 620       warning("Failed to allocate CMS Bit Map");
 621       return;
 622     }
 623     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 624   }
 625   {
 626     _modUnionTable.allocate(_span);
 627     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 628   }
 629 
 630   if (!_markStack.allocate(MarkStackSize)) {
 631     warning("Failed to allocate CMS Marking Stack");
 632     return;
 633   }
 634 
 635   // Support for multi-threaded concurrent phases
 636   if (CMSConcurrentMTEnabled) {
 637     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 638       // just for now
 639       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4);
 640     }
 641     if (ConcGCThreads > 1) {
 642       _conc_workers = new YieldingFlexibleWorkGang("Parallel CMS Threads",
 643                                  ConcGCThreads, true);
 644       if (_conc_workers == NULL) {
 645         warning("GC/CMS: _conc_workers allocation failure: "
 646               "forcing -CMSConcurrentMTEnabled");
 647         CMSConcurrentMTEnabled = false;
 648       } else {
 649         _conc_workers->initialize_workers();
 650       }
 651     } else {
 652       CMSConcurrentMTEnabled = false;
 653     }
 654   }
 655   if (!CMSConcurrentMTEnabled) {
 656     ConcGCThreads = 0;
 657   } else {
 658     // Turn off CMSCleanOnEnter optimization temporarily for
 659     // the MT case where it's not fixed yet; see 6178663.
 660     CMSCleanOnEnter = false;
 661   }
 662   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 663          "Inconsistency");
 664 
 665   // Parallel task queues; these are shared for the
 666   // concurrent and stop-world phases of CMS, but
 667   // are not shared with parallel scavenge (ParNew).
 668   {
 669     uint i;
 670     uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads);
 671 
 672     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 673          || ParallelRefProcEnabled)
 674         && num_queues > 0) {
 675       _task_queues = new OopTaskQueueSet(num_queues);
 676       if (_task_queues == NULL) {
 677         warning("task_queues allocation failure.");
 678         return;
 679       }
 680       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 681       if (_hash_seed == NULL) {
 682         warning("_hash_seed array allocation failure");
 683         return;
 684       }
 685 
 686       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 687       for (i = 0; i < num_queues; i++) {
 688         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 689         if (q == NULL) {
 690           warning("work_queue allocation failure.");
 691           return;
 692         }
 693         _task_queues->register_queue(i, q);
 694       }
 695       for (i = 0; i < num_queues; i++) {
 696         _task_queues->queue(i)->initialize();
 697         _hash_seed[i] = 17;  // copied from ParNew
 698       }
 699     }
 700   }
 701 
 702   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 703 
 704   // Clip CMSBootstrapOccupancy between 0 and 100.
 705   _bootstrap_occupancy = ((double)CMSBootstrapOccupancy)/(double)100;
 706 
 707   _full_gcs_since_conc_gc = 0;
 708 
 709   // Now tell CMS generations the identity of their collector
 710   ConcurrentMarkSweepGeneration::set_collector(this);
 711 
 712   // Create & start a CMS thread for this CMS collector
 713   _cmsThread = ConcurrentMarkSweepThread::start(this);
 714   assert(cmsThread() != NULL, "CMS Thread should have been created");
 715   assert(cmsThread()->collector() == this,
 716          "CMS Thread should refer to this gen");
 717   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 718 
 719   // Support for parallelizing young gen rescan
 720   GenCollectedHeap* gch = GenCollectedHeap::heap();
 721   _young_gen = gch->prev_gen(_cmsGen);
 722   if (gch->supports_inline_contig_alloc()) {
 723     _top_addr = gch->top_addr();
 724     _end_addr = gch->end_addr();
 725     assert(_young_gen != NULL, "no _young_gen");
 726     _eden_chunk_index = 0;
 727     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
 728     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 729     if (_eden_chunk_array == NULL) {
 730       _eden_chunk_capacity = 0;
 731       warning("GC/CMS: _eden_chunk_array allocation failure");
 732     }
 733   }
 734   assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error");
 735 
 736   // Support for parallelizing survivor space rescan
 737   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 738     const size_t max_plab_samples =
 739       ((DefNewGeneration*)_young_gen)->max_survivor_size()/MinTLABSize;
 740 
 741     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 742     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples, mtGC);
 743     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 744     if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL
 745         || _cursor == NULL) {
 746       warning("Failed to allocate survivor plab/chunk array");
 747       if (_survivor_plab_array  != NULL) {
 748         FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
 749         _survivor_plab_array = NULL;
 750       }
 751       if (_survivor_chunk_array != NULL) {
 752         FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
 753         _survivor_chunk_array = NULL;
 754       }
 755       if (_cursor != NULL) {
 756         FREE_C_HEAP_ARRAY(size_t, _cursor, mtGC);
 757         _cursor = NULL;
 758       }
 759     } else {
 760       _survivor_chunk_capacity = 2*max_plab_samples;
 761       for (uint i = 0; i < ParallelGCThreads; i++) {
 762         HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 763         if (vec == NULL) {
 764           warning("Failed to allocate survivor plab array");
 765           for (int j = i; j > 0; j--) {
 766             FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array(), mtGC);
 767           }
 768           FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
 769           FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
 770           _survivor_plab_array = NULL;
 771           _survivor_chunk_array = NULL;
 772           _survivor_chunk_capacity = 0;
 773           break;
 774         } else {
 775           ChunkArray* cur =
 776             ::new (&_survivor_plab_array[i]) ChunkArray(vec,
 777                                                         max_plab_samples);
 778           assert(cur->end() == 0, "Should be 0");
 779           assert(cur->array() == vec, "Should be vec");
 780           assert(cur->capacity() == max_plab_samples, "Error");
 781         }
 782       }
 783     }
 784   }
 785   assert(   (   _survivor_plab_array  != NULL
 786              && _survivor_chunk_array != NULL)
 787          || (   _survivor_chunk_capacity == 0
 788              && _survivor_chunk_index == 0),
 789          "Error");
 790 
 791   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 792   _gc_counters = new CollectorCounters("CMS", 1);
 793   _completed_initialization = true;
 794   _inter_sweep_timer.start();  // start of time
 795 }
 796 
 797 const char* ConcurrentMarkSweepGeneration::name() const {
 798   return "concurrent mark-sweep generation";
 799 }
 800 void ConcurrentMarkSweepGeneration::update_counters() {
 801   if (UsePerfData) {
 802     _space_counters->update_all();
 803     _gen_counters->update_all();
 804   }
 805 }
 806 
 807 // this is an optimized version of update_counters(). it takes the
 808 // used value as a parameter rather than computing it.
 809 //
 810 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 811   if (UsePerfData) {
 812     _space_counters->update_used(used);
 813     _space_counters->update_capacity();
 814     _gen_counters->update_all();
 815   }
 816 }
 817 
 818 void ConcurrentMarkSweepGeneration::print() const {
 819   Generation::print();
 820   cmsSpace()->print();
 821 }
 822 
 823 #ifndef PRODUCT
 824 void ConcurrentMarkSweepGeneration::print_statistics() {
 825   cmsSpace()->printFLCensus(0);
 826 }
 827 #endif
 828 
 829 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
 830   GenCollectedHeap* gch = GenCollectedHeap::heap();
 831   if (PrintGCDetails) {
 832     if (Verbose) {
 833       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
 834         level(), short_name(), s, used(), capacity());
 835     } else {
 836       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
 837         level(), short_name(), s, used() / K, capacity() / K);
 838     }
 839   }
 840   if (Verbose) {
 841     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
 842               gch->used(), gch->capacity());
 843   } else {
 844     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
 845               gch->used() / K, gch->capacity() / K);
 846   }
 847 }
 848 
 849 size_t
 850 ConcurrentMarkSweepGeneration::contiguous_available() const {
 851   // dld proposes an improvement in precision here. If the committed
 852   // part of the space ends in a free block we should add that to
 853   // uncommitted size in the calculation below. Will make this
 854   // change later, staying with the approximation below for the
 855   // time being. -- ysr.
 856   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 857 }
 858 
 859 size_t
 860 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 861   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 862 }
 863 
 864 size_t ConcurrentMarkSweepGeneration::max_available() const {
 865   return free() + _virtual_space.uncommitted_size();
 866 }
 867 
 868 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 869   size_t available = max_available();
 870   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 871   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 872   if (Verbose && PrintGCDetails) {
 873     gclog_or_tty->print_cr(
 874       "CMS: promo attempt is%s safe: available("SIZE_FORMAT") %s av_promo("SIZE_FORMAT"),"
 875       "max_promo("SIZE_FORMAT")",
 876       res? "":" not", available, res? ">=":"<",
 877       av_promo, max_promotion_in_bytes);
 878   }
 879   return res;
 880 }
 881 
 882 // At a promotion failure dump information on block layout in heap
 883 // (cms old generation).
 884 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 885   if (CMSDumpAtPromotionFailure) {
 886     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
 887   }
 888 }
 889 
 890 CompactibleSpace*
 891 ConcurrentMarkSweepGeneration::first_compaction_space() const {
 892   return _cmsSpace;
 893 }
 894 
 895 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 896   // Clear the promotion information.  These pointers can be adjusted
 897   // along with all the other pointers into the heap but
 898   // compaction is expected to be a rare event with
 899   // a heap using cms so don't do it without seeing the need.
 900   if (CollectedHeap::use_parallel_gc_threads()) {
 901     for (uint i = 0; i < ParallelGCThreads; i++) {
 902       _par_gc_thread_states[i]->promo.reset();
 903     }
 904   }
 905 }
 906 
 907 void ConcurrentMarkSweepGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) {
 908   blk->do_space(_cmsSpace);
 909 }
 910 
 911 void ConcurrentMarkSweepGeneration::compute_new_size() {
 912   assert_locked_or_safepoint(Heap_lock);
 913 
 914   // If incremental collection failed, we just want to expand
 915   // to the limit.
 916   if (incremental_collection_failed()) {
 917     clear_incremental_collection_failed();
 918     grow_to_reserved();
 919     return;
 920   }
 921 
 922   // The heap has been compacted but not reset yet.
 923   // Any metric such as free() or used() will be incorrect.
 924 
 925   CardGeneration::compute_new_size();
 926 
 927   // Reset again after a possible resizing
 928   if (did_compact()) {
 929     cmsSpace()->reset_after_compaction();
 930   }
 931 }
 932 
 933 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 934   assert_locked_or_safepoint(Heap_lock);
 935 
 936   // If incremental collection failed, we just want to expand
 937   // to the limit.
 938   if (incremental_collection_failed()) {
 939     clear_incremental_collection_failed();
 940     grow_to_reserved();
 941     return;
 942   }
 943 
 944   double free_percentage = ((double) free()) / capacity();
 945   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 946   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 947 
 948   // compute expansion delta needed for reaching desired free percentage
 949   if (free_percentage < desired_free_percentage) {
 950     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 951     assert(desired_capacity >= capacity(), "invalid expansion size");
 952     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 953     if (PrintGCDetails && Verbose) {
 954       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 955       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
 956       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
 957       gclog_or_tty->print_cr("  Desired free fraction %f",
 958         desired_free_percentage);
 959       gclog_or_tty->print_cr("  Maximum free fraction %f",
 960         maximum_free_percentage);
 961       gclog_or_tty->print_cr("  Capactiy "SIZE_FORMAT, capacity()/1000);
 962       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT,
 963         desired_capacity/1000);
 964       int prev_level = level() - 1;
 965       if (prev_level >= 0) {
 966         size_t prev_size = 0;
 967         GenCollectedHeap* gch = GenCollectedHeap::heap();
 968         Generation* prev_gen = gch->_gens[prev_level];
 969         prev_size = prev_gen->capacity();
 970           gclog_or_tty->print_cr("  Younger gen size "SIZE_FORMAT,
 971                                  prev_size/1000);
 972       }
 973       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT,
 974         unsafe_max_alloc_nogc()/1000);
 975       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT,
 976         contiguous_available()/1000);
 977       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)",
 978         expand_bytes);
 979     }
 980     // safe if expansion fails
 981     expand(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 982     if (PrintGCDetails && Verbose) {
 983       gclog_or_tty->print_cr("  Expanded free fraction %f",
 984         ((double) free()) / capacity());
 985     }
 986   } else {
 987     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 988     assert(desired_capacity <= capacity(), "invalid expansion size");
 989     size_t shrink_bytes = capacity() - desired_capacity;
 990     // Don't shrink unless the delta is greater than the minimum shrink we want
 991     if (shrink_bytes >= MinHeapDeltaBytes) {
 992       shrink_free_list_by(shrink_bytes);
 993     }
 994   }
 995 }
 996 
 997 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 998   return cmsSpace()->freelistLock();
 999 }
1000 
1001 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
1002                                                   bool   tlab) {
1003   CMSSynchronousYieldRequest yr;
1004   MutexLockerEx x(freelistLock(),
1005                   Mutex::_no_safepoint_check_flag);
1006   return have_lock_and_allocate(size, tlab);
1007 }
1008 
1009 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
1010                                                   bool   tlab /* ignored */) {
1011   assert_lock_strong(freelistLock());
1012   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
1013   HeapWord* res = cmsSpace()->allocate(adjustedSize);
1014   // Allocate the object live (grey) if the background collector has
1015   // started marking. This is necessary because the marker may
1016   // have passed this address and consequently this object will
1017   // not otherwise be greyed and would be incorrectly swept up.
1018   // Note that if this object contains references, the writing
1019   // of those references will dirty the card containing this object
1020   // allowing the object to be blackened (and its references scanned)
1021   // either during a preclean phase or at the final checkpoint.
1022   if (res != NULL) {
1023     // We may block here with an uninitialized object with
1024     // its mark-bit or P-bits not yet set. Such objects need
1025     // to be safely navigable by block_start().
1026     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
1027     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
1028     collector()->direct_allocated(res, adjustedSize);
1029     _direct_allocated_words += adjustedSize;
1030     // allocation counters
1031     NOT_PRODUCT(
1032       _numObjectsAllocated++;
1033       _numWordsAllocated += (int)adjustedSize;
1034     )
1035   }
1036   return res;
1037 }
1038 
1039 // In the case of direct allocation by mutators in a generation that
1040 // is being concurrently collected, the object must be allocated
1041 // live (grey) if the background collector has started marking.
1042 // This is necessary because the marker may
1043 // have passed this address and consequently this object will
1044 // not otherwise be greyed and would be incorrectly swept up.
1045 // Note that if this object contains references, the writing
1046 // of those references will dirty the card containing this object
1047 // allowing the object to be blackened (and its references scanned)
1048 // either during a preclean phase or at the final checkpoint.
1049 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
1050   assert(_markBitMap.covers(start, size), "Out of bounds");
1051   if (_collectorState >= Marking) {
1052     MutexLockerEx y(_markBitMap.lock(),
1053                     Mutex::_no_safepoint_check_flag);
1054     // [see comments preceding SweepClosure::do_blk() below for details]
1055     //
1056     // Can the P-bits be deleted now?  JJJ
1057     //
1058     // 1. need to mark the object as live so it isn't collected
1059     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
1060     // 3. need to mark the end of the object so marking, precleaning or sweeping
1061     //    can skip over uninitialized or unparsable objects. An allocated
1062     //    object is considered uninitialized for our purposes as long as
1063     //    its klass word is NULL.  All old gen objects are parsable
1064     //    as soon as they are initialized.)
1065     _markBitMap.mark(start);          // object is live
1066     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
1067     _markBitMap.mark(start + size - 1);
1068                                       // mark end of object
1069   }
1070   // check that oop looks uninitialized
1071   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
1072 }
1073 
1074 void CMSCollector::promoted(bool par, HeapWord* start,
1075                             bool is_obj_array, size_t obj_size) {
1076   assert(_markBitMap.covers(start), "Out of bounds");
1077   // See comment in direct_allocated() about when objects should
1078   // be allocated live.
1079   if (_collectorState >= Marking) {
1080     // we already hold the marking bit map lock, taken in
1081     // the prologue
1082     if (par) {
1083       _markBitMap.par_mark(start);
1084     } else {
1085       _markBitMap.mark(start);
1086     }
1087     // We don't need to mark the object as uninitialized (as
1088     // in direct_allocated above) because this is being done with the
1089     // world stopped and the object will be initialized by the
1090     // time the marking, precleaning or sweeping get to look at it.
1091     // But see the code for copying objects into the CMS generation,
1092     // where we need to ensure that concurrent readers of the
1093     // block offset table are able to safely navigate a block that
1094     // is in flux from being free to being allocated (and in
1095     // transition while being copied into) and subsequently
1096     // becoming a bona-fide object when the copy/promotion is complete.
1097     assert(SafepointSynchronize::is_at_safepoint(),
1098            "expect promotion only at safepoints");
1099 
1100     if (_collectorState < Sweeping) {
1101       // Mark the appropriate cards in the modUnionTable, so that
1102       // this object gets scanned before the sweep. If this is
1103       // not done, CMS generation references in the object might
1104       // not get marked.
1105       // For the case of arrays, which are otherwise precisely
1106       // marked, we need to dirty the entire array, not just its head.
1107       if (is_obj_array) {
1108         // The [par_]mark_range() method expects mr.end() below to
1109         // be aligned to the granularity of a bit's representation
1110         // in the heap. In the case of the MUT below, that's a
1111         // card size.
1112         MemRegion mr(start,
1113                      (HeapWord*)round_to((intptr_t)(start + obj_size),
1114                         CardTableModRefBS::card_size /* bytes */));
1115         if (par) {
1116           _modUnionTable.par_mark_range(mr);
1117         } else {
1118           _modUnionTable.mark_range(mr);
1119         }
1120       } else {  // not an obj array; we can just mark the head
1121         if (par) {
1122           _modUnionTable.par_mark(start);
1123         } else {
1124           _modUnionTable.mark(start);
1125         }
1126       }
1127     }
1128   }
1129 }
1130 
1131 static inline size_t percent_of_space(Space* space, HeapWord* addr)
1132 {
1133   size_t delta = pointer_delta(addr, space->bottom());
1134   return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize));
1135 }
1136 
1137 void CMSCollector::icms_update_allocation_limits()
1138 {
1139   Generation* gen0 = GenCollectedHeap::heap()->get_gen(0);
1140   EdenSpace* eden = gen0->as_DefNewGeneration()->eden();
1141 
1142   const unsigned int duty_cycle = stats().icms_update_duty_cycle();
1143   if (CMSTraceIncrementalPacing) {
1144     stats().print();
1145   }
1146 
1147   assert(duty_cycle <= 100, "invalid duty cycle");
1148   if (duty_cycle != 0) {
1149     // The duty_cycle is a percentage between 0 and 100; convert to words and
1150     // then compute the offset from the endpoints of the space.
1151     size_t free_words = eden->free() / HeapWordSize;
1152     double free_words_dbl = (double)free_words;
1153     size_t duty_cycle_words = (size_t)(free_words_dbl * duty_cycle / 100.0);
1154     size_t offset_words = (free_words - duty_cycle_words) / 2;
1155 
1156     _icms_start_limit = eden->top() + offset_words;
1157     _icms_stop_limit = eden->end() - offset_words;
1158 
1159     // The limits may be adjusted (shifted to the right) by
1160     // CMSIncrementalOffset, to allow the application more mutator time after a
1161     // young gen gc (when all mutators were stopped) and before CMS starts and
1162     // takes away one or more cpus.
1163     if (CMSIncrementalOffset != 0) {
1164       double adjustment_dbl = free_words_dbl * CMSIncrementalOffset / 100.0;
1165       size_t adjustment = (size_t)adjustment_dbl;
1166       HeapWord* tmp_stop = _icms_stop_limit + adjustment;
1167       if (tmp_stop > _icms_stop_limit && tmp_stop < eden->end()) {
1168         _icms_start_limit += adjustment;
1169         _icms_stop_limit = tmp_stop;
1170       }
1171     }
1172   }
1173   if (duty_cycle == 0 || (_icms_start_limit == _icms_stop_limit)) {
1174     _icms_start_limit = _icms_stop_limit = eden->end();
1175   }
1176 
1177   // Install the new start limit.
1178   eden->set_soft_end(_icms_start_limit);
1179 
1180   if (CMSTraceIncrementalMode) {
1181     gclog_or_tty->print(" icms alloc limits:  "
1182                            PTR_FORMAT "," PTR_FORMAT
1183                            " (" SIZE_FORMAT "%%," SIZE_FORMAT "%%) ",
1184                            _icms_start_limit, _icms_stop_limit,
1185                            percent_of_space(eden, _icms_start_limit),
1186                            percent_of_space(eden, _icms_stop_limit));
1187     if (Verbose) {
1188       gclog_or_tty->print("eden:  ");
1189       eden->print_on(gclog_or_tty);
1190     }
1191   }
1192 }
1193 
1194 // Any changes here should try to maintain the invariant
1195 // that if this method is called with _icms_start_limit
1196 // and _icms_stop_limit both NULL, then it should return NULL
1197 // and not notify the icms thread.
1198 HeapWord*
1199 CMSCollector::allocation_limit_reached(Space* space, HeapWord* top,
1200                                        size_t word_size)
1201 {
1202   // A start_limit equal to end() means the duty cycle is 0, so treat that as a
1203   // nop.
1204   if (CMSIncrementalMode && _icms_start_limit != space->end()) {
1205     if (top <= _icms_start_limit) {
1206       if (CMSTraceIncrementalMode) {
1207         space->print_on(gclog_or_tty);
1208         gclog_or_tty->stamp();
1209         gclog_or_tty->print_cr(" start limit top=" PTR_FORMAT
1210                                ", new limit=" PTR_FORMAT
1211                                " (" SIZE_FORMAT "%%)",
1212                                top, _icms_stop_limit,
1213                                percent_of_space(space, _icms_stop_limit));
1214       }
1215       ConcurrentMarkSweepThread::start_icms();
1216       assert(top < _icms_stop_limit, "Tautology");
1217       if (word_size < pointer_delta(_icms_stop_limit, top)) {
1218         return _icms_stop_limit;
1219       }
1220 
1221       // The allocation will cross both the _start and _stop limits, so do the
1222       // stop notification also and return end().
1223       if (CMSTraceIncrementalMode) {
1224         space->print_on(gclog_or_tty);
1225         gclog_or_tty->stamp();
1226         gclog_or_tty->print_cr(" +stop limit top=" PTR_FORMAT
1227                                ", new limit=" PTR_FORMAT
1228                                " (" SIZE_FORMAT "%%)",
1229                                top, space->end(),
1230                                percent_of_space(space, space->end()));
1231       }
1232       ConcurrentMarkSweepThread::stop_icms();
1233       return space->end();
1234     }
1235 
1236     if (top <= _icms_stop_limit) {
1237       if (CMSTraceIncrementalMode) {
1238         space->print_on(gclog_or_tty);
1239         gclog_or_tty->stamp();
1240         gclog_or_tty->print_cr(" stop limit top=" PTR_FORMAT
1241                                ", new limit=" PTR_FORMAT
1242                                " (" SIZE_FORMAT "%%)",
1243                                top, space->end(),
1244                                percent_of_space(space, space->end()));
1245       }
1246       ConcurrentMarkSweepThread::stop_icms();
1247       return space->end();
1248     }
1249 
1250     if (CMSTraceIncrementalMode) {
1251       space->print_on(gclog_or_tty);
1252       gclog_or_tty->stamp();
1253       gclog_or_tty->print_cr(" end limit top=" PTR_FORMAT
1254                              ", new limit=" PTR_FORMAT,
1255                              top, NULL);
1256     }
1257   }
1258 
1259   return NULL;
1260 }
1261 
1262 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
1263   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1264   // allocate, copy and if necessary update promoinfo --
1265   // delegate to underlying space.
1266   assert_lock_strong(freelistLock());
1267 
1268 #ifndef PRODUCT
1269   if (Universe::heap()->promotion_should_fail()) {
1270     return NULL;
1271   }
1272 #endif  // #ifndef PRODUCT
1273 
1274   oop res = _cmsSpace->promote(obj, obj_size);
1275   if (res == NULL) {
1276     // expand and retry
1277     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
1278     expand(s*HeapWordSize, MinHeapDeltaBytes,
1279       CMSExpansionCause::_satisfy_promotion);
1280     // Since there's currently no next generation, we don't try to promote
1281     // into a more senior generation.
1282     assert(next_gen() == NULL, "assumption, based upon which no attempt "
1283                                "is made to pass on a possibly failing "
1284                                "promotion to next generation");
1285     res = _cmsSpace->promote(obj, obj_size);
1286   }
1287   if (res != NULL) {
1288     // See comment in allocate() about when objects should
1289     // be allocated live.
1290     assert(obj->is_oop(), "Will dereference klass pointer below");
1291     collector()->promoted(false,           // Not parallel
1292                           (HeapWord*)res, obj->is_objArray(), obj_size);
1293     // promotion counters
1294     NOT_PRODUCT(
1295       _numObjectsPromoted++;
1296       _numWordsPromoted +=
1297         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
1298     )
1299   }
1300   return res;
1301 }
1302 
1303 
1304 HeapWord*
1305 ConcurrentMarkSweepGeneration::allocation_limit_reached(Space* space,
1306                                              HeapWord* top,
1307                                              size_t word_sz)
1308 {
1309   return collector()->allocation_limit_reached(space, top, word_sz);
1310 }
1311 
1312 // IMPORTANT: Notes on object size recognition in CMS.
1313 // ---------------------------------------------------
1314 // A block of storage in the CMS generation is always in
1315 // one of three states. A free block (FREE), an allocated
1316 // object (OBJECT) whose size() method reports the correct size,
1317 // and an intermediate state (TRANSIENT) in which its size cannot
1318 // be accurately determined.
1319 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
1320 // -----------------------------------------------------
1321 // FREE:      klass_word & 1 == 1; mark_word holds block size
1322 //
1323 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
1324 //            obj->size() computes correct size
1325 //
1326 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1327 //
1328 // STATE IDENTIFICATION: (64 bit+COOPS)
1329 // ------------------------------------
1330 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
1331 //
1332 // OBJECT:    klass_word installed; klass_word != 0;
1333 //            obj->size() computes correct size
1334 //
1335 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1336 //
1337 //
1338 // STATE TRANSITION DIAGRAM
1339 //
1340 //        mut / parnew                     mut  /  parnew
1341 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1342 //  ^                                                                   |
1343 //  |------------------------ DEAD <------------------------------------|
1344 //         sweep                            mut
1345 //
1346 // While a block is in TRANSIENT state its size cannot be determined
1347 // so readers will either need to come back later or stall until
1348 // the size can be determined. Note that for the case of direct
1349 // allocation, P-bits, when available, may be used to determine the
1350 // size of an object that may not yet have been initialized.
1351 
1352 // Things to support parallel young-gen collection.
1353 oop
1354 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1355                                            oop old, markOop m,
1356                                            size_t word_sz) {
1357 #ifndef PRODUCT
1358   if (Universe::heap()->promotion_should_fail()) {
1359     return NULL;
1360   }
1361 #endif  // #ifndef PRODUCT
1362 
1363   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1364   PromotionInfo* promoInfo = &ps->promo;
1365   // if we are tracking promotions, then first ensure space for
1366   // promotion (including spooling space for saving header if necessary).
1367   // then allocate and copy, then track promoted info if needed.
1368   // When tracking (see PromotionInfo::track()), the mark word may
1369   // be displaced and in this case restoration of the mark word
1370   // occurs in the (oop_since_save_marks_)iterate phase.
1371   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1372     // Out of space for allocating spooling buffers;
1373     // try expanding and allocating spooling buffers.
1374     if (!expand_and_ensure_spooling_space(promoInfo)) {
1375       return NULL;
1376     }
1377   }
1378   assert(promoInfo->has_spooling_space(), "Control point invariant");
1379   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1380   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1381   if (obj_ptr == NULL) {
1382      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1383      if (obj_ptr == NULL) {
1384        return NULL;
1385      }
1386   }
1387   oop obj = oop(obj_ptr);
1388   OrderAccess::storestore();
1389   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1390   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1391   // IMPORTANT: See note on object initialization for CMS above.
1392   // Otherwise, copy the object.  Here we must be careful to insert the
1393   // klass pointer last, since this marks the block as an allocated object.
1394   // Except with compressed oops it's the mark word.
1395   HeapWord* old_ptr = (HeapWord*)old;
1396   // Restore the mark word copied above.
1397   obj->set_mark(m);
1398   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1399   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1400   OrderAccess::storestore();
1401 
1402   if (UseCompressedClassPointers) {
1403     // Copy gap missed by (aligned) header size calculation below
1404     obj->set_klass_gap(old->klass_gap());
1405   }
1406   if (word_sz > (size_t)oopDesc::header_size()) {
1407     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1408                                  obj_ptr + oopDesc::header_size(),
1409                                  word_sz - oopDesc::header_size());
1410   }
1411 
1412   // Now we can track the promoted object, if necessary.  We take care
1413   // to delay the transition from uninitialized to full object
1414   // (i.e., insertion of klass pointer) until after, so that it
1415   // atomically becomes a promoted object.
1416   if (promoInfo->tracking()) {
1417     promoInfo->track((PromotedObject*)obj, old->klass());
1418   }
1419   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1420   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1421   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1422 
1423   // Finally, install the klass pointer (this should be volatile).
1424   OrderAccess::storestore();
1425   obj->set_klass(old->klass());
1426   // We should now be able to calculate the right size for this object
1427   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1428 
1429   collector()->promoted(true,          // parallel
1430                         obj_ptr, old->is_objArray(), word_sz);
1431 
1432   NOT_PRODUCT(
1433     Atomic::inc_ptr(&_numObjectsPromoted);
1434     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1435   )
1436 
1437   return obj;
1438 }
1439 
1440 void
1441 ConcurrentMarkSweepGeneration::
1442 par_promote_alloc_undo(int thread_num,
1443                        HeapWord* obj, size_t word_sz) {
1444   // CMS does not support promotion undo.
1445   ShouldNotReachHere();
1446 }
1447 
1448 void
1449 ConcurrentMarkSweepGeneration::
1450 par_promote_alloc_done(int thread_num) {
1451   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1452   ps->lab.retire(thread_num);
1453 }
1454 
1455 void
1456 ConcurrentMarkSweepGeneration::
1457 par_oop_since_save_marks_iterate_done(int thread_num) {
1458   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1459   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1460   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1461 }
1462 
1463 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1464                                                    size_t size,
1465                                                    bool   tlab)
1466 {
1467   // We allow a STW collection only if a full
1468   // collection was requested.
1469   return full || should_allocate(size, tlab); // FIX ME !!!
1470   // This and promotion failure handling are connected at the
1471   // hip and should be fixed by untying them.
1472 }
1473 
1474 bool CMSCollector::shouldConcurrentCollect() {
1475   if (_full_gc_requested) {
1476     if (Verbose && PrintGCDetails) {
1477       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
1478                              " gc request (or gc_locker)");
1479     }
1480     return true;
1481   }
1482 
1483   // For debugging purposes, change the type of collection.
1484   // If the rotation is not on the concurrent collection
1485   // type, don't start a concurrent collection.
1486   NOT_PRODUCT(
1487     if (RotateCMSCollectionTypes &&
1488         (_cmsGen->debug_collection_type() !=
1489           ConcurrentMarkSweepGeneration::Concurrent_collection_type)) {
1490       assert(_cmsGen->debug_collection_type() !=
1491         ConcurrentMarkSweepGeneration::Unknown_collection_type,
1492         "Bad cms collection type");
1493       return false;
1494     }
1495   )
1496 
1497   FreelistLocker x(this);
1498   // ------------------------------------------------------------------
1499   // Print out lots of information which affects the initiation of
1500   // a collection.
1501   if (PrintCMSInitiationStatistics && stats().valid()) {
1502     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
1503     gclog_or_tty->stamp();
1504     gclog_or_tty->print_cr("");
1505     stats().print_on(gclog_or_tty);
1506     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
1507       stats().time_until_cms_gen_full());
1508     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
1509     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
1510                            _cmsGen->contiguous_available());
1511     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
1512     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
1513     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
1514     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1515     gclog_or_tty->print_cr("metadata initialized %d",
1516       MetaspaceGC::should_concurrent_collect());
1517   }
1518   // ------------------------------------------------------------------
1519 
1520   // If the estimated time to complete a cms collection (cms_duration())
1521   // is less than the estimated time remaining until the cms generation
1522   // is full, start a collection.
1523   if (!UseCMSInitiatingOccupancyOnly) {
1524     if (stats().valid()) {
1525       if (stats().time_until_cms_start() == 0.0) {
1526         return true;
1527       }
1528     } else {
1529       // We want to conservatively collect somewhat early in order
1530       // to try and "bootstrap" our CMS/promotion statistics;
1531       // this branch will not fire after the first successful CMS
1532       // collection because the stats should then be valid.
1533       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1534         if (Verbose && PrintGCDetails) {
1535           gclog_or_tty->print_cr(
1536             " CMSCollector: collect for bootstrapping statistics:"
1537             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
1538             _bootstrap_occupancy);
1539         }
1540         return true;
1541       }
1542     }
1543   }
1544 
1545   // Otherwise, we start a collection cycle if
1546   // old gen want a collection cycle started. Each may use
1547   // an appropriate criterion for making this decision.
1548   // XXX We need to make sure that the gen expansion
1549   // criterion dovetails well with this. XXX NEED TO FIX THIS
1550   if (_cmsGen->should_concurrent_collect()) {
1551     if (Verbose && PrintGCDetails) {
1552       gclog_or_tty->print_cr("CMS old gen initiated");
1553     }
1554     return true;
1555   }
1556 
1557   // We start a collection if we believe an incremental collection may fail;
1558   // this is not likely to be productive in practice because it's probably too
1559   // late anyway.
1560   GenCollectedHeap* gch = GenCollectedHeap::heap();
1561   assert(gch->collector_policy()->is_two_generation_policy(),
1562          "You may want to check the correctness of the following");
1563   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1564     if (Verbose && PrintGCDetails) {
1565       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
1566     }
1567     return true;
1568   }
1569 
1570   if (MetaspaceGC::should_concurrent_collect()) {
1571       if (Verbose && PrintGCDetails) {
1572       gclog_or_tty->print("CMSCollector: collect for metadata allocation ");
1573       }
1574       return true;
1575     }
1576 
1577   return false;
1578 }
1579 
1580 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1581 
1582 // Clear _expansion_cause fields of constituent generations
1583 void CMSCollector::clear_expansion_cause() {
1584   _cmsGen->clear_expansion_cause();
1585 }
1586 
1587 // We should be conservative in starting a collection cycle.  To
1588 // start too eagerly runs the risk of collecting too often in the
1589 // extreme.  To collect too rarely falls back on full collections,
1590 // which works, even if not optimum in terms of concurrent work.
1591 // As a work around for too eagerly collecting, use the flag
1592 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1593 // giving the user an easily understandable way of controlling the
1594 // collections.
1595 // We want to start a new collection cycle if any of the following
1596 // conditions hold:
1597 // . our current occupancy exceeds the configured initiating occupancy
1598 //   for this generation, or
1599 // . we recently needed to expand this space and have not, since that
1600 //   expansion, done a collection of this generation, or
1601 // . the underlying space believes that it may be a good idea to initiate
1602 //   a concurrent collection (this may be based on criteria such as the
1603 //   following: the space uses linear allocation and linear allocation is
1604 //   going to fail, or there is believed to be excessive fragmentation in
1605 //   the generation, etc... or ...
1606 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1607 //   the case of the old generation; see CR 6543076):
1608 //   we may be approaching a point at which allocation requests may fail because
1609 //   we will be out of sufficient free space given allocation rate estimates.]
1610 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1611 
1612   assert_lock_strong(freelistLock());
1613   if (occupancy() > initiating_occupancy()) {
1614     if (PrintGCDetails && Verbose) {
1615       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
1616         short_name(), occupancy(), initiating_occupancy());
1617     }
1618     return true;
1619   }
1620   if (UseCMSInitiatingOccupancyOnly) {
1621     return false;
1622   }
1623   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1624     if (PrintGCDetails && Verbose) {
1625       gclog_or_tty->print(" %s: collect because expanded for allocation ",
1626         short_name());
1627     }
1628     return true;
1629   }
1630   if (_cmsSpace->should_concurrent_collect()) {
1631     if (PrintGCDetails && Verbose) {
1632       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
1633         short_name());
1634     }
1635     return true;
1636   }
1637   return false;
1638 }
1639 
1640 void ConcurrentMarkSweepGeneration::collect(bool   full,
1641                                             bool   clear_all_soft_refs,
1642                                             size_t size,
1643                                             bool   tlab)
1644 {
1645   collector()->collect(full, clear_all_soft_refs, size, tlab);
1646 }
1647 
1648 void CMSCollector::collect(bool   full,
1649                            bool   clear_all_soft_refs,
1650                            size_t size,
1651                            bool   tlab)
1652 {
1653   if (!UseCMSCollectionPassing && _collectorState > Idling) {
1654     // For debugging purposes skip the collection if the state
1655     // is not currently idle
1656     if (TraceCMSState) {
1657       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " skipped full:%d CMS state %d",
1658         Thread::current(), full, _collectorState);
1659     }
1660     return;
1661   }
1662 
1663   // The following "if" branch is present for defensive reasons.
1664   // In the current uses of this interface, it can be replaced with:
1665   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1666   // But I am not placing that assert here to allow future
1667   // generality in invoking this interface.
1668   if (GC_locker::is_active()) {
1669     // A consistency test for GC_locker
1670     assert(GC_locker::needs_gc(), "Should have been set already");
1671     // Skip this foreground collection, instead
1672     // expanding the heap if necessary.
1673     // Need the free list locks for the call to free() in compute_new_size()
1674     compute_new_size();
1675     return;
1676   }
1677   acquire_control_and_collect(full, clear_all_soft_refs);
1678   _full_gcs_since_conc_gc++;
1679 }
1680 
1681 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1682   GenCollectedHeap* gch = GenCollectedHeap::heap();
1683   unsigned int gc_count = gch->total_full_collections();
1684   if (gc_count == full_gc_count) {
1685     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1686     _full_gc_requested = true;
1687     _full_gc_cause = cause;
1688     CGC_lock->notify();   // nudge CMS thread
1689   } else {
1690     assert(gc_count > full_gc_count, "Error: causal loop");
1691   }
1692 }
1693 
1694 bool CMSCollector::is_external_interruption() {
1695   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1696   return GCCause::is_user_requested_gc(cause) ||
1697          GCCause::is_serviceability_requested_gc(cause);
1698 }
1699 
1700 void CMSCollector::report_concurrent_mode_interruption() {
1701   if (is_external_interruption()) {
1702     if (PrintGCDetails) {
1703       gclog_or_tty->print(" (concurrent mode interrupted)");
1704     }
1705   } else {
1706     if (PrintGCDetails) {
1707       gclog_or_tty->print(" (concurrent mode failure)");
1708     }
1709     _gc_tracer_cm->report_concurrent_mode_failure();
1710   }
1711 }
1712 
1713 
1714 // The foreground and background collectors need to coordinate in order
1715 // to make sure that they do not mutually interfere with CMS collections.
1716 // When a background collection is active,
1717 // the foreground collector may need to take over (preempt) and
1718 // synchronously complete an ongoing collection. Depending on the
1719 // frequency of the background collections and the heap usage
1720 // of the application, this preemption can be seldom or frequent.
1721 // There are only certain
1722 // points in the background collection that the "collection-baton"
1723 // can be passed to the foreground collector.
1724 //
1725 // The foreground collector will wait for the baton before
1726 // starting any part of the collection.  The foreground collector
1727 // will only wait at one location.
1728 //
1729 // The background collector will yield the baton before starting a new
1730 // phase of the collection (e.g., before initial marking, marking from roots,
1731 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1732 // of the loop which switches the phases. The background collector does some
1733 // of the phases (initial mark, final re-mark) with the world stopped.
1734 // Because of locking involved in stopping the world,
1735 // the foreground collector should not block waiting for the background
1736 // collector when it is doing a stop-the-world phase.  The background
1737 // collector will yield the baton at an additional point just before
1738 // it enters a stop-the-world phase.  Once the world is stopped, the
1739 // background collector checks the phase of the collection.  If the
1740 // phase has not changed, it proceeds with the collection.  If the
1741 // phase has changed, it skips that phase of the collection.  See
1742 // the comments on the use of the Heap_lock in collect_in_background().
1743 //
1744 // Variable used in baton passing.
1745 //   _foregroundGCIsActive - Set to true by the foreground collector when
1746 //      it wants the baton.  The foreground clears it when it has finished
1747 //      the collection.
1748 //   _foregroundGCShouldWait - Set to true by the background collector
1749 //        when it is running.  The foreground collector waits while
1750 //      _foregroundGCShouldWait is true.
1751 //  CGC_lock - monitor used to protect access to the above variables
1752 //      and to notify the foreground and background collectors.
1753 //  _collectorState - current state of the CMS collection.
1754 //
1755 // The foreground collector
1756 //   acquires the CGC_lock
1757 //   sets _foregroundGCIsActive
1758 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1759 //     various locks acquired in preparation for the collection
1760 //     are released so as not to block the background collector
1761 //     that is in the midst of a collection
1762 //   proceeds with the collection
1763 //   clears _foregroundGCIsActive
1764 //   returns
1765 //
1766 // The background collector in a loop iterating on the phases of the
1767 //      collection
1768 //   acquires the CGC_lock
1769 //   sets _foregroundGCShouldWait
1770 //   if _foregroundGCIsActive is set
1771 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1772 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1773 //     and exits the loop.
1774 //   otherwise
1775 //     proceed with that phase of the collection
1776 //     if the phase is a stop-the-world phase,
1777 //       yield the baton once more just before enqueueing
1778 //       the stop-world CMS operation (executed by the VM thread).
1779 //   returns after all phases of the collection are done
1780 //
1781 
1782 void CMSCollector::acquire_control_and_collect(bool full,
1783         bool clear_all_soft_refs) {
1784   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1785   assert(!Thread::current()->is_ConcurrentGC_thread(),
1786          "shouldn't try to acquire control from self!");
1787 
1788   // Start the protocol for acquiring control of the
1789   // collection from the background collector (aka CMS thread).
1790   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1791          "VM thread should have CMS token");
1792   // Remember the possibly interrupted state of an ongoing
1793   // concurrent collection
1794   CollectorState first_state = _collectorState;
1795 
1796   // Signal to a possibly ongoing concurrent collection that
1797   // we want to do a foreground collection.
1798   _foregroundGCIsActive = true;
1799 
1800   // Disable incremental mode during a foreground collection.
1801   ICMSDisabler icms_disabler;
1802 
1803   // release locks and wait for a notify from the background collector
1804   // releasing the locks in only necessary for phases which
1805   // do yields to improve the granularity of the collection.
1806   assert_lock_strong(bitMapLock());
1807   // We need to lock the Free list lock for the space that we are
1808   // currently collecting.
1809   assert(haveFreelistLocks(), "Must be holding free list locks");
1810   bitMapLock()->unlock();
1811   releaseFreelistLocks();
1812   {
1813     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1814     if (_foregroundGCShouldWait) {
1815       // We are going to be waiting for action for the CMS thread;
1816       // it had better not be gone (for instance at shutdown)!
1817       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1818              "CMS thread must be running");
1819       // Wait here until the background collector gives us the go-ahead
1820       ConcurrentMarkSweepThread::clear_CMS_flag(
1821         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1822       // Get a possibly blocked CMS thread going:
1823       //   Note that we set _foregroundGCIsActive true above,
1824       //   without protection of the CGC_lock.
1825       CGC_lock->notify();
1826       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1827              "Possible deadlock");
1828       while (_foregroundGCShouldWait) {
1829         // wait for notification
1830         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1831         // Possibility of delay/starvation here, since CMS token does
1832         // not know to give priority to VM thread? Actually, i think
1833         // there wouldn't be any delay/starvation, but the proof of
1834         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1835       }
1836       ConcurrentMarkSweepThread::set_CMS_flag(
1837         ConcurrentMarkSweepThread::CMS_vm_has_token);
1838     }
1839   }
1840   // The CMS_token is already held.  Get back the other locks.
1841   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1842          "VM thread should have CMS token");
1843   getFreelistLocks();
1844   bitMapLock()->lock_without_safepoint_check();
1845   if (TraceCMSState) {
1846     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
1847       INTPTR_FORMAT " with first state %d", Thread::current(), first_state);
1848     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
1849   }
1850 
1851   // Check if we need to do a compaction, or if not, whether
1852   // we need to start the mark-sweep from scratch.
1853   bool should_compact    = false;
1854   bool should_start_over = false;
1855   decide_foreground_collection_type(clear_all_soft_refs,
1856     &should_compact, &should_start_over);
1857 
1858 NOT_PRODUCT(
1859   if (RotateCMSCollectionTypes) {
1860     if (_cmsGen->debug_collection_type() ==
1861         ConcurrentMarkSweepGeneration::MSC_foreground_collection_type) {
1862       should_compact = true;
1863     } else if (_cmsGen->debug_collection_type() ==
1864                ConcurrentMarkSweepGeneration::MS_foreground_collection_type) {
1865       should_compact = false;
1866     }
1867   }
1868 )
1869 
1870   if (first_state > Idling) {
1871     report_concurrent_mode_interruption();
1872   }
1873 
1874   set_did_compact(should_compact);
1875   if (should_compact) {
1876     // If the collection is being acquired from the background
1877     // collector, there may be references on the discovered
1878     // references lists that have NULL referents (being those
1879     // that were concurrently cleared by a mutator) or
1880     // that are no longer active (having been enqueued concurrently
1881     // by the mutator).
1882     // Scrub the list of those references because Mark-Sweep-Compact
1883     // code assumes referents are not NULL and that all discovered
1884     // Reference objects are active.
1885     ref_processor()->clean_up_discovered_references();
1886 
1887     if (first_state > Idling) {
1888       save_heap_summary();
1889     }
1890 
1891     do_compaction_work(clear_all_soft_refs);
1892 
1893     // Has the GC time limit been exceeded?
1894     DefNewGeneration* young_gen = _young_gen->as_DefNewGeneration();
1895     size_t max_eden_size = young_gen->max_capacity() -
1896                            young_gen->to()->capacity() -
1897                            young_gen->from()->capacity();
1898     GenCollectedHeap* gch = GenCollectedHeap::heap();
1899     GCCause::Cause gc_cause = gch->gc_cause();
1900     size_policy()->check_gc_overhead_limit(_young_gen->used(),
1901                                            young_gen->eden()->used(),
1902                                            _cmsGen->max_capacity(),
1903                                            max_eden_size,
1904                                            full,
1905                                            gc_cause,
1906                                            gch->collector_policy());
1907   } else {
1908     do_mark_sweep_work(clear_all_soft_refs, first_state,
1909       should_start_over);
1910   }
1911   // Reset the expansion cause, now that we just completed
1912   // a collection cycle.
1913   clear_expansion_cause();
1914   _foregroundGCIsActive = false;
1915   return;
1916 }
1917 
1918 // Resize the tenured generation
1919 // after obtaining the free list locks for the
1920 // two generations.
1921 void CMSCollector::compute_new_size() {
1922   assert_locked_or_safepoint(Heap_lock);
1923   FreelistLocker z(this);
1924   MetaspaceGC::compute_new_size();
1925   _cmsGen->compute_new_size_free_list();
1926 }
1927 
1928 // A work method used by foreground collection to determine
1929 // what type of collection (compacting or not, continuing or fresh)
1930 // it should do.
1931 // NOTE: the intent is to make UseCMSCompactAtFullCollection
1932 // and CMSCompactWhenClearAllSoftRefs the default in the future
1933 // and do away with the flags after a suitable period.
1934 void CMSCollector::decide_foreground_collection_type(
1935   bool clear_all_soft_refs, bool* should_compact,
1936   bool* should_start_over) {
1937   // Normally, we'll compact only if the UseCMSCompactAtFullCollection
1938   // flag is set, and we have either requested a System.gc() or
1939   // the number of full gc's since the last concurrent cycle
1940   // has exceeded the threshold set by CMSFullGCsBeforeCompaction,
1941   // or if an incremental collection has failed
1942   GenCollectedHeap* gch = GenCollectedHeap::heap();
1943   assert(gch->collector_policy()->is_two_generation_policy(),
1944          "You may want to check the correctness of the following");
1945   // Inform cms gen if this was due to partial collection failing.
1946   // The CMS gen may use this fact to determine its expansion policy.
1947   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1948     assert(!_cmsGen->incremental_collection_failed(),
1949            "Should have been noticed, reacted to and cleared");
1950     _cmsGen->set_incremental_collection_failed();
1951   }
1952   *should_compact =
1953     UseCMSCompactAtFullCollection &&
1954     ((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) ||
1955      GCCause::is_user_requested_gc(gch->gc_cause()) ||
1956      gch->incremental_collection_will_fail(true /* consult_young */));
1957   *should_start_over = false;
1958   if (clear_all_soft_refs && !*should_compact) {
1959     // We are about to do a last ditch collection attempt
1960     // so it would normally make sense to do a compaction
1961     // to reclaim as much space as possible.
1962     if (CMSCompactWhenClearAllSoftRefs) {
1963       // Default: The rationale is that in this case either
1964       // we are past the final marking phase, in which case
1965       // we'd have to start over, or so little has been done
1966       // that there's little point in saving that work. Compaction
1967       // appears to be the sensible choice in either case.
1968       *should_compact = true;
1969     } else {
1970       // We have been asked to clear all soft refs, but not to
1971       // compact. Make sure that we aren't past the final checkpoint
1972       // phase, for that is where we process soft refs. If we are already
1973       // past that phase, we'll need to redo the refs discovery phase and
1974       // if necessary clear soft refs that weren't previously
1975       // cleared. We do so by remembering the phase in which
1976       // we came in, and if we are past the refs processing
1977       // phase, we'll choose to just redo the mark-sweep
1978       // collection from scratch.
1979       if (_collectorState > FinalMarking) {
1980         // We are past the refs processing phase;
1981         // start over and do a fresh synchronous CMS cycle
1982         _collectorState = Resetting; // skip to reset to start new cycle
1983         reset(false /* == !asynch */);
1984         *should_start_over = true;
1985       } // else we can continue a possibly ongoing current cycle
1986     }
1987   }
1988 }
1989 
1990 // A work method used by the foreground collector to do
1991 // a mark-sweep-compact.
1992 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1993   GenCollectedHeap* gch = GenCollectedHeap::heap();
1994 
1995   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1996   gc_timer->register_gc_start();
1997 
1998   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1999   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
2000 
2001   GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL);
2002   if (PrintGC && Verbose && !(GCCause::is_user_requested_gc(gch->gc_cause()))) {
2003     gclog_or_tty->print_cr("Compact ConcurrentMarkSweepGeneration after %d "
2004       "collections passed to foreground collector", _full_gcs_since_conc_gc);
2005   }
2006 
2007   // Sample collection interval time and reset for collection pause.
2008   if (UseAdaptiveSizePolicy) {
2009     size_policy()->msc_collection_begin();
2010   }
2011 
2012   // Temporarily widen the span of the weak reference processing to
2013   // the entire heap.
2014   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
2015   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
2016   // Temporarily, clear the "is_alive_non_header" field of the
2017   // reference processor.
2018   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
2019   // Temporarily make reference _processing_ single threaded (non-MT).
2020   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
2021   // Temporarily make refs discovery atomic
2022   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
2023   // Temporarily make reference _discovery_ single threaded (non-MT)
2024   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
2025 
2026   ref_processor()->set_enqueuing_is_done(false);
2027   ref_processor()->enable_discovery(false /*verify_disabled*/, false /*check_no_refs*/);
2028   ref_processor()->setup_policy(clear_all_soft_refs);
2029   // If an asynchronous collection finishes, the _modUnionTable is
2030   // all clear.  If we are assuming the collection from an asynchronous
2031   // collection, clear the _modUnionTable.
2032   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
2033     "_modUnionTable should be clear if the baton was not passed");
2034   _modUnionTable.clear_all();
2035   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
2036     "mod union for klasses should be clear if the baton was passed");
2037   _ct->klass_rem_set()->clear_mod_union();
2038 
2039   // We must adjust the allocation statistics being maintained
2040   // in the free list space. We do so by reading and clearing
2041   // the sweep timer and updating the block flux rate estimates below.
2042   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
2043   if (_inter_sweep_timer.is_active()) {
2044     _inter_sweep_timer.stop();
2045     // Note that we do not use this sample to update the _inter_sweep_estimate.
2046     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
2047                                             _inter_sweep_estimate.padded_average(),
2048                                             _intra_sweep_estimate.padded_average());
2049   }
2050 
2051   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
2052     ref_processor(), clear_all_soft_refs);
2053   #ifdef ASSERT
2054     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
2055     size_t free_size = cms_space->free();
2056     assert(free_size ==
2057            pointer_delta(cms_space->end(), cms_space->compaction_top())
2058            * HeapWordSize,
2059       "All the free space should be compacted into one chunk at top");
2060     assert(cms_space->dictionary()->total_chunk_size(
2061                                       debug_only(cms_space->freelistLock())) == 0 ||
2062            cms_space->totalSizeInIndexedFreeLists() == 0,
2063       "All the free space should be in a single chunk");
2064     size_t num = cms_space->totalCount();
2065     assert((free_size == 0 && num == 0) ||
2066            (free_size > 0  && (num == 1 || num == 2)),
2067          "There should be at most 2 free chunks after compaction");
2068   #endif // ASSERT
2069   _collectorState = Resetting;
2070   assert(_restart_addr == NULL,
2071          "Should have been NULL'd before baton was passed");
2072   reset(false /* == !asynch */);
2073   _cmsGen->reset_after_compaction();
2074   _concurrent_cycles_since_last_unload = 0;
2075 
2076   // Clear any data recorded in the PLAB chunk arrays.
2077   if (_survivor_plab_array != NULL) {
2078     reset_survivor_plab_arrays();
2079   }
2080 
2081   // Adjust the per-size allocation stats for the next epoch.
2082   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
2083   // Restart the "inter sweep timer" for the next epoch.
2084   _inter_sweep_timer.reset();
2085   _inter_sweep_timer.start();
2086 
2087   // Sample collection pause time and reset for collection interval.
2088   if (UseAdaptiveSizePolicy) {
2089     size_policy()->msc_collection_end(gch->gc_cause());
2090   }
2091 
2092   gc_timer->register_gc_end();
2093 
2094   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
2095 
2096   // For a mark-sweep-compact, compute_new_size() will be called
2097   // in the heap's do_collection() method.
2098 }
2099 
2100 // A work method used by the foreground collector to do
2101 // a mark-sweep, after taking over from a possibly on-going
2102 // concurrent mark-sweep collection.
2103 void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs,
2104   CollectorState first_state, bool should_start_over) {
2105   if (PrintGC && Verbose) {
2106     gclog_or_tty->print_cr("Pass concurrent collection to foreground "
2107       "collector with count %d",
2108       _full_gcs_since_conc_gc);
2109   }
2110   switch (_collectorState) {
2111     case Idling:
2112       if (first_state == Idling || should_start_over) {
2113         // The background GC was not active, or should
2114         // restarted from scratch;  start the cycle.
2115         _collectorState = InitialMarking;
2116       }
2117       // If first_state was not Idling, then a background GC
2118       // was in progress and has now finished.  No need to do it
2119       // again.  Leave the state as Idling.
2120       break;
2121     case Precleaning:
2122       // In the foreground case don't do the precleaning since
2123       // it is not done concurrently and there is extra work
2124       // required.
2125       _collectorState = FinalMarking;
2126   }
2127   collect_in_foreground(clear_all_soft_refs, GenCollectedHeap::heap()->gc_cause());
2128 
2129   // For a mark-sweep, compute_new_size() will be called
2130   // in the heap's do_collection() method.
2131 }
2132 
2133 
2134 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
2135   DefNewGeneration* dng = _young_gen->as_DefNewGeneration();
2136   EdenSpace* eden_space = dng->eden();
2137   ContiguousSpace* from_space = dng->from();
2138   ContiguousSpace* to_space   = dng->to();
2139   // Eden
2140   if (_eden_chunk_array != NULL) {
2141     gclog_or_tty->print_cr("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
2142                            eden_space->bottom(), eden_space->top(),
2143                            eden_space->end(), eden_space->capacity());
2144     gclog_or_tty->print_cr("_eden_chunk_index=" SIZE_FORMAT ", "
2145                            "_eden_chunk_capacity=" SIZE_FORMAT,
2146                            _eden_chunk_index, _eden_chunk_capacity);
2147     for (size_t i = 0; i < _eden_chunk_index; i++) {
2148       gclog_or_tty->print_cr("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
2149                              i, _eden_chunk_array[i]);
2150     }
2151   }
2152   // Survivor
2153   if (_survivor_chunk_array != NULL) {
2154     gclog_or_tty->print_cr("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
2155                            from_space->bottom(), from_space->top(),
2156                            from_space->end(), from_space->capacity());
2157     gclog_or_tty->print_cr("_survivor_chunk_index=" SIZE_FORMAT ", "
2158                            "_survivor_chunk_capacity=" SIZE_FORMAT,
2159                            _survivor_chunk_index, _survivor_chunk_capacity);
2160     for (size_t i = 0; i < _survivor_chunk_index; i++) {
2161       gclog_or_tty->print_cr("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
2162                              i, _survivor_chunk_array[i]);
2163     }
2164   }
2165 }
2166 
2167 void CMSCollector::getFreelistLocks() const {
2168   // Get locks for all free lists in all generations that this
2169   // collector is responsible for
2170   _cmsGen->freelistLock()->lock_without_safepoint_check();
2171 }
2172 
2173 void CMSCollector::releaseFreelistLocks() const {
2174   // Release locks for all free lists in all generations that this
2175   // collector is responsible for
2176   _cmsGen->freelistLock()->unlock();
2177 }
2178 
2179 bool CMSCollector::haveFreelistLocks() const {
2180   // Check locks for all free lists in all generations that this
2181   // collector is responsible for
2182   assert_lock_strong(_cmsGen->freelistLock());
2183   PRODUCT_ONLY(ShouldNotReachHere());
2184   return true;
2185 }
2186 
2187 // A utility class that is used by the CMS collector to
2188 // temporarily "release" the foreground collector from its
2189 // usual obligation to wait for the background collector to
2190 // complete an ongoing phase before proceeding.
2191 class ReleaseForegroundGC: public StackObj {
2192  private:
2193   CMSCollector* _c;
2194  public:
2195   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
2196     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
2197     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2198     // allow a potentially blocked foreground collector to proceed
2199     _c->_foregroundGCShouldWait = false;
2200     if (_c->_foregroundGCIsActive) {
2201       CGC_lock->notify();
2202     }
2203     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2204            "Possible deadlock");
2205   }
2206 
2207   ~ReleaseForegroundGC() {
2208     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
2209     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2210     _c->_foregroundGCShouldWait = true;
2211   }
2212 };
2213 
2214 // There are separate collect_in_background and collect_in_foreground because of
2215 // the different locking requirements of the background collector and the
2216 // foreground collector.  There was originally an attempt to share
2217 // one "collect" method between the background collector and the foreground
2218 // collector but the if-then-else required made it cleaner to have
2219 // separate methods.
2220 void CMSCollector::collect_in_background(bool clear_all_soft_refs, GCCause::Cause cause) {
2221   assert(Thread::current()->is_ConcurrentGC_thread(),
2222     "A CMS asynchronous collection is only allowed on a CMS thread.");
2223 
2224   GenCollectedHeap* gch = GenCollectedHeap::heap();
2225   {
2226     bool safepoint_check = Mutex::_no_safepoint_check_flag;
2227     MutexLockerEx hl(Heap_lock, safepoint_check);
2228     FreelistLocker fll(this);
2229     MutexLockerEx x(CGC_lock, safepoint_check);
2230     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
2231       // The foreground collector is active or we're
2232       // not using asynchronous collections.  Skip this
2233       // background collection.
2234       assert(!_foregroundGCShouldWait, "Should be clear");
2235       return;
2236     } else {
2237       assert(_collectorState == Idling, "Should be idling before start.");
2238       _collectorState = InitialMarking;
2239       register_gc_start(cause);
2240       // Reset the expansion cause, now that we are about to begin
2241       // a new cycle.
2242       clear_expansion_cause();
2243 
2244       // Clear the MetaspaceGC flag since a concurrent collection
2245       // is starting but also clear it after the collection.
2246       MetaspaceGC::set_should_concurrent_collect(false);
2247     }
2248     // Decide if we want to enable class unloading as part of the
2249     // ensuing concurrent GC cycle.
2250     update_should_unload_classes();
2251     _full_gc_requested = false;           // acks all outstanding full gc requests
2252     _full_gc_cause = GCCause::_no_gc;
2253     // Signal that we are about to start a collection
2254     gch->increment_total_full_collections();  // ... starting a collection cycle
2255     _collection_count_start = gch->total_full_collections();
2256   }
2257 
2258   // Used for PrintGC
2259   size_t prev_used;
2260   if (PrintGC && Verbose) {
2261     prev_used = _cmsGen->used(); // XXXPERM
2262   }
2263 
2264   // The change of the collection state is normally done at this level;
2265   // the exceptions are phases that are executed while the world is
2266   // stopped.  For those phases the change of state is done while the
2267   // world is stopped.  For baton passing purposes this allows the
2268   // background collector to finish the phase and change state atomically.
2269   // The foreground collector cannot wait on a phase that is done
2270   // while the world is stopped because the foreground collector already
2271   // has the world stopped and would deadlock.
2272   while (_collectorState != Idling) {
2273     if (TraceCMSState) {
2274       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2275         Thread::current(), _collectorState);
2276     }
2277     // The foreground collector
2278     //   holds the Heap_lock throughout its collection.
2279     //   holds the CMS token (but not the lock)
2280     //     except while it is waiting for the background collector to yield.
2281     //
2282     // The foreground collector should be blocked (not for long)
2283     //   if the background collector is about to start a phase
2284     //   executed with world stopped.  If the background
2285     //   collector has already started such a phase, the
2286     //   foreground collector is blocked waiting for the
2287     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
2288     //   are executed in the VM thread.
2289     //
2290     // The locking order is
2291     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
2292     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
2293     //   CMS token  (claimed in
2294     //                stop_world_and_do() -->
2295     //                  safepoint_synchronize() -->
2296     //                    CMSThread::synchronize())
2297 
2298     {
2299       // Check if the FG collector wants us to yield.
2300       CMSTokenSync x(true); // is cms thread
2301       if (waitForForegroundGC()) {
2302         // We yielded to a foreground GC, nothing more to be
2303         // done this round.
2304         assert(_foregroundGCShouldWait == false, "We set it to false in "
2305                "waitForForegroundGC()");
2306         if (TraceCMSState) {
2307           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2308             " exiting collection CMS state %d",
2309             Thread::current(), _collectorState);
2310         }
2311         return;
2312       } else {
2313         // The background collector can run but check to see if the
2314         // foreground collector has done a collection while the
2315         // background collector was waiting to get the CGC_lock
2316         // above.  If yes, break so that _foregroundGCShouldWait
2317         // is cleared before returning.
2318         if (_collectorState == Idling) {
2319           break;
2320         }
2321       }
2322     }
2323 
2324     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
2325       "should be waiting");
2326 
2327     switch (_collectorState) {
2328       case InitialMarking:
2329         {
2330           ReleaseForegroundGC x(this);
2331           stats().record_cms_begin();
2332           VM_CMS_Initial_Mark initial_mark_op(this);
2333           VMThread::execute(&initial_mark_op);
2334         }
2335         // The collector state may be any legal state at this point
2336         // since the background collector may have yielded to the
2337         // foreground collector.
2338         break;
2339       case Marking:
2340         // initial marking in checkpointRootsInitialWork has been completed
2341         if (markFromRoots(true)) { // we were successful
2342           assert(_collectorState == Precleaning, "Collector state should "
2343             "have changed");
2344         } else {
2345           assert(_foregroundGCIsActive, "Internal state inconsistency");
2346         }
2347         break;
2348       case Precleaning:
2349         if (UseAdaptiveSizePolicy) {
2350           size_policy()->concurrent_precleaning_begin();
2351         }
2352         // marking from roots in markFromRoots has been completed
2353         preclean();
2354         if (UseAdaptiveSizePolicy) {
2355           size_policy()->concurrent_precleaning_end();
2356         }
2357         assert(_collectorState == AbortablePreclean ||
2358                _collectorState == FinalMarking,
2359                "Collector state should have changed");
2360         break;
2361       case AbortablePreclean:
2362         if (UseAdaptiveSizePolicy) {
2363         size_policy()->concurrent_phases_resume();
2364         }
2365         abortable_preclean();
2366         if (UseAdaptiveSizePolicy) {
2367           size_policy()->concurrent_precleaning_end();
2368         }
2369         assert(_collectorState == FinalMarking, "Collector state should "
2370           "have changed");
2371         break;
2372       case FinalMarking:
2373         {
2374           ReleaseForegroundGC x(this);
2375 
2376           VM_CMS_Final_Remark final_remark_op(this);
2377           VMThread::execute(&final_remark_op);
2378         }
2379         assert(_foregroundGCShouldWait, "block post-condition");
2380         break;
2381       case Sweeping:
2382         if (UseAdaptiveSizePolicy) {
2383           size_policy()->concurrent_sweeping_begin();
2384         }
2385         // final marking in checkpointRootsFinal has been completed
2386         sweep(true);
2387         assert(_collectorState == Resizing, "Collector state change "
2388           "to Resizing must be done under the free_list_lock");
2389         _full_gcs_since_conc_gc = 0;
2390 
2391         // Stop the timers for adaptive size policy for the concurrent phases
2392         if (UseAdaptiveSizePolicy) {
2393           size_policy()->concurrent_sweeping_end();
2394           size_policy()->concurrent_phases_end(gch->gc_cause(),
2395                                              gch->prev_gen(_cmsGen)->capacity(),
2396                                              _cmsGen->free());
2397         }
2398 
2399       case Resizing: {
2400         // Sweeping has been completed...
2401         // At this point the background collection has completed.
2402         // Don't move the call to compute_new_size() down
2403         // into code that might be executed if the background
2404         // collection was preempted.
2405         {
2406           ReleaseForegroundGC x(this);   // unblock FG collection
2407           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
2408           CMSTokenSync        z(true);   // not strictly needed.
2409           if (_collectorState == Resizing) {
2410             compute_new_size();
2411             save_heap_summary();
2412             _collectorState = Resetting;
2413           } else {
2414             assert(_collectorState == Idling, "The state should only change"
2415                    " because the foreground collector has finished the collection");
2416           }
2417         }
2418         break;
2419       }
2420       case Resetting:
2421         // CMS heap resizing has been completed
2422         reset(true);
2423         assert(_collectorState == Idling, "Collector state should "
2424           "have changed");
2425 
2426         MetaspaceGC::set_should_concurrent_collect(false);
2427 
2428         stats().record_cms_end();
2429         // Don't move the concurrent_phases_end() and compute_new_size()
2430         // calls to here because a preempted background collection
2431         // has it's state set to "Resetting".
2432         break;
2433       case Idling:
2434       default:
2435         ShouldNotReachHere();
2436         break;
2437     }
2438     if (TraceCMSState) {
2439       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2440         Thread::current(), _collectorState);
2441     }
2442     assert(_foregroundGCShouldWait, "block post-condition");
2443   }
2444 
2445   // Should this be in gc_epilogue?
2446   collector_policy()->counters()->update_counters();
2447 
2448   {
2449     // Clear _foregroundGCShouldWait and, in the event that the
2450     // foreground collector is waiting, notify it, before
2451     // returning.
2452     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2453     _foregroundGCShouldWait = false;
2454     if (_foregroundGCIsActive) {
2455       CGC_lock->notify();
2456     }
2457     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2458            "Possible deadlock");
2459   }
2460   if (TraceCMSState) {
2461     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2462       " exiting collection CMS state %d",
2463       Thread::current(), _collectorState);
2464   }
2465   if (PrintGC && Verbose) {
2466     _cmsGen->print_heap_change(prev_used);
2467   }
2468 }
2469 
2470 void CMSCollector::register_foreground_gc_start(GCCause::Cause cause) {
2471   if (!_cms_start_registered) {
2472     register_gc_start(cause);
2473   }
2474 }
2475 
2476 void CMSCollector::register_gc_start(GCCause::Cause cause) {
2477   _cms_start_registered = true;
2478   _gc_timer_cm->register_gc_start();
2479   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
2480 }
2481 
2482 void CMSCollector::register_gc_end() {
2483   if (_cms_start_registered) {
2484     report_heap_summary(GCWhen::AfterGC);
2485 
2486     _gc_timer_cm->register_gc_end();
2487     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2488     _cms_start_registered = false;
2489   }
2490 }
2491 
2492 void CMSCollector::save_heap_summary() {
2493   GenCollectedHeap* gch = GenCollectedHeap::heap();
2494   _last_heap_summary = gch->create_heap_summary();
2495   _last_metaspace_summary = gch->create_metaspace_summary();
2496 }
2497 
2498 void CMSCollector::report_heap_summary(GCWhen::Type when) {
2499   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary, _last_metaspace_summary);
2500 }
2501 
2502 void CMSCollector::collect_in_foreground(bool clear_all_soft_refs, GCCause::Cause cause) {
2503   assert(_foregroundGCIsActive && !_foregroundGCShouldWait,
2504          "Foreground collector should be waiting, not executing");
2505   assert(Thread::current()->is_VM_thread(), "A foreground collection"
2506     "may only be done by the VM Thread with the world stopped");
2507   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
2508          "VM thread should have CMS token");
2509 
2510   NOT_PRODUCT(GCTraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose,
2511     true, NULL);)
2512   if (UseAdaptiveSizePolicy) {
2513     size_policy()->ms_collection_begin();
2514   }
2515   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact);
2516 
2517   HandleMark hm;  // Discard invalid handles created during verification
2518 
2519   if (VerifyBeforeGC &&
2520       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2521     Universe::verify();
2522   }
2523 
2524   // Snapshot the soft reference policy to be used in this collection cycle.
2525   ref_processor()->setup_policy(clear_all_soft_refs);
2526 
2527   // Decide if class unloading should be done
2528   update_should_unload_classes();
2529 
2530   bool init_mark_was_synchronous = false; // until proven otherwise
2531   while (_collectorState != Idling) {
2532     if (TraceCMSState) {
2533       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2534         Thread::current(), _collectorState);
2535     }
2536     switch (_collectorState) {
2537       case InitialMarking:
2538         register_foreground_gc_start(cause);
2539         init_mark_was_synchronous = true;  // fact to be exploited in re-mark
2540         checkpointRootsInitial(false);
2541         assert(_collectorState == Marking, "Collector state should have changed"
2542           " within checkpointRootsInitial()");
2543         break;
2544       case Marking:
2545         // initial marking in checkpointRootsInitialWork has been completed
2546         if (VerifyDuringGC &&
2547             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2548           Universe::verify("Verify before initial mark: ");
2549         }
2550         {
2551           bool res = markFromRoots(false);
2552           assert(res && _collectorState == FinalMarking, "Collector state should "
2553             "have changed");
2554           break;
2555         }
2556       case FinalMarking:
2557         if (VerifyDuringGC &&
2558             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2559           Universe::verify("Verify before re-mark: ");
2560         }
2561         checkpointRootsFinal(false, clear_all_soft_refs,
2562                              init_mark_was_synchronous);
2563         assert(_collectorState == Sweeping, "Collector state should not "
2564           "have changed within checkpointRootsFinal()");
2565         break;
2566       case Sweeping:
2567         // final marking in checkpointRootsFinal has been completed
2568         if (VerifyDuringGC &&
2569             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2570           Universe::verify("Verify before sweep: ");
2571         }
2572         sweep(false);
2573         assert(_collectorState == Resizing, "Incorrect state");
2574         break;
2575       case Resizing: {
2576         // Sweeping has been completed; the actual resize in this case
2577         // is done separately; nothing to be done in this state.
2578         _collectorState = Resetting;
2579         break;
2580       }
2581       case Resetting:
2582         // The heap has been resized.
2583         if (VerifyDuringGC &&
2584             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2585           Universe::verify("Verify before reset: ");
2586         }
2587         save_heap_summary();
2588         reset(false);
2589         assert(_collectorState == Idling, "Collector state should "
2590           "have changed");
2591         break;
2592       case Precleaning:
2593       case AbortablePreclean:
2594         // Elide the preclean phase
2595         _collectorState = FinalMarking;
2596         break;
2597       default:
2598         ShouldNotReachHere();
2599     }
2600     if (TraceCMSState) {
2601       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2602         Thread::current(), _collectorState);
2603     }
2604   }
2605 
2606   if (UseAdaptiveSizePolicy) {
2607     GenCollectedHeap* gch = GenCollectedHeap::heap();
2608     size_policy()->ms_collection_end(gch->gc_cause());
2609   }
2610 
2611   if (VerifyAfterGC &&
2612       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2613     Universe::verify();
2614   }
2615   if (TraceCMSState) {
2616     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2617       " exiting collection CMS state %d",
2618       Thread::current(), _collectorState);
2619   }
2620 }
2621 
2622 bool CMSCollector::waitForForegroundGC() {
2623   bool res = false;
2624   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2625          "CMS thread should have CMS token");
2626   // Block the foreground collector until the
2627   // background collectors decides whether to
2628   // yield.
2629   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2630   _foregroundGCShouldWait = true;
2631   if (_foregroundGCIsActive) {
2632     // The background collector yields to the
2633     // foreground collector and returns a value
2634     // indicating that it has yielded.  The foreground
2635     // collector can proceed.
2636     res = true;
2637     _foregroundGCShouldWait = false;
2638     ConcurrentMarkSweepThread::clear_CMS_flag(
2639       ConcurrentMarkSweepThread::CMS_cms_has_token);
2640     ConcurrentMarkSweepThread::set_CMS_flag(
2641       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2642     // Get a possibly blocked foreground thread going
2643     CGC_lock->notify();
2644     if (TraceCMSState) {
2645       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
2646         Thread::current(), _collectorState);
2647     }
2648     while (_foregroundGCIsActive) {
2649       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
2650     }
2651     ConcurrentMarkSweepThread::set_CMS_flag(
2652       ConcurrentMarkSweepThread::CMS_cms_has_token);
2653     ConcurrentMarkSweepThread::clear_CMS_flag(
2654       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2655   }
2656   if (TraceCMSState) {
2657     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
2658       Thread::current(), _collectorState);
2659   }
2660   return res;
2661 }
2662 
2663 // Because of the need to lock the free lists and other structures in
2664 // the collector, common to all the generations that the collector is
2665 // collecting, we need the gc_prologues of individual CMS generations
2666 // delegate to their collector. It may have been simpler had the
2667 // current infrastructure allowed one to call a prologue on a
2668 // collector. In the absence of that we have the generation's
2669 // prologue delegate to the collector, which delegates back
2670 // some "local" work to a worker method in the individual generations
2671 // that it's responsible for collecting, while itself doing any
2672 // work common to all generations it's responsible for. A similar
2673 // comment applies to the  gc_epilogue()'s.
2674 // The role of the variable _between_prologue_and_epilogue is to
2675 // enforce the invocation protocol.
2676 void CMSCollector::gc_prologue(bool full) {
2677   // Call gc_prologue_work() for the CMSGen
2678   // we are responsible for.
2679 
2680   // The following locking discipline assumes that we are only called
2681   // when the world is stopped.
2682   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2683 
2684   // The CMSCollector prologue must call the gc_prologues for the
2685   // "generations" that it's responsible
2686   // for.
2687 
2688   assert(   Thread::current()->is_VM_thread()
2689          || (   CMSScavengeBeforeRemark
2690              && Thread::current()->is_ConcurrentGC_thread()),
2691          "Incorrect thread type for prologue execution");
2692 
2693   if (_between_prologue_and_epilogue) {
2694     // We have already been invoked; this is a gc_prologue delegation
2695     // from yet another CMS generation that we are responsible for, just
2696     // ignore it since all relevant work has already been done.
2697     return;
2698   }
2699 
2700   // set a bit saying prologue has been called; cleared in epilogue
2701   _between_prologue_and_epilogue = true;
2702   // Claim locks for common data structures, then call gc_prologue_work()
2703   // for each CMSGen.
2704 
2705   getFreelistLocks();   // gets free list locks on constituent spaces
2706   bitMapLock()->lock_without_safepoint_check();
2707 
2708   // Should call gc_prologue_work() for all cms gens we are responsible for
2709   bool duringMarking =    _collectorState >= Marking
2710                          && _collectorState < Sweeping;
2711 
2712   // The young collections clear the modified oops state, which tells if
2713   // there are any modified oops in the class. The remark phase also needs
2714   // that information. Tell the young collection to save the union of all
2715   // modified klasses.
2716   if (duringMarking) {
2717     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2718   }
2719 
2720   bool registerClosure = duringMarking;
2721 
2722   ModUnionClosure* muc = CollectedHeap::use_parallel_gc_threads() ?
2723                                                &_modUnionClosurePar
2724                                                : &_modUnionClosure;
2725   _cmsGen->gc_prologue_work(full, registerClosure, muc);
2726 
2727   if (!full) {
2728     stats().record_gc0_begin();
2729   }
2730 }
2731 
2732 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2733 
2734   _capacity_at_prologue = capacity();
2735   _used_at_prologue = used();
2736 
2737   // Delegate to CMScollector which knows how to coordinate between
2738   // this and any other CMS generations that it is responsible for
2739   // collecting.
2740   collector()->gc_prologue(full);
2741 }
2742 
2743 // This is a "private" interface for use by this generation's CMSCollector.
2744 // Not to be called directly by any other entity (for instance,
2745 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2746 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2747   bool registerClosure, ModUnionClosure* modUnionClosure) {
2748   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2749   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2750     "Should be NULL");
2751   if (registerClosure) {
2752     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2753   }
2754   cmsSpace()->gc_prologue();
2755   // Clear stat counters
2756   NOT_PRODUCT(
2757     assert(_numObjectsPromoted == 0, "check");
2758     assert(_numWordsPromoted   == 0, "check");
2759     if (Verbose && PrintGC) {
2760       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
2761                           SIZE_FORMAT" bytes concurrently",
2762       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2763     }
2764     _numObjectsAllocated = 0;
2765     _numWordsAllocated   = 0;
2766   )
2767 }
2768 
2769 void CMSCollector::gc_epilogue(bool full) {
2770   // The following locking discipline assumes that we are only called
2771   // when the world is stopped.
2772   assert(SafepointSynchronize::is_at_safepoint(),
2773          "world is stopped assumption");
2774 
2775   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2776   // if linear allocation blocks need to be appropriately marked to allow the
2777   // the blocks to be parsable. We also check here whether we need to nudge the
2778   // CMS collector thread to start a new cycle (if it's not already active).
2779   assert(   Thread::current()->is_VM_thread()
2780          || (   CMSScavengeBeforeRemark
2781              && Thread::current()->is_ConcurrentGC_thread()),
2782          "Incorrect thread type for epilogue execution");
2783 
2784   if (!_between_prologue_and_epilogue) {
2785     // We have already been invoked; this is a gc_epilogue delegation
2786     // from yet another CMS generation that we are responsible for, just
2787     // ignore it since all relevant work has already been done.
2788     return;
2789   }
2790   assert(haveFreelistLocks(), "must have freelist locks");
2791   assert_lock_strong(bitMapLock());
2792 
2793   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2794 
2795   _cmsGen->gc_epilogue_work(full);
2796 
2797   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2798     // in case sampling was not already enabled, enable it
2799     _start_sampling = true;
2800   }
2801   // reset _eden_chunk_array so sampling starts afresh
2802   _eden_chunk_index = 0;
2803 
2804   size_t cms_used   = _cmsGen->cmsSpace()->used();
2805 
2806   // update performance counters - this uses a special version of
2807   // update_counters() that allows the utilization to be passed as a
2808   // parameter, avoiding multiple calls to used().
2809   //
2810   _cmsGen->update_counters(cms_used);
2811 
2812   if (CMSIncrementalMode) {
2813     icms_update_allocation_limits();
2814   }
2815 
2816   bitMapLock()->unlock();
2817   releaseFreelistLocks();
2818 
2819   if (!CleanChunkPoolAsync) {
2820     Chunk::clean_chunk_pool();
2821   }
2822 
2823   set_did_compact(false);
2824   _between_prologue_and_epilogue = false;  // ready for next cycle
2825 }
2826 
2827 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2828   collector()->gc_epilogue(full);
2829 
2830   // Also reset promotion tracking in par gc thread states.
2831   if (CollectedHeap::use_parallel_gc_threads()) {
2832     for (uint i = 0; i < ParallelGCThreads; i++) {
2833       _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2834     }
2835   }
2836 }
2837 
2838 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2839   assert(!incremental_collection_failed(), "Should have been cleared");
2840   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2841   cmsSpace()->gc_epilogue();
2842     // Print stat counters
2843   NOT_PRODUCT(
2844     assert(_numObjectsAllocated == 0, "check");
2845     assert(_numWordsAllocated == 0, "check");
2846     if (Verbose && PrintGC) {
2847       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
2848                           SIZE_FORMAT" bytes",
2849                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2850     }
2851     _numObjectsPromoted = 0;
2852     _numWordsPromoted   = 0;
2853   )
2854 
2855   if (PrintGC && Verbose) {
2856     // Call down the chain in contiguous_available needs the freelistLock
2857     // so print this out before releasing the freeListLock.
2858     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
2859                         contiguous_available());
2860   }
2861 }
2862 
2863 #ifndef PRODUCT
2864 bool CMSCollector::have_cms_token() {
2865   Thread* thr = Thread::current();
2866   if (thr->is_VM_thread()) {
2867     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2868   } else if (thr->is_ConcurrentGC_thread()) {
2869     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2870   } else if (thr->is_GC_task_thread()) {
2871     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2872            ParGCRareEvent_lock->owned_by_self();
2873   }
2874   return false;
2875 }
2876 #endif
2877 
2878 // Check reachability of the given heap address in CMS generation,
2879 // treating all other generations as roots.
2880 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2881   // We could "guarantee" below, rather than assert, but I'll
2882   // leave these as "asserts" so that an adventurous debugger
2883   // could try this in the product build provided some subset of
2884   // the conditions were met, provided they were interested in the
2885   // results and knew that the computation below wouldn't interfere
2886   // with other concurrent computations mutating the structures
2887   // being read or written.
2888   assert(SafepointSynchronize::is_at_safepoint(),
2889          "Else mutations in object graph will make answer suspect");
2890   assert(have_cms_token(), "Should hold cms token");
2891   assert(haveFreelistLocks(), "must hold free list locks");
2892   assert_lock_strong(bitMapLock());
2893 
2894   // Clear the marking bit map array before starting, but, just
2895   // for kicks, first report if the given address is already marked
2896   gclog_or_tty->print_cr("Start: Address 0x%x is%s marked", addr,
2897                 _markBitMap.isMarked(addr) ? "" : " not");
2898 
2899   if (verify_after_remark()) {
2900     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2901     bool result = verification_mark_bm()->isMarked(addr);
2902     gclog_or_tty->print_cr("TransitiveMark: Address 0x%x %s marked", addr,
2903                            result ? "IS" : "is NOT");
2904     return result;
2905   } else {
2906     gclog_or_tty->print_cr("Could not compute result");
2907     return false;
2908   }
2909 }
2910 
2911 
2912 void
2913 CMSCollector::print_on_error(outputStream* st) {
2914   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2915   if (collector != NULL) {
2916     CMSBitMap* bitmap = &collector->_markBitMap;
2917     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, bitmap);
2918     bitmap->print_on_error(st, " Bits: ");
2919 
2920     st->cr();
2921 
2922     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2923     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, mut_bitmap);
2924     mut_bitmap->print_on_error(st, " Bits: ");
2925   }
2926 }
2927 
2928 ////////////////////////////////////////////////////////
2929 // CMS Verification Support
2930 ////////////////////////////////////////////////////////
2931 // Following the remark phase, the following invariant
2932 // should hold -- each object in the CMS heap which is
2933 // marked in markBitMap() should be marked in the verification_mark_bm().
2934 
2935 class VerifyMarkedClosure: public BitMapClosure {
2936   CMSBitMap* _marks;
2937   bool       _failed;
2938 
2939  public:
2940   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2941 
2942   bool do_bit(size_t offset) {
2943     HeapWord* addr = _marks->offsetToHeapWord(offset);
2944     if (!_marks->isMarked(addr)) {
2945       oop(addr)->print_on(gclog_or_tty);
2946       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr);
2947       _failed = true;
2948     }
2949     return true;
2950   }
2951 
2952   bool failed() { return _failed; }
2953 };
2954 
2955 bool CMSCollector::verify_after_remark(bool silent) {
2956   if (!silent) gclog_or_tty->print(" [Verifying CMS Marking... ");
2957   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2958   static bool init = false;
2959 
2960   assert(SafepointSynchronize::is_at_safepoint(),
2961          "Else mutations in object graph will make answer suspect");
2962   assert(have_cms_token(),
2963          "Else there may be mutual interference in use of "
2964          " verification data structures");
2965   assert(_collectorState > Marking && _collectorState <= Sweeping,
2966          "Else marking info checked here may be obsolete");
2967   assert(haveFreelistLocks(), "must hold free list locks");
2968   assert_lock_strong(bitMapLock());
2969 
2970 
2971   // Allocate marking bit map if not already allocated
2972   if (!init) { // first time
2973     if (!verification_mark_bm()->allocate(_span)) {
2974       return false;
2975     }
2976     init = true;
2977   }
2978 
2979   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2980 
2981   // Turn off refs discovery -- so we will be tracing through refs.
2982   // This is as intended, because by this time
2983   // GC must already have cleared any refs that need to be cleared,
2984   // and traced those that need to be marked; moreover,
2985   // the marking done here is not going to interfere in any
2986   // way with the marking information used by GC.
2987   NoRefDiscovery no_discovery(ref_processor());
2988 
2989   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2990 
2991   // Clear any marks from a previous round
2992   verification_mark_bm()->clear_all();
2993   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2994   verify_work_stacks_empty();
2995 
2996   GenCollectedHeap* gch = GenCollectedHeap::heap();
2997   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2998   // Update the saved marks which may affect the root scans.
2999   gch->save_marks();
3000 
3001   if (CMSRemarkVerifyVariant == 1) {
3002     // In this first variant of verification, we complete
3003     // all marking, then check if the new marks-vector is
3004     // a subset of the CMS marks-vector.
3005     verify_after_remark_work_1();
3006   } else if (CMSRemarkVerifyVariant == 2) {
3007     // In this second variant of verification, we flag an error
3008     // (i.e. an object reachable in the new marks-vector not reachable
3009     // in the CMS marks-vector) immediately, also indicating the
3010     // identify of an object (A) that references the unmarked object (B) --
3011     // presumably, a mutation to A failed to be picked up by preclean/remark?
3012     verify_after_remark_work_2();
3013   } else {
3014     warning("Unrecognized value %d for CMSRemarkVerifyVariant",
3015             CMSRemarkVerifyVariant);
3016   }
3017   if (!silent) gclog_or_tty->print(" done] ");
3018   return true;
3019 }
3020 
3021 void CMSCollector::verify_after_remark_work_1() {
3022   ResourceMark rm;
3023   HandleMark  hm;
3024   GenCollectedHeap* gch = GenCollectedHeap::heap();
3025 
3026   // Get a clear set of claim bits for the strong roots processing to work with.
3027   ClassLoaderDataGraph::clear_claimed_marks();
3028 
3029   // Mark from roots one level into CMS
3030   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
3031   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3032 
3033   gch->gen_process_strong_roots(_cmsGen->level(),
3034                                 true,   // younger gens are roots
3035                                 true,   // activate StrongRootsScope
3036                                 SharedHeap::ScanningOption(roots_scanning_options()),
3037                                 &notOlder,
3038                                 true,   // walk code active on stacks
3039                                 NULL,
3040                                 NULL); // SSS: Provide correct closure
3041 
3042   // Now mark from the roots
3043   MarkFromRootsClosure markFromRootsClosure(this, _span,
3044     verification_mark_bm(), verification_mark_stack(),
3045     false /* don't yield */, true /* verifying */);
3046   assert(_restart_addr == NULL, "Expected pre-condition");
3047   verification_mark_bm()->iterate(&markFromRootsClosure);
3048   while (_restart_addr != NULL) {
3049     // Deal with stack overflow: by restarting at the indicated
3050     // address.
3051     HeapWord* ra = _restart_addr;
3052     markFromRootsClosure.reset(ra);
3053     _restart_addr = NULL;
3054     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
3055   }
3056   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
3057   verify_work_stacks_empty();
3058 
3059   // Marking completed -- now verify that each bit marked in
3060   // verification_mark_bm() is also marked in markBitMap(); flag all
3061   // errors by printing corresponding objects.
3062   VerifyMarkedClosure vcl(markBitMap());
3063   verification_mark_bm()->iterate(&vcl);
3064   if (vcl.failed()) {
3065     gclog_or_tty->print("Verification failed");
3066     Universe::heap()->print_on(gclog_or_tty);
3067     fatal("CMS: failed marking verification after remark");
3068   }
3069 }
3070 
3071 class VerifyKlassOopsKlassClosure : public KlassClosure {
3072   class VerifyKlassOopsClosure : public OopClosure {
3073     CMSBitMap* _bitmap;
3074    public:
3075     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
3076     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
3077     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3078   } _oop_closure;
3079  public:
3080   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
3081   void do_klass(Klass* k) {
3082     k->oops_do(&_oop_closure);
3083   }
3084 };
3085 
3086 void CMSCollector::verify_after_remark_work_2() {
3087   ResourceMark rm;
3088   HandleMark  hm;
3089   GenCollectedHeap* gch = GenCollectedHeap::heap();
3090 
3091   // Get a clear set of claim bits for the strong roots processing to work with.
3092   ClassLoaderDataGraph::clear_claimed_marks();
3093 
3094   // Mark from roots one level into CMS
3095   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
3096                                      markBitMap());
3097   CMKlassClosure klass_closure(&notOlder);
3098 
3099   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3100   gch->gen_process_strong_roots(_cmsGen->level(),
3101                                 true,   // younger gens are roots
3102                                 true,   // activate StrongRootsScope
3103                                 SharedHeap::ScanningOption(roots_scanning_options()),
3104                                 &notOlder,
3105                                 true,   // walk code active on stacks
3106                                 NULL,
3107                                 &klass_closure);
3108 
3109   // Now mark from the roots
3110   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
3111     verification_mark_bm(), markBitMap(), verification_mark_stack());
3112   assert(_restart_addr == NULL, "Expected pre-condition");
3113   verification_mark_bm()->iterate(&markFromRootsClosure);
3114   while (_restart_addr != NULL) {
3115     // Deal with stack overflow: by restarting at the indicated
3116     // address.
3117     HeapWord* ra = _restart_addr;
3118     markFromRootsClosure.reset(ra);
3119     _restart_addr = NULL;
3120     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
3121   }
3122   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
3123   verify_work_stacks_empty();
3124 
3125   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
3126   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
3127 
3128   // Marking completed -- now verify that each bit marked in
3129   // verification_mark_bm() is also marked in markBitMap(); flag all
3130   // errors by printing corresponding objects.
3131   VerifyMarkedClosure vcl(markBitMap());
3132   verification_mark_bm()->iterate(&vcl);
3133   assert(!vcl.failed(), "Else verification above should not have succeeded");
3134 }
3135 
3136 void ConcurrentMarkSweepGeneration::save_marks() {
3137   // delegate to CMS space
3138   cmsSpace()->save_marks();
3139   for (uint i = 0; i < ParallelGCThreads; i++) {
3140     _par_gc_thread_states[i]->promo.startTrackingPromotions();
3141   }
3142 }
3143 
3144 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
3145   return cmsSpace()->no_allocs_since_save_marks();
3146 }
3147 
3148 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
3149                                                                 \
3150 void ConcurrentMarkSweepGeneration::                            \
3151 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
3152   cl->set_generation(this);                                     \
3153   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
3154   cl->reset_generation();                                       \
3155   save_marks();                                                 \
3156 }
3157 
3158 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
3159 
3160 void
3161 ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
3162   cl->set_generation(this);
3163   younger_refs_in_space_iterate(_cmsSpace, cl);
3164   cl->reset_generation();
3165 }
3166 
3167 void
3168 ConcurrentMarkSweepGeneration::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
3169   if (freelistLock()->owned_by_self()) {
3170     Generation::oop_iterate(mr, cl);
3171   } else {
3172     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3173     Generation::oop_iterate(mr, cl);
3174   }
3175 }
3176 
3177 void
3178 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
3179   if (freelistLock()->owned_by_self()) {
3180     Generation::oop_iterate(cl);
3181   } else {
3182     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3183     Generation::oop_iterate(cl);
3184   }
3185 }
3186 
3187 void
3188 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
3189   if (freelistLock()->owned_by_self()) {
3190     Generation::object_iterate(cl);
3191   } else {
3192     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3193     Generation::object_iterate(cl);
3194   }
3195 }
3196 
3197 void
3198 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
3199   if (freelistLock()->owned_by_self()) {
3200     Generation::safe_object_iterate(cl);
3201   } else {
3202     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3203     Generation::safe_object_iterate(cl);
3204   }
3205 }
3206 
3207 void
3208 ConcurrentMarkSweepGeneration::post_compact() {
3209 }
3210 
3211 void
3212 ConcurrentMarkSweepGeneration::prepare_for_verify() {
3213   // Fix the linear allocation blocks to look like free blocks.
3214 
3215   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3216   // are not called when the heap is verified during universe initialization and
3217   // at vm shutdown.
3218   if (freelistLock()->owned_by_self()) {
3219     cmsSpace()->prepare_for_verify();
3220   } else {
3221     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3222     cmsSpace()->prepare_for_verify();
3223   }
3224 }
3225 
3226 void
3227 ConcurrentMarkSweepGeneration::verify() {
3228   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3229   // are not called when the heap is verified during universe initialization and
3230   // at vm shutdown.
3231   if (freelistLock()->owned_by_self()) {
3232     cmsSpace()->verify();
3233   } else {
3234     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3235     cmsSpace()->verify();
3236   }
3237 }
3238 
3239 void CMSCollector::verify() {
3240   _cmsGen->verify();
3241 }
3242 
3243 #ifndef PRODUCT
3244 bool CMSCollector::overflow_list_is_empty() const {
3245   assert(_num_par_pushes >= 0, "Inconsistency");
3246   if (_overflow_list == NULL) {
3247     assert(_num_par_pushes == 0, "Inconsistency");
3248   }
3249   return _overflow_list == NULL;
3250 }
3251 
3252 // The methods verify_work_stacks_empty() and verify_overflow_empty()
3253 // merely consolidate assertion checks that appear to occur together frequently.
3254 void CMSCollector::verify_work_stacks_empty() const {
3255   assert(_markStack.isEmpty(), "Marking stack should be empty");
3256   assert(overflow_list_is_empty(), "Overflow list should be empty");
3257 }
3258 
3259 void CMSCollector::verify_overflow_empty() const {
3260   assert(overflow_list_is_empty(), "Overflow list should be empty");
3261   assert(no_preserved_marks(), "No preserved marks");
3262 }
3263 #endif // PRODUCT
3264 
3265 // Decide if we want to enable class unloading as part of the
3266 // ensuing concurrent GC cycle. We will collect and
3267 // unload classes if it's the case that:
3268 // (1) an explicit gc request has been made and the flag
3269 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
3270 // (2) (a) class unloading is enabled at the command line, and
3271 //     (b) old gen is getting really full
3272 // NOTE: Provided there is no change in the state of the heap between
3273 // calls to this method, it should have idempotent results. Moreover,
3274 // its results should be monotonically increasing (i.e. going from 0 to 1,
3275 // but not 1 to 0) between successive calls between which the heap was
3276 // not collected. For the implementation below, it must thus rely on
3277 // the property that concurrent_cycles_since_last_unload()
3278 // will not decrease unless a collection cycle happened and that
3279 // _cmsGen->is_too_full() are
3280 // themselves also monotonic in that sense. See check_monotonicity()
3281 // below.
3282 void CMSCollector::update_should_unload_classes() {
3283   _should_unload_classes = false;
3284   // Condition 1 above
3285   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
3286     _should_unload_classes = true;
3287   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
3288     // Disjuncts 2.b.(i,ii,iii) above
3289     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
3290                               CMSClassUnloadingMaxInterval)
3291                            || _cmsGen->is_too_full();
3292   }
3293 }
3294 
3295 bool ConcurrentMarkSweepGeneration::is_too_full() const {
3296   bool res = should_concurrent_collect();
3297   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
3298   return res;
3299 }
3300 
3301 void CMSCollector::setup_cms_unloading_and_verification_state() {
3302   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
3303                              || VerifyBeforeExit;
3304   const  int  rso           =   SharedHeap::SO_Strings | SharedHeap::SO_AllCodeCache;
3305 
3306   // We set the proper root for this CMS cycle here.
3307   if (should_unload_classes()) {   // Should unload classes this cycle
3308     remove_root_scanning_option(SharedHeap::SO_AllClasses);
3309     add_root_scanning_option(SharedHeap::SO_SystemClasses);
3310     remove_root_scanning_option(rso);  // Shrink the root set appropriately
3311     set_verifying(should_verify);    // Set verification state for this cycle
3312     return;                            // Nothing else needs to be done at this time
3313   }
3314 
3315   // Not unloading classes this cycle
3316   assert(!should_unload_classes(), "Inconsitency!");
3317   remove_root_scanning_option(SharedHeap::SO_SystemClasses);
3318   add_root_scanning_option(SharedHeap::SO_AllClasses);
3319 
3320   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
3321     // Include symbols, strings and code cache elements to prevent their resurrection.
3322     add_root_scanning_option(rso);
3323     set_verifying(true);
3324   } else if (verifying() && !should_verify) {
3325     // We were verifying, but some verification flags got disabled.
3326     set_verifying(false);
3327     // Exclude symbols, strings and code cache elements from root scanning to
3328     // reduce IM and RM pauses.
3329     remove_root_scanning_option(rso);
3330   }
3331 }
3332 
3333 
3334 #ifndef PRODUCT
3335 HeapWord* CMSCollector::block_start(const void* p) const {
3336   const HeapWord* addr = (HeapWord*)p;
3337   if (_span.contains(p)) {
3338     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
3339       return _cmsGen->cmsSpace()->block_start(p);
3340     }
3341   }
3342   return NULL;
3343 }
3344 #endif
3345 
3346 HeapWord*
3347 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
3348                                                    bool   tlab,
3349                                                    bool   parallel) {
3350   CMSSynchronousYieldRequest yr;
3351   assert(!tlab, "Can't deal with TLAB allocation");
3352   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3353   expand(word_size*HeapWordSize, MinHeapDeltaBytes,
3354     CMSExpansionCause::_satisfy_allocation);
3355   if (GCExpandToAllocateDelayMillis > 0) {
3356     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3357   }
3358   return have_lock_and_allocate(word_size, tlab);
3359 }
3360 
3361 // YSR: All of this generation expansion/shrinking stuff is an exact copy of
3362 // OneContigSpaceCardGeneration, which makes me wonder if we should move this
3363 // to CardGeneration and share it...
3364 bool ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes) {
3365   return CardGeneration::expand(bytes, expand_bytes);
3366 }
3367 
3368 void ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes,
3369   CMSExpansionCause::Cause cause)
3370 {
3371 
3372   bool success = expand(bytes, expand_bytes);
3373 
3374   // remember why we expanded; this information is used
3375   // by shouldConcurrentCollect() when making decisions on whether to start
3376   // a new CMS cycle.
3377   if (success) {
3378     set_expansion_cause(cause);
3379     if (PrintGCDetails && Verbose) {
3380       gclog_or_tty->print_cr("Expanded CMS gen for %s",
3381         CMSExpansionCause::to_string(cause));
3382     }
3383   }
3384 }
3385 
3386 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
3387   HeapWord* res = NULL;
3388   MutexLocker x(ParGCRareEvent_lock);
3389   while (true) {
3390     // Expansion by some other thread might make alloc OK now:
3391     res = ps->lab.alloc(word_sz);
3392     if (res != NULL) return res;
3393     // If there's not enough expansion space available, give up.
3394     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
3395       return NULL;
3396     }
3397     // Otherwise, we try expansion.
3398     expand(word_sz*HeapWordSize, MinHeapDeltaBytes,
3399       CMSExpansionCause::_allocate_par_lab);
3400     // Now go around the loop and try alloc again;
3401     // A competing par_promote might beat us to the expansion space,
3402     // so we may go around the loop again if promotion fails again.
3403     if (GCExpandToAllocateDelayMillis > 0) {
3404       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3405     }
3406   }
3407 }
3408 
3409 
3410 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
3411   PromotionInfo* promo) {
3412   MutexLocker x(ParGCRareEvent_lock);
3413   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
3414   while (true) {
3415     // Expansion by some other thread might make alloc OK now:
3416     if (promo->ensure_spooling_space()) {
3417       assert(promo->has_spooling_space(),
3418              "Post-condition of successful ensure_spooling_space()");
3419       return true;
3420     }
3421     // If there's not enough expansion space available, give up.
3422     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
3423       return false;
3424     }
3425     // Otherwise, we try expansion.
3426     expand(refill_size_bytes, MinHeapDeltaBytes,
3427       CMSExpansionCause::_allocate_par_spooling_space);
3428     // Now go around the loop and try alloc again;
3429     // A competing allocation might beat us to the expansion space,
3430     // so we may go around the loop again if allocation fails again.
3431     if (GCExpandToAllocateDelayMillis > 0) {
3432       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3433     }
3434   }
3435 }
3436 
3437 
3438 void ConcurrentMarkSweepGeneration::shrink_by(size_t bytes) {
3439   assert_locked_or_safepoint(ExpandHeap_lock);
3440   // Shrink committed space
3441   _virtual_space.shrink_by(bytes);
3442   // Shrink space; this also shrinks the space's BOT
3443   _cmsSpace->set_end((HeapWord*) _virtual_space.high());
3444   size_t new_word_size = heap_word_size(_cmsSpace->capacity());
3445   // Shrink the shared block offset array
3446   _bts->resize(new_word_size);
3447   MemRegion mr(_cmsSpace->bottom(), new_word_size);
3448   // Shrink the card table
3449   Universe::heap()->barrier_set()->resize_covered_region(mr);
3450 
3451   if (Verbose && PrintGC) {
3452     size_t new_mem_size = _virtual_space.committed_size();
3453     size_t old_mem_size = new_mem_size + bytes;
3454     gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
3455                   name(), old_mem_size/K, new_mem_size/K);
3456   }
3457 }
3458 
3459 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
3460   assert_locked_or_safepoint(Heap_lock);
3461   size_t size = ReservedSpace::page_align_size_down(bytes);
3462   // Only shrink if a compaction was done so that all the free space
3463   // in the generation is in a contiguous block at the end.
3464   if (size > 0 && did_compact()) {
3465     shrink_by(size);
3466   }
3467 }
3468 
3469 bool ConcurrentMarkSweepGeneration::grow_by(size_t bytes) {
3470   assert_locked_or_safepoint(Heap_lock);
3471   bool result = _virtual_space.expand_by(bytes);
3472   if (result) {
3473     size_t new_word_size =
3474       heap_word_size(_virtual_space.committed_size());
3475     MemRegion mr(_cmsSpace->bottom(), new_word_size);
3476     _bts->resize(new_word_size);  // resize the block offset shared array
3477     Universe::heap()->barrier_set()->resize_covered_region(mr);
3478     // Hmmmm... why doesn't CFLS::set_end verify locking?
3479     // This is quite ugly; FIX ME XXX
3480     _cmsSpace->assert_locked(freelistLock());
3481     _cmsSpace->set_end((HeapWord*)_virtual_space.high());
3482 
3483     // update the space and generation capacity counters
3484     if (UsePerfData) {
3485       _space_counters->update_capacity();
3486       _gen_counters->update_all();
3487     }
3488 
3489     if (Verbose && PrintGC) {
3490       size_t new_mem_size = _virtual_space.committed_size();
3491       size_t old_mem_size = new_mem_size - bytes;
3492       gclog_or_tty->print_cr("Expanding %s from " SIZE_FORMAT "K by " SIZE_FORMAT "K to " SIZE_FORMAT "K",
3493                     name(), old_mem_size/K, bytes/K, new_mem_size/K);
3494     }
3495   }
3496   return result;
3497 }
3498 
3499 bool ConcurrentMarkSweepGeneration::grow_to_reserved() {
3500   assert_locked_or_safepoint(Heap_lock);
3501   bool success = true;
3502   const size_t remaining_bytes = _virtual_space.uncommitted_size();
3503   if (remaining_bytes > 0) {
3504     success = grow_by(remaining_bytes);
3505     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
3506   }
3507   return success;
3508 }
3509 
3510 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
3511   assert_locked_or_safepoint(Heap_lock);
3512   assert_lock_strong(freelistLock());
3513   if (PrintGCDetails && Verbose) {
3514     warning("Shrinking of CMS not yet implemented");
3515   }
3516   return;
3517 }
3518 
3519 
3520 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
3521 // phases.
3522 class CMSPhaseAccounting: public StackObj {
3523  public:
3524   CMSPhaseAccounting(CMSCollector *collector,
3525                      const char *phase,
3526                      bool print_cr = true);
3527   ~CMSPhaseAccounting();
3528 
3529  private:
3530   CMSCollector *_collector;
3531   const char *_phase;
3532   elapsedTimer _wallclock;
3533   bool _print_cr;
3534 
3535  public:
3536   // Not MT-safe; so do not pass around these StackObj's
3537   // where they may be accessed by other threads.
3538   jlong wallclock_millis() {
3539     assert(_wallclock.is_active(), "Wall clock should not stop");
3540     _wallclock.stop();  // to record time
3541     jlong ret = _wallclock.milliseconds();
3542     _wallclock.start(); // restart
3543     return ret;
3544   }
3545 };
3546 
3547 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
3548                                        const char *phase,
3549                                        bool print_cr) :
3550   _collector(collector), _phase(phase), _print_cr(print_cr) {
3551 
3552   if (PrintCMSStatistics != 0) {
3553     _collector->resetYields();
3554   }
3555   if (PrintGCDetails) {
3556     gclog_or_tty->date_stamp(PrintGCDateStamps);
3557     gclog_or_tty->stamp(PrintGCTimeStamps);
3558     gclog_or_tty->print_cr("[%s-concurrent-%s-start]",
3559       _collector->cmsGen()->short_name(), _phase);
3560   }
3561   _collector->resetTimer();
3562   _wallclock.start();
3563   _collector->startTimer();
3564 }
3565 
3566 CMSPhaseAccounting::~CMSPhaseAccounting() {
3567   assert(_wallclock.is_active(), "Wall clock should not have stopped");
3568   _collector->stopTimer();
3569   _wallclock.stop();
3570   if (PrintGCDetails) {
3571     gclog_or_tty->date_stamp(PrintGCDateStamps);
3572     gclog_or_tty->stamp(PrintGCTimeStamps);
3573     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
3574                  _collector->cmsGen()->short_name(),
3575                  _phase, _collector->timerValue(), _wallclock.seconds());
3576     if (_print_cr) {
3577       gclog_or_tty->print_cr("");
3578     }
3579     if (PrintCMSStatistics != 0) {
3580       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
3581                     _collector->yields());
3582     }
3583   }
3584 }
3585 
3586 // CMS work
3587 
3588 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
3589 class CMSParMarkTask : public AbstractGangTask {
3590  protected:
3591   CMSCollector*     _collector;
3592   int               _n_workers;
3593   CMSParMarkTask(const char* name, CMSCollector* collector, int n_workers) :
3594       AbstractGangTask(name),
3595       _collector(collector),
3596       _n_workers(n_workers) {}
3597   // Work method in support of parallel rescan ... of young gen spaces
3598   void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl,
3599                              ContiguousSpace* space,
3600                              HeapWord** chunk_array, size_t chunk_top);
3601   void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl);
3602 };
3603 
3604 // Parallel initial mark task
3605 class CMSParInitialMarkTask: public CMSParMarkTask {
3606  public:
3607   CMSParInitialMarkTask(CMSCollector* collector, int n_workers) :
3608       CMSParMarkTask("Scan roots and young gen for initial mark in parallel",
3609                      collector, n_workers) {}
3610   void work(uint worker_id);
3611 };
3612 
3613 // Checkpoint the roots into this generation from outside
3614 // this generation. [Note this initial checkpoint need only
3615 // be approximate -- we'll do a catch up phase subsequently.]
3616 void CMSCollector::checkpointRootsInitial(bool asynch) {
3617   assert(_collectorState == InitialMarking, "Wrong collector state");
3618   check_correct_thread_executing();
3619   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
3620 
3621   save_heap_summary();
3622   report_heap_summary(GCWhen::BeforeGC);
3623 
3624   ReferenceProcessor* rp = ref_processor();
3625   SpecializationStats::clear();
3626   assert(_restart_addr == NULL, "Control point invariant");
3627   if (asynch) {
3628     // acquire locks for subsequent manipulations
3629     MutexLockerEx x(bitMapLock(),
3630                     Mutex::_no_safepoint_check_flag);
3631     checkpointRootsInitialWork(asynch);
3632     // enable ("weak") refs discovery
3633     rp->enable_discovery(true /*verify_disabled*/, true /*check_no_refs*/);
3634     _collectorState = Marking;
3635   } else {
3636     // (Weak) Refs discovery: this is controlled from genCollectedHeap::do_collection
3637     // which recognizes if we are a CMS generation, and doesn't try to turn on
3638     // discovery; verify that they aren't meddling.
3639     assert(!rp->discovery_is_atomic(),
3640            "incorrect setting of discovery predicate");
3641     assert(!rp->discovery_enabled(), "genCollectedHeap shouldn't control "
3642            "ref discovery for this generation kind");
3643     // already have locks
3644     checkpointRootsInitialWork(asynch);
3645     // now enable ("weak") refs discovery
3646     rp->enable_discovery(true /*verify_disabled*/, false /*verify_no_refs*/);
3647     _collectorState = Marking;
3648   }
3649   SpecializationStats::print();
3650 }
3651 
3652 void CMSCollector::checkpointRootsInitialWork(bool asynch) {
3653   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
3654   assert(_collectorState == InitialMarking, "just checking");
3655 
3656   // If there has not been a GC[n-1] since last GC[n] cycle completed,
3657   // precede our marking with a collection of all
3658   // younger generations to keep floating garbage to a minimum.
3659   // XXX: we won't do this for now -- it's an optimization to be done later.
3660 
3661   // already have locks
3662   assert_lock_strong(bitMapLock());
3663   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
3664 
3665   // Setup the verification and class unloading state for this
3666   // CMS collection cycle.
3667   setup_cms_unloading_and_verification_state();
3668 
3669   NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork",
3670     PrintGCDetails && Verbose, true, _gc_timer_cm);)
3671   if (UseAdaptiveSizePolicy) {
3672     size_policy()->checkpoint_roots_initial_begin();
3673   }
3674 
3675   // Reset all the PLAB chunk arrays if necessary.
3676   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
3677     reset_survivor_plab_arrays();
3678   }
3679 
3680   ResourceMark rm;
3681   HandleMark  hm;
3682 
3683   FalseClosure falseClosure;
3684   // In the case of a synchronous collection, we will elide the
3685   // remark step, so it's important to catch all the nmethod oops
3686   // in this step.
3687   // The final 'true' flag to gen_process_strong_roots will ensure this.
3688   // If 'async' is true, we can relax the nmethod tracing.
3689   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
3690   GenCollectedHeap* gch = GenCollectedHeap::heap();
3691 
3692   verify_work_stacks_empty();
3693   verify_overflow_empty();
3694 
3695   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
3696   // Update the saved marks which may affect the root scans.
3697   gch->save_marks();
3698 
3699   // weak reference processing has not started yet.
3700   ref_processor()->set_enqueuing_is_done(false);
3701 
3702   // Need to remember all newly created CLDs,
3703   // so that we can guarantee that the remark finds them.
3704   ClassLoaderDataGraph::remember_new_clds(true);
3705 
3706   // Whenever a CLD is found, it will be claimed before proceeding to mark
3707   // the klasses. The claimed marks need to be cleared before marking starts.
3708   ClassLoaderDataGraph::clear_claimed_marks();
3709 
3710   if (CMSPrintEdenSurvivorChunks) {
3711     print_eden_and_survivor_chunk_arrays();
3712   }
3713 
3714   {
3715     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
3716     if (CMSParallelInitialMarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
3717       // The parallel version.
3718       FlexibleWorkGang* workers = gch->workers();
3719       assert(workers != NULL, "Need parallel worker threads.");
3720       int n_workers = workers->active_workers();
3721       CMSParInitialMarkTask tsk(this, n_workers);
3722       gch->set_par_threads(n_workers);
3723       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
3724       if (n_workers > 1) {
3725         GenCollectedHeap::StrongRootsScope srs(gch);
3726         workers->run_task(&tsk);
3727       } else {
3728         GenCollectedHeap::StrongRootsScope srs(gch);
3729         tsk.work(0);
3730       }
3731       gch->set_par_threads(0);
3732     } else {
3733       // The serial version.
3734       CMKlassClosure klass_closure(&notOlder);
3735       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3736       gch->gen_process_strong_roots(_cmsGen->level(),
3737                                     true,   // younger gens are roots
3738                                     true,   // activate StrongRootsScope
3739                                     SharedHeap::ScanningOption(roots_scanning_options()),
3740                                     &notOlder,
3741                                     true,   // walk all of code cache if (so & SO_AllCodeCache)
3742                                     NULL,
3743                                     &klass_closure);
3744     }
3745   }
3746 
3747   // Clear mod-union table; it will be dirtied in the prologue of
3748   // CMS generation per each younger generation collection.
3749 
3750   assert(_modUnionTable.isAllClear(),
3751        "Was cleared in most recent final checkpoint phase"
3752        " or no bits are set in the gc_prologue before the start of the next "
3753        "subsequent marking phase.");
3754 
3755   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
3756 
3757   // Save the end of the used_region of the constituent generations
3758   // to be used to limit the extent of sweep in each generation.
3759   save_sweep_limits();
3760   if (UseAdaptiveSizePolicy) {
3761     size_policy()->checkpoint_roots_initial_end(gch->gc_cause());
3762   }
3763   verify_overflow_empty();
3764 }
3765 
3766 bool CMSCollector::markFromRoots(bool asynch) {
3767   // we might be tempted to assert that:
3768   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
3769   //        "inconsistent argument?");
3770   // However that wouldn't be right, because it's possible that
3771   // a safepoint is indeed in progress as a younger generation
3772   // stop-the-world GC happens even as we mark in this generation.
3773   assert(_collectorState == Marking, "inconsistent state?");
3774   check_correct_thread_executing();
3775   verify_overflow_empty();
3776 
3777   bool res;
3778   if (asynch) {
3779 
3780     // Start the timers for adaptive size policy for the concurrent phases
3781     // Do it here so that the foreground MS can use the concurrent
3782     // timer since a foreground MS might has the sweep done concurrently
3783     // or STW.
3784     if (UseAdaptiveSizePolicy) {
3785       size_policy()->concurrent_marking_begin();
3786     }
3787 
3788     // Weak ref discovery note: We may be discovering weak
3789     // refs in this generation concurrent (but interleaved) with
3790     // weak ref discovery by a younger generation collector.
3791 
3792     CMSTokenSyncWithLocks ts(true, bitMapLock());
3793     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3794     CMSPhaseAccounting pa(this, "mark", !PrintGCDetails);
3795     res = markFromRootsWork(asynch);
3796     if (res) {
3797       _collectorState = Precleaning;
3798     } else { // We failed and a foreground collection wants to take over
3799       assert(_foregroundGCIsActive, "internal state inconsistency");
3800       assert(_restart_addr == NULL,  "foreground will restart from scratch");
3801       if (PrintGCDetails) {
3802         gclog_or_tty->print_cr("bailing out to foreground collection");
3803       }
3804     }
3805     if (UseAdaptiveSizePolicy) {
3806       size_policy()->concurrent_marking_end();
3807     }
3808   } else {
3809     assert(SafepointSynchronize::is_at_safepoint(),
3810            "inconsistent with asynch == false");
3811     if (UseAdaptiveSizePolicy) {
3812       size_policy()->ms_collection_marking_begin();
3813     }
3814     // already have locks
3815     res = markFromRootsWork(asynch);
3816     _collectorState = FinalMarking;
3817     if (UseAdaptiveSizePolicy) {
3818       GenCollectedHeap* gch = GenCollectedHeap::heap();
3819       size_policy()->ms_collection_marking_end(gch->gc_cause());
3820     }
3821   }
3822   verify_overflow_empty();
3823   return res;
3824 }
3825 
3826 bool CMSCollector::markFromRootsWork(bool asynch) {
3827   // iterate over marked bits in bit map, doing a full scan and mark
3828   // from these roots using the following algorithm:
3829   // . if oop is to the right of the current scan pointer,
3830   //   mark corresponding bit (we'll process it later)
3831   // . else (oop is to left of current scan pointer)
3832   //   push oop on marking stack
3833   // . drain the marking stack
3834 
3835   // Note that when we do a marking step we need to hold the
3836   // bit map lock -- recall that direct allocation (by mutators)
3837   // and promotion (by younger generation collectors) is also
3838   // marking the bit map. [the so-called allocate live policy.]
3839   // Because the implementation of bit map marking is not
3840   // robust wrt simultaneous marking of bits in the same word,
3841   // we need to make sure that there is no such interference
3842   // between concurrent such updates.
3843 
3844   // already have locks
3845   assert_lock_strong(bitMapLock());
3846 
3847   verify_work_stacks_empty();
3848   verify_overflow_empty();
3849   bool result = false;
3850   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
3851     result = do_marking_mt(asynch);
3852   } else {
3853     result = do_marking_st(asynch);
3854   }
3855   return result;
3856 }
3857 
3858 // Forward decl
3859 class CMSConcMarkingTask;
3860 
3861 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
3862   CMSCollector*       _collector;
3863   CMSConcMarkingTask* _task;
3864  public:
3865   virtual void yield();
3866 
3867   // "n_threads" is the number of threads to be terminated.
3868   // "queue_set" is a set of work queues of other threads.
3869   // "collector" is the CMS collector associated with this task terminator.
3870   // "yield" indicates whether we need the gang as a whole to yield.
3871   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3872     ParallelTaskTerminator(n_threads, queue_set),
3873     _collector(collector) { }
3874 
3875   void set_task(CMSConcMarkingTask* task) {
3876     _task = task;
3877   }
3878 };
3879 
3880 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3881   CMSConcMarkingTask* _task;
3882  public:
3883   bool should_exit_termination();
3884   void set_task(CMSConcMarkingTask* task) {
3885     _task = task;
3886   }
3887 };
3888 
3889 // MT Concurrent Marking Task
3890 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3891   CMSCollector* _collector;
3892   int           _n_workers;                  // requested/desired # workers
3893   bool          _asynch;
3894   bool          _result;
3895   CompactibleFreeListSpace*  _cms_space;
3896   char          _pad_front[64];   // padding to ...
3897   HeapWord*     _global_finger;   // ... avoid sharing cache line
3898   char          _pad_back[64];
3899   HeapWord*     _restart_addr;
3900 
3901   //  Exposed here for yielding support
3902   Mutex* const _bit_map_lock;
3903 
3904   // The per thread work queues, available here for stealing
3905   OopTaskQueueSet*  _task_queues;
3906 
3907   // Termination (and yielding) support
3908   CMSConcMarkingTerminator _term;
3909   CMSConcMarkingTerminatorTerminator _term_term;
3910 
3911  public:
3912   CMSConcMarkingTask(CMSCollector* collector,
3913                  CompactibleFreeListSpace* cms_space,
3914                  bool asynch,
3915                  YieldingFlexibleWorkGang* workers,
3916                  OopTaskQueueSet* task_queues):
3917     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3918     _collector(collector),
3919     _cms_space(cms_space),
3920     _asynch(asynch), _n_workers(0), _result(true),
3921     _task_queues(task_queues),
3922     _term(_n_workers, task_queues, _collector),
3923     _bit_map_lock(collector->bitMapLock())
3924   {
3925     _requested_size = _n_workers;
3926     _term.set_task(this);
3927     _term_term.set_task(this);
3928     _restart_addr = _global_finger = _cms_space->bottom();
3929   }
3930 
3931 
3932   OopTaskQueueSet* task_queues()  { return _task_queues; }
3933 
3934   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3935 
3936   HeapWord** global_finger_addr() { return &_global_finger; }
3937 
3938   CMSConcMarkingTerminator* terminator() { return &_term; }
3939 
3940   virtual void set_for_termination(int active_workers) {
3941     terminator()->reset_for_reuse(active_workers);
3942   }
3943 
3944   void work(uint worker_id);
3945   bool should_yield() {
3946     return    ConcurrentMarkSweepThread::should_yield()
3947            && !_collector->foregroundGCIsActive()
3948            && _asynch;
3949   }
3950 
3951   virtual void coordinator_yield();  // stuff done by coordinator
3952   bool result() { return _result; }
3953 
3954   void reset(HeapWord* ra) {
3955     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3956     _restart_addr = _global_finger = ra;
3957     _term.reset_for_reuse();
3958   }
3959 
3960   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3961                                            OopTaskQueue* work_q);
3962 
3963  private:
3964   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3965   void do_work_steal(int i);
3966   void bump_global_finger(HeapWord* f);
3967 };
3968 
3969 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3970   assert(_task != NULL, "Error");
3971   return _task->yielding();
3972   // Note that we do not need the disjunct || _task->should_yield() above
3973   // because we want terminating threads to yield only if the task
3974   // is already in the midst of yielding, which happens only after at least one
3975   // thread has yielded.
3976 }
3977 
3978 void CMSConcMarkingTerminator::yield() {
3979   if (_task->should_yield()) {
3980     _task->yield();
3981   } else {
3982     ParallelTaskTerminator::yield();
3983   }
3984 }
3985 
3986 ////////////////////////////////////////////////////////////////
3987 // Concurrent Marking Algorithm Sketch
3988 ////////////////////////////////////////////////////////////////
3989 // Until all tasks exhausted (both spaces):
3990 // -- claim next available chunk
3991 // -- bump global finger via CAS
3992 // -- find first object that starts in this chunk
3993 //    and start scanning bitmap from that position
3994 // -- scan marked objects for oops
3995 // -- CAS-mark target, and if successful:
3996 //    . if target oop is above global finger (volatile read)
3997 //      nothing to do
3998 //    . if target oop is in chunk and above local finger
3999 //        then nothing to do
4000 //    . else push on work-queue
4001 // -- Deal with possible overflow issues:
4002 //    . local work-queue overflow causes stuff to be pushed on
4003 //      global (common) overflow queue
4004 //    . always first empty local work queue
4005 //    . then get a batch of oops from global work queue if any
4006 //    . then do work stealing
4007 // -- When all tasks claimed (both spaces)
4008 //    and local work queue empty,
4009 //    then in a loop do:
4010 //    . check global overflow stack; steal a batch of oops and trace
4011 //    . try to steal from other threads oif GOS is empty
4012 //    . if neither is available, offer termination
4013 // -- Terminate and return result
4014 //
4015 void CMSConcMarkingTask::work(uint worker_id) {
4016   elapsedTimer _timer;
4017   ResourceMark rm;
4018   HandleMark hm;
4019 
4020   DEBUG_ONLY(_collector->verify_overflow_empty();)
4021 
4022   // Before we begin work, our work queue should be empty
4023   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
4024   // Scan the bitmap covering _cms_space, tracing through grey objects.
4025   _timer.start();
4026   do_scan_and_mark(worker_id, _cms_space);
4027   _timer.stop();
4028   if (PrintCMSStatistics != 0) {
4029     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
4030       worker_id, _timer.seconds());
4031       // XXX: need xxx/xxx type of notation, two timers
4032   }
4033 
4034   // ... do work stealing
4035   _timer.reset();
4036   _timer.start();
4037   do_work_steal(worker_id);
4038   _timer.stop();
4039   if (PrintCMSStatistics != 0) {
4040     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
4041       worker_id, _timer.seconds());
4042       // XXX: need xxx/xxx type of notation, two timers
4043   }
4044   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
4045   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
4046   // Note that under the current task protocol, the
4047   // following assertion is true even of the spaces
4048   // expanded since the completion of the concurrent
4049   // marking. XXX This will likely change under a strict
4050   // ABORT semantics.
4051   // After perm removal the comparison was changed to
4052   // greater than or equal to from strictly greater than.
4053   // Before perm removal the highest address sweep would
4054   // have been at the end of perm gen but now is at the
4055   // end of the tenured gen.
4056   assert(_global_finger >=  _cms_space->end(),
4057          "All tasks have been completed");
4058   DEBUG_ONLY(_collector->verify_overflow_empty();)
4059 }
4060 
4061 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
4062   HeapWord* read = _global_finger;
4063   HeapWord* cur  = read;
4064   while (f > read) {
4065     cur = read;
4066     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
4067     if (cur == read) {
4068       // our cas succeeded
4069       assert(_global_finger >= f, "protocol consistency");
4070       break;
4071     }
4072   }
4073 }
4074 
4075 // This is really inefficient, and should be redone by
4076 // using (not yet available) block-read and -write interfaces to the
4077 // stack and the work_queue. XXX FIX ME !!!
4078 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
4079                                                       OopTaskQueue* work_q) {
4080   // Fast lock-free check
4081   if (ovflw_stk->length() == 0) {
4082     return false;
4083   }
4084   assert(work_q->size() == 0, "Shouldn't steal");
4085   MutexLockerEx ml(ovflw_stk->par_lock(),
4086                    Mutex::_no_safepoint_check_flag);
4087   // Grab up to 1/4 the size of the work queue
4088   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4089                     (size_t)ParGCDesiredObjsFromOverflowList);
4090   num = MIN2(num, ovflw_stk->length());
4091   for (int i = (int) num; i > 0; i--) {
4092     oop cur = ovflw_stk->pop();
4093     assert(cur != NULL, "Counted wrong?");
4094     work_q->push(cur);
4095   }
4096   return num > 0;
4097 }
4098 
4099 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
4100   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4101   int n_tasks = pst->n_tasks();
4102   // We allow that there may be no tasks to do here because
4103   // we are restarting after a stack overflow.
4104   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
4105   uint nth_task = 0;
4106 
4107   HeapWord* aligned_start = sp->bottom();
4108   if (sp->used_region().contains(_restart_addr)) {
4109     // Align down to a card boundary for the start of 0th task
4110     // for this space.
4111     aligned_start =
4112       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
4113                                  CardTableModRefBS::card_size);
4114   }
4115 
4116   size_t chunk_size = sp->marking_task_size();
4117   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4118     // Having claimed the nth task in this space,
4119     // compute the chunk that it corresponds to:
4120     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
4121                                aligned_start + (nth_task+1)*chunk_size);
4122     // Try and bump the global finger via a CAS;
4123     // note that we need to do the global finger bump
4124     // _before_ taking the intersection below, because
4125     // the task corresponding to that region will be
4126     // deemed done even if the used_region() expands
4127     // because of allocation -- as it almost certainly will
4128     // during start-up while the threads yield in the
4129     // closure below.
4130     HeapWord* finger = span.end();
4131     bump_global_finger(finger);   // atomically
4132     // There are null tasks here corresponding to chunks
4133     // beyond the "top" address of the space.
4134     span = span.intersection(sp->used_region());
4135     if (!span.is_empty()) {  // Non-null task
4136       HeapWord* prev_obj;
4137       assert(!span.contains(_restart_addr) || nth_task == 0,
4138              "Inconsistency");
4139       if (nth_task == 0) {
4140         // For the 0th task, we'll not need to compute a block_start.
4141         if (span.contains(_restart_addr)) {
4142           // In the case of a restart because of stack overflow,
4143           // we might additionally skip a chunk prefix.
4144           prev_obj = _restart_addr;
4145         } else {
4146           prev_obj = span.start();
4147         }
4148       } else {
4149         // We want to skip the first object because
4150         // the protocol is to scan any object in its entirety
4151         // that _starts_ in this span; a fortiori, any
4152         // object starting in an earlier span is scanned
4153         // as part of an earlier claimed task.
4154         // Below we use the "careful" version of block_start
4155         // so we do not try to navigate uninitialized objects.
4156         prev_obj = sp->block_start_careful(span.start());
4157         // Below we use a variant of block_size that uses the
4158         // Printezis bits to avoid waiting for allocated
4159         // objects to become initialized/parsable.
4160         while (prev_obj < span.start()) {
4161           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
4162           if (sz > 0) {
4163             prev_obj += sz;
4164           } else {
4165             // In this case we may end up doing a bit of redundant
4166             // scanning, but that appears unavoidable, short of
4167             // locking the free list locks; see bug 6324141.
4168             break;
4169           }
4170         }
4171       }
4172       if (prev_obj < span.end()) {
4173         MemRegion my_span = MemRegion(prev_obj, span.end());
4174         // Do the marking work within a non-empty span --
4175         // the last argument to the constructor indicates whether the
4176         // iteration should be incremental with periodic yields.
4177         Par_MarkFromRootsClosure cl(this, _collector, my_span,
4178                                     &_collector->_markBitMap,
4179                                     work_queue(i),
4180                                     &_collector->_markStack,
4181                                     _asynch);
4182         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
4183       } // else nothing to do for this task
4184     }   // else nothing to do for this task
4185   }
4186   // We'd be tempted to assert here that since there are no
4187   // more tasks left to claim in this space, the global_finger
4188   // must exceed space->top() and a fortiori space->end(). However,
4189   // that would not quite be correct because the bumping of
4190   // global_finger occurs strictly after the claiming of a task,
4191   // so by the time we reach here the global finger may not yet
4192   // have been bumped up by the thread that claimed the last
4193   // task.
4194   pst->all_tasks_completed();
4195 }
4196 
4197 class Par_ConcMarkingClosure: public CMSOopClosure {
4198  private:
4199   CMSCollector* _collector;
4200   CMSConcMarkingTask* _task;
4201   MemRegion     _span;
4202   CMSBitMap*    _bit_map;
4203   CMSMarkStack* _overflow_stack;
4204   OopTaskQueue* _work_queue;
4205  protected:
4206   DO_OOP_WORK_DEFN
4207  public:
4208   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
4209                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
4210     CMSOopClosure(collector->ref_processor()),
4211     _collector(collector),
4212     _task(task),
4213     _span(collector->_span),
4214     _work_queue(work_queue),
4215     _bit_map(bit_map),
4216     _overflow_stack(overflow_stack)
4217   { }
4218   virtual void do_oop(oop* p);
4219   virtual void do_oop(narrowOop* p);
4220 
4221   void trim_queue(size_t max);
4222   void handle_stack_overflow(HeapWord* lost);
4223   void do_yield_check() {
4224     if (_task->should_yield()) {
4225       _task->yield();
4226     }
4227   }
4228 };
4229 
4230 // Grey object scanning during work stealing phase --
4231 // the salient assumption here is that any references
4232 // that are in these stolen objects being scanned must
4233 // already have been initialized (else they would not have
4234 // been published), so we do not need to check for
4235 // uninitialized objects before pushing here.
4236 void Par_ConcMarkingClosure::do_oop(oop obj) {
4237   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
4238   HeapWord* addr = (HeapWord*)obj;
4239   // Check if oop points into the CMS generation
4240   // and is not marked
4241   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
4242     // a white object ...
4243     // If we manage to "claim" the object, by being the
4244     // first thread to mark it, then we push it on our
4245     // marking stack
4246     if (_bit_map->par_mark(addr)) {     // ... now grey
4247       // push on work queue (grey set)
4248       bool simulate_overflow = false;
4249       NOT_PRODUCT(
4250         if (CMSMarkStackOverflowALot &&
4251             _collector->simulate_overflow()) {
4252           // simulate a stack overflow
4253           simulate_overflow = true;
4254         }
4255       )
4256       if (simulate_overflow ||
4257           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
4258         // stack overflow
4259         if (PrintCMSStatistics != 0) {
4260           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
4261                                  SIZE_FORMAT, _overflow_stack->capacity());
4262         }
4263         // We cannot assert that the overflow stack is full because
4264         // it may have been emptied since.
4265         assert(simulate_overflow ||
4266                _work_queue->size() == _work_queue->max_elems(),
4267               "Else push should have succeeded");
4268         handle_stack_overflow(addr);
4269       }
4270     } // Else, some other thread got there first
4271     do_yield_check();
4272   }
4273 }
4274 
4275 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
4276 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
4277 
4278 void Par_ConcMarkingClosure::trim_queue(size_t max) {
4279   while (_work_queue->size() > max) {
4280     oop new_oop;
4281     if (_work_queue->pop_local(new_oop)) {
4282       assert(new_oop->is_oop(), "Should be an oop");
4283       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
4284       assert(_span.contains((HeapWord*)new_oop), "Not in span");
4285       new_oop->oop_iterate(this);  // do_oop() above
4286       do_yield_check();
4287     }
4288   }
4289 }
4290 
4291 // Upon stack overflow, we discard (part of) the stack,
4292 // remembering the least address amongst those discarded
4293 // in CMSCollector's _restart_address.
4294 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
4295   // We need to do this under a mutex to prevent other
4296   // workers from interfering with the work done below.
4297   MutexLockerEx ml(_overflow_stack->par_lock(),
4298                    Mutex::_no_safepoint_check_flag);
4299   // Remember the least grey address discarded
4300   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
4301   _collector->lower_restart_addr(ra);
4302   _overflow_stack->reset();  // discard stack contents
4303   _overflow_stack->expand(); // expand the stack if possible
4304 }
4305 
4306 
4307 void CMSConcMarkingTask::do_work_steal(int i) {
4308   OopTaskQueue* work_q = work_queue(i);
4309   oop obj_to_scan;
4310   CMSBitMap* bm = &(_collector->_markBitMap);
4311   CMSMarkStack* ovflw = &(_collector->_markStack);
4312   int* seed = _collector->hash_seed(i);
4313   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
4314   while (true) {
4315     cl.trim_queue(0);
4316     assert(work_q->size() == 0, "Should have been emptied above");
4317     if (get_work_from_overflow_stack(ovflw, work_q)) {
4318       // Can't assert below because the work obtained from the
4319       // overflow stack may already have been stolen from us.
4320       // assert(work_q->size() > 0, "Work from overflow stack");
4321       continue;
4322     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4323       assert(obj_to_scan->is_oop(), "Should be an oop");
4324       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
4325       obj_to_scan->oop_iterate(&cl);
4326     } else if (terminator()->offer_termination(&_term_term)) {
4327       assert(work_q->size() == 0, "Impossible!");
4328       break;
4329     } else if (yielding() || should_yield()) {
4330       yield();
4331     }
4332   }
4333 }
4334 
4335 // This is run by the CMS (coordinator) thread.
4336 void CMSConcMarkingTask::coordinator_yield() {
4337   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4338          "CMS thread should hold CMS token");
4339   // First give up the locks, then yield, then re-lock
4340   // We should probably use a constructor/destructor idiom to
4341   // do this unlock/lock or modify the MutexUnlocker class to
4342   // serve our purpose. XXX
4343   assert_lock_strong(_bit_map_lock);
4344   _bit_map_lock->unlock();
4345   ConcurrentMarkSweepThread::desynchronize(true);
4346   ConcurrentMarkSweepThread::acknowledge_yield_request();
4347   _collector->stopTimer();
4348   if (PrintCMSStatistics != 0) {
4349     _collector->incrementYields();
4350   }
4351   _collector->icms_wait();
4352 
4353   // It is possible for whichever thread initiated the yield request
4354   // not to get a chance to wake up and take the bitmap lock between
4355   // this thread releasing it and reacquiring it. So, while the
4356   // should_yield() flag is on, let's sleep for a bit to give the
4357   // other thread a chance to wake up. The limit imposed on the number
4358   // of iterations is defensive, to avoid any unforseen circumstances
4359   // putting us into an infinite loop. Since it's always been this
4360   // (coordinator_yield()) method that was observed to cause the
4361   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
4362   // which is by default non-zero. For the other seven methods that
4363   // also perform the yield operation, as are using a different
4364   // parameter (CMSYieldSleepCount) which is by default zero. This way we
4365   // can enable the sleeping for those methods too, if necessary.
4366   // See 6442774.
4367   //
4368   // We really need to reconsider the synchronization between the GC
4369   // thread and the yield-requesting threads in the future and we
4370   // should really use wait/notify, which is the recommended
4371   // way of doing this type of interaction. Additionally, we should
4372   // consolidate the eight methods that do the yield operation and they
4373   // are almost identical into one for better maintainability and
4374   // readability. See 6445193.
4375   //
4376   // Tony 2006.06.29
4377   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
4378                    ConcurrentMarkSweepThread::should_yield() &&
4379                    !CMSCollector::foregroundGCIsActive(); ++i) {
4380     os::sleep(Thread::current(), 1, false);
4381     ConcurrentMarkSweepThread::acknowledge_yield_request();
4382   }
4383 
4384   ConcurrentMarkSweepThread::synchronize(true);
4385   _bit_map_lock->lock_without_safepoint_check();
4386   _collector->startTimer();
4387 }
4388 
4389 bool CMSCollector::do_marking_mt(bool asynch) {
4390   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
4391   int num_workers = AdaptiveSizePolicy::calc_active_conc_workers(
4392                                        conc_workers()->total_workers(),
4393                                        conc_workers()->active_workers(),
4394                                        Threads::number_of_non_daemon_threads());
4395   conc_workers()->set_active_workers(num_workers);
4396 
4397   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4398 
4399   CMSConcMarkingTask tsk(this,
4400                          cms_space,
4401                          asynch,
4402                          conc_workers(),
4403                          task_queues());
4404 
4405   // Since the actual number of workers we get may be different
4406   // from the number we requested above, do we need to do anything different
4407   // below? In particular, may be we need to subclass the SequantialSubTasksDone
4408   // class?? XXX
4409   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
4410 
4411   // Refs discovery is already non-atomic.
4412   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
4413   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
4414   conc_workers()->start_task(&tsk);
4415   while (tsk.yielded()) {
4416     tsk.coordinator_yield();
4417     conc_workers()->continue_task(&tsk);
4418   }
4419   // If the task was aborted, _restart_addr will be non-NULL
4420   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
4421   while (_restart_addr != NULL) {
4422     // XXX For now we do not make use of ABORTED state and have not
4423     // yet implemented the right abort semantics (even in the original
4424     // single-threaded CMS case). That needs some more investigation
4425     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
4426     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
4427     // If _restart_addr is non-NULL, a marking stack overflow
4428     // occurred; we need to do a fresh marking iteration from the
4429     // indicated restart address.
4430     if (_foregroundGCIsActive && asynch) {
4431       // We may be running into repeated stack overflows, having
4432       // reached the limit of the stack size, while making very
4433       // slow forward progress. It may be best to bail out and
4434       // let the foreground collector do its job.
4435       // Clear _restart_addr, so that foreground GC
4436       // works from scratch. This avoids the headache of
4437       // a "rescan" which would otherwise be needed because
4438       // of the dirty mod union table & card table.
4439       _restart_addr = NULL;
4440       return false;
4441     }
4442     // Adjust the task to restart from _restart_addr
4443     tsk.reset(_restart_addr);
4444     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
4445                   _restart_addr);
4446     _restart_addr = NULL;
4447     // Get the workers going again
4448     conc_workers()->start_task(&tsk);
4449     while (tsk.yielded()) {
4450       tsk.coordinator_yield();
4451       conc_workers()->continue_task(&tsk);
4452     }
4453   }
4454   assert(tsk.completed(), "Inconsistency");
4455   assert(tsk.result() == true, "Inconsistency");
4456   return true;
4457 }
4458 
4459 bool CMSCollector::do_marking_st(bool asynch) {
4460   ResourceMark rm;
4461   HandleMark   hm;
4462 
4463   // Temporarily make refs discovery single threaded (non-MT)
4464   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
4465   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
4466     &_markStack, CMSYield && asynch);
4467   // the last argument to iterate indicates whether the iteration
4468   // should be incremental with periodic yields.
4469   _markBitMap.iterate(&markFromRootsClosure);
4470   // If _restart_addr is non-NULL, a marking stack overflow
4471   // occurred; we need to do a fresh iteration from the
4472   // indicated restart address.
4473   while (_restart_addr != NULL) {
4474     if (_foregroundGCIsActive && asynch) {
4475       // We may be running into repeated stack overflows, having
4476       // reached the limit of the stack size, while making very
4477       // slow forward progress. It may be best to bail out and
4478       // let the foreground collector do its job.
4479       // Clear _restart_addr, so that foreground GC
4480       // works from scratch. This avoids the headache of
4481       // a "rescan" which would otherwise be needed because
4482       // of the dirty mod union table & card table.
4483       _restart_addr = NULL;
4484       return false;  // indicating failure to complete marking
4485     }
4486     // Deal with stack overflow:
4487     // we restart marking from _restart_addr
4488     HeapWord* ra = _restart_addr;
4489     markFromRootsClosure.reset(ra);
4490     _restart_addr = NULL;
4491     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
4492   }
4493   return true;
4494 }
4495 
4496 void CMSCollector::preclean() {
4497   check_correct_thread_executing();
4498   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
4499   verify_work_stacks_empty();
4500   verify_overflow_empty();
4501   _abort_preclean = false;
4502   if (CMSPrecleaningEnabled) {
4503     if (!CMSEdenChunksRecordAlways) {
4504       _eden_chunk_index = 0;
4505     }
4506     size_t used = get_eden_used();
4507     size_t capacity = get_eden_capacity();
4508     // Don't start sampling unless we will get sufficiently
4509     // many samples.
4510     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
4511                 * CMSScheduleRemarkEdenPenetration)) {
4512       _start_sampling = true;
4513     } else {
4514       _start_sampling = false;
4515     }
4516     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4517     CMSPhaseAccounting pa(this, "preclean", !PrintGCDetails);
4518     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
4519   }
4520   CMSTokenSync x(true); // is cms thread
4521   if (CMSPrecleaningEnabled) {
4522     sample_eden();
4523     _collectorState = AbortablePreclean;
4524   } else {
4525     _collectorState = FinalMarking;
4526   }
4527   verify_work_stacks_empty();
4528   verify_overflow_empty();
4529 }
4530 
4531 // Try and schedule the remark such that young gen
4532 // occupancy is CMSScheduleRemarkEdenPenetration %.
4533 void CMSCollector::abortable_preclean() {
4534   check_correct_thread_executing();
4535   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
4536   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
4537 
4538   // If Eden's current occupancy is below this threshold,
4539   // immediately schedule the remark; else preclean
4540   // past the next scavenge in an effort to
4541   // schedule the pause as described above. By choosing
4542   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
4543   // we will never do an actual abortable preclean cycle.
4544   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
4545     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4546     CMSPhaseAccounting pa(this, "abortable-preclean", !PrintGCDetails);
4547     // We need more smarts in the abortable preclean
4548     // loop below to deal with cases where allocation
4549     // in young gen is very very slow, and our precleaning
4550     // is running a losing race against a horde of
4551     // mutators intent on flooding us with CMS updates
4552     // (dirty cards).
4553     // One, admittedly dumb, strategy is to give up
4554     // after a certain number of abortable precleaning loops
4555     // or after a certain maximum time. We want to make
4556     // this smarter in the next iteration.
4557     // XXX FIX ME!!! YSR
4558     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
4559     while (!(should_abort_preclean() ||
4560              ConcurrentMarkSweepThread::should_terminate())) {
4561       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
4562       cumworkdone += workdone;
4563       loops++;
4564       // Voluntarily terminate abortable preclean phase if we have
4565       // been at it for too long.
4566       if ((CMSMaxAbortablePrecleanLoops != 0) &&
4567           loops >= CMSMaxAbortablePrecleanLoops) {
4568         if (PrintGCDetails) {
4569           gclog_or_tty->print(" CMS: abort preclean due to loops ");
4570         }
4571         break;
4572       }
4573       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
4574         if (PrintGCDetails) {
4575           gclog_or_tty->print(" CMS: abort preclean due to time ");
4576         }
4577         break;
4578       }
4579       // If we are doing little work each iteration, we should
4580       // take a short break.
4581       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
4582         // Sleep for some time, waiting for work to accumulate
4583         stopTimer();
4584         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
4585         startTimer();
4586         waited++;
4587       }
4588     }
4589     if (PrintCMSStatistics > 0) {
4590       gclog_or_tty->print(" [%d iterations, %d waits, %d cards)] ",
4591                           loops, waited, cumworkdone);
4592     }
4593   }
4594   CMSTokenSync x(true); // is cms thread
4595   if (_collectorState != Idling) {
4596     assert(_collectorState == AbortablePreclean,
4597            "Spontaneous state transition?");
4598     _collectorState = FinalMarking;
4599   } // Else, a foreground collection completed this CMS cycle.
4600   return;
4601 }
4602 
4603 // Respond to an Eden sampling opportunity
4604 void CMSCollector::sample_eden() {
4605   // Make sure a young gc cannot sneak in between our
4606   // reading and recording of a sample.
4607   assert(Thread::current()->is_ConcurrentGC_thread(),
4608          "Only the cms thread may collect Eden samples");
4609   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4610          "Should collect samples while holding CMS token");
4611   if (!_start_sampling) {
4612     return;
4613   }
4614   // When CMSEdenChunksRecordAlways is true, the eden chunk array
4615   // is populated by the young generation.
4616   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
4617     if (_eden_chunk_index < _eden_chunk_capacity) {
4618       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
4619       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4620              "Unexpected state of Eden");
4621       // We'd like to check that what we just sampled is an oop-start address;
4622       // however, we cannot do that here since the object may not yet have been
4623       // initialized. So we'll instead do the check when we _use_ this sample
4624       // later.
4625       if (_eden_chunk_index == 0 ||
4626           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4627                          _eden_chunk_array[_eden_chunk_index-1])
4628            >= CMSSamplingGrain)) {
4629         _eden_chunk_index++;  // commit sample
4630       }
4631     }
4632   }
4633   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
4634     size_t used = get_eden_used();
4635     size_t capacity = get_eden_capacity();
4636     assert(used <= capacity, "Unexpected state of Eden");
4637     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
4638       _abort_preclean = true;
4639     }
4640   }
4641 }
4642 
4643 
4644 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
4645   assert(_collectorState == Precleaning ||
4646          _collectorState == AbortablePreclean, "incorrect state");
4647   ResourceMark rm;
4648   HandleMark   hm;
4649 
4650   // Precleaning is currently not MT but the reference processor
4651   // may be set for MT.  Disable it temporarily here.
4652   ReferenceProcessor* rp = ref_processor();
4653   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
4654 
4655   // Do one pass of scrubbing the discovered reference lists
4656   // to remove any reference objects with strongly-reachable
4657   // referents.
4658   if (clean_refs) {
4659     CMSPrecleanRefsYieldClosure yield_cl(this);
4660     assert(rp->span().equals(_span), "Spans should be equal");
4661     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
4662                                    &_markStack, true /* preclean */);
4663     CMSDrainMarkingStackClosure complete_trace(this,
4664                                    _span, &_markBitMap, &_markStack,
4665                                    &keep_alive, true /* preclean */);
4666 
4667     // We don't want this step to interfere with a young
4668     // collection because we don't want to take CPU
4669     // or memory bandwidth away from the young GC threads
4670     // (which may be as many as there are CPUs).
4671     // Note that we don't need to protect ourselves from
4672     // interference with mutators because they can't
4673     // manipulate the discovered reference lists nor affect
4674     // the computed reachability of the referents, the
4675     // only properties manipulated by the precleaning
4676     // of these reference lists.
4677     stopTimer();
4678     CMSTokenSyncWithLocks x(true /* is cms thread */,
4679                             bitMapLock());
4680     startTimer();
4681     sample_eden();
4682 
4683     // The following will yield to allow foreground
4684     // collection to proceed promptly. XXX YSR:
4685     // The code in this method may need further
4686     // tweaking for better performance and some restructuring
4687     // for cleaner interfaces.
4688     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
4689     rp->preclean_discovered_references(
4690           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
4691           gc_timer);
4692   }
4693 
4694   if (clean_survivor) {  // preclean the active survivor space(s)
4695     assert(_young_gen->kind() == Generation::DefNew ||
4696            _young_gen->kind() == Generation::ParNew ||
4697            _young_gen->kind() == Generation::ASParNew,
4698          "incorrect type for cast");
4699     DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
4700     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
4701                              &_markBitMap, &_modUnionTable,
4702                              &_markStack, true /* precleaning phase */);
4703     stopTimer();
4704     CMSTokenSyncWithLocks ts(true /* is cms thread */,
4705                              bitMapLock());
4706     startTimer();
4707     unsigned int before_count =
4708       GenCollectedHeap::heap()->total_collections();
4709     SurvivorSpacePrecleanClosure
4710       sss_cl(this, _span, &_markBitMap, &_markStack,
4711              &pam_cl, before_count, CMSYield);
4712     dng->from()->object_iterate_careful(&sss_cl);
4713     dng->to()->object_iterate_careful(&sss_cl);
4714   }
4715   MarkRefsIntoAndScanClosure
4716     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
4717              &_markStack, this, CMSYield,
4718              true /* precleaning phase */);
4719   // CAUTION: The following closure has persistent state that may need to
4720   // be reset upon a decrease in the sequence of addresses it
4721   // processes.
4722   ScanMarkedObjectsAgainCarefullyClosure
4723     smoac_cl(this, _span,
4724       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
4725 
4726   // Preclean dirty cards in ModUnionTable and CardTable using
4727   // appropriate convergence criterion;
4728   // repeat CMSPrecleanIter times unless we find that
4729   // we are losing.
4730   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
4731   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
4732          "Bad convergence multiplier");
4733   assert(CMSPrecleanThreshold >= 100,
4734          "Unreasonably low CMSPrecleanThreshold");
4735 
4736   size_t numIter, cumNumCards, lastNumCards, curNumCards;
4737   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
4738        numIter < CMSPrecleanIter;
4739        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
4740     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
4741     if (Verbose && PrintGCDetails) {
4742       gclog_or_tty->print(" (modUnionTable: %d cards)", curNumCards);
4743     }
4744     // Either there are very few dirty cards, so re-mark
4745     // pause will be small anyway, or our pre-cleaning isn't
4746     // that much faster than the rate at which cards are being
4747     // dirtied, so we might as well stop and re-mark since
4748     // precleaning won't improve our re-mark time by much.
4749     if (curNumCards <= CMSPrecleanThreshold ||
4750         (numIter > 0 &&
4751          (curNumCards * CMSPrecleanDenominator >
4752          lastNumCards * CMSPrecleanNumerator))) {
4753       numIter++;
4754       cumNumCards += curNumCards;
4755       break;
4756     }
4757   }
4758 
4759   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
4760 
4761   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
4762   cumNumCards += curNumCards;
4763   if (PrintGCDetails && PrintCMSStatistics != 0) {
4764     gclog_or_tty->print_cr(" (cardTable: %d cards, re-scanned %d cards, %d iterations)",
4765                   curNumCards, cumNumCards, numIter);
4766   }
4767   return cumNumCards;   // as a measure of useful work done
4768 }
4769 
4770 // PRECLEANING NOTES:
4771 // Precleaning involves:
4772 // . reading the bits of the modUnionTable and clearing the set bits.
4773 // . For the cards corresponding to the set bits, we scan the
4774 //   objects on those cards. This means we need the free_list_lock
4775 //   so that we can safely iterate over the CMS space when scanning
4776 //   for oops.
4777 // . When we scan the objects, we'll be both reading and setting
4778 //   marks in the marking bit map, so we'll need the marking bit map.
4779 // . For protecting _collector_state transitions, we take the CGC_lock.
4780 //   Note that any races in the reading of of card table entries by the
4781 //   CMS thread on the one hand and the clearing of those entries by the
4782 //   VM thread or the setting of those entries by the mutator threads on the
4783 //   other are quite benign. However, for efficiency it makes sense to keep
4784 //   the VM thread from racing with the CMS thread while the latter is
4785 //   dirty card info to the modUnionTable. We therefore also use the
4786 //   CGC_lock to protect the reading of the card table and the mod union
4787 //   table by the CM thread.
4788 // . We run concurrently with mutator updates, so scanning
4789 //   needs to be done carefully  -- we should not try to scan
4790 //   potentially uninitialized objects.
4791 //
4792 // Locking strategy: While holding the CGC_lock, we scan over and
4793 // reset a maximal dirty range of the mod union / card tables, then lock
4794 // the free_list_lock and bitmap lock to do a full marking, then
4795 // release these locks; and repeat the cycle. This allows for a
4796 // certain amount of fairness in the sharing of these locks between
4797 // the CMS collector on the one hand, and the VM thread and the
4798 // mutators on the other.
4799 
4800 // NOTE: preclean_mod_union_table() and preclean_card_table()
4801 // further below are largely identical; if you need to modify
4802 // one of these methods, please check the other method too.
4803 
4804 size_t CMSCollector::preclean_mod_union_table(
4805   ConcurrentMarkSweepGeneration* gen,
4806   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4807   verify_work_stacks_empty();
4808   verify_overflow_empty();
4809 
4810   // strategy: starting with the first card, accumulate contiguous
4811   // ranges of dirty cards; clear these cards, then scan the region
4812   // covered by these cards.
4813 
4814   // Since all of the MUT is committed ahead, we can just use
4815   // that, in case the generations expand while we are precleaning.
4816   // It might also be fine to just use the committed part of the
4817   // generation, but we might potentially miss cards when the
4818   // generation is rapidly expanding while we are in the midst
4819   // of precleaning.
4820   HeapWord* startAddr = gen->reserved().start();
4821   HeapWord* endAddr   = gen->reserved().end();
4822 
4823   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4824 
4825   size_t numDirtyCards, cumNumDirtyCards;
4826   HeapWord *nextAddr, *lastAddr;
4827   for (cumNumDirtyCards = numDirtyCards = 0,
4828        nextAddr = lastAddr = startAddr;
4829        nextAddr < endAddr;
4830        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4831 
4832     ResourceMark rm;
4833     HandleMark   hm;
4834 
4835     MemRegion dirtyRegion;
4836     {
4837       stopTimer();
4838       // Potential yield point
4839       CMSTokenSync ts(true);
4840       startTimer();
4841       sample_eden();
4842       // Get dirty region starting at nextOffset (inclusive),
4843       // simultaneously clearing it.
4844       dirtyRegion =
4845         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
4846       assert(dirtyRegion.start() >= nextAddr,
4847              "returned region inconsistent?");
4848     }
4849     // Remember where the next search should begin.
4850     // The returned region (if non-empty) is a right open interval,
4851     // so lastOffset is obtained from the right end of that
4852     // interval.
4853     lastAddr = dirtyRegion.end();
4854     // Should do something more transparent and less hacky XXX
4855     numDirtyCards =
4856       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4857 
4858     // We'll scan the cards in the dirty region (with periodic
4859     // yields for foreground GC as needed).
4860     if (!dirtyRegion.is_empty()) {
4861       assert(numDirtyCards > 0, "consistency check");
4862       HeapWord* stop_point = NULL;
4863       stopTimer();
4864       // Potential yield point
4865       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
4866                                bitMapLock());
4867       startTimer();
4868       {
4869         verify_work_stacks_empty();
4870         verify_overflow_empty();
4871         sample_eden();
4872         stop_point =
4873           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4874       }
4875       if (stop_point != NULL) {
4876         // The careful iteration stopped early either because it found an
4877         // uninitialized object, or because we were in the midst of an
4878         // "abortable preclean", which should now be aborted. Redirty
4879         // the bits corresponding to the partially-scanned or unscanned
4880         // cards. We'll either restart at the next block boundary or
4881         // abort the preclean.
4882         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4883                "Should only be AbortablePreclean.");
4884         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4885         if (should_abort_preclean()) {
4886           break; // out of preclean loop
4887         } else {
4888           // Compute the next address at which preclean should pick up;
4889           // might need bitMapLock in order to read P-bits.
4890           lastAddr = next_card_start_after_block(stop_point);
4891         }
4892       }
4893     } else {
4894       assert(lastAddr == endAddr, "consistency check");
4895       assert(numDirtyCards == 0, "consistency check");
4896       break;
4897     }
4898   }
4899   verify_work_stacks_empty();
4900   verify_overflow_empty();
4901   return cumNumDirtyCards;
4902 }
4903 
4904 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4905 // below are largely identical; if you need to modify
4906 // one of these methods, please check the other method too.
4907 
4908 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
4909   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4910   // strategy: it's similar to precleamModUnionTable above, in that
4911   // we accumulate contiguous ranges of dirty cards, mark these cards
4912   // precleaned, then scan the region covered by these cards.
4913   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
4914   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
4915 
4916   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4917 
4918   size_t numDirtyCards, cumNumDirtyCards;
4919   HeapWord *lastAddr, *nextAddr;
4920 
4921   for (cumNumDirtyCards = numDirtyCards = 0,
4922        nextAddr = lastAddr = startAddr;
4923        nextAddr < endAddr;
4924        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4925 
4926     ResourceMark rm;
4927     HandleMark   hm;
4928 
4929     MemRegion dirtyRegion;
4930     {
4931       // See comments in "Precleaning notes" above on why we
4932       // do this locking. XXX Could the locking overheads be
4933       // too high when dirty cards are sparse? [I don't think so.]
4934       stopTimer();
4935       CMSTokenSync x(true); // is cms thread
4936       startTimer();
4937       sample_eden();
4938       // Get and clear dirty region from card table
4939       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4940                                     MemRegion(nextAddr, endAddr),
4941                                     true,
4942                                     CardTableModRefBS::precleaned_card_val());
4943 
4944       assert(dirtyRegion.start() >= nextAddr,
4945              "returned region inconsistent?");
4946     }
4947     lastAddr = dirtyRegion.end();
4948     numDirtyCards =
4949       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4950 
4951     if (!dirtyRegion.is_empty()) {
4952       stopTimer();
4953       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
4954       startTimer();
4955       sample_eden();
4956       verify_work_stacks_empty();
4957       verify_overflow_empty();
4958       HeapWord* stop_point =
4959         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4960       if (stop_point != NULL) {
4961         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4962                "Should only be AbortablePreclean.");
4963         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4964         if (should_abort_preclean()) {
4965           break; // out of preclean loop
4966         } else {
4967           // Compute the next address at which preclean should pick up.
4968           lastAddr = next_card_start_after_block(stop_point);
4969         }
4970       }
4971     } else {
4972       break;
4973     }
4974   }
4975   verify_work_stacks_empty();
4976   verify_overflow_empty();
4977   return cumNumDirtyCards;
4978 }
4979 
4980 class PrecleanKlassClosure : public KlassClosure {
4981   CMKlassClosure _cm_klass_closure;
4982  public:
4983   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4984   void do_klass(Klass* k) {
4985     if (k->has_accumulated_modified_oops()) {
4986       k->clear_accumulated_modified_oops();
4987 
4988       _cm_klass_closure.do_klass(k);
4989     }
4990   }
4991 };
4992 
4993 // The freelist lock is needed to prevent asserts, is it really needed?
4994 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4995 
4996   cl->set_freelistLock(freelistLock);
4997 
4998   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4999 
5000   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
5001   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
5002   PrecleanKlassClosure preclean_klass_closure(cl);
5003   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
5004 
5005   verify_work_stacks_empty();
5006   verify_overflow_empty();
5007 }
5008 
5009 void CMSCollector::checkpointRootsFinal(bool asynch,
5010   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
5011   assert(_collectorState == FinalMarking, "incorrect state transition?");
5012   check_correct_thread_executing();
5013   // world is stopped at this checkpoint
5014   assert(SafepointSynchronize::is_at_safepoint(),
5015          "world should be stopped");
5016   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5017 
5018   verify_work_stacks_empty();
5019   verify_overflow_empty();
5020 
5021   SpecializationStats::clear();
5022   if (PrintGCDetails) {
5023     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
5024                         _young_gen->used() / K,
5025                         _young_gen->capacity() / K);
5026   }
5027   if (asynch) {
5028     if (CMSScavengeBeforeRemark) {
5029       GenCollectedHeap* gch = GenCollectedHeap::heap();
5030       // Temporarily set flag to false, GCH->do_collection will
5031       // expect it to be false and set to true
5032       FlagSetting fl(gch->_is_gc_active, false);
5033       NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark",
5034         PrintGCDetails && Verbose, true, _gc_timer_cm);)
5035       int level = _cmsGen->level() - 1;
5036       if (level >= 0) {
5037         gch->do_collection(true,        // full (i.e. force, see below)
5038                            false,       // !clear_all_soft_refs
5039                            0,           // size
5040                            false,       // is_tlab
5041                            level        // max_level
5042                           );
5043       }
5044     }
5045     FreelistLocker x(this);
5046     MutexLockerEx y(bitMapLock(),
5047                     Mutex::_no_safepoint_check_flag);
5048     assert(!init_mark_was_synchronous, "but that's impossible!");
5049     checkpointRootsFinalWork(asynch, clear_all_soft_refs, false);
5050   } else {
5051     // already have all the locks
5052     checkpointRootsFinalWork(asynch, clear_all_soft_refs,
5053                              init_mark_was_synchronous);
5054   }
5055   verify_work_stacks_empty();
5056   verify_overflow_empty();
5057   SpecializationStats::print();
5058 }
5059 
5060 void CMSCollector::checkpointRootsFinalWork(bool asynch,
5061   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
5062 
5063   NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm);)
5064 
5065   assert(haveFreelistLocks(), "must have free list locks");
5066   assert_lock_strong(bitMapLock());
5067 
5068   if (UseAdaptiveSizePolicy) {
5069     size_policy()->checkpoint_roots_final_begin();
5070   }
5071 
5072   ResourceMark rm;
5073   HandleMark   hm;
5074 
5075   GenCollectedHeap* gch = GenCollectedHeap::heap();
5076 
5077   if (should_unload_classes()) {
5078     CodeCache::gc_prologue();
5079   }
5080   assert(haveFreelistLocks(), "must have free list locks");
5081   assert_lock_strong(bitMapLock());
5082 
5083   if (!init_mark_was_synchronous) {
5084     // We might assume that we need not fill TLAB's when
5085     // CMSScavengeBeforeRemark is set, because we may have just done
5086     // a scavenge which would have filled all TLAB's -- and besides
5087     // Eden would be empty. This however may not always be the case --
5088     // for instance although we asked for a scavenge, it may not have
5089     // happened because of a JNI critical section. We probably need
5090     // a policy for deciding whether we can in that case wait until
5091     // the critical section releases and then do the remark following
5092     // the scavenge, and skip it here. In the absence of that policy,
5093     // or of an indication of whether the scavenge did indeed occur,
5094     // we cannot rely on TLAB's having been filled and must do
5095     // so here just in case a scavenge did not happen.
5096     gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
5097     // Update the saved marks which may affect the root scans.
5098     gch->save_marks();
5099 
5100     if (CMSPrintEdenSurvivorChunks) {
5101       print_eden_and_survivor_chunk_arrays();
5102     }
5103 
5104     {
5105       COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
5106 
5107       // Note on the role of the mod union table:
5108       // Since the marker in "markFromRoots" marks concurrently with
5109       // mutators, it is possible for some reachable objects not to have been
5110       // scanned. For instance, an only reference to an object A was
5111       // placed in object B after the marker scanned B. Unless B is rescanned,
5112       // A would be collected. Such updates to references in marked objects
5113       // are detected via the mod union table which is the set of all cards
5114       // dirtied since the first checkpoint in this GC cycle and prior to
5115       // the most recent young generation GC, minus those cleaned up by the
5116       // concurrent precleaning.
5117       if (CMSParallelRemarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
5118         GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm);
5119         do_remark_parallel();
5120       } else {
5121         GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
5122                     _gc_timer_cm);
5123         do_remark_non_parallel();
5124       }
5125     }
5126   } else {
5127     assert(!asynch, "Can't have init_mark_was_synchronous in asynch mode");
5128     // The initial mark was stop-world, so there's no rescanning to
5129     // do; go straight on to the next step below.
5130   }
5131   verify_work_stacks_empty();
5132   verify_overflow_empty();
5133 
5134   {
5135     NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm);)
5136     refProcessingWork(asynch, clear_all_soft_refs);
5137   }
5138   verify_work_stacks_empty();
5139   verify_overflow_empty();
5140 
5141   if (should_unload_classes()) {
5142     CodeCache::gc_epilogue();
5143   }
5144   JvmtiExport::gc_epilogue();
5145 
5146   // If we encountered any (marking stack / work queue) overflow
5147   // events during the current CMS cycle, take appropriate
5148   // remedial measures, where possible, so as to try and avoid
5149   // recurrence of that condition.
5150   assert(_markStack.isEmpty(), "No grey objects");
5151   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
5152                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
5153   if (ser_ovflw > 0) {
5154     if (PrintCMSStatistics != 0) {
5155       gclog_or_tty->print_cr("Marking stack overflow (benign) "
5156         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT
5157         ", kac_preclean="SIZE_FORMAT")",
5158         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
5159         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
5160     }
5161     _markStack.expand();
5162     _ser_pmc_remark_ovflw = 0;
5163     _ser_pmc_preclean_ovflw = 0;
5164     _ser_kac_preclean_ovflw = 0;
5165     _ser_kac_ovflw = 0;
5166   }
5167   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
5168     if (PrintCMSStatistics != 0) {
5169       gclog_or_tty->print_cr("Work queue overflow (benign) "
5170         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
5171         _par_pmc_remark_ovflw, _par_kac_ovflw);
5172     }
5173     _par_pmc_remark_ovflw = 0;
5174     _par_kac_ovflw = 0;
5175   }
5176   if (PrintCMSStatistics != 0) {
5177      if (_markStack._hit_limit > 0) {
5178        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
5179                               _markStack._hit_limit);
5180      }
5181      if (_markStack._failed_double > 0) {
5182        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
5183                               " current capacity "SIZE_FORMAT,
5184                               _markStack._failed_double,
5185                               _markStack.capacity());
5186      }
5187   }
5188   _markStack._hit_limit = 0;
5189   _markStack._failed_double = 0;
5190 
5191   if ((VerifyAfterGC || VerifyDuringGC) &&
5192       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5193     verify_after_remark();
5194   }
5195 
5196   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
5197 
5198   // Change under the freelistLocks.
5199   _collectorState = Sweeping;
5200   // Call isAllClear() under bitMapLock
5201   assert(_modUnionTable.isAllClear(),
5202       "Should be clear by end of the final marking");
5203   assert(_ct->klass_rem_set()->mod_union_is_clear(),
5204       "Should be clear by end of the final marking");
5205   if (UseAdaptiveSizePolicy) {
5206     size_policy()->checkpoint_roots_final_end(gch->gc_cause());
5207   }
5208 }
5209 
5210 void CMSParInitialMarkTask::work(uint worker_id) {
5211   elapsedTimer _timer;
5212   ResourceMark rm;
5213   HandleMark   hm;
5214 
5215   // ---------- scan from roots --------------
5216   _timer.start();
5217   GenCollectedHeap* gch = GenCollectedHeap::heap();
5218   Par_MarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
5219   CMKlassClosure klass_closure(&par_mri_cl);
5220 
5221   // ---------- young gen roots --------------
5222   {
5223     work_on_young_gen_roots(worker_id, &par_mri_cl);
5224     _timer.stop();
5225     if (PrintCMSStatistics != 0) {
5226       gclog_or_tty->print_cr(
5227         "Finished young gen initial mark scan work in %dth thread: %3.3f sec",
5228         worker_id, _timer.seconds());
5229     }
5230   }
5231 
5232   // ---------- remaining roots --------------
5233   _timer.reset();
5234   _timer.start();
5235   gch->gen_process_strong_roots(_collector->_cmsGen->level(),
5236                                 false,     // yg was scanned above
5237                                 false,     // this is parallel code
5238                                 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
5239                                 &par_mri_cl,
5240                                 true,   // walk all of code cache if (so & SO_AllCodeCache)
5241                                 NULL,
5242                                 &klass_closure);
5243   assert(_collector->should_unload_classes()
5244          || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_AllCodeCache),
5245          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5246   _timer.stop();
5247   if (PrintCMSStatistics != 0) {
5248     gclog_or_tty->print_cr(
5249       "Finished remaining root initial mark scan work in %dth thread: %3.3f sec",
5250       worker_id, _timer.seconds());
5251   }
5252 }
5253 
5254 // Parallel remark task
5255 class CMSParRemarkTask: public CMSParMarkTask {
5256   CompactibleFreeListSpace* _cms_space;
5257 
5258   // The per-thread work queues, available here for stealing.
5259   OopTaskQueueSet*       _task_queues;
5260   ParallelTaskTerminator _term;
5261 
5262  public:
5263   // A value of 0 passed to n_workers will cause the number of
5264   // workers to be taken from the active workers in the work gang.
5265   CMSParRemarkTask(CMSCollector* collector,
5266                    CompactibleFreeListSpace* cms_space,
5267                    int n_workers, FlexibleWorkGang* workers,
5268                    OopTaskQueueSet* task_queues):
5269     CMSParMarkTask("Rescan roots and grey objects in parallel",
5270                    collector, n_workers),
5271     _cms_space(cms_space),
5272     _task_queues(task_queues),
5273     _term(n_workers, task_queues) { }
5274 
5275   OopTaskQueueSet* task_queues() { return _task_queues; }
5276 
5277   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5278 
5279   ParallelTaskTerminator* terminator() { return &_term; }
5280   int n_workers() { return _n_workers; }
5281 
5282   void work(uint worker_id);
5283 
5284  private:
5285   // ... of  dirty cards in old space
5286   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
5287                                   Par_MarkRefsIntoAndScanClosure* cl);
5288 
5289   // ... work stealing for the above
5290   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
5291 };
5292 
5293 class RemarkKlassClosure : public KlassClosure {
5294   CMKlassClosure _cm_klass_closure;
5295  public:
5296   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
5297   void do_klass(Klass* k) {
5298     // Check if we have modified any oops in the Klass during the concurrent marking.
5299     if (k->has_accumulated_modified_oops()) {
5300       k->clear_accumulated_modified_oops();
5301 
5302       // We could have transfered the current modified marks to the accumulated marks,
5303       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
5304     } else if (k->has_modified_oops()) {
5305       // Don't clear anything, this info is needed by the next young collection.
5306     } else {
5307       // No modified oops in the Klass.
5308       return;
5309     }
5310 
5311     // The klass has modified fields, need to scan the klass.
5312     _cm_klass_closure.do_klass(k);
5313   }
5314 };
5315 
5316 void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) {
5317   DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration();
5318   EdenSpace* eden_space = dng->eden();
5319   ContiguousSpace* from_space = dng->from();
5320   ContiguousSpace* to_space   = dng->to();
5321 
5322   HeapWord** eca = _collector->_eden_chunk_array;
5323   size_t     ect = _collector->_eden_chunk_index;
5324   HeapWord** sca = _collector->_survivor_chunk_array;
5325   size_t     sct = _collector->_survivor_chunk_index;
5326 
5327   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
5328   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
5329 
5330   do_young_space_rescan(worker_id, cl, to_space, NULL, 0);
5331   do_young_space_rescan(worker_id, cl, from_space, sca, sct);
5332   do_young_space_rescan(worker_id, cl, eden_space, eca, ect);
5333 }
5334 
5335 // work_queue(i) is passed to the closure
5336 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
5337 // also is passed to do_dirty_card_rescan_tasks() and to
5338 // do_work_steal() to select the i-th task_queue.
5339 
5340 void CMSParRemarkTask::work(uint worker_id) {
5341   elapsedTimer _timer;
5342   ResourceMark rm;
5343   HandleMark   hm;
5344 
5345   // ---------- rescan from roots --------------
5346   _timer.start();
5347   GenCollectedHeap* gch = GenCollectedHeap::heap();
5348   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
5349     _collector->_span, _collector->ref_processor(),
5350     &(_collector->_markBitMap),
5351     work_queue(worker_id));
5352 
5353   // Rescan young gen roots first since these are likely
5354   // coarsely partitioned and may, on that account, constitute
5355   // the critical path; thus, it's best to start off that
5356   // work first.
5357   // ---------- young gen roots --------------
5358   {
5359     work_on_young_gen_roots(worker_id, &par_mrias_cl);
5360     _timer.stop();
5361     if (PrintCMSStatistics != 0) {
5362       gclog_or_tty->print_cr(
5363         "Finished young gen rescan work in %dth thread: %3.3f sec",
5364         worker_id, _timer.seconds());
5365     }
5366   }
5367 
5368   // ---------- remaining roots --------------
5369   _timer.reset();
5370   _timer.start();
5371   gch->gen_process_strong_roots(_collector->_cmsGen->level(),
5372                                 false,     // yg was scanned above
5373                                 false,     // this is parallel code
5374                                 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
5375                                 &par_mrias_cl,
5376                                 true,   // walk all of code cache if (so & SO_AllCodeCache)
5377                                 NULL,
5378                                 NULL);     // The dirty klasses will be handled below
5379   assert(_collector->should_unload_classes()
5380          || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_AllCodeCache),
5381          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5382   _timer.stop();
5383   if (PrintCMSStatistics != 0) {
5384     gclog_or_tty->print_cr(
5385       "Finished remaining root rescan work in %dth thread: %3.3f sec",
5386       worker_id, _timer.seconds());
5387   }
5388 
5389   // ---------- unhandled CLD scanning ----------
5390   if (worker_id == 0) { // Single threaded at the moment.
5391     _timer.reset();
5392     _timer.start();
5393 
5394     // Scan all new class loader data objects and new dependencies that were
5395     // introduced during concurrent marking.
5396     ResourceMark rm;
5397     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5398     for (int i = 0; i < array->length(); i++) {
5399       par_mrias_cl.do_class_loader_data(array->at(i));
5400     }
5401 
5402     // We don't need to keep track of new CLDs anymore.
5403     ClassLoaderDataGraph::remember_new_clds(false);
5404 
5405     _timer.stop();
5406     if (PrintCMSStatistics != 0) {
5407       gclog_or_tty->print_cr(
5408           "Finished unhandled CLD scanning work in %dth thread: %3.3f sec",
5409           worker_id, _timer.seconds());
5410     }
5411   }
5412 
5413   // ---------- dirty klass scanning ----------
5414   if (worker_id == 0) { // Single threaded at the moment.
5415     _timer.reset();
5416     _timer.start();
5417 
5418     // Scan all classes that was dirtied during the concurrent marking phase.
5419     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
5420     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5421 
5422     _timer.stop();
5423     if (PrintCMSStatistics != 0) {
5424       gclog_or_tty->print_cr(
5425           "Finished dirty klass scanning work in %dth thread: %3.3f sec",
5426           worker_id, _timer.seconds());
5427     }
5428   }
5429 
5430   // We might have added oops to ClassLoaderData::_handles during the
5431   // concurrent marking phase. These oops point to newly allocated objects
5432   // that are guaranteed to be kept alive. Either by the direct allocation
5433   // code, or when the young collector processes the strong roots. Hence,
5434   // we don't have to revisit the _handles block during the remark phase.
5435 
5436   // ---------- rescan dirty cards ------------
5437   _timer.reset();
5438   _timer.start();
5439 
5440   // Do the rescan tasks for each of the two spaces
5441   // (cms_space) in turn.
5442   // "worker_id" is passed to select the task_queue for "worker_id"
5443   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
5444   _timer.stop();
5445   if (PrintCMSStatistics != 0) {
5446     gclog_or_tty->print_cr(
5447       "Finished dirty card rescan work in %dth thread: %3.3f sec",
5448       worker_id, _timer.seconds());
5449   }
5450 
5451   // ---------- steal work from other threads ...
5452   // ---------- ... and drain overflow list.
5453   _timer.reset();
5454   _timer.start();
5455   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
5456   _timer.stop();
5457   if (PrintCMSStatistics != 0) {
5458     gclog_or_tty->print_cr(
5459       "Finished work stealing in %dth thread: %3.3f sec",
5460       worker_id, _timer.seconds());
5461   }
5462 }
5463 
5464 // Note that parameter "i" is not used.
5465 void
5466 CMSParMarkTask::do_young_space_rescan(uint worker_id,
5467   OopsInGenClosure* cl, ContiguousSpace* space,
5468   HeapWord** chunk_array, size_t chunk_top) {
5469   // Until all tasks completed:
5470   // . claim an unclaimed task
5471   // . compute region boundaries corresponding to task claimed
5472   //   using chunk_array
5473   // . par_oop_iterate(cl) over that region
5474 
5475   ResourceMark rm;
5476   HandleMark   hm;
5477 
5478   SequentialSubTasksDone* pst = space->par_seq_tasks();
5479 
5480   uint nth_task = 0;
5481   uint n_tasks  = pst->n_tasks();
5482 
5483   if (n_tasks > 0) {
5484     assert(pst->valid(), "Uninitialized use?");
5485     HeapWord *start, *end;
5486     while (!pst->is_task_claimed(/* reference */ nth_task)) {
5487       // We claimed task # nth_task; compute its boundaries.
5488       if (chunk_top == 0) {  // no samples were taken
5489         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task");
5490         start = space->bottom();
5491         end   = space->top();
5492       } else if (nth_task == 0) {
5493         start = space->bottom();
5494         end   = chunk_array[nth_task];
5495       } else if (nth_task < (uint)chunk_top) {
5496         assert(nth_task >= 1, "Control point invariant");
5497         start = chunk_array[nth_task - 1];
5498         end   = chunk_array[nth_task];
5499       } else {
5500         assert(nth_task == (uint)chunk_top, "Control point invariant");
5501         start = chunk_array[chunk_top - 1];
5502         end   = space->top();
5503       }
5504       MemRegion mr(start, end);
5505       // Verify that mr is in space
5506       assert(mr.is_empty() || space->used_region().contains(mr),
5507              "Should be in space");
5508       // Verify that "start" is an object boundary
5509       assert(mr.is_empty() || oop(mr.start())->is_oop(),
5510              "Should be an oop");
5511       space->par_oop_iterate(mr, cl);
5512     }
5513     pst->all_tasks_completed();
5514   }
5515 }
5516 
5517 void
5518 CMSParRemarkTask::do_dirty_card_rescan_tasks(
5519   CompactibleFreeListSpace* sp, int i,
5520   Par_MarkRefsIntoAndScanClosure* cl) {
5521   // Until all tasks completed:
5522   // . claim an unclaimed task
5523   // . compute region boundaries corresponding to task claimed
5524   // . transfer dirty bits ct->mut for that region
5525   // . apply rescanclosure to dirty mut bits for that region
5526 
5527   ResourceMark rm;
5528   HandleMark   hm;
5529 
5530   OopTaskQueue* work_q = work_queue(i);
5531   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
5532   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
5533   // CAUTION: This closure has state that persists across calls to
5534   // the work method dirty_range_iterate_clear() in that it has
5535   // embedded in it a (subtype of) UpwardsObjectClosure. The
5536   // use of that state in the embedded UpwardsObjectClosure instance
5537   // assumes that the cards are always iterated (even if in parallel
5538   // by several threads) in monotonically increasing order per each
5539   // thread. This is true of the implementation below which picks
5540   // card ranges (chunks) in monotonically increasing order globally
5541   // and, a-fortiori, in monotonically increasing order per thread
5542   // (the latter order being a subsequence of the former).
5543   // If the work code below is ever reorganized into a more chaotic
5544   // work-partitioning form than the current "sequential tasks"
5545   // paradigm, the use of that persistent state will have to be
5546   // revisited and modified appropriately. See also related
5547   // bug 4756801 work on which should examine this code to make
5548   // sure that the changes there do not run counter to the
5549   // assumptions made here and necessary for correctness and
5550   // efficiency. Note also that this code might yield inefficient
5551   // behavior in the case of very large objects that span one or
5552   // more work chunks. Such objects would potentially be scanned
5553   // several times redundantly. Work on 4756801 should try and
5554   // address that performance anomaly if at all possible. XXX
5555   MemRegion  full_span  = _collector->_span;
5556   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
5557   MarkFromDirtyCardsClosure
5558     greyRescanClosure(_collector, full_span, // entire span of interest
5559                       sp, bm, work_q, cl);
5560 
5561   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
5562   assert(pst->valid(), "Uninitialized use?");
5563   uint nth_task = 0;
5564   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
5565   MemRegion span = sp->used_region();
5566   HeapWord* start_addr = span.start();
5567   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
5568                                            alignment);
5569   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
5570   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
5571          start_addr, "Check alignment");
5572   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
5573          chunk_size, "Check alignment");
5574 
5575   while (!pst->is_task_claimed(/* reference */ nth_task)) {
5576     // Having claimed the nth_task, compute corresponding mem-region,
5577     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
5578     // The alignment restriction ensures that we do not need any
5579     // synchronization with other gang-workers while setting or
5580     // clearing bits in thus chunk of the MUT.
5581     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
5582                                     start_addr + (nth_task+1)*chunk_size);
5583     // The last chunk's end might be way beyond end of the
5584     // used region. In that case pull back appropriately.
5585     if (this_span.end() > end_addr) {
5586       this_span.set_end(end_addr);
5587       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
5588     }
5589     // Iterate over the dirty cards covering this chunk, marking them
5590     // precleaned, and setting the corresponding bits in the mod union
5591     // table. Since we have been careful to partition at Card and MUT-word
5592     // boundaries no synchronization is needed between parallel threads.
5593     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
5594                                                  &modUnionClosure);
5595 
5596     // Having transferred these marks into the modUnionTable,
5597     // rescan the marked objects on the dirty cards in the modUnionTable.
5598     // Even if this is at a synchronous collection, the initial marking
5599     // may have been done during an asynchronous collection so there
5600     // may be dirty bits in the mod-union table.
5601     _collector->_modUnionTable.dirty_range_iterate_clear(
5602                   this_span, &greyRescanClosure);
5603     _collector->_modUnionTable.verifyNoOneBitsInRange(
5604                                  this_span.start(),
5605                                  this_span.end());
5606   }
5607   pst->all_tasks_completed();  // declare that i am done
5608 }
5609 
5610 // . see if we can share work_queues with ParNew? XXX
5611 void
5612 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
5613                                 int* seed) {
5614   OopTaskQueue* work_q = work_queue(i);
5615   NOT_PRODUCT(int num_steals = 0;)
5616   oop obj_to_scan;
5617   CMSBitMap* bm = &(_collector->_markBitMap);
5618 
5619   while (true) {
5620     // Completely finish any left over work from (an) earlier round(s)
5621     cl->trim_queue(0);
5622     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5623                                          (size_t)ParGCDesiredObjsFromOverflowList);
5624     // Now check if there's any work in the overflow list
5625     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5626     // only affects the number of attempts made to get work from the
5627     // overflow list and does not affect the number of workers.  Just
5628     // pass ParallelGCThreads so this behavior is unchanged.
5629     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5630                                                 work_q,
5631                                                 ParallelGCThreads)) {
5632       // found something in global overflow list;
5633       // not yet ready to go stealing work from others.
5634       // We'd like to assert(work_q->size() != 0, ...)
5635       // because we just took work from the overflow list,
5636       // but of course we can't since all of that could have
5637       // been already stolen from us.
5638       // "He giveth and He taketh away."
5639       continue;
5640     }
5641     // Verify that we have no work before we resort to stealing
5642     assert(work_q->size() == 0, "Have work, shouldn't steal");
5643     // Try to steal from other queues that have work
5644     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5645       NOT_PRODUCT(num_steals++;)
5646       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5647       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5648       // Do scanning work
5649       obj_to_scan->oop_iterate(cl);
5650       // Loop around, finish this work, and try to steal some more
5651     } else if (terminator()->offer_termination()) {
5652         break;  // nirvana from the infinite cycle
5653     }
5654   }
5655   NOT_PRODUCT(
5656     if (PrintCMSStatistics != 0) {
5657       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5658     }
5659   )
5660   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
5661          "Else our work is not yet done");
5662 }
5663 
5664 // Record object boundaries in _eden_chunk_array by sampling the eden
5665 // top in the slow-path eden object allocation code path and record
5666 // the boundaries, if CMSEdenChunksRecordAlways is true. If
5667 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
5668 // sampling in sample_eden() that activates during the part of the
5669 // preclean phase.
5670 void CMSCollector::sample_eden_chunk() {
5671   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
5672     if (_eden_chunk_lock->try_lock()) {
5673       // Record a sample. This is the critical section. The contents
5674       // of the _eden_chunk_array have to be non-decreasing in the
5675       // address order.
5676       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
5677       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
5678              "Unexpected state of Eden");
5679       if (_eden_chunk_index == 0 ||
5680           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
5681            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
5682                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
5683         _eden_chunk_index++;  // commit sample
5684       }
5685       _eden_chunk_lock->unlock();
5686     }
5687   }
5688 }
5689 
5690 // Return a thread-local PLAB recording array, as appropriate.
5691 void* CMSCollector::get_data_recorder(int thr_num) {
5692   if (_survivor_plab_array != NULL &&
5693       (CMSPLABRecordAlways ||
5694        (_collectorState > Marking && _collectorState < FinalMarking))) {
5695     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
5696     ChunkArray* ca = &_survivor_plab_array[thr_num];
5697     ca->reset();   // clear it so that fresh data is recorded
5698     return (void*) ca;
5699   } else {
5700     return NULL;
5701   }
5702 }
5703 
5704 // Reset all the thread-local PLAB recording arrays
5705 void CMSCollector::reset_survivor_plab_arrays() {
5706   for (uint i = 0; i < ParallelGCThreads; i++) {
5707     _survivor_plab_array[i].reset();
5708   }
5709 }
5710 
5711 // Merge the per-thread plab arrays into the global survivor chunk
5712 // array which will provide the partitioning of the survivor space
5713 // for CMS initial scan and rescan.
5714 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
5715                                               int no_of_gc_threads) {
5716   assert(_survivor_plab_array  != NULL, "Error");
5717   assert(_survivor_chunk_array != NULL, "Error");
5718   assert(_collectorState == FinalMarking ||
5719          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
5720   for (int j = 0; j < no_of_gc_threads; j++) {
5721     _cursor[j] = 0;
5722   }
5723   HeapWord* top = surv->top();
5724   size_t i;
5725   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
5726     HeapWord* min_val = top;          // Higher than any PLAB address
5727     uint      min_tid = 0;            // position of min_val this round
5728     for (int j = 0; j < no_of_gc_threads; j++) {
5729       ChunkArray* cur_sca = &_survivor_plab_array[j];
5730       if (_cursor[j] == cur_sca->end()) {
5731         continue;
5732       }
5733       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
5734       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
5735       assert(surv->used_region().contains(cur_val), "Out of bounds value");
5736       if (cur_val < min_val) {
5737         min_tid = j;
5738         min_val = cur_val;
5739       } else {
5740         assert(cur_val < top, "All recorded addresses should be less");
5741       }
5742     }
5743     // At this point min_val and min_tid are respectively
5744     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
5745     // and the thread (j) that witnesses that address.
5746     // We record this address in the _survivor_chunk_array[i]
5747     // and increment _cursor[min_tid] prior to the next round i.
5748     if (min_val == top) {
5749       break;
5750     }
5751     _survivor_chunk_array[i] = min_val;
5752     _cursor[min_tid]++;
5753   }
5754   // We are all done; record the size of the _survivor_chunk_array
5755   _survivor_chunk_index = i; // exclusive: [0, i)
5756   if (PrintCMSStatistics > 0) {
5757     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
5758   }
5759   // Verify that we used up all the recorded entries
5760   #ifdef ASSERT
5761     size_t total = 0;
5762     for (int j = 0; j < no_of_gc_threads; j++) {
5763       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
5764       total += _cursor[j];
5765     }
5766     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
5767     // Check that the merged array is in sorted order
5768     if (total > 0) {
5769       for (size_t i = 0; i < total - 1; i++) {
5770         if (PrintCMSStatistics > 0) {
5771           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
5772                               i, _survivor_chunk_array[i]);
5773         }
5774         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
5775                "Not sorted");
5776       }
5777     }
5778   #endif // ASSERT
5779 }
5780 
5781 // Set up the space's par_seq_tasks structure for work claiming
5782 // for parallel initial scan and rescan of young gen.
5783 // See ParRescanTask where this is currently used.
5784 void
5785 CMSCollector::
5786 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
5787   assert(n_threads > 0, "Unexpected n_threads argument");
5788   DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
5789 
5790   // Eden space
5791   if (!dng->eden()->is_empty()) {
5792     SequentialSubTasksDone* pst = dng->eden()->par_seq_tasks();
5793     assert(!pst->valid(), "Clobbering existing data?");
5794     // Each valid entry in [0, _eden_chunk_index) represents a task.
5795     size_t n_tasks = _eden_chunk_index + 1;
5796     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
5797     // Sets the condition for completion of the subtask (how many threads
5798     // need to finish in order to be done).
5799     pst->set_n_threads(n_threads);
5800     pst->set_n_tasks((int)n_tasks);
5801   }
5802 
5803   // Merge the survivor plab arrays into _survivor_chunk_array
5804   if (_survivor_plab_array != NULL) {
5805     merge_survivor_plab_arrays(dng->from(), n_threads);
5806   } else {
5807     assert(_survivor_chunk_index == 0, "Error");
5808   }
5809 
5810   // To space
5811   {
5812     SequentialSubTasksDone* pst = dng->to()->par_seq_tasks();
5813     assert(!pst->valid(), "Clobbering existing data?");
5814     // Sets the condition for completion of the subtask (how many threads
5815     // need to finish in order to be done).
5816     pst->set_n_threads(n_threads);
5817     pst->set_n_tasks(1);
5818     assert(pst->valid(), "Error");
5819   }
5820 
5821   // From space
5822   {
5823     SequentialSubTasksDone* pst = dng->from()->par_seq_tasks();
5824     assert(!pst->valid(), "Clobbering existing data?");
5825     size_t n_tasks = _survivor_chunk_index + 1;
5826     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
5827     // Sets the condition for completion of the subtask (how many threads
5828     // need to finish in order to be done).
5829     pst->set_n_threads(n_threads);
5830     pst->set_n_tasks((int)n_tasks);
5831     assert(pst->valid(), "Error");
5832   }
5833 }
5834 
5835 // Parallel version of remark
5836 void CMSCollector::do_remark_parallel() {
5837   GenCollectedHeap* gch = GenCollectedHeap::heap();
5838   FlexibleWorkGang* workers = gch->workers();
5839   assert(workers != NULL, "Need parallel worker threads.");
5840   // Choose to use the number of GC workers most recently set
5841   // into "active_workers".  If active_workers is not set, set it
5842   // to ParallelGCThreads.
5843   int n_workers = workers->active_workers();
5844   if (n_workers == 0) {
5845     assert(n_workers > 0, "Should have been set during scavenge");
5846     n_workers = ParallelGCThreads;
5847     workers->set_active_workers(n_workers);
5848   }
5849   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
5850 
5851   CMSParRemarkTask tsk(this,
5852     cms_space,
5853     n_workers, workers, task_queues());
5854 
5855   // Set up for parallel process_strong_roots work.
5856   gch->set_par_threads(n_workers);
5857   // We won't be iterating over the cards in the card table updating
5858   // the younger_gen cards, so we shouldn't call the following else
5859   // the verification code as well as subsequent younger_refs_iterate
5860   // code would get confused. XXX
5861   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
5862 
5863   // The young gen rescan work will not be done as part of
5864   // process_strong_roots (which currently doesn't knw how to
5865   // parallelize such a scan), but rather will be broken up into
5866   // a set of parallel tasks (via the sampling that the [abortable]
5867   // preclean phase did of EdenSpace, plus the [two] tasks of
5868   // scanning the [two] survivor spaces. Further fine-grain
5869   // parallelization of the scanning of the survivor spaces
5870   // themselves, and of precleaning of the younger gen itself
5871   // is deferred to the future.
5872   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
5873 
5874   // The dirty card rescan work is broken up into a "sequence"
5875   // of parallel tasks (per constituent space) that are dynamically
5876   // claimed by the parallel threads.
5877   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
5878 
5879   // It turns out that even when we're using 1 thread, doing the work in a
5880   // separate thread causes wide variance in run times.  We can't help this
5881   // in the multi-threaded case, but we special-case n=1 here to get
5882   // repeatable measurements of the 1-thread overhead of the parallel code.
5883   if (n_workers > 1) {
5884     // Make refs discovery MT-safe, if it isn't already: it may not
5885     // necessarily be so, since it's possible that we are doing
5886     // ST marking.
5887     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
5888     GenCollectedHeap::StrongRootsScope srs(gch);
5889     workers->run_task(&tsk);
5890   } else {
5891     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5892     GenCollectedHeap::StrongRootsScope srs(gch);
5893     tsk.work(0);
5894   }
5895 
5896   gch->set_par_threads(0);  // 0 ==> non-parallel.
5897   // restore, single-threaded for now, any preserved marks
5898   // as a result of work_q overflow
5899   restore_preserved_marks_if_any();
5900 }
5901 
5902 // Non-parallel version of remark
5903 void CMSCollector::do_remark_non_parallel() {
5904   ResourceMark rm;
5905   HandleMark   hm;
5906   GenCollectedHeap* gch = GenCollectedHeap::heap();
5907   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5908 
5909   MarkRefsIntoAndScanClosure
5910     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
5911              &_markStack, this,
5912              false /* should_yield */, false /* not precleaning */);
5913   MarkFromDirtyCardsClosure
5914     markFromDirtyCardsClosure(this, _span,
5915                               NULL,  // space is set further below
5916                               &_markBitMap, &_markStack, &mrias_cl);
5917   {
5918     GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm);
5919     // Iterate over the dirty cards, setting the corresponding bits in the
5920     // mod union table.
5921     {
5922       ModUnionClosure modUnionClosure(&_modUnionTable);
5923       _ct->ct_bs()->dirty_card_iterate(
5924                       _cmsGen->used_region(),
5925                       &modUnionClosure);
5926     }
5927     // Having transferred these marks into the modUnionTable, we just need
5928     // to rescan the marked objects on the dirty cards in the modUnionTable.
5929     // The initial marking may have been done during an asynchronous
5930     // collection so there may be dirty bits in the mod-union table.
5931     const int alignment =
5932       CardTableModRefBS::card_size * BitsPerWord;
5933     {
5934       // ... First handle dirty cards in CMS gen
5935       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
5936       MemRegion ur = _cmsGen->used_region();
5937       HeapWord* lb = ur.start();
5938       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5939       MemRegion cms_span(lb, ub);
5940       _modUnionTable.dirty_range_iterate_clear(cms_span,
5941                                                &markFromDirtyCardsClosure);
5942       verify_work_stacks_empty();
5943       if (PrintCMSStatistics != 0) {
5944         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
5945           markFromDirtyCardsClosure.num_dirty_cards());
5946       }
5947     }
5948   }
5949   if (VerifyDuringGC &&
5950       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5951     HandleMark hm;  // Discard invalid handles created during verification
5952     Universe::verify();
5953   }
5954   {
5955     GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm);
5956 
5957     verify_work_stacks_empty();
5958 
5959     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5960     GenCollectedHeap::StrongRootsScope srs(gch);
5961     gch->gen_process_strong_roots(_cmsGen->level(),
5962                                   true,  // younger gens as roots
5963                                   false, // use the local StrongRootsScope
5964                                   SharedHeap::ScanningOption(roots_scanning_options()),
5965                                   &mrias_cl,
5966                                   true,   // walk code active on stacks
5967                                   NULL,
5968                                   NULL);  // The dirty klasses will be handled below
5969 
5970     assert(should_unload_classes()
5971            || (roots_scanning_options() & SharedHeap::SO_AllCodeCache),
5972            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5973   }
5974 
5975   {
5976     GCTraceTime t("visit unhandled CLDs", PrintGCDetails, false, _gc_timer_cm);
5977 
5978     verify_work_stacks_empty();
5979 
5980     // Scan all class loader data objects that might have been introduced
5981     // during concurrent marking.
5982     ResourceMark rm;
5983     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5984     for (int i = 0; i < array->length(); i++) {
5985       mrias_cl.do_class_loader_data(array->at(i));
5986     }
5987 
5988     // We don't need to keep track of new CLDs anymore.
5989     ClassLoaderDataGraph::remember_new_clds(false);
5990 
5991     verify_work_stacks_empty();
5992   }
5993 
5994   {
5995     GCTraceTime t("dirty klass scan", PrintGCDetails, false, _gc_timer_cm);
5996 
5997     verify_work_stacks_empty();
5998 
5999     RemarkKlassClosure remark_klass_closure(&mrias_cl);
6000     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
6001 
6002     verify_work_stacks_empty();
6003   }
6004 
6005   // We might have added oops to ClassLoaderData::_handles during the
6006   // concurrent marking phase. These oops point to newly allocated objects
6007   // that are guaranteed to be kept alive. Either by the direct allocation
6008   // code, or when the young collector processes the strong roots. Hence,
6009   // we don't have to revisit the _handles block during the remark phase.
6010 
6011   verify_work_stacks_empty();
6012   // Restore evacuated mark words, if any, used for overflow list links
6013   if (!CMSOverflowEarlyRestoration) {
6014     restore_preserved_marks_if_any();
6015   }
6016   verify_overflow_empty();
6017 }
6018 
6019 ////////////////////////////////////////////////////////
6020 // Parallel Reference Processing Task Proxy Class
6021 ////////////////////////////////////////////////////////
6022 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
6023   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
6024   CMSCollector*          _collector;
6025   CMSBitMap*             _mark_bit_map;
6026   const MemRegion        _span;
6027   ProcessTask&           _task;
6028 
6029 public:
6030   CMSRefProcTaskProxy(ProcessTask&     task,
6031                       CMSCollector*    collector,
6032                       const MemRegion& span,
6033                       CMSBitMap*       mark_bit_map,
6034                       AbstractWorkGang* workers,
6035                       OopTaskQueueSet* task_queues):
6036     // XXX Should superclass AGTWOQ also know about AWG since it knows
6037     // about the task_queues used by the AWG? Then it could initialize
6038     // the terminator() object. See 6984287. The set_for_termination()
6039     // below is a temporary band-aid for the regression in 6984287.
6040     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
6041       task_queues),
6042     _task(task),
6043     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
6044   {
6045     assert(_collector->_span.equals(_span) && !_span.is_empty(),
6046            "Inconsistency in _span");
6047     set_for_termination(workers->active_workers());
6048   }
6049 
6050   OopTaskQueueSet* task_queues() { return queues(); }
6051 
6052   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
6053 
6054   void do_work_steal(int i,
6055                      CMSParDrainMarkingStackClosure* drain,
6056                      CMSParKeepAliveClosure* keep_alive,
6057                      int* seed);
6058 
6059   virtual void work(uint worker_id);
6060 };
6061 
6062 void CMSRefProcTaskProxy::work(uint worker_id) {
6063   assert(_collector->_span.equals(_span), "Inconsistency in _span");
6064   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
6065                                         _mark_bit_map,
6066                                         work_queue(worker_id));
6067   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
6068                                                  _mark_bit_map,
6069                                                  work_queue(worker_id));
6070   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
6071   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
6072   if (_task.marks_oops_alive()) {
6073     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
6074                   _collector->hash_seed(worker_id));
6075   }
6076   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
6077   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
6078 }
6079 
6080 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
6081   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
6082   EnqueueTask& _task;
6083 
6084 public:
6085   CMSRefEnqueueTaskProxy(EnqueueTask& task)
6086     : AbstractGangTask("Enqueue reference objects in parallel"),
6087       _task(task)
6088   { }
6089 
6090   virtual void work(uint worker_id)
6091   {
6092     _task.work(worker_id);
6093   }
6094 };
6095 
6096 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
6097   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
6098    _span(span),
6099    _bit_map(bit_map),
6100    _work_queue(work_queue),
6101    _mark_and_push(collector, span, bit_map, work_queue),
6102    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
6103                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
6104 { }
6105 
6106 // . see if we can share work_queues with ParNew? XXX
6107 void CMSRefProcTaskProxy::do_work_steal(int i,
6108   CMSParDrainMarkingStackClosure* drain,
6109   CMSParKeepAliveClosure* keep_alive,
6110   int* seed) {
6111   OopTaskQueue* work_q = work_queue(i);
6112   NOT_PRODUCT(int num_steals = 0;)
6113   oop obj_to_scan;
6114 
6115   while (true) {
6116     // Completely finish any left over work from (an) earlier round(s)
6117     drain->trim_queue(0);
6118     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
6119                                          (size_t)ParGCDesiredObjsFromOverflowList);
6120     // Now check if there's any work in the overflow list
6121     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
6122     // only affects the number of attempts made to get work from the
6123     // overflow list and does not affect the number of workers.  Just
6124     // pass ParallelGCThreads so this behavior is unchanged.
6125     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
6126                                                 work_q,
6127                                                 ParallelGCThreads)) {
6128       // Found something in global overflow list;
6129       // not yet ready to go stealing work from others.
6130       // We'd like to assert(work_q->size() != 0, ...)
6131       // because we just took work from the overflow list,
6132       // but of course we can't, since all of that might have
6133       // been already stolen from us.
6134       continue;
6135     }
6136     // Verify that we have no work before we resort to stealing
6137     assert(work_q->size() == 0, "Have work, shouldn't steal");
6138     // Try to steal from other queues that have work
6139     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
6140       NOT_PRODUCT(num_steals++;)
6141       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
6142       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
6143       // Do scanning work
6144       obj_to_scan->oop_iterate(keep_alive);
6145       // Loop around, finish this work, and try to steal some more
6146     } else if (terminator()->offer_termination()) {
6147       break;  // nirvana from the infinite cycle
6148     }
6149   }
6150   NOT_PRODUCT(
6151     if (PrintCMSStatistics != 0) {
6152       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
6153     }
6154   )
6155 }
6156 
6157 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
6158 {
6159   GenCollectedHeap* gch = GenCollectedHeap::heap();
6160   FlexibleWorkGang* workers = gch->workers();
6161   assert(workers != NULL, "Need parallel worker threads.");
6162   CMSRefProcTaskProxy rp_task(task, &_collector,
6163                               _collector.ref_processor()->span(),
6164                               _collector.markBitMap(),
6165                               workers, _collector.task_queues());
6166   workers->run_task(&rp_task);
6167 }
6168 
6169 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
6170 {
6171 
6172   GenCollectedHeap* gch = GenCollectedHeap::heap();
6173   FlexibleWorkGang* workers = gch->workers();
6174   assert(workers != NULL, "Need parallel worker threads.");
6175   CMSRefEnqueueTaskProxy enq_task(task);
6176   workers->run_task(&enq_task);
6177 }
6178 
6179 void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) {
6180 
6181   ResourceMark rm;
6182   HandleMark   hm;
6183 
6184   ReferenceProcessor* rp = ref_processor();
6185   assert(rp->span().equals(_span), "Spans should be equal");
6186   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
6187   // Process weak references.
6188   rp->setup_policy(clear_all_soft_refs);
6189   verify_work_stacks_empty();
6190 
6191   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
6192                                           &_markStack, false /* !preclean */);
6193   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
6194                                 _span, &_markBitMap, &_markStack,
6195                                 &cmsKeepAliveClosure, false /* !preclean */);
6196   {
6197     GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm);
6198 
6199     ReferenceProcessorStats stats;
6200     if (rp->processing_is_mt()) {
6201       // Set the degree of MT here.  If the discovery is done MT, there
6202       // may have been a different number of threads doing the discovery
6203       // and a different number of discovered lists may have Ref objects.
6204       // That is OK as long as the Reference lists are balanced (see
6205       // balance_all_queues() and balance_queues()).
6206       GenCollectedHeap* gch = GenCollectedHeap::heap();
6207       int active_workers = ParallelGCThreads;
6208       FlexibleWorkGang* workers = gch->workers();
6209       if (workers != NULL) {
6210         active_workers = workers->active_workers();
6211         // The expectation is that active_workers will have already
6212         // been set to a reasonable value.  If it has not been set,
6213         // investigate.
6214         assert(active_workers > 0, "Should have been set during scavenge");
6215       }
6216       rp->set_active_mt_degree(active_workers);
6217       CMSRefProcTaskExecutor task_executor(*this);
6218       stats = rp->process_discovered_references(&_is_alive_closure,
6219                                         &cmsKeepAliveClosure,
6220                                         &cmsDrainMarkingStackClosure,
6221                                         &task_executor,
6222                                         _gc_timer_cm);
6223     } else {
6224       stats = rp->process_discovered_references(&_is_alive_closure,
6225                                         &cmsKeepAliveClosure,
6226                                         &cmsDrainMarkingStackClosure,
6227                                         NULL,
6228                                         _gc_timer_cm);
6229     }
6230     _gc_tracer_cm->report_gc_reference_stats(stats);
6231 
6232   }
6233 
6234   // This is the point where the entire marking should have completed.
6235   verify_work_stacks_empty();
6236 
6237   if (should_unload_classes()) {
6238     {
6239       GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm);
6240 
6241       // Unload classes and purge the SystemDictionary.
6242       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
6243 
6244       // Unload nmethods.
6245       CodeCache::do_unloading(&_is_alive_closure, purged_class);
6246 
6247       // Prune dead klasses from subklass/sibling/implementor lists.
6248       Klass::clean_weak_klass_links(&_is_alive_closure);
6249     }
6250 
6251     {
6252       GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm);
6253       // Clean up unreferenced symbols in symbol table.
6254       SymbolTable::unlink();
6255     }
6256   }
6257 
6258   // CMS doesn't use the StringTable as hard roots when class unloading is turned off.
6259   // Need to check if we really scanned the StringTable.
6260   if ((roots_scanning_options() & SharedHeap::SO_Strings) == 0) {
6261     GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm);
6262     // Delete entries for dead interned strings.
6263     StringTable::unlink(&_is_alive_closure);
6264   }
6265 
6266   // Restore any preserved marks as a result of mark stack or
6267   // work queue overflow
6268   restore_preserved_marks_if_any();  // done single-threaded for now
6269 
6270   rp->set_enqueuing_is_done(true);
6271   if (rp->processing_is_mt()) {
6272     rp->balance_all_queues();
6273     CMSRefProcTaskExecutor task_executor(*this);
6274     rp->enqueue_discovered_references(&task_executor);
6275   } else {
6276     rp->enqueue_discovered_references(NULL);
6277   }
6278   rp->verify_no_references_recorded();
6279   assert(!rp->discovery_enabled(), "should have been disabled");
6280 }
6281 
6282 #ifndef PRODUCT
6283 void CMSCollector::check_correct_thread_executing() {
6284   Thread* t = Thread::current();
6285   // Only the VM thread or the CMS thread should be here.
6286   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
6287          "Unexpected thread type");
6288   // If this is the vm thread, the foreground process
6289   // should not be waiting.  Note that _foregroundGCIsActive is
6290   // true while the foreground collector is waiting.
6291   if (_foregroundGCShouldWait) {
6292     // We cannot be the VM thread
6293     assert(t->is_ConcurrentGC_thread(),
6294            "Should be CMS thread");
6295   } else {
6296     // We can be the CMS thread only if we are in a stop-world
6297     // phase of CMS collection.
6298     if (t->is_ConcurrentGC_thread()) {
6299       assert(_collectorState == InitialMarking ||
6300              _collectorState == FinalMarking,
6301              "Should be a stop-world phase");
6302       // The CMS thread should be holding the CMS_token.
6303       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6304              "Potential interference with concurrently "
6305              "executing VM thread");
6306     }
6307   }
6308 }
6309 #endif
6310 
6311 void CMSCollector::sweep(bool asynch) {
6312   assert(_collectorState == Sweeping, "just checking");
6313   check_correct_thread_executing();
6314   verify_work_stacks_empty();
6315   verify_overflow_empty();
6316   increment_sweep_count();
6317   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
6318 
6319   _inter_sweep_timer.stop();
6320   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
6321   size_policy()->avg_cms_free_at_sweep()->sample(_cmsGen->free());
6322 
6323   assert(!_intra_sweep_timer.is_active(), "Should not be active");
6324   _intra_sweep_timer.reset();
6325   _intra_sweep_timer.start();
6326   if (asynch) {
6327     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6328     CMSPhaseAccounting pa(this, "sweep", !PrintGCDetails);
6329     // First sweep the old gen
6330     {
6331       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
6332                                bitMapLock());
6333       sweepWork(_cmsGen, asynch);
6334     }
6335 
6336     // Update Universe::_heap_*_at_gc figures.
6337     // We need all the free list locks to make the abstract state
6338     // transition from Sweeping to Resetting. See detailed note
6339     // further below.
6340     {
6341       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
6342       // Update heap occupancy information which is used as
6343       // input to soft ref clearing policy at the next gc.
6344       Universe::update_heap_info_at_gc();
6345       _collectorState = Resizing;
6346     }
6347   } else {
6348     // already have needed locks
6349     sweepWork(_cmsGen,  asynch);
6350     // Update heap occupancy information which is used as
6351     // input to soft ref clearing policy at the next gc.
6352     Universe::update_heap_info_at_gc();
6353     _collectorState = Resizing;
6354   }
6355   verify_work_stacks_empty();
6356   verify_overflow_empty();
6357 
6358   if (should_unload_classes()) {
6359     ClassLoaderDataGraph::purge();
6360   }
6361 
6362   _intra_sweep_timer.stop();
6363   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
6364 
6365   _inter_sweep_timer.reset();
6366   _inter_sweep_timer.start();
6367 
6368   // We need to use a monotonically non-decreasing time in ms
6369   // or we will see time-warp warnings and os::javaTimeMillis()
6370   // does not guarantee monotonicity.
6371   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
6372   update_time_of_last_gc(now);
6373 
6374   // NOTE on abstract state transitions:
6375   // Mutators allocate-live and/or mark the mod-union table dirty
6376   // based on the state of the collection.  The former is done in
6377   // the interval [Marking, Sweeping] and the latter in the interval
6378   // [Marking, Sweeping).  Thus the transitions into the Marking state
6379   // and out of the Sweeping state must be synchronously visible
6380   // globally to the mutators.
6381   // The transition into the Marking state happens with the world
6382   // stopped so the mutators will globally see it.  Sweeping is
6383   // done asynchronously by the background collector so the transition
6384   // from the Sweeping state to the Resizing state must be done
6385   // under the freelistLock (as is the check for whether to
6386   // allocate-live and whether to dirty the mod-union table).
6387   assert(_collectorState == Resizing, "Change of collector state to"
6388     " Resizing must be done under the freelistLocks (plural)");
6389 
6390   // Now that sweeping has been completed, we clear
6391   // the incremental_collection_failed flag,
6392   // thus inviting a younger gen collection to promote into
6393   // this generation. If such a promotion may still fail,
6394   // the flag will be set again when a young collection is
6395   // attempted.
6396   GenCollectedHeap* gch = GenCollectedHeap::heap();
6397   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
6398   gch->update_full_collections_completed(_collection_count_start);
6399 }
6400 
6401 // FIX ME!!! Looks like this belongs in CFLSpace, with
6402 // CMSGen merely delegating to it.
6403 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
6404   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
6405   HeapWord*  minAddr        = _cmsSpace->bottom();
6406   HeapWord*  largestAddr    =
6407     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
6408   if (largestAddr == NULL) {
6409     // The dictionary appears to be empty.  In this case
6410     // try to coalesce at the end of the heap.
6411     largestAddr = _cmsSpace->end();
6412   }
6413   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
6414   size_t nearLargestOffset =
6415     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
6416   if (PrintFLSStatistics != 0) {
6417     gclog_or_tty->print_cr(
6418       "CMS: Large Block: " PTR_FORMAT ";"
6419       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
6420       largestAddr,
6421       _cmsSpace->nearLargestChunk(), minAddr + nearLargestOffset);
6422   }
6423   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
6424 }
6425 
6426 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
6427   return addr >= _cmsSpace->nearLargestChunk();
6428 }
6429 
6430 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
6431   return _cmsSpace->find_chunk_at_end();
6432 }
6433 
6434 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
6435                                                     bool full) {
6436   // The next lower level has been collected.  Gather any statistics
6437   // that are of interest at this point.
6438   if (!full && (current_level + 1) == level()) {
6439     // Gather statistics on the young generation collection.
6440     collector()->stats().record_gc0_end(used());
6441   }
6442 }
6443 
6444 CMSAdaptiveSizePolicy* ConcurrentMarkSweepGeneration::size_policy() {
6445   GenCollectedHeap* gch = GenCollectedHeap::heap();
6446   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
6447     "Wrong type of heap");
6448   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
6449     gch->gen_policy()->size_policy();
6450   assert(sp->is_gc_cms_adaptive_size_policy(),
6451     "Wrong type of size policy");
6452   return sp;
6453 }
6454 
6455 void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() {
6456   if (PrintGCDetails && Verbose) {
6457     gclog_or_tty->print("Rotate from %d ", _debug_collection_type);
6458   }
6459   _debug_collection_type = (CollectionTypes) (_debug_collection_type + 1);
6460   _debug_collection_type =
6461     (CollectionTypes) (_debug_collection_type % Unknown_collection_type);
6462   if (PrintGCDetails && Verbose) {
6463     gclog_or_tty->print_cr("to %d ", _debug_collection_type);
6464   }
6465 }
6466 
6467 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen,
6468   bool asynch) {
6469   // We iterate over the space(s) underlying this generation,
6470   // checking the mark bit map to see if the bits corresponding
6471   // to specific blocks are marked or not. Blocks that are
6472   // marked are live and are not swept up. All remaining blocks
6473   // are swept up, with coalescing on-the-fly as we sweep up
6474   // contiguous free and/or garbage blocks:
6475   // We need to ensure that the sweeper synchronizes with allocators
6476   // and stop-the-world collectors. In particular, the following
6477   // locks are used:
6478   // . CMS token: if this is held, a stop the world collection cannot occur
6479   // . freelistLock: if this is held no allocation can occur from this
6480   //                 generation by another thread
6481   // . bitMapLock: if this is held, no other thread can access or update
6482   //
6483 
6484   // Note that we need to hold the freelistLock if we use
6485   // block iterate below; else the iterator might go awry if
6486   // a mutator (or promotion) causes block contents to change
6487   // (for instance if the allocator divvies up a block).
6488   // If we hold the free list lock, for all practical purposes
6489   // young generation GC's can't occur (they'll usually need to
6490   // promote), so we might as well prevent all young generation
6491   // GC's while we do a sweeping step. For the same reason, we might
6492   // as well take the bit map lock for the entire duration
6493 
6494   // check that we hold the requisite locks
6495   assert(have_cms_token(), "Should hold cms token");
6496   assert(   (asynch && ConcurrentMarkSweepThread::cms_thread_has_cms_token())
6497          || (!asynch && ConcurrentMarkSweepThread::vm_thread_has_cms_token()),
6498         "Should possess CMS token to sweep");
6499   assert_lock_strong(gen->freelistLock());
6500   assert_lock_strong(bitMapLock());
6501 
6502   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
6503   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
6504   gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
6505                                       _inter_sweep_estimate.padded_average(),
6506                                       _intra_sweep_estimate.padded_average());
6507   gen->setNearLargestChunk();
6508 
6509   {
6510     SweepClosure sweepClosure(this, gen, &_markBitMap,
6511                             CMSYield && asynch);
6512     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
6513     // We need to free-up/coalesce garbage/blocks from a
6514     // co-terminal free run. This is done in the SweepClosure
6515     // destructor; so, do not remove this scope, else the
6516     // end-of-sweep-census below will be off by a little bit.
6517   }
6518   gen->cmsSpace()->sweep_completed();
6519   gen->cmsSpace()->endSweepFLCensus(sweep_count());
6520   if (should_unload_classes()) {                // unloaded classes this cycle,
6521     _concurrent_cycles_since_last_unload = 0;   // ... reset count
6522   } else {                                      // did not unload classes,
6523     _concurrent_cycles_since_last_unload++;     // ... increment count
6524   }
6525 }
6526 
6527 // Reset CMS data structures (for now just the marking bit map)
6528 // preparatory for the next cycle.
6529 void CMSCollector::reset(bool asynch) {
6530   GenCollectedHeap* gch = GenCollectedHeap::heap();
6531   CMSAdaptiveSizePolicy* sp = size_policy();
6532   AdaptiveSizePolicyOutput(sp, gch->total_collections());
6533   if (asynch) {
6534     CMSTokenSyncWithLocks ts(true, bitMapLock());
6535 
6536     // If the state is not "Resetting", the foreground  thread
6537     // has done a collection and the resetting.
6538     if (_collectorState != Resetting) {
6539       assert(_collectorState == Idling, "The state should only change"
6540         " because the foreground collector has finished the collection");
6541       return;
6542     }
6543 
6544     // Clear the mark bitmap (no grey objects to start with)
6545     // for the next cycle.
6546     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6547     CMSPhaseAccounting cmspa(this, "reset", !PrintGCDetails);
6548 
6549     HeapWord* curAddr = _markBitMap.startWord();
6550     while (curAddr < _markBitMap.endWord()) {
6551       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
6552       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
6553       _markBitMap.clear_large_range(chunk);
6554       if (ConcurrentMarkSweepThread::should_yield() &&
6555           !foregroundGCIsActive() &&
6556           CMSYield) {
6557         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6558                "CMS thread should hold CMS token");
6559         assert_lock_strong(bitMapLock());
6560         bitMapLock()->unlock();
6561         ConcurrentMarkSweepThread::desynchronize(true);
6562         ConcurrentMarkSweepThread::acknowledge_yield_request();
6563         stopTimer();
6564         if (PrintCMSStatistics != 0) {
6565           incrementYields();
6566         }
6567         icms_wait();
6568 
6569         // See the comment in coordinator_yield()
6570         for (unsigned i = 0; i < CMSYieldSleepCount &&
6571                          ConcurrentMarkSweepThread::should_yield() &&
6572                          !CMSCollector::foregroundGCIsActive(); ++i) {
6573           os::sleep(Thread::current(), 1, false);
6574           ConcurrentMarkSweepThread::acknowledge_yield_request();
6575         }
6576 
6577         ConcurrentMarkSweepThread::synchronize(true);
6578         bitMapLock()->lock_without_safepoint_check();
6579         startTimer();
6580       }
6581       curAddr = chunk.end();
6582     }
6583     // A successful mostly concurrent collection has been done.
6584     // Because only the full (i.e., concurrent mode failure) collections
6585     // are being measured for gc overhead limits, clean the "near" flag
6586     // and count.
6587     sp->reset_gc_overhead_limit_count();
6588     _collectorState = Idling;
6589   } else {
6590     // already have the lock
6591     assert(_collectorState == Resetting, "just checking");
6592     assert_lock_strong(bitMapLock());
6593     _markBitMap.clear_all();
6594     _collectorState = Idling;
6595   }
6596 
6597   // Stop incremental mode after a cycle completes, so that any future cycles
6598   // are triggered by allocation.
6599   stop_icms();
6600 
6601   NOT_PRODUCT(
6602     if (RotateCMSCollectionTypes) {
6603       _cmsGen->rotate_debug_collection_type();
6604     }
6605   )
6606 
6607   register_gc_end();
6608 }
6609 
6610 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
6611   gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
6612   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6613   GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL);
6614   TraceCollectorStats tcs(counters());
6615 
6616   switch (op) {
6617     case CMS_op_checkpointRootsInitial: {
6618       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6619       checkpointRootsInitial(true);       // asynch
6620       if (PrintGC) {
6621         _cmsGen->printOccupancy("initial-mark");
6622       }
6623       break;
6624     }
6625     case CMS_op_checkpointRootsFinal: {
6626       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6627       checkpointRootsFinal(true,    // asynch
6628                            false,   // !clear_all_soft_refs
6629                            false);  // !init_mark_was_synchronous
6630       if (PrintGC) {
6631         _cmsGen->printOccupancy("remark");
6632       }
6633       break;
6634     }
6635     default:
6636       fatal("No such CMS_op");
6637   }
6638 }
6639 
6640 #ifndef PRODUCT
6641 size_t const CMSCollector::skip_header_HeapWords() {
6642   return FreeChunk::header_size();
6643 }
6644 
6645 // Try and collect here conditions that should hold when
6646 // CMS thread is exiting. The idea is that the foreground GC
6647 // thread should not be blocked if it wants to terminate
6648 // the CMS thread and yet continue to run the VM for a while
6649 // after that.
6650 void CMSCollector::verify_ok_to_terminate() const {
6651   assert(Thread::current()->is_ConcurrentGC_thread(),
6652          "should be called by CMS thread");
6653   assert(!_foregroundGCShouldWait, "should be false");
6654   // We could check here that all the various low-level locks
6655   // are not held by the CMS thread, but that is overkill; see
6656   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
6657   // is checked.
6658 }
6659 #endif
6660 
6661 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
6662    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
6663           "missing Printezis mark?");
6664   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6665   size_t size = pointer_delta(nextOneAddr + 1, addr);
6666   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6667          "alignment problem");
6668   assert(size >= 3, "Necessary for Printezis marks to work");
6669   return size;
6670 }
6671 
6672 // A variant of the above (block_size_using_printezis_bits()) except
6673 // that we return 0 if the P-bits are not yet set.
6674 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
6675   if (_markBitMap.isMarked(addr + 1)) {
6676     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
6677     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6678     size_t size = pointer_delta(nextOneAddr + 1, addr);
6679     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6680            "alignment problem");
6681     assert(size >= 3, "Necessary for Printezis marks to work");
6682     return size;
6683   }
6684   return 0;
6685 }
6686 
6687 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
6688   size_t sz = 0;
6689   oop p = (oop)addr;
6690   if (p->klass_or_null() != NULL) {
6691     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
6692   } else {
6693     sz = block_size_using_printezis_bits(addr);
6694   }
6695   assert(sz > 0, "size must be nonzero");
6696   HeapWord* next_block = addr + sz;
6697   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
6698                                              CardTableModRefBS::card_size);
6699   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
6700          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
6701          "must be different cards");
6702   return next_card;
6703 }
6704 
6705 
6706 // CMS Bit Map Wrapper /////////////////////////////////////////
6707 
6708 // Construct a CMS bit map infrastructure, but don't create the
6709 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
6710 // further below.
6711 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
6712   _bm(),
6713   _shifter(shifter),
6714   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL)
6715 {
6716   _bmStartWord = 0;
6717   _bmWordSize  = 0;
6718 }
6719 
6720 bool CMSBitMap::allocate(MemRegion mr) {
6721   _bmStartWord = mr.start();
6722   _bmWordSize  = mr.word_size();
6723   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
6724                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
6725   if (!brs.is_reserved()) {
6726     warning("CMS bit map allocation failure");
6727     return false;
6728   }
6729   // For now we'll just commit all of the bit map up front.
6730   // Later on we'll try to be more parsimonious with swap.
6731   if (!_virtual_space.initialize(brs, brs.size())) {
6732     warning("CMS bit map backing store failure");
6733     return false;
6734   }
6735   assert(_virtual_space.committed_size() == brs.size(),
6736          "didn't reserve backing store for all of CMS bit map?");
6737   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
6738   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
6739          _bmWordSize, "inconsistency in bit map sizing");
6740   _bm.set_size(_bmWordSize >> _shifter);
6741 
6742   // bm.clear(); // can we rely on getting zero'd memory? verify below
6743   assert(isAllClear(),
6744          "Expected zero'd memory from ReservedSpace constructor");
6745   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
6746          "consistency check");
6747   return true;
6748 }
6749 
6750 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
6751   HeapWord *next_addr, *end_addr, *last_addr;
6752   assert_locked();
6753   assert(covers(mr), "out-of-range error");
6754   // XXX assert that start and end are appropriately aligned
6755   for (next_addr = mr.start(), end_addr = mr.end();
6756        next_addr < end_addr; next_addr = last_addr) {
6757     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
6758     last_addr = dirty_region.end();
6759     if (!dirty_region.is_empty()) {
6760       cl->do_MemRegion(dirty_region);
6761     } else {
6762       assert(last_addr == end_addr, "program logic");
6763       return;
6764     }
6765   }
6766 }
6767 
6768 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
6769   _bm.print_on_error(st, prefix);
6770 }
6771 
6772 #ifndef PRODUCT
6773 void CMSBitMap::assert_locked() const {
6774   CMSLockVerifier::assert_locked(lock());
6775 }
6776 
6777 bool CMSBitMap::covers(MemRegion mr) const {
6778   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
6779   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
6780          "size inconsistency");
6781   return (mr.start() >= _bmStartWord) &&
6782          (mr.end()   <= endWord());
6783 }
6784 
6785 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
6786     return (start >= _bmStartWord && (start + size) <= endWord());
6787 }
6788 
6789 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
6790   // verify that there are no 1 bits in the interval [left, right)
6791   FalseBitMapClosure falseBitMapClosure;
6792   iterate(&falseBitMapClosure, left, right);
6793 }
6794 
6795 void CMSBitMap::region_invariant(MemRegion mr)
6796 {
6797   assert_locked();
6798   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
6799   assert(!mr.is_empty(), "unexpected empty region");
6800   assert(covers(mr), "mr should be covered by bit map");
6801   // convert address range into offset range
6802   size_t start_ofs = heapWordToOffset(mr.start());
6803   // Make sure that end() is appropriately aligned
6804   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
6805                         (1 << (_shifter+LogHeapWordSize))),
6806          "Misaligned mr.end()");
6807   size_t end_ofs   = heapWordToOffset(mr.end());
6808   assert(end_ofs > start_ofs, "Should mark at least one bit");
6809 }
6810 
6811 #endif
6812 
6813 bool CMSMarkStack::allocate(size_t size) {
6814   // allocate a stack of the requisite depth
6815   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6816                    size * sizeof(oop)));
6817   if (!rs.is_reserved()) {
6818     warning("CMSMarkStack allocation failure");
6819     return false;
6820   }
6821   if (!_virtual_space.initialize(rs, rs.size())) {
6822     warning("CMSMarkStack backing store failure");
6823     return false;
6824   }
6825   assert(_virtual_space.committed_size() == rs.size(),
6826          "didn't reserve backing store for all of CMS stack?");
6827   _base = (oop*)(_virtual_space.low());
6828   _index = 0;
6829   _capacity = size;
6830   NOT_PRODUCT(_max_depth = 0);
6831   return true;
6832 }
6833 
6834 // XXX FIX ME !!! In the MT case we come in here holding a
6835 // leaf lock. For printing we need to take a further lock
6836 // which has lower rank. We need to recalibrate the two
6837 // lock-ranks involved in order to be able to print the
6838 // messages below. (Or defer the printing to the caller.
6839 // For now we take the expedient path of just disabling the
6840 // messages for the problematic case.)
6841 void CMSMarkStack::expand() {
6842   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
6843   if (_capacity == MarkStackSizeMax) {
6844     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6845       // We print a warning message only once per CMS cycle.
6846       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
6847     }
6848     return;
6849   }
6850   // Double capacity if possible
6851   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
6852   // Do not give up existing stack until we have managed to
6853   // get the double capacity that we desired.
6854   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6855                    new_capacity * sizeof(oop)));
6856   if (rs.is_reserved()) {
6857     // Release the backing store associated with old stack
6858     _virtual_space.release();
6859     // Reinitialize virtual space for new stack
6860     if (!_virtual_space.initialize(rs, rs.size())) {
6861       fatal("Not enough swap for expanded marking stack");
6862     }
6863     _base = (oop*)(_virtual_space.low());
6864     _index = 0;
6865     _capacity = new_capacity;
6866   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6867     // Failed to double capacity, continue;
6868     // we print a detail message only once per CMS cycle.
6869     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
6870             SIZE_FORMAT"K",
6871             _capacity / K, new_capacity / K);
6872   }
6873 }
6874 
6875 
6876 // Closures
6877 // XXX: there seems to be a lot of code  duplication here;
6878 // should refactor and consolidate common code.
6879 
6880 // This closure is used to mark refs into the CMS generation in
6881 // the CMS bit map. Called at the first checkpoint. This closure
6882 // assumes that we do not need to re-mark dirty cards; if the CMS
6883 // generation on which this is used is not an oldest
6884 // generation then this will lose younger_gen cards!
6885 
6886 MarkRefsIntoClosure::MarkRefsIntoClosure(
6887   MemRegion span, CMSBitMap* bitMap):
6888     _span(span),
6889     _bitMap(bitMap)
6890 {
6891     assert(_ref_processor == NULL, "deliberately left NULL");
6892     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6893 }
6894 
6895 void MarkRefsIntoClosure::do_oop(oop obj) {
6896   // if p points into _span, then mark corresponding bit in _markBitMap
6897   assert(obj->is_oop(), "expected an oop");
6898   HeapWord* addr = (HeapWord*)obj;
6899   if (_span.contains(addr)) {
6900     // this should be made more efficient
6901     _bitMap->mark(addr);
6902   }
6903 }
6904 
6905 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
6906 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
6907 
6908 Par_MarkRefsIntoClosure::Par_MarkRefsIntoClosure(
6909   MemRegion span, CMSBitMap* bitMap):
6910     _span(span),
6911     _bitMap(bitMap)
6912 {
6913     assert(_ref_processor == NULL, "deliberately left NULL");
6914     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6915 }
6916 
6917 void Par_MarkRefsIntoClosure::do_oop(oop obj) {
6918   // if p points into _span, then mark corresponding bit in _markBitMap
6919   assert(obj->is_oop(), "expected an oop");
6920   HeapWord* addr = (HeapWord*)obj;
6921   if (_span.contains(addr)) {
6922     // this should be made more efficient
6923     _bitMap->par_mark(addr);
6924   }
6925 }
6926 
6927 void Par_MarkRefsIntoClosure::do_oop(oop* p)       { Par_MarkRefsIntoClosure::do_oop_work(p); }
6928 void Par_MarkRefsIntoClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoClosure::do_oop_work(p); }
6929 
6930 // A variant of the above, used for CMS marking verification.
6931 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
6932   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
6933     _span(span),
6934     _verification_bm(verification_bm),
6935     _cms_bm(cms_bm)
6936 {
6937     assert(_ref_processor == NULL, "deliberately left NULL");
6938     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
6939 }
6940 
6941 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
6942   // if p points into _span, then mark corresponding bit in _markBitMap
6943   assert(obj->is_oop(), "expected an oop");
6944   HeapWord* addr = (HeapWord*)obj;
6945   if (_span.contains(addr)) {
6946     _verification_bm->mark(addr);
6947     if (!_cms_bm->isMarked(addr)) {
6948       oop(addr)->print();
6949       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", addr);
6950       fatal("... aborting");
6951     }
6952   }
6953 }
6954 
6955 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6956 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6957 
6958 //////////////////////////////////////////////////
6959 // MarkRefsIntoAndScanClosure
6960 //////////////////////////////////////////////////
6961 
6962 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
6963                                                        ReferenceProcessor* rp,
6964                                                        CMSBitMap* bit_map,
6965                                                        CMSBitMap* mod_union_table,
6966                                                        CMSMarkStack*  mark_stack,
6967                                                        CMSCollector* collector,
6968                                                        bool should_yield,
6969                                                        bool concurrent_precleaning):
6970   _collector(collector),
6971   _span(span),
6972   _bit_map(bit_map),
6973   _mark_stack(mark_stack),
6974   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
6975                       mark_stack, concurrent_precleaning),
6976   _yield(should_yield),
6977   _concurrent_precleaning(concurrent_precleaning),
6978   _freelistLock(NULL)
6979 {
6980   _ref_processor = rp;
6981   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6982 }
6983 
6984 // This closure is used to mark refs into the CMS generation at the
6985 // second (final) checkpoint, and to scan and transitively follow
6986 // the unmarked oops. It is also used during the concurrent precleaning
6987 // phase while scanning objects on dirty cards in the CMS generation.
6988 // The marks are made in the marking bit map and the marking stack is
6989 // used for keeping the (newly) grey objects during the scan.
6990 // The parallel version (Par_...) appears further below.
6991 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6992   if (obj != NULL) {
6993     assert(obj->is_oop(), "expected an oop");
6994     HeapWord* addr = (HeapWord*)obj;
6995     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6996     assert(_collector->overflow_list_is_empty(),
6997            "overflow list should be empty");
6998     if (_span.contains(addr) &&
6999         !_bit_map->isMarked(addr)) {
7000       // mark bit map (object is now grey)
7001       _bit_map->mark(addr);
7002       // push on marking stack (stack should be empty), and drain the
7003       // stack by applying this closure to the oops in the oops popped
7004       // from the stack (i.e. blacken the grey objects)
7005       bool res = _mark_stack->push(obj);
7006       assert(res, "Should have space to push on empty stack");
7007       do {
7008         oop new_oop = _mark_stack->pop();
7009         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
7010         assert(_bit_map->isMarked((HeapWord*)new_oop),
7011                "only grey objects on this stack");
7012         // iterate over the oops in this oop, marking and pushing
7013         // the ones in CMS heap (i.e. in _span).
7014         new_oop->oop_iterate(&_pushAndMarkClosure);
7015         // check if it's time to yield
7016         do_yield_check();
7017       } while (!_mark_stack->isEmpty() ||
7018                (!_concurrent_precleaning && take_from_overflow_list()));
7019         // if marking stack is empty, and we are not doing this
7020         // during precleaning, then check the overflow list
7021     }
7022     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
7023     assert(_collector->overflow_list_is_empty(),
7024            "overflow list was drained above");
7025     // We could restore evacuated mark words, if any, used for
7026     // overflow list links here because the overflow list is
7027     // provably empty here. That would reduce the maximum
7028     // size requirements for preserved_{oop,mark}_stack.
7029     // But we'll just postpone it until we are all done
7030     // so we can just stream through.
7031     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
7032       _collector->restore_preserved_marks_if_any();
7033       assert(_collector->no_preserved_marks(), "No preserved marks");
7034     }
7035     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
7036            "All preserved marks should have been restored above");
7037   }
7038 }
7039 
7040 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
7041 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
7042 
7043 void MarkRefsIntoAndScanClosure::do_yield_work() {
7044   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7045          "CMS thread should hold CMS token");
7046   assert_lock_strong(_freelistLock);
7047   assert_lock_strong(_bit_map->lock());
7048   // relinquish the free_list_lock and bitMaplock()
7049   _bit_map->lock()->unlock();
7050   _freelistLock->unlock();
7051   ConcurrentMarkSweepThread::desynchronize(true);
7052   ConcurrentMarkSweepThread::acknowledge_yield_request();
7053   _collector->stopTimer();
7054   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7055   if (PrintCMSStatistics != 0) {
7056     _collector->incrementYields();
7057   }
7058   _collector->icms_wait();
7059 
7060   // See the comment in coordinator_yield()
7061   for (unsigned i = 0;
7062        i < CMSYieldSleepCount &&
7063        ConcurrentMarkSweepThread::should_yield() &&
7064        !CMSCollector::foregroundGCIsActive();
7065        ++i) {
7066     os::sleep(Thread::current(), 1, false);
7067     ConcurrentMarkSweepThread::acknowledge_yield_request();
7068   }
7069 
7070   ConcurrentMarkSweepThread::synchronize(true);
7071   _freelistLock->lock_without_safepoint_check();
7072   _bit_map->lock()->lock_without_safepoint_check();
7073   _collector->startTimer();
7074 }
7075 
7076 ///////////////////////////////////////////////////////////
7077 // Par_MarkRefsIntoAndScanClosure: a parallel version of
7078 //                                 MarkRefsIntoAndScanClosure
7079 ///////////////////////////////////////////////////////////
7080 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
7081   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
7082   CMSBitMap* bit_map, OopTaskQueue* work_queue):
7083   _span(span),
7084   _bit_map(bit_map),
7085   _work_queue(work_queue),
7086   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
7087                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
7088   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue)
7089 {
7090   _ref_processor = rp;
7091   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7092 }
7093 
7094 // This closure is used to mark refs into the CMS generation at the
7095 // second (final) checkpoint, and to scan and transitively follow
7096 // the unmarked oops. The marks are made in the marking bit map and
7097 // the work_queue is used for keeping the (newly) grey objects during
7098 // the scan phase whence they are also available for stealing by parallel
7099 // threads. Since the marking bit map is shared, updates are
7100 // synchronized (via CAS).
7101 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
7102   if (obj != NULL) {
7103     // Ignore mark word because this could be an already marked oop
7104     // that may be chained at the end of the overflow list.
7105     assert(obj->is_oop(true), "expected an oop");
7106     HeapWord* addr = (HeapWord*)obj;
7107     if (_span.contains(addr) &&
7108         !_bit_map->isMarked(addr)) {
7109       // mark bit map (object will become grey):
7110       // It is possible for several threads to be
7111       // trying to "claim" this object concurrently;
7112       // the unique thread that succeeds in marking the
7113       // object first will do the subsequent push on
7114       // to the work queue (or overflow list).
7115       if (_bit_map->par_mark(addr)) {
7116         // push on work_queue (which may not be empty), and trim the
7117         // queue to an appropriate length by applying this closure to
7118         // the oops in the oops popped from the stack (i.e. blacken the
7119         // grey objects)
7120         bool res = _work_queue->push(obj);
7121         assert(res, "Low water mark should be less than capacity?");
7122         trim_queue(_low_water_mark);
7123       } // Else, another thread claimed the object
7124     }
7125   }
7126 }
7127 
7128 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
7129 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
7130 
7131 // This closure is used to rescan the marked objects on the dirty cards
7132 // in the mod union table and the card table proper.
7133 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
7134   oop p, MemRegion mr) {
7135 
7136   size_t size = 0;
7137   HeapWord* addr = (HeapWord*)p;
7138   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
7139   assert(_span.contains(addr), "we are scanning the CMS generation");
7140   // check if it's time to yield
7141   if (do_yield_check()) {
7142     // We yielded for some foreground stop-world work,
7143     // and we have been asked to abort this ongoing preclean cycle.
7144     return 0;
7145   }
7146   if (_bitMap->isMarked(addr)) {
7147     // it's marked; is it potentially uninitialized?
7148     if (p->klass_or_null() != NULL) {
7149         // an initialized object; ignore mark word in verification below
7150         // since we are running concurrent with mutators
7151         assert(p->is_oop(true), "should be an oop");
7152         if (p->is_objArray()) {
7153           // objArrays are precisely marked; restrict scanning
7154           // to dirty cards only.
7155           size = CompactibleFreeListSpace::adjustObjectSize(
7156                    p->oop_iterate(_scanningClosure, mr));
7157         } else {
7158           // A non-array may have been imprecisely marked; we need
7159           // to scan object in its entirety.
7160           size = CompactibleFreeListSpace::adjustObjectSize(
7161                    p->oop_iterate(_scanningClosure));
7162         }
7163         #ifdef ASSERT
7164           size_t direct_size =
7165             CompactibleFreeListSpace::adjustObjectSize(p->size());
7166           assert(size == direct_size, "Inconsistency in size");
7167           assert(size >= 3, "Necessary for Printezis marks to work");
7168           if (!_bitMap->isMarked(addr+1)) {
7169             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
7170           } else {
7171             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
7172             assert(_bitMap->isMarked(addr+size-1),
7173                    "inconsistent Printezis mark");
7174           }
7175         #endif // ASSERT
7176     } else {
7177       // An uninitialized object.
7178       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
7179       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7180       size = pointer_delta(nextOneAddr + 1, addr);
7181       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7182              "alignment problem");
7183       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
7184       // will dirty the card when the klass pointer is installed in the
7185       // object (signaling the completion of initialization).
7186     }
7187   } else {
7188     // Either a not yet marked object or an uninitialized object
7189     if (p->klass_or_null() == NULL) {
7190       // An uninitialized object, skip to the next card, since
7191       // we may not be able to read its P-bits yet.
7192       assert(size == 0, "Initial value");
7193     } else {
7194       // An object not (yet) reached by marking: we merely need to
7195       // compute its size so as to go look at the next block.
7196       assert(p->is_oop(true), "should be an oop");
7197       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
7198     }
7199   }
7200   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
7201   return size;
7202 }
7203 
7204 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
7205   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7206          "CMS thread should hold CMS token");
7207   assert_lock_strong(_freelistLock);
7208   assert_lock_strong(_bitMap->lock());
7209   // relinquish the free_list_lock and bitMaplock()
7210   _bitMap->lock()->unlock();
7211   _freelistLock->unlock();
7212   ConcurrentMarkSweepThread::desynchronize(true);
7213   ConcurrentMarkSweepThread::acknowledge_yield_request();
7214   _collector->stopTimer();
7215   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7216   if (PrintCMSStatistics != 0) {
7217     _collector->incrementYields();
7218   }
7219   _collector->icms_wait();
7220 
7221   // See the comment in coordinator_yield()
7222   for (unsigned i = 0; i < CMSYieldSleepCount &&
7223                    ConcurrentMarkSweepThread::should_yield() &&
7224                    !CMSCollector::foregroundGCIsActive(); ++i) {
7225     os::sleep(Thread::current(), 1, false);
7226     ConcurrentMarkSweepThread::acknowledge_yield_request();
7227   }
7228 
7229   ConcurrentMarkSweepThread::synchronize(true);
7230   _freelistLock->lock_without_safepoint_check();
7231   _bitMap->lock()->lock_without_safepoint_check();
7232   _collector->startTimer();
7233 }
7234 
7235 
7236 //////////////////////////////////////////////////////////////////
7237 // SurvivorSpacePrecleanClosure
7238 //////////////////////////////////////////////////////////////////
7239 // This (single-threaded) closure is used to preclean the oops in
7240 // the survivor spaces.
7241 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
7242 
7243   HeapWord* addr = (HeapWord*)p;
7244   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
7245   assert(!_span.contains(addr), "we are scanning the survivor spaces");
7246   assert(p->klass_or_null() != NULL, "object should be initializd");
7247   // an initialized object; ignore mark word in verification below
7248   // since we are running concurrent with mutators
7249   assert(p->is_oop(true), "should be an oop");
7250   // Note that we do not yield while we iterate over
7251   // the interior oops of p, pushing the relevant ones
7252   // on our marking stack.
7253   size_t size = p->oop_iterate(_scanning_closure);
7254   do_yield_check();
7255   // Observe that below, we do not abandon the preclean
7256   // phase as soon as we should; rather we empty the
7257   // marking stack before returning. This is to satisfy
7258   // some existing assertions. In general, it may be a
7259   // good idea to abort immediately and complete the marking
7260   // from the grey objects at a later time.
7261   while (!_mark_stack->isEmpty()) {
7262     oop new_oop = _mark_stack->pop();
7263     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
7264     assert(_bit_map->isMarked((HeapWord*)new_oop),
7265            "only grey objects on this stack");
7266     // iterate over the oops in this oop, marking and pushing
7267     // the ones in CMS heap (i.e. in _span).
7268     new_oop->oop_iterate(_scanning_closure);
7269     // check if it's time to yield
7270     do_yield_check();
7271   }
7272   unsigned int after_count =
7273     GenCollectedHeap::heap()->total_collections();
7274   bool abort = (_before_count != after_count) ||
7275                _collector->should_abort_preclean();
7276   return abort ? 0 : size;
7277 }
7278 
7279 void SurvivorSpacePrecleanClosure::do_yield_work() {
7280   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7281          "CMS thread should hold CMS token");
7282   assert_lock_strong(_bit_map->lock());
7283   // Relinquish the bit map lock
7284   _bit_map->lock()->unlock();
7285   ConcurrentMarkSweepThread::desynchronize(true);
7286   ConcurrentMarkSweepThread::acknowledge_yield_request();
7287   _collector->stopTimer();
7288   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7289   if (PrintCMSStatistics != 0) {
7290     _collector->incrementYields();
7291   }
7292   _collector->icms_wait();
7293 
7294   // See the comment in coordinator_yield()
7295   for (unsigned i = 0; i < CMSYieldSleepCount &&
7296                        ConcurrentMarkSweepThread::should_yield() &&
7297                        !CMSCollector::foregroundGCIsActive(); ++i) {
7298     os::sleep(Thread::current(), 1, false);
7299     ConcurrentMarkSweepThread::acknowledge_yield_request();
7300   }
7301 
7302   ConcurrentMarkSweepThread::synchronize(true);
7303   _bit_map->lock()->lock_without_safepoint_check();
7304   _collector->startTimer();
7305 }
7306 
7307 // This closure is used to rescan the marked objects on the dirty cards
7308 // in the mod union table and the card table proper. In the parallel
7309 // case, although the bitMap is shared, we do a single read so the
7310 // isMarked() query is "safe".
7311 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
7312   // Ignore mark word because we are running concurrent with mutators
7313   assert(p->is_oop_or_null(true), "expected an oop or null");
7314   HeapWord* addr = (HeapWord*)p;
7315   assert(_span.contains(addr), "we are scanning the CMS generation");
7316   bool is_obj_array = false;
7317   #ifdef ASSERT
7318     if (!_parallel) {
7319       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
7320       assert(_collector->overflow_list_is_empty(),
7321              "overflow list should be empty");
7322 
7323     }
7324   #endif // ASSERT
7325   if (_bit_map->isMarked(addr)) {
7326     // Obj arrays are precisely marked, non-arrays are not;
7327     // so we scan objArrays precisely and non-arrays in their
7328     // entirety.
7329     if (p->is_objArray()) {
7330       is_obj_array = true;
7331       if (_parallel) {
7332         p->oop_iterate(_par_scan_closure, mr);
7333       } else {
7334         p->oop_iterate(_scan_closure, mr);
7335       }
7336     } else {
7337       if (_parallel) {
7338         p->oop_iterate(_par_scan_closure);
7339       } else {
7340         p->oop_iterate(_scan_closure);
7341       }
7342     }
7343   }
7344   #ifdef ASSERT
7345     if (!_parallel) {
7346       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
7347       assert(_collector->overflow_list_is_empty(),
7348              "overflow list should be empty");
7349 
7350     }
7351   #endif // ASSERT
7352   return is_obj_array;
7353 }
7354 
7355 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
7356                         MemRegion span,
7357                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
7358                         bool should_yield, bool verifying):
7359   _collector(collector),
7360   _span(span),
7361   _bitMap(bitMap),
7362   _mut(&collector->_modUnionTable),
7363   _markStack(markStack),
7364   _yield(should_yield),
7365   _skipBits(0)
7366 {
7367   assert(_markStack->isEmpty(), "stack should be empty");
7368   _finger = _bitMap->startWord();
7369   _threshold = _finger;
7370   assert(_collector->_restart_addr == NULL, "Sanity check");
7371   assert(_span.contains(_finger), "Out of bounds _finger?");
7372   DEBUG_ONLY(_verifying = verifying;)
7373 }
7374 
7375 void MarkFromRootsClosure::reset(HeapWord* addr) {
7376   assert(_markStack->isEmpty(), "would cause duplicates on stack");
7377   assert(_span.contains(addr), "Out of bounds _finger?");
7378   _finger = addr;
7379   _threshold = (HeapWord*)round_to(
7380                  (intptr_t)_finger, CardTableModRefBS::card_size);
7381 }
7382 
7383 // Should revisit to see if this should be restructured for
7384 // greater efficiency.
7385 bool MarkFromRootsClosure::do_bit(size_t offset) {
7386   if (_skipBits > 0) {
7387     _skipBits--;
7388     return true;
7389   }
7390   // convert offset into a HeapWord*
7391   HeapWord* addr = _bitMap->startWord() + offset;
7392   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
7393          "address out of range");
7394   assert(_bitMap->isMarked(addr), "tautology");
7395   if (_bitMap->isMarked(addr+1)) {
7396     // this is an allocated but not yet initialized object
7397     assert(_skipBits == 0, "tautology");
7398     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
7399     oop p = oop(addr);
7400     if (p->klass_or_null() == NULL) {
7401       DEBUG_ONLY(if (!_verifying) {)
7402         // We re-dirty the cards on which this object lies and increase
7403         // the _threshold so that we'll come back to scan this object
7404         // during the preclean or remark phase. (CMSCleanOnEnter)
7405         if (CMSCleanOnEnter) {
7406           size_t sz = _collector->block_size_using_printezis_bits(addr);
7407           HeapWord* end_card_addr   = (HeapWord*)round_to(
7408                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7409           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7410           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7411           // Bump _threshold to end_card_addr; note that
7412           // _threshold cannot possibly exceed end_card_addr, anyhow.
7413           // This prevents future clearing of the card as the scan proceeds
7414           // to the right.
7415           assert(_threshold <= end_card_addr,
7416                  "Because we are just scanning into this object");
7417           if (_threshold < end_card_addr) {
7418             _threshold = end_card_addr;
7419           }
7420           if (p->klass_or_null() != NULL) {
7421             // Redirty the range of cards...
7422             _mut->mark_range(redirty_range);
7423           } // ...else the setting of klass will dirty the card anyway.
7424         }
7425       DEBUG_ONLY(})
7426       return true;
7427     }
7428   }
7429   scanOopsInOop(addr);
7430   return true;
7431 }
7432 
7433 // We take a break if we've been at this for a while,
7434 // so as to avoid monopolizing the locks involved.
7435 void MarkFromRootsClosure::do_yield_work() {
7436   // First give up the locks, then yield, then re-lock
7437   // We should probably use a constructor/destructor idiom to
7438   // do this unlock/lock or modify the MutexUnlocker class to
7439   // serve our purpose. XXX
7440   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7441          "CMS thread should hold CMS token");
7442   assert_lock_strong(_bitMap->lock());
7443   _bitMap->lock()->unlock();
7444   ConcurrentMarkSweepThread::desynchronize(true);
7445   ConcurrentMarkSweepThread::acknowledge_yield_request();
7446   _collector->stopTimer();
7447   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7448   if (PrintCMSStatistics != 0) {
7449     _collector->incrementYields();
7450   }
7451   _collector->icms_wait();
7452 
7453   // See the comment in coordinator_yield()
7454   for (unsigned i = 0; i < CMSYieldSleepCount &&
7455                        ConcurrentMarkSweepThread::should_yield() &&
7456                        !CMSCollector::foregroundGCIsActive(); ++i) {
7457     os::sleep(Thread::current(), 1, false);
7458     ConcurrentMarkSweepThread::acknowledge_yield_request();
7459   }
7460 
7461   ConcurrentMarkSweepThread::synchronize(true);
7462   _bitMap->lock()->lock_without_safepoint_check();
7463   _collector->startTimer();
7464 }
7465 
7466 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
7467   assert(_bitMap->isMarked(ptr), "expected bit to be set");
7468   assert(_markStack->isEmpty(),
7469          "should drain stack to limit stack usage");
7470   // convert ptr to an oop preparatory to scanning
7471   oop obj = oop(ptr);
7472   // Ignore mark word in verification below, since we
7473   // may be running concurrent with mutators.
7474   assert(obj->is_oop(true), "should be an oop");
7475   assert(_finger <= ptr, "_finger runneth ahead");
7476   // advance the finger to right end of this object
7477   _finger = ptr + obj->size();
7478   assert(_finger > ptr, "we just incremented it above");
7479   // On large heaps, it may take us some time to get through
7480   // the marking phase (especially if running iCMS). During
7481   // this time it's possible that a lot of mutations have
7482   // accumulated in the card table and the mod union table --
7483   // these mutation records are redundant until we have
7484   // actually traced into the corresponding card.
7485   // Here, we check whether advancing the finger would make
7486   // us cross into a new card, and if so clear corresponding
7487   // cards in the MUT (preclean them in the card-table in the
7488   // future).
7489 
7490   DEBUG_ONLY(if (!_verifying) {)
7491     // The clean-on-enter optimization is disabled by default,
7492     // until we fix 6178663.
7493     if (CMSCleanOnEnter && (_finger > _threshold)) {
7494       // [_threshold, _finger) represents the interval
7495       // of cards to be cleared  in MUT (or precleaned in card table).
7496       // The set of cards to be cleared is all those that overlap
7497       // with the interval [_threshold, _finger); note that
7498       // _threshold is always kept card-aligned but _finger isn't
7499       // always card-aligned.
7500       HeapWord* old_threshold = _threshold;
7501       assert(old_threshold == (HeapWord*)round_to(
7502               (intptr_t)old_threshold, CardTableModRefBS::card_size),
7503              "_threshold should always be card-aligned");
7504       _threshold = (HeapWord*)round_to(
7505                      (intptr_t)_finger, CardTableModRefBS::card_size);
7506       MemRegion mr(old_threshold, _threshold);
7507       assert(!mr.is_empty(), "Control point invariant");
7508       assert(_span.contains(mr), "Should clear within span");
7509       _mut->clear_range(mr);
7510     }
7511   DEBUG_ONLY(})
7512   // Note: the finger doesn't advance while we drain
7513   // the stack below.
7514   PushOrMarkClosure pushOrMarkClosure(_collector,
7515                                       _span, _bitMap, _markStack,
7516                                       _finger, this);
7517   bool res = _markStack->push(obj);
7518   assert(res, "Empty non-zero size stack should have space for single push");
7519   while (!_markStack->isEmpty()) {
7520     oop new_oop = _markStack->pop();
7521     // Skip verifying header mark word below because we are
7522     // running concurrent with mutators.
7523     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7524     // now scan this oop's oops
7525     new_oop->oop_iterate(&pushOrMarkClosure);
7526     do_yield_check();
7527   }
7528   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
7529 }
7530 
7531 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
7532                        CMSCollector* collector, MemRegion span,
7533                        CMSBitMap* bit_map,
7534                        OopTaskQueue* work_queue,
7535                        CMSMarkStack*  overflow_stack,
7536                        bool should_yield):
7537   _collector(collector),
7538   _whole_span(collector->_span),
7539   _span(span),
7540   _bit_map(bit_map),
7541   _mut(&collector->_modUnionTable),
7542   _work_queue(work_queue),
7543   _overflow_stack(overflow_stack),
7544   _yield(should_yield),
7545   _skip_bits(0),
7546   _task(task)
7547 {
7548   assert(_work_queue->size() == 0, "work_queue should be empty");
7549   _finger = span.start();
7550   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
7551   assert(_span.contains(_finger), "Out of bounds _finger?");
7552 }
7553 
7554 // Should revisit to see if this should be restructured for
7555 // greater efficiency.
7556 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
7557   if (_skip_bits > 0) {
7558     _skip_bits--;
7559     return true;
7560   }
7561   // convert offset into a HeapWord*
7562   HeapWord* addr = _bit_map->startWord() + offset;
7563   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
7564          "address out of range");
7565   assert(_bit_map->isMarked(addr), "tautology");
7566   if (_bit_map->isMarked(addr+1)) {
7567     // this is an allocated object that might not yet be initialized
7568     assert(_skip_bits == 0, "tautology");
7569     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
7570     oop p = oop(addr);
7571     if (p->klass_or_null() == NULL) {
7572       // in the case of Clean-on-Enter optimization, redirty card
7573       // and avoid clearing card by increasing  the threshold.
7574       return true;
7575     }
7576   }
7577   scan_oops_in_oop(addr);
7578   return true;
7579 }
7580 
7581 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
7582   assert(_bit_map->isMarked(ptr), "expected bit to be set");
7583   // Should we assert that our work queue is empty or
7584   // below some drain limit?
7585   assert(_work_queue->size() == 0,
7586          "should drain stack to limit stack usage");
7587   // convert ptr to an oop preparatory to scanning
7588   oop obj = oop(ptr);
7589   // Ignore mark word in verification below, since we
7590   // may be running concurrent with mutators.
7591   assert(obj->is_oop(true), "should be an oop");
7592   assert(_finger <= ptr, "_finger runneth ahead");
7593   // advance the finger to right end of this object
7594   _finger = ptr + obj->size();
7595   assert(_finger > ptr, "we just incremented it above");
7596   // On large heaps, it may take us some time to get through
7597   // the marking phase (especially if running iCMS). During
7598   // this time it's possible that a lot of mutations have
7599   // accumulated in the card table and the mod union table --
7600   // these mutation records are redundant until we have
7601   // actually traced into the corresponding card.
7602   // Here, we check whether advancing the finger would make
7603   // us cross into a new card, and if so clear corresponding
7604   // cards in the MUT (preclean them in the card-table in the
7605   // future).
7606 
7607   // The clean-on-enter optimization is disabled by default,
7608   // until we fix 6178663.
7609   if (CMSCleanOnEnter && (_finger > _threshold)) {
7610     // [_threshold, _finger) represents the interval
7611     // of cards to be cleared  in MUT (or precleaned in card table).
7612     // The set of cards to be cleared is all those that overlap
7613     // with the interval [_threshold, _finger); note that
7614     // _threshold is always kept card-aligned but _finger isn't
7615     // always card-aligned.
7616     HeapWord* old_threshold = _threshold;
7617     assert(old_threshold == (HeapWord*)round_to(
7618             (intptr_t)old_threshold, CardTableModRefBS::card_size),
7619            "_threshold should always be card-aligned");
7620     _threshold = (HeapWord*)round_to(
7621                    (intptr_t)_finger, CardTableModRefBS::card_size);
7622     MemRegion mr(old_threshold, _threshold);
7623     assert(!mr.is_empty(), "Control point invariant");
7624     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
7625     _mut->clear_range(mr);
7626   }
7627 
7628   // Note: the local finger doesn't advance while we drain
7629   // the stack below, but the global finger sure can and will.
7630   HeapWord** gfa = _task->global_finger_addr();
7631   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
7632                                       _span, _bit_map,
7633                                       _work_queue,
7634                                       _overflow_stack,
7635                                       _finger,
7636                                       gfa, this);
7637   bool res = _work_queue->push(obj);   // overflow could occur here
7638   assert(res, "Will hold once we use workqueues");
7639   while (true) {
7640     oop new_oop;
7641     if (!_work_queue->pop_local(new_oop)) {
7642       // We emptied our work_queue; check if there's stuff that can
7643       // be gotten from the overflow stack.
7644       if (CMSConcMarkingTask::get_work_from_overflow_stack(
7645             _overflow_stack, _work_queue)) {
7646         do_yield_check();
7647         continue;
7648       } else {  // done
7649         break;
7650       }
7651     }
7652     // Skip verifying header mark word below because we are
7653     // running concurrent with mutators.
7654     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7655     // now scan this oop's oops
7656     new_oop->oop_iterate(&pushOrMarkClosure);
7657     do_yield_check();
7658   }
7659   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
7660 }
7661 
7662 // Yield in response to a request from VM Thread or
7663 // from mutators.
7664 void Par_MarkFromRootsClosure::do_yield_work() {
7665   assert(_task != NULL, "sanity");
7666   _task->yield();
7667 }
7668 
7669 // A variant of the above used for verifying CMS marking work.
7670 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
7671                         MemRegion span,
7672                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7673                         CMSMarkStack*  mark_stack):
7674   _collector(collector),
7675   _span(span),
7676   _verification_bm(verification_bm),
7677   _cms_bm(cms_bm),
7678   _mark_stack(mark_stack),
7679   _pam_verify_closure(collector, span, verification_bm, cms_bm,
7680                       mark_stack)
7681 {
7682   assert(_mark_stack->isEmpty(), "stack should be empty");
7683   _finger = _verification_bm->startWord();
7684   assert(_collector->_restart_addr == NULL, "Sanity check");
7685   assert(_span.contains(_finger), "Out of bounds _finger?");
7686 }
7687 
7688 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
7689   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
7690   assert(_span.contains(addr), "Out of bounds _finger?");
7691   _finger = addr;
7692 }
7693 
7694 // Should revisit to see if this should be restructured for
7695 // greater efficiency.
7696 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
7697   // convert offset into a HeapWord*
7698   HeapWord* addr = _verification_bm->startWord() + offset;
7699   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
7700          "address out of range");
7701   assert(_verification_bm->isMarked(addr), "tautology");
7702   assert(_cms_bm->isMarked(addr), "tautology");
7703 
7704   assert(_mark_stack->isEmpty(),
7705          "should drain stack to limit stack usage");
7706   // convert addr to an oop preparatory to scanning
7707   oop obj = oop(addr);
7708   assert(obj->is_oop(), "should be an oop");
7709   assert(_finger <= addr, "_finger runneth ahead");
7710   // advance the finger to right end of this object
7711   _finger = addr + obj->size();
7712   assert(_finger > addr, "we just incremented it above");
7713   // Note: the finger doesn't advance while we drain
7714   // the stack below.
7715   bool res = _mark_stack->push(obj);
7716   assert(res, "Empty non-zero size stack should have space for single push");
7717   while (!_mark_stack->isEmpty()) {
7718     oop new_oop = _mark_stack->pop();
7719     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
7720     // now scan this oop's oops
7721     new_oop->oop_iterate(&_pam_verify_closure);
7722   }
7723   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
7724   return true;
7725 }
7726 
7727 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
7728   CMSCollector* collector, MemRegion span,
7729   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7730   CMSMarkStack*  mark_stack):
7731   CMSOopClosure(collector->ref_processor()),
7732   _collector(collector),
7733   _span(span),
7734   _verification_bm(verification_bm),
7735   _cms_bm(cms_bm),
7736   _mark_stack(mark_stack)
7737 { }
7738 
7739 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
7740 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
7741 
7742 // Upon stack overflow, we discard (part of) the stack,
7743 // remembering the least address amongst those discarded
7744 // in CMSCollector's _restart_address.
7745 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
7746   // Remember the least grey address discarded
7747   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
7748   _collector->lower_restart_addr(ra);
7749   _mark_stack->reset();  // discard stack contents
7750   _mark_stack->expand(); // expand the stack if possible
7751 }
7752 
7753 void PushAndMarkVerifyClosure::do_oop(oop obj) {
7754   assert(obj->is_oop_or_null(), "expected an oop or NULL");
7755   HeapWord* addr = (HeapWord*)obj;
7756   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
7757     // Oop lies in _span and isn't yet grey or black
7758     _verification_bm->mark(addr);            // now grey
7759     if (!_cms_bm->isMarked(addr)) {
7760       oop(addr)->print();
7761       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
7762                              addr);
7763       fatal("... aborting");
7764     }
7765 
7766     if (!_mark_stack->push(obj)) { // stack overflow
7767       if (PrintCMSStatistics != 0) {
7768         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7769                                SIZE_FORMAT, _mark_stack->capacity());
7770       }
7771       assert(_mark_stack->isFull(), "Else push should have succeeded");
7772       handle_stack_overflow(addr);
7773     }
7774     // anything including and to the right of _finger
7775     // will be scanned as we iterate over the remainder of the
7776     // bit map
7777   }
7778 }
7779 
7780 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
7781                      MemRegion span,
7782                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
7783                      HeapWord* finger, MarkFromRootsClosure* parent) :
7784   CMSOopClosure(collector->ref_processor()),
7785   _collector(collector),
7786   _span(span),
7787   _bitMap(bitMap),
7788   _markStack(markStack),
7789   _finger(finger),
7790   _parent(parent)
7791 { }
7792 
7793 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
7794                      MemRegion span,
7795                      CMSBitMap* bit_map,
7796                      OopTaskQueue* work_queue,
7797                      CMSMarkStack*  overflow_stack,
7798                      HeapWord* finger,
7799                      HeapWord** global_finger_addr,
7800                      Par_MarkFromRootsClosure* parent) :
7801   CMSOopClosure(collector->ref_processor()),
7802   _collector(collector),
7803   _whole_span(collector->_span),
7804   _span(span),
7805   _bit_map(bit_map),
7806   _work_queue(work_queue),
7807   _overflow_stack(overflow_stack),
7808   _finger(finger),
7809   _global_finger_addr(global_finger_addr),
7810   _parent(parent)
7811 { }
7812 
7813 // Assumes thread-safe access by callers, who are
7814 // responsible for mutual exclusion.
7815 void CMSCollector::lower_restart_addr(HeapWord* low) {
7816   assert(_span.contains(low), "Out of bounds addr");
7817   if (_restart_addr == NULL) {
7818     _restart_addr = low;
7819   } else {
7820     _restart_addr = MIN2(_restart_addr, low);
7821   }
7822 }
7823 
7824 // Upon stack overflow, we discard (part of) the stack,
7825 // remembering the least address amongst those discarded
7826 // in CMSCollector's _restart_address.
7827 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7828   // Remember the least grey address discarded
7829   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
7830   _collector->lower_restart_addr(ra);
7831   _markStack->reset();  // discard stack contents
7832   _markStack->expand(); // expand the stack if possible
7833 }
7834 
7835 // Upon stack overflow, we discard (part of) the stack,
7836 // remembering the least address amongst those discarded
7837 // in CMSCollector's _restart_address.
7838 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7839   // We need to do this under a mutex to prevent other
7840   // workers from interfering with the work done below.
7841   MutexLockerEx ml(_overflow_stack->par_lock(),
7842                    Mutex::_no_safepoint_check_flag);
7843   // Remember the least grey address discarded
7844   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
7845   _collector->lower_restart_addr(ra);
7846   _overflow_stack->reset();  // discard stack contents
7847   _overflow_stack->expand(); // expand the stack if possible
7848 }
7849 
7850 void CMKlassClosure::do_klass(Klass* k) {
7851   assert(_oop_closure != NULL, "Not initialized?");
7852   k->oops_do(_oop_closure);
7853 }
7854 
7855 void PushOrMarkClosure::do_oop(oop obj) {
7856   // Ignore mark word because we are running concurrent with mutators.
7857   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
7858   HeapWord* addr = (HeapWord*)obj;
7859   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
7860     // Oop lies in _span and isn't yet grey or black
7861     _bitMap->mark(addr);            // now grey
7862     if (addr < _finger) {
7863       // the bit map iteration has already either passed, or
7864       // sampled, this bit in the bit map; we'll need to
7865       // use the marking stack to scan this oop's oops.
7866       bool simulate_overflow = false;
7867       NOT_PRODUCT(
7868         if (CMSMarkStackOverflowALot &&
7869             _collector->simulate_overflow()) {
7870           // simulate a stack overflow
7871           simulate_overflow = true;
7872         }
7873       )
7874       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
7875         if (PrintCMSStatistics != 0) {
7876           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7877                                  SIZE_FORMAT, _markStack->capacity());
7878         }
7879         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
7880         handle_stack_overflow(addr);
7881       }
7882     }
7883     // anything including and to the right of _finger
7884     // will be scanned as we iterate over the remainder of the
7885     // bit map
7886     do_yield_check();
7887   }
7888 }
7889 
7890 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
7891 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
7892 
7893 void Par_PushOrMarkClosure::do_oop(oop obj) {
7894   // Ignore mark word because we are running concurrent with mutators.
7895   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
7896   HeapWord* addr = (HeapWord*)obj;
7897   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
7898     // Oop lies in _span and isn't yet grey or black
7899     // We read the global_finger (volatile read) strictly after marking oop
7900     bool res = _bit_map->par_mark(addr);    // now grey
7901     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
7902     // Should we push this marked oop on our stack?
7903     // -- if someone else marked it, nothing to do
7904     // -- if target oop is above global finger nothing to do
7905     // -- if target oop is in chunk and above local finger
7906     //      then nothing to do
7907     // -- else push on work queue
7908     if (   !res       // someone else marked it, they will deal with it
7909         || (addr >= *gfa)  // will be scanned in a later task
7910         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
7911       return;
7912     }
7913     // the bit map iteration has already either passed, or
7914     // sampled, this bit in the bit map; we'll need to
7915     // use the marking stack to scan this oop's oops.
7916     bool simulate_overflow = false;
7917     NOT_PRODUCT(
7918       if (CMSMarkStackOverflowALot &&
7919           _collector->simulate_overflow()) {
7920         // simulate a stack overflow
7921         simulate_overflow = true;
7922       }
7923     )
7924     if (simulate_overflow ||
7925         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
7926       // stack overflow
7927       if (PrintCMSStatistics != 0) {
7928         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7929                                SIZE_FORMAT, _overflow_stack->capacity());
7930       }
7931       // We cannot assert that the overflow stack is full because
7932       // it may have been emptied since.
7933       assert(simulate_overflow ||
7934              _work_queue->size() == _work_queue->max_elems(),
7935             "Else push should have succeeded");
7936       handle_stack_overflow(addr);
7937     }
7938     do_yield_check();
7939   }
7940 }
7941 
7942 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
7943 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
7944 
7945 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
7946                                        MemRegion span,
7947                                        ReferenceProcessor* rp,
7948                                        CMSBitMap* bit_map,
7949                                        CMSBitMap* mod_union_table,
7950                                        CMSMarkStack*  mark_stack,
7951                                        bool           concurrent_precleaning):
7952   CMSOopClosure(rp),
7953   _collector(collector),
7954   _span(span),
7955   _bit_map(bit_map),
7956   _mod_union_table(mod_union_table),
7957   _mark_stack(mark_stack),
7958   _concurrent_precleaning(concurrent_precleaning)
7959 {
7960   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7961 }
7962 
7963 // Grey object rescan during pre-cleaning and second checkpoint phases --
7964 // the non-parallel version (the parallel version appears further below.)
7965 void PushAndMarkClosure::do_oop(oop obj) {
7966   // Ignore mark word verification. If during concurrent precleaning,
7967   // the object monitor may be locked. If during the checkpoint
7968   // phases, the object may already have been reached by a  different
7969   // path and may be at the end of the global overflow list (so
7970   // the mark word may be NULL).
7971   assert(obj->is_oop_or_null(true /* ignore mark word */),
7972          "expected an oop or NULL");
7973   HeapWord* addr = (HeapWord*)obj;
7974   // Check if oop points into the CMS generation
7975   // and is not marked
7976   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7977     // a white object ...
7978     _bit_map->mark(addr);         // ... now grey
7979     // push on the marking stack (grey set)
7980     bool simulate_overflow = false;
7981     NOT_PRODUCT(
7982       if (CMSMarkStackOverflowALot &&
7983           _collector->simulate_overflow()) {
7984         // simulate a stack overflow
7985         simulate_overflow = true;
7986       }
7987     )
7988     if (simulate_overflow || !_mark_stack->push(obj)) {
7989       if (_concurrent_precleaning) {
7990          // During precleaning we can just dirty the appropriate card(s)
7991          // in the mod union table, thus ensuring that the object remains
7992          // in the grey set  and continue. In the case of object arrays
7993          // we need to dirty all of the cards that the object spans,
7994          // since the rescan of object arrays will be limited to the
7995          // dirty cards.
7996          // Note that no one can be interfering with us in this action
7997          // of dirtying the mod union table, so no locking or atomics
7998          // are required.
7999          if (obj->is_objArray()) {
8000            size_t sz = obj->size();
8001            HeapWord* end_card_addr = (HeapWord*)round_to(
8002                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
8003            MemRegion redirty_range = MemRegion(addr, end_card_addr);
8004            assert(!redirty_range.is_empty(), "Arithmetical tautology");
8005            _mod_union_table->mark_range(redirty_range);
8006          } else {
8007            _mod_union_table->mark(addr);
8008          }
8009          _collector->_ser_pmc_preclean_ovflw++;
8010       } else {
8011          // During the remark phase, we need to remember this oop
8012          // in the overflow list.
8013          _collector->push_on_overflow_list(obj);
8014          _collector->_ser_pmc_remark_ovflw++;
8015       }
8016     }
8017   }
8018 }
8019 
8020 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
8021                                                MemRegion span,
8022                                                ReferenceProcessor* rp,
8023                                                CMSBitMap* bit_map,
8024                                                OopTaskQueue* work_queue):
8025   CMSOopClosure(rp),
8026   _collector(collector),
8027   _span(span),
8028   _bit_map(bit_map),
8029   _work_queue(work_queue)
8030 {
8031   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
8032 }
8033 
8034 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
8035 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
8036 
8037 // Grey object rescan during second checkpoint phase --
8038 // the parallel version.
8039 void Par_PushAndMarkClosure::do_oop(oop obj) {
8040   // In the assert below, we ignore the mark word because
8041   // this oop may point to an already visited object that is
8042   // on the overflow stack (in which case the mark word has
8043   // been hijacked for chaining into the overflow stack --
8044   // if this is the last object in the overflow stack then
8045   // its mark word will be NULL). Because this object may
8046   // have been subsequently popped off the global overflow
8047   // stack, and the mark word possibly restored to the prototypical
8048   // value, by the time we get to examined this failing assert in
8049   // the debugger, is_oop_or_null(false) may subsequently start
8050   // to hold.
8051   assert(obj->is_oop_or_null(true),
8052          "expected an oop or NULL");
8053   HeapWord* addr = (HeapWord*)obj;
8054   // Check if oop points into the CMS generation
8055   // and is not marked
8056   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
8057     // a white object ...
8058     // If we manage to "claim" the object, by being the
8059     // first thread to mark it, then we push it on our
8060     // marking stack
8061     if (_bit_map->par_mark(addr)) {     // ... now grey
8062       // push on work queue (grey set)
8063       bool simulate_overflow = false;
8064       NOT_PRODUCT(
8065         if (CMSMarkStackOverflowALot &&
8066             _collector->par_simulate_overflow()) {
8067           // simulate a stack overflow
8068           simulate_overflow = true;
8069         }
8070       )
8071       if (simulate_overflow || !_work_queue->push(obj)) {
8072         _collector->par_push_on_overflow_list(obj);
8073         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
8074       }
8075     } // Else, some other thread got there first
8076   }
8077 }
8078 
8079 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
8080 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
8081 
8082 void CMSPrecleanRefsYieldClosure::do_yield_work() {
8083   Mutex* bml = _collector->bitMapLock();
8084   assert_lock_strong(bml);
8085   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
8086          "CMS thread should hold CMS token");
8087 
8088   bml->unlock();
8089   ConcurrentMarkSweepThread::desynchronize(true);
8090 
8091   ConcurrentMarkSweepThread::acknowledge_yield_request();
8092 
8093   _collector->stopTimer();
8094   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
8095   if (PrintCMSStatistics != 0) {
8096     _collector->incrementYields();
8097   }
8098   _collector->icms_wait();
8099 
8100   // See the comment in coordinator_yield()
8101   for (unsigned i = 0; i < CMSYieldSleepCount &&
8102                        ConcurrentMarkSweepThread::should_yield() &&
8103                        !CMSCollector::foregroundGCIsActive(); ++i) {
8104     os::sleep(Thread::current(), 1, false);
8105     ConcurrentMarkSweepThread::acknowledge_yield_request();
8106   }
8107 
8108   ConcurrentMarkSweepThread::synchronize(true);
8109   bml->lock();
8110 
8111   _collector->startTimer();
8112 }
8113 
8114 bool CMSPrecleanRefsYieldClosure::should_return() {
8115   if (ConcurrentMarkSweepThread::should_yield()) {
8116     do_yield_work();
8117   }
8118   return _collector->foregroundGCIsActive();
8119 }
8120 
8121 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
8122   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
8123          "mr should be aligned to start at a card boundary");
8124   // We'd like to assert:
8125   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
8126   //        "mr should be a range of cards");
8127   // However, that would be too strong in one case -- the last
8128   // partition ends at _unallocated_block which, in general, can be
8129   // an arbitrary boundary, not necessarily card aligned.
8130   if (PrintCMSStatistics != 0) {
8131     _num_dirty_cards +=
8132          mr.word_size()/CardTableModRefBS::card_size_in_words;
8133   }
8134   _space->object_iterate_mem(mr, &_scan_cl);
8135 }
8136 
8137 SweepClosure::SweepClosure(CMSCollector* collector,
8138                            ConcurrentMarkSweepGeneration* g,
8139                            CMSBitMap* bitMap, bool should_yield) :
8140   _collector(collector),
8141   _g(g),
8142   _sp(g->cmsSpace()),
8143   _limit(_sp->sweep_limit()),
8144   _freelistLock(_sp->freelistLock()),
8145   _bitMap(bitMap),
8146   _yield(should_yield),
8147   _inFreeRange(false),           // No free range at beginning of sweep
8148   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
8149   _lastFreeRangeCoalesced(false),
8150   _freeFinger(g->used_region().start())
8151 {
8152   NOT_PRODUCT(
8153     _numObjectsFreed = 0;
8154     _numWordsFreed   = 0;
8155     _numObjectsLive = 0;
8156     _numWordsLive = 0;
8157     _numObjectsAlreadyFree = 0;
8158     _numWordsAlreadyFree = 0;
8159     _last_fc = NULL;
8160 
8161     _sp->initializeIndexedFreeListArrayReturnedBytes();
8162     _sp->dictionary()->initialize_dict_returned_bytes();
8163   )
8164   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8165          "sweep _limit out of bounds");
8166   if (CMSTraceSweeper) {
8167     gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT,
8168                         _limit);
8169   }
8170 }
8171 
8172 void SweepClosure::print_on(outputStream* st) const {
8173   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
8174                 _sp->bottom(), _sp->end());
8175   tty->print_cr("_limit = " PTR_FORMAT, _limit);
8176   tty->print_cr("_freeFinger = " PTR_FORMAT, _freeFinger);
8177   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, _last_fc);)
8178   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
8179                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
8180 }
8181 
8182 #ifndef PRODUCT
8183 // Assertion checking only:  no useful work in product mode --
8184 // however, if any of the flags below become product flags,
8185 // you may need to review this code to see if it needs to be
8186 // enabled in product mode.
8187 SweepClosure::~SweepClosure() {
8188   assert_lock_strong(_freelistLock);
8189   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8190          "sweep _limit out of bounds");
8191   if (inFreeRange()) {
8192     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
8193     print();
8194     ShouldNotReachHere();
8195   }
8196   if (Verbose && PrintGC) {
8197     gclog_or_tty->print("Collected "SIZE_FORMAT" objects, " SIZE_FORMAT " bytes",
8198                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
8199     gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
8200                            SIZE_FORMAT" bytes  "
8201       "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
8202       _numObjectsLive, _numWordsLive*sizeof(HeapWord),
8203       _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
8204     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree)
8205                         * sizeof(HeapWord);
8206     gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
8207 
8208     if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
8209       size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
8210       size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
8211       size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
8212       gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returned_bytes);
8213       gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
8214         indexListReturnedBytes);
8215       gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
8216         dict_returned_bytes);
8217     }
8218   }
8219   if (CMSTraceSweeper) {
8220     gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================",
8221                            _limit);
8222   }
8223 }
8224 #endif  // PRODUCT
8225 
8226 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
8227     bool freeRangeInFreeLists) {
8228   if (CMSTraceSweeper) {
8229     gclog_or_tty->print("---- Start free range at 0x%x with free block (%d)\n",
8230                freeFinger, freeRangeInFreeLists);
8231   }
8232   assert(!inFreeRange(), "Trampling existing free range");
8233   set_inFreeRange(true);
8234   set_lastFreeRangeCoalesced(false);
8235 
8236   set_freeFinger(freeFinger);
8237   set_freeRangeInFreeLists(freeRangeInFreeLists);
8238   if (CMSTestInFreeList) {
8239     if (freeRangeInFreeLists) {
8240       FreeChunk* fc = (FreeChunk*) freeFinger;
8241       assert(fc->is_free(), "A chunk on the free list should be free.");
8242       assert(fc->size() > 0, "Free range should have a size");
8243       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
8244     }
8245   }
8246 }
8247 
8248 // Note that the sweeper runs concurrently with mutators. Thus,
8249 // it is possible for direct allocation in this generation to happen
8250 // in the middle of the sweep. Note that the sweeper also coalesces
8251 // contiguous free blocks. Thus, unless the sweeper and the allocator
8252 // synchronize appropriately freshly allocated blocks may get swept up.
8253 // This is accomplished by the sweeper locking the free lists while
8254 // it is sweeping. Thus blocks that are determined to be free are
8255 // indeed free. There is however one additional complication:
8256 // blocks that have been allocated since the final checkpoint and
8257 // mark, will not have been marked and so would be treated as
8258 // unreachable and swept up. To prevent this, the allocator marks
8259 // the bit map when allocating during the sweep phase. This leads,
8260 // however, to a further complication -- objects may have been allocated
8261 // but not yet initialized -- in the sense that the header isn't yet
8262 // installed. The sweeper can not then determine the size of the block
8263 // in order to skip over it. To deal with this case, we use a technique
8264 // (due to Printezis) to encode such uninitialized block sizes in the
8265 // bit map. Since the bit map uses a bit per every HeapWord, but the
8266 // CMS generation has a minimum object size of 3 HeapWords, it follows
8267 // that "normal marks" won't be adjacent in the bit map (there will
8268 // always be at least two 0 bits between successive 1 bits). We make use
8269 // of these "unused" bits to represent uninitialized blocks -- the bit
8270 // corresponding to the start of the uninitialized object and the next
8271 // bit are both set. Finally, a 1 bit marks the end of the object that
8272 // started with the two consecutive 1 bits to indicate its potentially
8273 // uninitialized state.
8274 
8275 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
8276   FreeChunk* fc = (FreeChunk*)addr;
8277   size_t res;
8278 
8279   // Check if we are done sweeping. Below we check "addr >= _limit" rather
8280   // than "addr == _limit" because although _limit was a block boundary when
8281   // we started the sweep, it may no longer be one because heap expansion
8282   // may have caused us to coalesce the block ending at the address _limit
8283   // with a newly expanded chunk (this happens when _limit was set to the
8284   // previous _end of the space), so we may have stepped past _limit:
8285   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
8286   if (addr >= _limit) { // we have swept up to or past the limit: finish up
8287     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8288            "sweep _limit out of bounds");
8289     assert(addr < _sp->end(), "addr out of bounds");
8290     // Flush any free range we might be holding as a single
8291     // coalesced chunk to the appropriate free list.
8292     if (inFreeRange()) {
8293       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
8294              err_msg("freeFinger() " PTR_FORMAT" is out-of-bounds", freeFinger()));
8295       flush_cur_free_chunk(freeFinger(),
8296                            pointer_delta(addr, freeFinger()));
8297       if (CMSTraceSweeper) {
8298         gclog_or_tty->print("Sweep: last chunk: ");
8299         gclog_or_tty->print("put_free_blk 0x%x ("SIZE_FORMAT") "
8300                    "[coalesced:"SIZE_FORMAT"]\n",
8301                    freeFinger(), pointer_delta(addr, freeFinger()),
8302                    lastFreeRangeCoalesced());
8303       }
8304     }
8305 
8306     // help the iterator loop finish
8307     return pointer_delta(_sp->end(), addr);
8308   }
8309 
8310   assert(addr < _limit, "sweep invariant");
8311   // check if we should yield
8312   do_yield_check(addr);
8313   if (fc->is_free()) {
8314     // Chunk that is already free
8315     res = fc->size();
8316     do_already_free_chunk(fc);
8317     debug_only(_sp->verifyFreeLists());
8318     // If we flush the chunk at hand in lookahead_and_flush()
8319     // and it's coalesced with a preceding chunk, then the
8320     // process of "mangling" the payload of the coalesced block
8321     // will cause erasure of the size information from the
8322     // (erstwhile) header of all the coalesced blocks but the
8323     // first, so the first disjunct in the assert will not hold
8324     // in that specific case (in which case the second disjunct
8325     // will hold).
8326     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
8327            "Otherwise the size info doesn't change at this step");
8328     NOT_PRODUCT(
8329       _numObjectsAlreadyFree++;
8330       _numWordsAlreadyFree += res;
8331     )
8332     NOT_PRODUCT(_last_fc = fc;)
8333   } else if (!_bitMap->isMarked(addr)) {
8334     // Chunk is fresh garbage
8335     res = do_garbage_chunk(fc);
8336     debug_only(_sp->verifyFreeLists());
8337     NOT_PRODUCT(
8338       _numObjectsFreed++;
8339       _numWordsFreed += res;
8340     )
8341   } else {
8342     // Chunk that is alive.
8343     res = do_live_chunk(fc);
8344     debug_only(_sp->verifyFreeLists());
8345     NOT_PRODUCT(
8346         _numObjectsLive++;
8347         _numWordsLive += res;
8348     )
8349   }
8350   return res;
8351 }
8352 
8353 // For the smart allocation, record following
8354 //  split deaths - a free chunk is removed from its free list because
8355 //      it is being split into two or more chunks.
8356 //  split birth - a free chunk is being added to its free list because
8357 //      a larger free chunk has been split and resulted in this free chunk.
8358 //  coal death - a free chunk is being removed from its free list because
8359 //      it is being coalesced into a large free chunk.
8360 //  coal birth - a free chunk is being added to its free list because
8361 //      it was created when two or more free chunks where coalesced into
8362 //      this free chunk.
8363 //
8364 // These statistics are used to determine the desired number of free
8365 // chunks of a given size.  The desired number is chosen to be relative
8366 // to the end of a CMS sweep.  The desired number at the end of a sweep
8367 // is the
8368 //      count-at-end-of-previous-sweep (an amount that was enough)
8369 //              - count-at-beginning-of-current-sweep  (the excess)
8370 //              + split-births  (gains in this size during interval)
8371 //              - split-deaths  (demands on this size during interval)
8372 // where the interval is from the end of one sweep to the end of the
8373 // next.
8374 //
8375 // When sweeping the sweeper maintains an accumulated chunk which is
8376 // the chunk that is made up of chunks that have been coalesced.  That
8377 // will be termed the left-hand chunk.  A new chunk of garbage that
8378 // is being considered for coalescing will be referred to as the
8379 // right-hand chunk.
8380 //
8381 // When making a decision on whether to coalesce a right-hand chunk with
8382 // the current left-hand chunk, the current count vs. the desired count
8383 // of the left-hand chunk is considered.  Also if the right-hand chunk
8384 // is near the large chunk at the end of the heap (see
8385 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
8386 // left-hand chunk is coalesced.
8387 //
8388 // When making a decision about whether to split a chunk, the desired count
8389 // vs. the current count of the candidate to be split is also considered.
8390 // If the candidate is underpopulated (currently fewer chunks than desired)
8391 // a chunk of an overpopulated (currently more chunks than desired) size may
8392 // be chosen.  The "hint" associated with a free list, if non-null, points
8393 // to a free list which may be overpopulated.
8394 //
8395 
8396 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
8397   const size_t size = fc->size();
8398   // Chunks that cannot be coalesced are not in the
8399   // free lists.
8400   if (CMSTestInFreeList && !fc->cantCoalesce()) {
8401     assert(_sp->verify_chunk_in_free_list(fc),
8402       "free chunk should be in free lists");
8403   }
8404   // a chunk that is already free, should not have been
8405   // marked in the bit map
8406   HeapWord* const addr = (HeapWord*) fc;
8407   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
8408   // Verify that the bit map has no bits marked between
8409   // addr and purported end of this block.
8410   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8411 
8412   // Some chunks cannot be coalesced under any circumstances.
8413   // See the definition of cantCoalesce().
8414   if (!fc->cantCoalesce()) {
8415     // This chunk can potentially be coalesced.
8416     if (_sp->adaptive_freelists()) {
8417       // All the work is done in
8418       do_post_free_or_garbage_chunk(fc, size);
8419     } else {  // Not adaptive free lists
8420       // this is a free chunk that can potentially be coalesced by the sweeper;
8421       if (!inFreeRange()) {
8422         // if the next chunk is a free block that can't be coalesced
8423         // it doesn't make sense to remove this chunk from the free lists
8424         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
8425         assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
8426         if ((HeapWord*)nextChunk < _sp->end() &&     // There is another free chunk to the right ...
8427             nextChunk->is_free()               &&     // ... which is free...
8428             nextChunk->cantCoalesce()) {             // ... but can't be coalesced
8429           // nothing to do
8430         } else {
8431           // Potentially the start of a new free range:
8432           // Don't eagerly remove it from the free lists.
8433           // No need to remove it if it will just be put
8434           // back again.  (Also from a pragmatic point of view
8435           // if it is a free block in a region that is beyond
8436           // any allocated blocks, an assertion will fail)
8437           // Remember the start of a free run.
8438           initialize_free_range(addr, true);
8439           // end - can coalesce with next chunk
8440         }
8441       } else {
8442         // the midst of a free range, we are coalescing
8443         print_free_block_coalesced(fc);
8444         if (CMSTraceSweeper) {
8445           gclog_or_tty->print("  -- pick up free block 0x%x (%d)\n", fc, size);
8446         }
8447         // remove it from the free lists
8448         _sp->removeFreeChunkFromFreeLists(fc);
8449         set_lastFreeRangeCoalesced(true);
8450         // If the chunk is being coalesced and the current free range is
8451         // in the free lists, remove the current free range so that it
8452         // will be returned to the free lists in its entirety - all
8453         // the coalesced pieces included.
8454         if (freeRangeInFreeLists()) {
8455           FreeChunk* ffc = (FreeChunk*) freeFinger();
8456           assert(ffc->size() == pointer_delta(addr, freeFinger()),
8457             "Size of free range is inconsistent with chunk size.");
8458           if (CMSTestInFreeList) {
8459             assert(_sp->verify_chunk_in_free_list(ffc),
8460               "free range is not in free lists");
8461           }
8462           _sp->removeFreeChunkFromFreeLists(ffc);
8463           set_freeRangeInFreeLists(false);
8464         }
8465       }
8466     }
8467     // Note that if the chunk is not coalescable (the else arm
8468     // below), we unconditionally flush, without needing to do
8469     // a "lookahead," as we do below.
8470     if (inFreeRange()) lookahead_and_flush(fc, size);
8471   } else {
8472     // Code path common to both original and adaptive free lists.
8473 
8474     // cant coalesce with previous block; this should be treated
8475     // as the end of a free run if any
8476     if (inFreeRange()) {
8477       // we kicked some butt; time to pick up the garbage
8478       assert(freeFinger() < addr, "freeFinger points too high");
8479       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8480     }
8481     // else, nothing to do, just continue
8482   }
8483 }
8484 
8485 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
8486   // This is a chunk of garbage.  It is not in any free list.
8487   // Add it to a free list or let it possibly be coalesced into
8488   // a larger chunk.
8489   HeapWord* const addr = (HeapWord*) fc;
8490   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8491 
8492   if (_sp->adaptive_freelists()) {
8493     // Verify that the bit map has no bits marked between
8494     // addr and purported end of just dead object.
8495     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8496 
8497     do_post_free_or_garbage_chunk(fc, size);
8498   } else {
8499     if (!inFreeRange()) {
8500       // start of a new free range
8501       assert(size > 0, "A free range should have a size");
8502       initialize_free_range(addr, false);
8503     } else {
8504       // this will be swept up when we hit the end of the
8505       // free range
8506       if (CMSTraceSweeper) {
8507         gclog_or_tty->print("  -- pick up garbage 0x%x (%d) \n", fc, size);
8508       }
8509       // If the chunk is being coalesced and the current free range is
8510       // in the free lists, remove the current free range so that it
8511       // will be returned to the free lists in its entirety - all
8512       // the coalesced pieces included.
8513       if (freeRangeInFreeLists()) {
8514         FreeChunk* ffc = (FreeChunk*)freeFinger();
8515         assert(ffc->size() == pointer_delta(addr, freeFinger()),
8516           "Size of free range is inconsistent with chunk size.");
8517         if (CMSTestInFreeList) {
8518           assert(_sp->verify_chunk_in_free_list(ffc),
8519             "free range is not in free lists");
8520         }
8521         _sp->removeFreeChunkFromFreeLists(ffc);
8522         set_freeRangeInFreeLists(false);
8523       }
8524       set_lastFreeRangeCoalesced(true);
8525     }
8526     // this will be swept up when we hit the end of the free range
8527 
8528     // Verify that the bit map has no bits marked between
8529     // addr and purported end of just dead object.
8530     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8531   }
8532   assert(_limit >= addr + size,
8533          "A freshly garbage chunk can't possibly straddle over _limit");
8534   if (inFreeRange()) lookahead_and_flush(fc, size);
8535   return size;
8536 }
8537 
8538 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
8539   HeapWord* addr = (HeapWord*) fc;
8540   // The sweeper has just found a live object. Return any accumulated
8541   // left hand chunk to the free lists.
8542   if (inFreeRange()) {
8543     assert(freeFinger() < addr, "freeFinger points too high");
8544     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8545   }
8546 
8547   // This object is live: we'd normally expect this to be
8548   // an oop, and like to assert the following:
8549   // assert(oop(addr)->is_oop(), "live block should be an oop");
8550   // However, as we commented above, this may be an object whose
8551   // header hasn't yet been initialized.
8552   size_t size;
8553   assert(_bitMap->isMarked(addr), "Tautology for this control point");
8554   if (_bitMap->isMarked(addr + 1)) {
8555     // Determine the size from the bit map, rather than trying to
8556     // compute it from the object header.
8557     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
8558     size = pointer_delta(nextOneAddr + 1, addr);
8559     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
8560            "alignment problem");
8561 
8562 #ifdef ASSERT
8563       if (oop(addr)->klass_or_null() != NULL) {
8564         // Ignore mark word because we are running concurrent with mutators
8565         assert(oop(addr)->is_oop(true), "live block should be an oop");
8566         assert(size ==
8567                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
8568                "P-mark and computed size do not agree");
8569       }
8570 #endif
8571 
8572   } else {
8573     // This should be an initialized object that's alive.
8574     assert(oop(addr)->klass_or_null() != NULL,
8575            "Should be an initialized object");
8576     // Ignore mark word because we are running concurrent with mutators
8577     assert(oop(addr)->is_oop(true), "live block should be an oop");
8578     // Verify that the bit map has no bits marked between
8579     // addr and purported end of this block.
8580     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8581     assert(size >= 3, "Necessary for Printezis marks to work");
8582     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
8583     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
8584   }
8585   return size;
8586 }
8587 
8588 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
8589                                                  size_t chunkSize) {
8590   // do_post_free_or_garbage_chunk() should only be called in the case
8591   // of the adaptive free list allocator.
8592   const bool fcInFreeLists = fc->is_free();
8593   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
8594   assert((HeapWord*)fc <= _limit, "sweep invariant");
8595   if (CMSTestInFreeList && fcInFreeLists) {
8596     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
8597   }
8598 
8599   if (CMSTraceSweeper) {
8600     gclog_or_tty->print_cr("  -- pick up another chunk at 0x%x (%d)", fc, chunkSize);
8601   }
8602 
8603   HeapWord* const fc_addr = (HeapWord*) fc;
8604 
8605   bool coalesce;
8606   const size_t left  = pointer_delta(fc_addr, freeFinger());
8607   const size_t right = chunkSize;
8608   switch (FLSCoalescePolicy) {
8609     // numeric value forms a coalition aggressiveness metric
8610     case 0:  { // never coalesce
8611       coalesce = false;
8612       break;
8613     }
8614     case 1: { // coalesce if left & right chunks on overpopulated lists
8615       coalesce = _sp->coalOverPopulated(left) &&
8616                  _sp->coalOverPopulated(right);
8617       break;
8618     }
8619     case 2: { // coalesce if left chunk on overpopulated list (default)
8620       coalesce = _sp->coalOverPopulated(left);
8621       break;
8622     }
8623     case 3: { // coalesce if left OR right chunk on overpopulated list
8624       coalesce = _sp->coalOverPopulated(left) ||
8625                  _sp->coalOverPopulated(right);
8626       break;
8627     }
8628     case 4: { // always coalesce
8629       coalesce = true;
8630       break;
8631     }
8632     default:
8633      ShouldNotReachHere();
8634   }
8635 
8636   // Should the current free range be coalesced?
8637   // If the chunk is in a free range and either we decided to coalesce above
8638   // or the chunk is near the large block at the end of the heap
8639   // (isNearLargestChunk() returns true), then coalesce this chunk.
8640   const bool doCoalesce = inFreeRange()
8641                           && (coalesce || _g->isNearLargestChunk(fc_addr));
8642   if (doCoalesce) {
8643     // Coalesce the current free range on the left with the new
8644     // chunk on the right.  If either is on a free list,
8645     // it must be removed from the list and stashed in the closure.
8646     if (freeRangeInFreeLists()) {
8647       FreeChunk* const ffc = (FreeChunk*)freeFinger();
8648       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
8649         "Size of free range is inconsistent with chunk size.");
8650       if (CMSTestInFreeList) {
8651         assert(_sp->verify_chunk_in_free_list(ffc),
8652           "Chunk is not in free lists");
8653       }
8654       _sp->coalDeath(ffc->size());
8655       _sp->removeFreeChunkFromFreeLists(ffc);
8656       set_freeRangeInFreeLists(false);
8657     }
8658     if (fcInFreeLists) {
8659       _sp->coalDeath(chunkSize);
8660       assert(fc->size() == chunkSize,
8661         "The chunk has the wrong size or is not in the free lists");
8662       _sp->removeFreeChunkFromFreeLists(fc);
8663     }
8664     set_lastFreeRangeCoalesced(true);
8665     print_free_block_coalesced(fc);
8666   } else {  // not in a free range and/or should not coalesce
8667     // Return the current free range and start a new one.
8668     if (inFreeRange()) {
8669       // In a free range but cannot coalesce with the right hand chunk.
8670       // Put the current free range into the free lists.
8671       flush_cur_free_chunk(freeFinger(),
8672                            pointer_delta(fc_addr, freeFinger()));
8673     }
8674     // Set up for new free range.  Pass along whether the right hand
8675     // chunk is in the free lists.
8676     initialize_free_range((HeapWord*)fc, fcInFreeLists);
8677   }
8678 }
8679 
8680 // Lookahead flush:
8681 // If we are tracking a free range, and this is the last chunk that
8682 // we'll look at because its end crosses past _limit, we'll preemptively
8683 // flush it along with any free range we may be holding on to. Note that
8684 // this can be the case only for an already free or freshly garbage
8685 // chunk. If this block is an object, it can never straddle
8686 // over _limit. The "straddling" occurs when _limit is set at
8687 // the previous end of the space when this cycle started, and
8688 // a subsequent heap expansion caused the previously co-terminal
8689 // free block to be coalesced with the newly expanded portion,
8690 // thus rendering _limit a non-block-boundary making it dangerous
8691 // for the sweeper to step over and examine.
8692 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
8693   assert(inFreeRange(), "Should only be called if currently in a free range.");
8694   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
8695   assert(_sp->used_region().contains(eob - 1),
8696          err_msg("eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
8697                  " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
8698                  " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
8699                  eob, eob-1, _limit, _sp->bottom(), _sp->end(), fc, chunk_size));
8700   if (eob >= _limit) {
8701     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
8702     if (CMSTraceSweeper) {
8703       gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
8704                              "[" PTR_FORMAT "," PTR_FORMAT ") in space "
8705                              "[" PTR_FORMAT "," PTR_FORMAT ")",
8706                              _limit, fc, eob, _sp->bottom(), _sp->end());
8707     }
8708     // Return the storage we are tracking back into the free lists.
8709     if (CMSTraceSweeper) {
8710       gclog_or_tty->print_cr("Flushing ... ");
8711     }
8712     assert(freeFinger() < eob, "Error");
8713     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
8714   }
8715 }
8716 
8717 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
8718   assert(inFreeRange(), "Should only be called if currently in a free range.");
8719   assert(size > 0,
8720     "A zero sized chunk cannot be added to the free lists.");
8721   if (!freeRangeInFreeLists()) {
8722     if (CMSTestInFreeList) {
8723       FreeChunk* fc = (FreeChunk*) chunk;
8724       fc->set_size(size);
8725       assert(!_sp->verify_chunk_in_free_list(fc),
8726         "chunk should not be in free lists yet");
8727     }
8728     if (CMSTraceSweeper) {
8729       gclog_or_tty->print_cr(" -- add free block 0x%x (%d) to free lists",
8730                     chunk, size);
8731     }
8732     // A new free range is going to be starting.  The current
8733     // free range has not been added to the free lists yet or
8734     // was removed so add it back.
8735     // If the current free range was coalesced, then the death
8736     // of the free range was recorded.  Record a birth now.
8737     if (lastFreeRangeCoalesced()) {
8738       _sp->coalBirth(size);
8739     }
8740     _sp->addChunkAndRepairOffsetTable(chunk, size,
8741             lastFreeRangeCoalesced());
8742   } else if (CMSTraceSweeper) {
8743     gclog_or_tty->print_cr("Already in free list: nothing to flush");
8744   }
8745   set_inFreeRange(false);
8746   set_freeRangeInFreeLists(false);
8747 }
8748 
8749 // We take a break if we've been at this for a while,
8750 // so as to avoid monopolizing the locks involved.
8751 void SweepClosure::do_yield_work(HeapWord* addr) {
8752   // Return current free chunk being used for coalescing (if any)
8753   // to the appropriate freelist.  After yielding, the next
8754   // free block encountered will start a coalescing range of
8755   // free blocks.  If the next free block is adjacent to the
8756   // chunk just flushed, they will need to wait for the next
8757   // sweep to be coalesced.
8758   if (inFreeRange()) {
8759     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8760   }
8761 
8762   // First give up the locks, then yield, then re-lock.
8763   // We should probably use a constructor/destructor idiom to
8764   // do this unlock/lock or modify the MutexUnlocker class to
8765   // serve our purpose. XXX
8766   assert_lock_strong(_bitMap->lock());
8767   assert_lock_strong(_freelistLock);
8768   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
8769          "CMS thread should hold CMS token");
8770   _bitMap->lock()->unlock();
8771   _freelistLock->unlock();
8772   ConcurrentMarkSweepThread::desynchronize(true);
8773   ConcurrentMarkSweepThread::acknowledge_yield_request();
8774   _collector->stopTimer();
8775   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
8776   if (PrintCMSStatistics != 0) {
8777     _collector->incrementYields();
8778   }
8779   _collector->icms_wait();
8780 
8781   // See the comment in coordinator_yield()
8782   for (unsigned i = 0; i < CMSYieldSleepCount &&
8783                        ConcurrentMarkSweepThread::should_yield() &&
8784                        !CMSCollector::foregroundGCIsActive(); ++i) {
8785     os::sleep(Thread::current(), 1, false);
8786     ConcurrentMarkSweepThread::acknowledge_yield_request();
8787   }
8788 
8789   ConcurrentMarkSweepThread::synchronize(true);
8790   _freelistLock->lock();
8791   _bitMap->lock()->lock_without_safepoint_check();
8792   _collector->startTimer();
8793 }
8794 
8795 #ifndef PRODUCT
8796 // This is actually very useful in a product build if it can
8797 // be called from the debugger.  Compile it into the product
8798 // as needed.
8799 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
8800   return debug_cms_space->verify_chunk_in_free_list(fc);
8801 }
8802 #endif
8803 
8804 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
8805   if (CMSTraceSweeper) {
8806     gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
8807                            fc, fc->size());
8808   }
8809 }
8810 
8811 // CMSIsAliveClosure
8812 bool CMSIsAliveClosure::do_object_b(oop obj) {
8813   HeapWord* addr = (HeapWord*)obj;
8814   return addr != NULL &&
8815          (!_span.contains(addr) || _bit_map->isMarked(addr));
8816 }
8817 
8818 
8819 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
8820                       MemRegion span,
8821                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
8822                       bool cpc):
8823   _collector(collector),
8824   _span(span),
8825   _bit_map(bit_map),
8826   _mark_stack(mark_stack),
8827   _concurrent_precleaning(cpc) {
8828   assert(!_span.is_empty(), "Empty span could spell trouble");
8829 }
8830 
8831 
8832 // CMSKeepAliveClosure: the serial version
8833 void CMSKeepAliveClosure::do_oop(oop obj) {
8834   HeapWord* addr = (HeapWord*)obj;
8835   if (_span.contains(addr) &&
8836       !_bit_map->isMarked(addr)) {
8837     _bit_map->mark(addr);
8838     bool simulate_overflow = false;
8839     NOT_PRODUCT(
8840       if (CMSMarkStackOverflowALot &&
8841           _collector->simulate_overflow()) {
8842         // simulate a stack overflow
8843         simulate_overflow = true;
8844       }
8845     )
8846     if (simulate_overflow || !_mark_stack->push(obj)) {
8847       if (_concurrent_precleaning) {
8848         // We dirty the overflown object and let the remark
8849         // phase deal with it.
8850         assert(_collector->overflow_list_is_empty(), "Error");
8851         // In the case of object arrays, we need to dirty all of
8852         // the cards that the object spans. No locking or atomics
8853         // are needed since no one else can be mutating the mod union
8854         // table.
8855         if (obj->is_objArray()) {
8856           size_t sz = obj->size();
8857           HeapWord* end_card_addr =
8858             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
8859           MemRegion redirty_range = MemRegion(addr, end_card_addr);
8860           assert(!redirty_range.is_empty(), "Arithmetical tautology");
8861           _collector->_modUnionTable.mark_range(redirty_range);
8862         } else {
8863           _collector->_modUnionTable.mark(addr);
8864         }
8865         _collector->_ser_kac_preclean_ovflw++;
8866       } else {
8867         _collector->push_on_overflow_list(obj);
8868         _collector->_ser_kac_ovflw++;
8869       }
8870     }
8871   }
8872 }
8873 
8874 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
8875 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
8876 
8877 // CMSParKeepAliveClosure: a parallel version of the above.
8878 // The work queues are private to each closure (thread),
8879 // but (may be) available for stealing by other threads.
8880 void CMSParKeepAliveClosure::do_oop(oop obj) {
8881   HeapWord* addr = (HeapWord*)obj;
8882   if (_span.contains(addr) &&
8883       !_bit_map->isMarked(addr)) {
8884     // In general, during recursive tracing, several threads
8885     // may be concurrently getting here; the first one to
8886     // "tag" it, claims it.
8887     if (_bit_map->par_mark(addr)) {
8888       bool res = _work_queue->push(obj);
8889       assert(res, "Low water mark should be much less than capacity");
8890       // Do a recursive trim in the hope that this will keep
8891       // stack usage lower, but leave some oops for potential stealers
8892       trim_queue(_low_water_mark);
8893     } // Else, another thread got there first
8894   }
8895 }
8896 
8897 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
8898 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
8899 
8900 void CMSParKeepAliveClosure::trim_queue(uint max) {
8901   while (_work_queue->size() > max) {
8902     oop new_oop;
8903     if (_work_queue->pop_local(new_oop)) {
8904       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
8905       assert(_bit_map->isMarked((HeapWord*)new_oop),
8906              "no white objects on this stack!");
8907       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8908       // iterate over the oops in this oop, marking and pushing
8909       // the ones in CMS heap (i.e. in _span).
8910       new_oop->oop_iterate(&_mark_and_push);
8911     }
8912   }
8913 }
8914 
8915 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
8916                                 CMSCollector* collector,
8917                                 MemRegion span, CMSBitMap* bit_map,
8918                                 OopTaskQueue* work_queue):
8919   _collector(collector),
8920   _span(span),
8921   _bit_map(bit_map),
8922   _work_queue(work_queue) { }
8923 
8924 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
8925   HeapWord* addr = (HeapWord*)obj;
8926   if (_span.contains(addr) &&
8927       !_bit_map->isMarked(addr)) {
8928     if (_bit_map->par_mark(addr)) {
8929       bool simulate_overflow = false;
8930       NOT_PRODUCT(
8931         if (CMSMarkStackOverflowALot &&
8932             _collector->par_simulate_overflow()) {
8933           // simulate a stack overflow
8934           simulate_overflow = true;
8935         }
8936       )
8937       if (simulate_overflow || !_work_queue->push(obj)) {
8938         _collector->par_push_on_overflow_list(obj);
8939         _collector->_par_kac_ovflw++;
8940       }
8941     } // Else another thread got there already
8942   }
8943 }
8944 
8945 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8946 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8947 
8948 //////////////////////////////////////////////////////////////////
8949 //  CMSExpansionCause                /////////////////////////////
8950 //////////////////////////////////////////////////////////////////
8951 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
8952   switch (cause) {
8953     case _no_expansion:
8954       return "No expansion";
8955     case _satisfy_free_ratio:
8956       return "Free ratio";
8957     case _satisfy_promotion:
8958       return "Satisfy promotion";
8959     case _satisfy_allocation:
8960       return "allocation";
8961     case _allocate_par_lab:
8962       return "Par LAB";
8963     case _allocate_par_spooling_space:
8964       return "Par Spooling Space";
8965     case _adaptive_size_policy:
8966       return "Ergonomics";
8967     default:
8968       return "unknown";
8969   }
8970 }
8971 
8972 void CMSDrainMarkingStackClosure::do_void() {
8973   // the max number to take from overflow list at a time
8974   const size_t num = _mark_stack->capacity()/4;
8975   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
8976          "Overflow list should be NULL during concurrent phases");
8977   while (!_mark_stack->isEmpty() ||
8978          // if stack is empty, check the overflow list
8979          _collector->take_from_overflow_list(num, _mark_stack)) {
8980     oop obj = _mark_stack->pop();
8981     HeapWord* addr = (HeapWord*)obj;
8982     assert(_span.contains(addr), "Should be within span");
8983     assert(_bit_map->isMarked(addr), "Should be marked");
8984     assert(obj->is_oop(), "Should be an oop");
8985     obj->oop_iterate(_keep_alive);
8986   }
8987 }
8988 
8989 void CMSParDrainMarkingStackClosure::do_void() {
8990   // drain queue
8991   trim_queue(0);
8992 }
8993 
8994 // Trim our work_queue so its length is below max at return
8995 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
8996   while (_work_queue->size() > max) {
8997     oop new_oop;
8998     if (_work_queue->pop_local(new_oop)) {
8999       assert(new_oop->is_oop(), "Expected an oop");
9000       assert(_bit_map->isMarked((HeapWord*)new_oop),
9001              "no white objects on this stack!");
9002       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
9003       // iterate over the oops in this oop, marking and pushing
9004       // the ones in CMS heap (i.e. in _span).
9005       new_oop->oop_iterate(&_mark_and_push);
9006     }
9007   }
9008 }
9009 
9010 ////////////////////////////////////////////////////////////////////
9011 // Support for Marking Stack Overflow list handling and related code
9012 ////////////////////////////////////////////////////////////////////
9013 // Much of the following code is similar in shape and spirit to the
9014 // code used in ParNewGC. We should try and share that code
9015 // as much as possible in the future.
9016 
9017 #ifndef PRODUCT
9018 // Debugging support for CMSStackOverflowALot
9019 
9020 // It's OK to call this multi-threaded;  the worst thing
9021 // that can happen is that we'll get a bunch of closely
9022 // spaced simulated overflows, but that's OK, in fact
9023 // probably good as it would exercise the overflow code
9024 // under contention.
9025 bool CMSCollector::simulate_overflow() {
9026   if (_overflow_counter-- <= 0) { // just being defensive
9027     _overflow_counter = CMSMarkStackOverflowInterval;
9028     return true;
9029   } else {
9030     return false;
9031   }
9032 }
9033 
9034 bool CMSCollector::par_simulate_overflow() {
9035   return simulate_overflow();
9036 }
9037 #endif
9038 
9039 // Single-threaded
9040 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
9041   assert(stack->isEmpty(), "Expected precondition");
9042   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
9043   size_t i = num;
9044   oop  cur = _overflow_list;
9045   const markOop proto = markOopDesc::prototype();
9046   NOT_PRODUCT(ssize_t n = 0;)
9047   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
9048     next = oop(cur->mark());
9049     cur->set_mark(proto);   // until proven otherwise
9050     assert(cur->is_oop(), "Should be an oop");
9051     bool res = stack->push(cur);
9052     assert(res, "Bit off more than can chew?");
9053     NOT_PRODUCT(n++;)
9054   }
9055   _overflow_list = cur;
9056 #ifndef PRODUCT
9057   assert(_num_par_pushes >= n, "Too many pops?");
9058   _num_par_pushes -=n;
9059 #endif
9060   return !stack->isEmpty();
9061 }
9062 
9063 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
9064 // (MT-safe) Get a prefix of at most "num" from the list.
9065 // The overflow list is chained through the mark word of
9066 // each object in the list. We fetch the entire list,
9067 // break off a prefix of the right size and return the
9068 // remainder. If other threads try to take objects from
9069 // the overflow list at that time, they will wait for
9070 // some time to see if data becomes available. If (and
9071 // only if) another thread places one or more object(s)
9072 // on the global list before we have returned the suffix
9073 // to the global list, we will walk down our local list
9074 // to find its end and append the global list to
9075 // our suffix before returning it. This suffix walk can
9076 // prove to be expensive (quadratic in the amount of traffic)
9077 // when there are many objects in the overflow list and
9078 // there is much producer-consumer contention on the list.
9079 // *NOTE*: The overflow list manipulation code here and
9080 // in ParNewGeneration:: are very similar in shape,
9081 // except that in the ParNew case we use the old (from/eden)
9082 // copy of the object to thread the list via its klass word.
9083 // Because of the common code, if you make any changes in
9084 // the code below, please check the ParNew version to see if
9085 // similar changes might be needed.
9086 // CR 6797058 has been filed to consolidate the common code.
9087 bool CMSCollector::par_take_from_overflow_list(size_t num,
9088                                                OopTaskQueue* work_q,
9089                                                int no_of_gc_threads) {
9090   assert(work_q->size() == 0, "First empty local work queue");
9091   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
9092   if (_overflow_list == NULL) {
9093     return false;
9094   }
9095   // Grab the entire list; we'll put back a suffix
9096   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
9097   Thread* tid = Thread::current();
9098   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
9099   // set to ParallelGCThreads.
9100   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
9101   size_t sleep_time_millis = MAX2((size_t)1, num/100);
9102   // If the list is busy, we spin for a short while,
9103   // sleeping between attempts to get the list.
9104   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
9105     os::sleep(tid, sleep_time_millis, false);
9106     if (_overflow_list == NULL) {
9107       // Nothing left to take
9108       return false;
9109     } else if (_overflow_list != BUSY) {
9110       // Try and grab the prefix
9111       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
9112     }
9113   }
9114   // If the list was found to be empty, or we spun long
9115   // enough, we give up and return empty-handed. If we leave
9116   // the list in the BUSY state below, it must be the case that
9117   // some other thread holds the overflow list and will set it
9118   // to a non-BUSY state in the future.
9119   if (prefix == NULL || prefix == BUSY) {
9120      // Nothing to take or waited long enough
9121      if (prefix == NULL) {
9122        // Write back the NULL in case we overwrote it with BUSY above
9123        // and it is still the same value.
9124        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
9125      }
9126      return false;
9127   }
9128   assert(prefix != NULL && prefix != BUSY, "Error");
9129   size_t i = num;
9130   oop cur = prefix;
9131   // Walk down the first "num" objects, unless we reach the end.
9132   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
9133   if (cur->mark() == NULL) {
9134     // We have "num" or fewer elements in the list, so there
9135     // is nothing to return to the global list.
9136     // Write back the NULL in lieu of the BUSY we wrote
9137     // above, if it is still the same value.
9138     if (_overflow_list == BUSY) {
9139       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
9140     }
9141   } else {
9142     // Chop off the suffix and return it to the global list.
9143     assert(cur->mark() != BUSY, "Error");
9144     oop suffix_head = cur->mark(); // suffix will be put back on global list
9145     cur->set_mark(NULL);           // break off suffix
9146     // It's possible that the list is still in the empty(busy) state
9147     // we left it in a short while ago; in that case we may be
9148     // able to place back the suffix without incurring the cost
9149     // of a walk down the list.
9150     oop observed_overflow_list = _overflow_list;
9151     oop cur_overflow_list = observed_overflow_list;
9152     bool attached = false;
9153     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
9154       observed_overflow_list =
9155         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
9156       if (cur_overflow_list == observed_overflow_list) {
9157         attached = true;
9158         break;
9159       } else cur_overflow_list = observed_overflow_list;
9160     }
9161     if (!attached) {
9162       // Too bad, someone else sneaked in (at least) an element; we'll need
9163       // to do a splice. Find tail of suffix so we can prepend suffix to global
9164       // list.
9165       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
9166       oop suffix_tail = cur;
9167       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
9168              "Tautology");
9169       observed_overflow_list = _overflow_list;
9170       do {
9171         cur_overflow_list = observed_overflow_list;
9172         if (cur_overflow_list != BUSY) {
9173           // Do the splice ...
9174           suffix_tail->set_mark(markOop(cur_overflow_list));
9175         } else { // cur_overflow_list == BUSY
9176           suffix_tail->set_mark(NULL);
9177         }
9178         // ... and try to place spliced list back on overflow_list ...
9179         observed_overflow_list =
9180           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
9181       } while (cur_overflow_list != observed_overflow_list);
9182       // ... until we have succeeded in doing so.
9183     }
9184   }
9185 
9186   // Push the prefix elements on work_q
9187   assert(prefix != NULL, "control point invariant");
9188   const markOop proto = markOopDesc::prototype();
9189   oop next;
9190   NOT_PRODUCT(ssize_t n = 0;)
9191   for (cur = prefix; cur != NULL; cur = next) {
9192     next = oop(cur->mark());
9193     cur->set_mark(proto);   // until proven otherwise
9194     assert(cur->is_oop(), "Should be an oop");
9195     bool res = work_q->push(cur);
9196     assert(res, "Bit off more than we can chew?");
9197     NOT_PRODUCT(n++;)
9198   }
9199 #ifndef PRODUCT
9200   assert(_num_par_pushes >= n, "Too many pops?");
9201   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
9202 #endif
9203   return true;
9204 }
9205 
9206 // Single-threaded
9207 void CMSCollector::push_on_overflow_list(oop p) {
9208   NOT_PRODUCT(_num_par_pushes++;)
9209   assert(p->is_oop(), "Not an oop");
9210   preserve_mark_if_necessary(p);
9211   p->set_mark((markOop)_overflow_list);
9212   _overflow_list = p;
9213 }
9214 
9215 // Multi-threaded; use CAS to prepend to overflow list
9216 void CMSCollector::par_push_on_overflow_list(oop p) {
9217   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
9218   assert(p->is_oop(), "Not an oop");
9219   par_preserve_mark_if_necessary(p);
9220   oop observed_overflow_list = _overflow_list;
9221   oop cur_overflow_list;
9222   do {
9223     cur_overflow_list = observed_overflow_list;
9224     if (cur_overflow_list != BUSY) {
9225       p->set_mark(markOop(cur_overflow_list));
9226     } else {
9227       p->set_mark(NULL);
9228     }
9229     observed_overflow_list =
9230       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
9231   } while (cur_overflow_list != observed_overflow_list);
9232 }
9233 #undef BUSY
9234 
9235 // Single threaded
9236 // General Note on GrowableArray: pushes may silently fail
9237 // because we are (temporarily) out of C-heap for expanding
9238 // the stack. The problem is quite ubiquitous and affects
9239 // a lot of code in the JVM. The prudent thing for GrowableArray
9240 // to do (for now) is to exit with an error. However, that may
9241 // be too draconian in some cases because the caller may be
9242 // able to recover without much harm. For such cases, we
9243 // should probably introduce a "soft_push" method which returns
9244 // an indication of success or failure with the assumption that
9245 // the caller may be able to recover from a failure; code in
9246 // the VM can then be changed, incrementally, to deal with such
9247 // failures where possible, thus, incrementally hardening the VM
9248 // in such low resource situations.
9249 void CMSCollector::preserve_mark_work(oop p, markOop m) {
9250   _preserved_oop_stack.push(p);
9251   _preserved_mark_stack.push(m);
9252   assert(m == p->mark(), "Mark word changed");
9253   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
9254          "bijection");
9255 }
9256 
9257 // Single threaded
9258 void CMSCollector::preserve_mark_if_necessary(oop p) {
9259   markOop m = p->mark();
9260   if (m->must_be_preserved(p)) {
9261     preserve_mark_work(p, m);
9262   }
9263 }
9264 
9265 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
9266   markOop m = p->mark();
9267   if (m->must_be_preserved(p)) {
9268     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
9269     // Even though we read the mark word without holding
9270     // the lock, we are assured that it will not change
9271     // because we "own" this oop, so no other thread can
9272     // be trying to push it on the overflow list; see
9273     // the assertion in preserve_mark_work() that checks
9274     // that m == p->mark().
9275     preserve_mark_work(p, m);
9276   }
9277 }
9278 
9279 // We should be able to do this multi-threaded,
9280 // a chunk of stack being a task (this is
9281 // correct because each oop only ever appears
9282 // once in the overflow list. However, it's
9283 // not very easy to completely overlap this with
9284 // other operations, so will generally not be done
9285 // until all work's been completed. Because we
9286 // expect the preserved oop stack (set) to be small,
9287 // it's probably fine to do this single-threaded.
9288 // We can explore cleverer concurrent/overlapped/parallel
9289 // processing of preserved marks if we feel the
9290 // need for this in the future. Stack overflow should
9291 // be so rare in practice and, when it happens, its
9292 // effect on performance so great that this will
9293 // likely just be in the noise anyway.
9294 void CMSCollector::restore_preserved_marks_if_any() {
9295   assert(SafepointSynchronize::is_at_safepoint(),
9296          "world should be stopped");
9297   assert(Thread::current()->is_ConcurrentGC_thread() ||
9298          Thread::current()->is_VM_thread(),
9299          "should be single-threaded");
9300   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
9301          "bijection");
9302 
9303   while (!_preserved_oop_stack.is_empty()) {
9304     oop p = _preserved_oop_stack.pop();
9305     assert(p->is_oop(), "Should be an oop");
9306     assert(_span.contains(p), "oop should be in _span");
9307     assert(p->mark() == markOopDesc::prototype(),
9308            "Set when taken from overflow list");
9309     markOop m = _preserved_mark_stack.pop();
9310     p->set_mark(m);
9311   }
9312   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
9313          "stacks were cleared above");
9314 }
9315 
9316 #ifndef PRODUCT
9317 bool CMSCollector::no_preserved_marks() const {
9318   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
9319 }
9320 #endif
9321 
9322 CMSAdaptiveSizePolicy* ASConcurrentMarkSweepGeneration::cms_size_policy() const
9323 {
9324   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
9325   CMSAdaptiveSizePolicy* size_policy =
9326     (CMSAdaptiveSizePolicy*) gch->gen_policy()->size_policy();
9327   assert(size_policy->is_gc_cms_adaptive_size_policy(),
9328     "Wrong type for size policy");
9329   return size_policy;
9330 }
9331 
9332 void ASConcurrentMarkSweepGeneration::resize(size_t cur_promo_size,
9333                                            size_t desired_promo_size) {
9334   if (cur_promo_size < desired_promo_size) {
9335     size_t expand_bytes = desired_promo_size - cur_promo_size;
9336     if (PrintAdaptiveSizePolicy && Verbose) {
9337       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
9338         "Expanding tenured generation by " SIZE_FORMAT " (bytes)",
9339         expand_bytes);
9340     }
9341     expand(expand_bytes,
9342            MinHeapDeltaBytes,
9343            CMSExpansionCause::_adaptive_size_policy);
9344   } else if (desired_promo_size < cur_promo_size) {
9345     size_t shrink_bytes = cur_promo_size - desired_promo_size;
9346     if (PrintAdaptiveSizePolicy && Verbose) {
9347       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
9348         "Shrinking tenured generation by " SIZE_FORMAT " (bytes)",
9349         shrink_bytes);
9350     }
9351     shrink(shrink_bytes);
9352   }
9353 }
9354 
9355 CMSGCAdaptivePolicyCounters* ASConcurrentMarkSweepGeneration::gc_adaptive_policy_counters() {
9356   GenCollectedHeap* gch = GenCollectedHeap::heap();
9357   CMSGCAdaptivePolicyCounters* counters =
9358     (CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters();
9359   assert(counters->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
9360     "Wrong kind of counters");
9361   return counters;
9362 }
9363 
9364 
9365 void ASConcurrentMarkSweepGeneration::update_counters() {
9366   if (UsePerfData) {
9367     _space_counters->update_all();
9368     _gen_counters->update_all();
9369     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9370     GenCollectedHeap* gch = GenCollectedHeap::heap();
9371     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
9372     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
9373       "Wrong gc statistics type");
9374     counters->update_counters(gc_stats_l);
9375   }
9376 }
9377 
9378 void ASConcurrentMarkSweepGeneration::update_counters(size_t used) {
9379   if (UsePerfData) {
9380     _space_counters->update_used(used);
9381     _space_counters->update_capacity();
9382     _gen_counters->update_all();
9383 
9384     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9385     GenCollectedHeap* gch = GenCollectedHeap::heap();
9386     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
9387     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
9388       "Wrong gc statistics type");
9389     counters->update_counters(gc_stats_l);
9390   }
9391 }
9392 
9393 void ASConcurrentMarkSweepGeneration::shrink_by(size_t desired_bytes) {
9394   assert_locked_or_safepoint(Heap_lock);
9395   assert_lock_strong(freelistLock());
9396   HeapWord* old_end = _cmsSpace->end();
9397   HeapWord* unallocated_start = _cmsSpace->unallocated_block();
9398   assert(old_end >= unallocated_start, "Miscalculation of unallocated_start");
9399   FreeChunk* chunk_at_end = find_chunk_at_end();
9400   if (chunk_at_end == NULL) {
9401     // No room to shrink
9402     if (PrintGCDetails && Verbose) {
9403       gclog_or_tty->print_cr("No room to shrink: old_end  "
9404         PTR_FORMAT "  unallocated_start  " PTR_FORMAT
9405         " chunk_at_end  " PTR_FORMAT,
9406         old_end, unallocated_start, chunk_at_end);
9407     }
9408     return;
9409   } else {
9410 
9411     // Find the chunk at the end of the space and determine
9412     // how much it can be shrunk.
9413     size_t shrinkable_size_in_bytes = chunk_at_end->size();
9414     size_t aligned_shrinkable_size_in_bytes =
9415       align_size_down(shrinkable_size_in_bytes, os::vm_page_size());
9416     assert(unallocated_start <= (HeapWord*) chunk_at_end->end(),
9417       "Inconsistent chunk at end of space");
9418     size_t bytes = MIN2(desired_bytes, aligned_shrinkable_size_in_bytes);
9419     size_t word_size_before = heap_word_size(_virtual_space.committed_size());
9420 
9421     // Shrink the underlying space
9422     _virtual_space.shrink_by(bytes);
9423     if (PrintGCDetails && Verbose) {
9424       gclog_or_tty->print_cr("ConcurrentMarkSweepGeneration::shrink_by:"
9425         " desired_bytes " SIZE_FORMAT
9426         " shrinkable_size_in_bytes " SIZE_FORMAT
9427         " aligned_shrinkable_size_in_bytes " SIZE_FORMAT
9428         "  bytes  " SIZE_FORMAT,
9429         desired_bytes, shrinkable_size_in_bytes,
9430         aligned_shrinkable_size_in_bytes, bytes);
9431       gclog_or_tty->print_cr("          old_end  " SIZE_FORMAT
9432         "  unallocated_start  " SIZE_FORMAT,
9433         old_end, unallocated_start);
9434     }
9435 
9436     // If the space did shrink (shrinking is not guaranteed),
9437     // shrink the chunk at the end by the appropriate amount.
9438     if (((HeapWord*)_virtual_space.high()) < old_end) {
9439       size_t new_word_size =
9440         heap_word_size(_virtual_space.committed_size());
9441 
9442       // Have to remove the chunk from the dictionary because it is changing
9443       // size and might be someplace elsewhere in the dictionary.
9444 
9445       // Get the chunk at end, shrink it, and put it
9446       // back.
9447       _cmsSpace->removeChunkFromDictionary(chunk_at_end);
9448       size_t word_size_change = word_size_before - new_word_size;
9449       size_t chunk_at_end_old_size = chunk_at_end->size();
9450       assert(chunk_at_end_old_size >= word_size_change,
9451         "Shrink is too large");
9452       chunk_at_end->set_size(chunk_at_end_old_size -
9453                           word_size_change);
9454       _cmsSpace->freed((HeapWord*) chunk_at_end->end(),
9455         word_size_change);
9456 
9457       _cmsSpace->returnChunkToDictionary(chunk_at_end);
9458 
9459       MemRegion mr(_cmsSpace->bottom(), new_word_size);
9460       _bts->resize(new_word_size);  // resize the block offset shared array
9461       Universe::heap()->barrier_set()->resize_covered_region(mr);
9462       _cmsSpace->assert_locked();
9463       _cmsSpace->set_end((HeapWord*)_virtual_space.high());
9464 
9465       NOT_PRODUCT(_cmsSpace->dictionary()->verify());
9466 
9467       // update the space and generation capacity counters
9468       if (UsePerfData) {
9469         _space_counters->update_capacity();
9470         _gen_counters->update_all();
9471       }
9472 
9473       if (Verbose && PrintGCDetails) {
9474         size_t new_mem_size = _virtual_space.committed_size();
9475         size_t old_mem_size = new_mem_size + bytes;
9476         gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K by " SIZE_FORMAT "K to " SIZE_FORMAT "K",
9477                       name(), old_mem_size/K, bytes/K, new_mem_size/K);
9478       }
9479     }
9480 
9481     assert(_cmsSpace->unallocated_block() <= _cmsSpace->end(),
9482       "Inconsistency at end of space");
9483     assert(chunk_at_end->end() == (uintptr_t*) _cmsSpace->end(),
9484       "Shrinking is inconsistent");
9485     return;
9486   }
9487 }
9488 // Transfer some number of overflown objects to usual marking
9489 // stack. Return true if some objects were transferred.
9490 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
9491   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
9492                     (size_t)ParGCDesiredObjsFromOverflowList);
9493 
9494   bool res = _collector->take_from_overflow_list(num, _mark_stack);
9495   assert(_collector->overflow_list_is_empty() || res,
9496          "If list is not empty, we should have taken something");
9497   assert(!res || !_mark_stack->isEmpty(),
9498          "If we took something, it should now be on our stack");
9499   return res;
9500 }
9501 
9502 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
9503   size_t res = _sp->block_size_no_stall(addr, _collector);
9504   if (_sp->block_is_obj(addr)) {
9505     if (_live_bit_map->isMarked(addr)) {
9506       // It can't have been dead in a previous cycle
9507       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
9508     } else {
9509       _dead_bit_map->mark(addr);      // mark the dead object
9510     }
9511   }
9512   // Could be 0, if the block size could not be computed without stalling.
9513   return res;
9514 }
9515 
9516 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
9517 
9518   switch (phase) {
9519     case CMSCollector::InitialMarking:
9520       initialize(true  /* fullGC */ ,
9521                  cause /* cause of the GC */,
9522                  true  /* recordGCBeginTime */,
9523                  true  /* recordPreGCUsage */,
9524                  false /* recordPeakUsage */,
9525                  false /* recordPostGCusage */,
9526                  true  /* recordAccumulatedGCTime */,
9527                  false /* recordGCEndTime */,
9528                  false /* countCollection */  );
9529       break;
9530 
9531     case CMSCollector::FinalMarking:
9532       initialize(true  /* fullGC */ ,
9533                  cause /* cause of the GC */,
9534                  false /* recordGCBeginTime */,
9535                  false /* recordPreGCUsage */,
9536                  false /* recordPeakUsage */,
9537                  false /* recordPostGCusage */,
9538                  true  /* recordAccumulatedGCTime */,
9539                  false /* recordGCEndTime */,
9540                  false /* countCollection */  );
9541       break;
9542 
9543     case CMSCollector::Sweeping:
9544       initialize(true  /* fullGC */ ,
9545                  cause /* cause of the GC */,
9546                  false /* recordGCBeginTime */,
9547                  false /* recordPreGCUsage */,
9548                  true  /* recordPeakUsage */,
9549                  true  /* recordPostGCusage */,
9550                  false /* recordAccumulatedGCTime */,
9551                  true  /* recordGCEndTime */,
9552                  true  /* countCollection */  );
9553       break;
9554 
9555     default:
9556       ShouldNotReachHere();
9557   }
9558 }