1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  28 #include "gc_implementation/shared/vmGCOperations.hpp"
  29 #include "memory/cardTableRS.hpp"
  30 #include "memory/collectorPolicy.hpp"
  31 #include "memory/gcLocker.inline.hpp"
  32 #include "memory/genCollectedHeap.hpp"
  33 #include "memory/generationSpec.hpp"
  34 #include "memory/space.hpp"
  35 #include "memory/universe.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/globals_extension.hpp"
  38 #include "runtime/handles.inline.hpp"
  39 #include "runtime/java.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 #include "runtime/vmThread.hpp"
  42 #include "utilities/macros.hpp"
  43 #if INCLUDE_ALL_GCS
  44 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  45 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  46 #endif // INCLUDE_ALL_GCS
  47 
  48 // CollectorPolicy methods.
  49 
  50 void CollectorPolicy::initialize_flags() {
  51   assert(_max_alignment >= _min_alignment,
  52          err_msg("max_alignment: " SIZE_FORMAT " less than min_alignment: " SIZE_FORMAT,
  53                  _max_alignment, _min_alignment));
  54   assert(_max_alignment % _min_alignment == 0,
  55          err_msg("max_alignment: " SIZE_FORMAT " not aligned by min_alignment: " SIZE_FORMAT,
  56                  _max_alignment, _min_alignment));
  57 
  58   if (MaxHeapSize < InitialHeapSize) {
  59     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
  60   }
  61 
  62   MinHeapDeltaBytes = align_size_up(MinHeapDeltaBytes, _min_alignment);
  63 }
  64 
  65 void CollectorPolicy::initialize_size_info() {
  66   // User inputs from -mx and ms must be aligned
  67   _min_heap_byte_size = align_size_up(Arguments::min_heap_size(), _min_alignment);
  68   _initial_heap_byte_size = align_size_up(InitialHeapSize, _min_alignment);
  69   _max_heap_byte_size = align_size_up(MaxHeapSize, _max_alignment);
  70 
  71   // Check heap parameter properties
  72   if (_initial_heap_byte_size < M) {
  73     vm_exit_during_initialization("Too small initial heap");
  74   }
  75   // Check heap parameter properties
  76   if (_min_heap_byte_size < M) {
  77     vm_exit_during_initialization("Too small minimum heap");
  78   }
  79   if (_initial_heap_byte_size <= NewSize) {
  80      // make sure there is at least some room in old space
  81     vm_exit_during_initialization("Too small initial heap for new size specified");
  82   }
  83   if (_max_heap_byte_size < _min_heap_byte_size) {
  84     vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
  85   }
  86   if (_initial_heap_byte_size < _min_heap_byte_size) {
  87     vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
  88   }
  89   if (_max_heap_byte_size < _initial_heap_byte_size) {
  90     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
  91   }
  92 
  93   if (PrintGCDetails && Verbose) {
  94     gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT "  Initial heap "
  95       SIZE_FORMAT "  Maximum heap " SIZE_FORMAT,
  96       _min_heap_byte_size, _initial_heap_byte_size, _max_heap_byte_size);
  97   }
  98 }
  99 
 100 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
 101   bool result = _should_clear_all_soft_refs;
 102   set_should_clear_all_soft_refs(false);
 103   return result;
 104 }
 105 
 106 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
 107                                            int max_covered_regions) {
 108   return new CardTableRS(whole_heap, max_covered_regions);
 109 }
 110 
 111 void CollectorPolicy::cleared_all_soft_refs() {
 112   // If near gc overhear limit, continue to clear SoftRefs.  SoftRefs may
 113   // have been cleared in the last collection but if the gc overhear
 114   // limit continues to be near, SoftRefs should still be cleared.
 115   if (size_policy() != NULL) {
 116     _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
 117   }
 118   _all_soft_refs_clear = true;
 119 }
 120 
 121 size_t CollectorPolicy::compute_max_alignment() {
 122   // The card marking array and the offset arrays for old generations are
 123   // committed in os pages as well. Make sure they are entirely full (to
 124   // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
 125   // byte entry and the os page size is 4096, the maximum heap size should
 126   // be 512*4096 = 2MB aligned.
 127 
 128   // There is only the GenRemSet in Hotspot and only the GenRemSet::CardTable
 129   // is supported.
 130   // Requirements of any new remembered set implementations must be added here.
 131   size_t alignment = GenRemSet::max_alignment_constraint(GenRemSet::CardTable);
 132 
 133   // Parallel GC does its own alignment of the generations to avoid requiring a
 134   // large page (256M on some platforms) for the permanent generation.  The
 135   // other collectors should also be updated to do their own alignment and then
 136   // this use of lcm() should be removed.
 137   if (UseLargePages && !UseParallelGC) {
 138       // in presence of large pages we have to make sure that our
 139       // alignment is large page aware
 140       alignment = lcm(os::large_page_size(), alignment);
 141   }
 142 
 143   return alignment;
 144 }
 145 
 146 // GenCollectorPolicy methods.
 147 
 148 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
 149   size_t x = base_size / (NewRatio+1);
 150   size_t new_gen_size = x > _min_alignment ?
 151                      align_size_down(x, _min_alignment) :
 152                      _min_alignment;
 153   return new_gen_size;
 154 }
 155 
 156 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
 157                                                  size_t maximum_size) {
 158   size_t alignment = _min_alignment;
 159   size_t max_minus = maximum_size - alignment;
 160   return desired_size < max_minus ? desired_size : max_minus;
 161 }
 162 
 163 
 164 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
 165                                                 size_t init_promo_size,
 166                                                 size_t init_survivor_size) {
 167   const double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
 168   _size_policy = new AdaptiveSizePolicy(init_eden_size,
 169                                         init_promo_size,
 170                                         init_survivor_size,
 171                                         max_gc_pause_sec,
 172                                         GCTimeRatio);
 173 }
 174 
 175 void GenCollectorPolicy::initialize_flags() {
 176   // All sizes must be multiples of the generation granularity.
 177   _min_alignment = (uintx) Generation::GenGrain;
 178   _max_alignment = compute_max_alignment();
 179 
 180   CollectorPolicy::initialize_flags();
 181 
 182   // All generational heaps have a youngest gen; handle those flags here.
 183 
 184   // Adjust max size parameters
 185   if (NewSize > MaxNewSize) {
 186     MaxNewSize = NewSize;
 187   }
 188   NewSize = align_size_down(NewSize, _min_alignment);
 189   MaxNewSize = align_size_down(MaxNewSize, _min_alignment);
 190 
 191   // Check validity of heap flags
 192   assert(NewSize     % _min_alignment == 0, "eden space alignment");
 193   assert(MaxNewSize  % _min_alignment == 0, "survivor space alignment");
 194 
 195   if (NewSize < 3 * _min_alignment) {
 196      // make sure there room for eden and two survivor spaces
 197     vm_exit_during_initialization("Too small new size specified");
 198   }
 199   if (SurvivorRatio < 1 || NewRatio < 1) {
 200     vm_exit_during_initialization("Invalid young gen ratio specified");
 201   }
 202 }
 203 
 204 void TwoGenerationCollectorPolicy::initialize_flags() {
 205   GenCollectorPolicy::initialize_flags();
 206 
 207   OldSize = align_size_down(OldSize, _min_alignment);
 208 
 209   if (FLAG_IS_CMDLINE(OldSize) && FLAG_IS_DEFAULT(NewSize)) {
 210     // NewRatio will be used later to set the young generation size so we use
 211     // it to calculate how big the heap should be based on the requested OldSize
 212     // and NewRatio.
 213     assert(NewRatio > 0, "NewRatio should have been set up earlier");
 214     size_t calculated_heapsize = (OldSize / NewRatio) * (NewRatio + 1);
 215 
 216     calculated_heapsize = align_size_up(calculated_heapsize, _max_alignment);
 217     MaxHeapSize = calculated_heapsize;
 218     InitialHeapSize = calculated_heapsize;
 219   }
 220   MaxHeapSize = align_size_up(MaxHeapSize, _max_alignment);
 221 
 222   // adjust max heap size if necessary
 223   if (NewSize + OldSize > MaxHeapSize) {
 224     if (FLAG_IS_CMDLINE(MaxHeapSize)) {
 225       // somebody set a maximum heap size with the intention that we should not
 226       // exceed it. Adjust New/OldSize as necessary.
 227       uintx calculated_size = NewSize + OldSize;
 228       double shrink_factor = (double) MaxHeapSize / calculated_size;
 229       // align
 230       NewSize = align_size_down((uintx) (NewSize * shrink_factor), _min_alignment);
 231       // OldSize is already aligned because above we aligned MaxHeapSize to
 232       // _max_alignment, and we just made sure that NewSize is aligned to
 233       // _min_alignment. In initialize_flags() we verified that _max_alignment
 234       // is a multiple of _min_alignment.
 235       OldSize = MaxHeapSize - NewSize;
 236     } else {
 237       MaxHeapSize = NewSize + OldSize;
 238     }
 239   }
 240   // need to do this again
 241   MaxHeapSize = align_size_up(MaxHeapSize, _max_alignment);
 242 
 243   // adjust max heap size if necessary
 244   if (NewSize + OldSize > MaxHeapSize) {
 245     if (FLAG_IS_CMDLINE(MaxHeapSize)) {
 246       // somebody set a maximum heap size with the intention that we should not
 247       // exceed it. Adjust New/OldSize as necessary.
 248       uintx calculated_size = NewSize + OldSize;
 249       double shrink_factor = (double) MaxHeapSize / calculated_size;
 250       // align
 251       NewSize = align_size_down((uintx) (NewSize * shrink_factor), _min_alignment);
 252       // OldSize is already aligned because above we aligned MaxHeapSize to
 253       // _max_alignment, and we just made sure that NewSize is aligned to
 254       // _min_alignment. In initialize_flags() we verified that _max_alignment
 255       // is a multiple of _min_alignment.
 256       OldSize = MaxHeapSize - NewSize;
 257     } else {
 258       MaxHeapSize = NewSize + OldSize;
 259     }
 260   }
 261   // need to do this again
 262   MaxHeapSize = align_size_up(MaxHeapSize, _max_alignment);
 263 
 264   always_do_update_barrier = UseConcMarkSweepGC;
 265 
 266   // Check validity of heap flags
 267   assert(OldSize     % _min_alignment == 0, "old space alignment");
 268   assert(MaxHeapSize % _max_alignment == 0, "maximum heap alignment");
 269 }
 270 
 271 // Values set on the command line win over any ergonomically
 272 // set command line parameters.
 273 // Ergonomic choice of parameters are done before this
 274 // method is called.  Values for command line parameters such as NewSize
 275 // and MaxNewSize feed those ergonomic choices into this method.
 276 // This method makes the final generation sizings consistent with
 277 // themselves and with overall heap sizings.
 278 // In the absence of explicitly set command line flags, policies
 279 // such as the use of NewRatio are used to size the generation.
 280 void GenCollectorPolicy::initialize_size_info() {
 281   CollectorPolicy::initialize_size_info();
 282 
 283   // _min_alignment is used for alignment within a generation.
 284   // There is additional alignment done down stream for some
 285   // collectors that sometimes causes unwanted rounding up of
 286   // generations sizes.
 287 
 288   // Determine maximum size of gen0
 289 
 290   size_t max_new_size = 0;
 291   if (FLAG_IS_CMDLINE(MaxNewSize) || FLAG_IS_ERGO(MaxNewSize)) {
 292     if (MaxNewSize < _min_alignment) {
 293       max_new_size = _min_alignment;
 294     }
 295     if (MaxNewSize >= _max_heap_byte_size) {
 296       max_new_size = align_size_down(_max_heap_byte_size - _min_alignment,
 297                                      _min_alignment);
 298       warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or "
 299         "greater than the entire heap (" SIZE_FORMAT "k).  A "
 300         "new generation size of " SIZE_FORMAT "k will be used.",
 301         MaxNewSize/K, _max_heap_byte_size/K, max_new_size/K);
 302     } else {
 303       max_new_size = align_size_down(MaxNewSize, _min_alignment);
 304     }
 305 
 306   // The case for FLAG_IS_ERGO(MaxNewSize) could be treated
 307   // specially at this point to just use an ergonomically set
 308   // MaxNewSize to set max_new_size.  For cases with small
 309   // heaps such a policy often did not work because the MaxNewSize
 310   // was larger than the entire heap.  The interpretation given
 311   // to ergonomically set flags is that the flags are set
 312   // by different collectors for their own special needs but
 313   // are not allowed to badly shape the heap.  This allows the
 314   // different collectors to decide what's best for themselves
 315   // without having to factor in the overall heap shape.  It
 316   // can be the case in the future that the collectors would
 317   // only make "wise" ergonomics choices and this policy could
 318   // just accept those choices.  The choices currently made are
 319   // not always "wise".
 320   } else {
 321     max_new_size = scale_by_NewRatio_aligned(_max_heap_byte_size);
 322     // Bound the maximum size by NewSize below (since it historically
 323     // would have been NewSize and because the NewRatio calculation could
 324     // yield a size that is too small) and bound it by MaxNewSize above.
 325     // Ergonomics plays here by previously calculating the desired
 326     // NewSize and MaxNewSize.
 327     max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
 328   }
 329   assert(max_new_size > 0, "All paths should set max_new_size");
 330 
 331   // Given the maximum gen0 size, determine the initial and
 332   // minimum gen0 sizes.
 333 
 334   if (_max_heap_byte_size == _min_heap_byte_size) {
 335     // The maximum and minimum heap sizes are the same so
 336     // the generations minimum and initial must be the
 337     // same as its maximum.
 338     _min_gen0_size = max_new_size;
 339     _initial_gen0_size = max_new_size;
 340     _max_gen0_size = max_new_size;
 341   } else {
 342     size_t desired_new_size = 0;
 343     if (!FLAG_IS_DEFAULT(NewSize)) {
 344       // If NewSize is set ergonomically (for example by cms), it
 345       // would make sense to use it.  If it is used, also use it
 346       // to set the initial size.  Although there is no reason
 347       // the minimum size and the initial size have to be the same,
 348       // the current implementation gets into trouble during the calculation
 349       // of the tenured generation sizes if they are different.
 350       // Note that this makes the initial size and the minimum size
 351       // generally small compared to the NewRatio calculation.
 352       _min_gen0_size = NewSize;
 353       desired_new_size = NewSize;
 354       max_new_size = MAX2(max_new_size, NewSize);
 355     } else {
 356       // For the case where NewSize is the default, use NewRatio
 357       // to size the minimum and initial generation sizes.
 358       // Use the default NewSize as the floor for these values.  If
 359       // NewRatio is overly large, the resulting sizes can be too
 360       // small.
 361       _min_gen0_size = MAX2(scale_by_NewRatio_aligned(_min_heap_byte_size), NewSize);
 362       desired_new_size =
 363         MAX2(scale_by_NewRatio_aligned(_initial_heap_byte_size), NewSize);
 364     }
 365 
 366     assert(_min_gen0_size > 0, "Sanity check");
 367     _initial_gen0_size = desired_new_size;
 368     _max_gen0_size = max_new_size;
 369 
 370     // At this point the desirable initial and minimum sizes have been
 371     // determined without regard to the maximum sizes.
 372 
 373     // Bound the sizes by the corresponding overall heap sizes.
 374     _min_gen0_size = bound_minus_alignment(_min_gen0_size, _min_heap_byte_size);
 375     _initial_gen0_size = bound_minus_alignment(_initial_gen0_size, _initial_heap_byte_size);
 376     _max_gen0_size = bound_minus_alignment(_max_gen0_size, _max_heap_byte_size);
 377 
 378     // At this point all three sizes have been checked against the
 379     // maximum sizes but have not been checked for consistency
 380     // among the three.
 381 
 382     // Final check min <= initial <= max
 383     _min_gen0_size = MIN2(_min_gen0_size, _max_gen0_size);
 384     _initial_gen0_size = MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size);
 385     _min_gen0_size = MIN2(_min_gen0_size, _initial_gen0_size);
 386   }
 387 
 388   if (PrintGCDetails && Verbose) {
 389     gclog_or_tty->print_cr("1: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 390       SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 391       _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 392   }
 393 }
 394 
 395 // Call this method during the sizing of the gen1 to make
 396 // adjustments to gen0 because of gen1 sizing policy.  gen0 initially has
 397 // the most freedom in sizing because it is done before the
 398 // policy for gen1 is applied.  Once gen1 policies have been applied,
 399 // there may be conflicts in the shape of the heap and this method
 400 // is used to make the needed adjustments.  The application of the
 401 // policies could be more sophisticated (iterative for example) but
 402 // keeping it simple also seems a worthwhile goal.
 403 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
 404                                                      size_t* gen1_size_ptr,
 405                                                      const size_t heap_size,
 406                                                      const size_t min_gen1_size) {
 407   bool result = false;
 408 
 409   if ((*gen1_size_ptr + *gen0_size_ptr) > heap_size) {
 410     if ((heap_size < (*gen0_size_ptr + min_gen1_size)) &&
 411         (heap_size >= min_gen1_size + _min_alignment)) {
 412       // Adjust gen0 down to accommodate min_gen1_size
 413       *gen0_size_ptr = heap_size - min_gen1_size;
 414       *gen0_size_ptr =
 415         MAX2((uintx)align_size_down(*gen0_size_ptr, _min_alignment), _min_alignment);
 416       assert(*gen0_size_ptr > 0, "Min gen0 is too large");
 417       result = true;
 418     } else {
 419       *gen1_size_ptr = heap_size - *gen0_size_ptr;
 420       *gen1_size_ptr =
 421         MAX2((uintx)align_size_down(*gen1_size_ptr, _min_alignment), _min_alignment);
 422     }
 423   }
 424   return result;
 425 }
 426 
 427 // Minimum sizes of the generations may be different than
 428 // the initial sizes.  An inconsistently is permitted here
 429 // in the total size that can be specified explicitly by
 430 // command line specification of OldSize and NewSize and
 431 // also a command line specification of -Xms.  Issue a warning
 432 // but allow the values to pass.
 433 
 434 void TwoGenerationCollectorPolicy::initialize_size_info() {
 435   GenCollectorPolicy::initialize_size_info();
 436 
 437   // At this point the minimum, initial and maximum sizes
 438   // of the overall heap and of gen0 have been determined.
 439   // The maximum gen1 size can be determined from the maximum gen0
 440   // and maximum heap size since no explicit flags exits
 441   // for setting the gen1 maximum.
 442   _max_gen1_size = _max_heap_byte_size - _max_gen0_size;
 443   _max_gen1_size =
 444     MAX2((uintx)align_size_down(_max_gen1_size, _min_alignment), _min_alignment);
 445   // If no explicit command line flag has been set for the
 446   // gen1 size, use what is left for gen1.
 447   if (FLAG_IS_DEFAULT(OldSize) || FLAG_IS_ERGO(OldSize)) {
 448     // The user has not specified any value or ergonomics
 449     // has chosen a value (which may or may not be consistent
 450     // with the overall heap size).  In either case make
 451     // the minimum, maximum and initial sizes consistent
 452     // with the gen0 sizes and the overall heap sizes.
 453     assert(_min_heap_byte_size > _min_gen0_size,
 454       "gen0 has an unexpected minimum size");
 455     _min_gen1_size = _min_heap_byte_size - _min_gen0_size;
 456     _min_gen1_size =
 457       MAX2((uintx)align_size_down(_min_gen1_size, _min_alignment), _min_alignment);
 458     _initial_gen1_size = _initial_heap_byte_size - _initial_gen0_size;
 459     _initial_gen1_size =
 460       MAX2((uintx)align_size_down(_initial_gen1_size, _min_alignment), _min_alignment);
 461   } else {
 462     // It's been explicitly set on the command line.  Use the
 463     // OldSize and then determine the consequences.
 464     _min_gen1_size = OldSize;
 465     _initial_gen1_size = OldSize;
 466 
 467     // If the user has explicitly set an OldSize that is inconsistent
 468     // with other command line flags, issue a warning.
 469     // The generation minimums and the overall heap mimimum should
 470     // be within one heap alignment.
 471     if ((_min_gen1_size + _min_gen0_size + _min_alignment) < _min_heap_byte_size) {
 472       warning("Inconsistency between minimum heap size and minimum "
 473               "generation sizes: using minimum heap = " SIZE_FORMAT,
 474               _min_heap_byte_size);
 475     }
 476     if ((OldSize > _max_gen1_size)) {
 477       warning("Inconsistency between maximum heap size and maximum "
 478               "generation sizes: using maximum heap = " SIZE_FORMAT
 479               " -XX:OldSize flag is being ignored",
 480               _max_heap_byte_size);
 481     }
 482     // If there is an inconsistency between the OldSize and the minimum and/or
 483     // initial size of gen0, since OldSize was explicitly set, OldSize wins.
 484     if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size,
 485                           _min_heap_byte_size, OldSize)) {
 486       if (PrintGCDetails && Verbose) {
 487         gclog_or_tty->print_cr("2: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 488               SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 489               _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 490       }
 491     }
 492     // Initial size
 493     if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
 494                           _initial_heap_byte_size, OldSize)) {
 495       if (PrintGCDetails && Verbose) {
 496         gclog_or_tty->print_cr("3: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 497           SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 498           _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 499       }
 500     }
 501   }
 502   // Enforce the maximum gen1 size.
 503   _min_gen1_size = MIN2(_min_gen1_size, _max_gen1_size);
 504 
 505   // Check that min gen1 <= initial gen1 <= max gen1
 506   _initial_gen1_size = MAX2(_initial_gen1_size, _min_gen1_size);
 507   _initial_gen1_size = MIN2(_initial_gen1_size, _max_gen1_size);
 508 
 509   if (PrintGCDetails && Verbose) {
 510     gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT "  Initial gen1 "
 511       SIZE_FORMAT "  Maximum gen1 " SIZE_FORMAT,
 512       _min_gen1_size, _initial_gen1_size, _max_gen1_size);
 513   }
 514 }
 515 
 516 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
 517                                         bool is_tlab,
 518                                         bool* gc_overhead_limit_was_exceeded) {
 519   GenCollectedHeap *gch = GenCollectedHeap::heap();
 520 
 521   debug_only(gch->check_for_valid_allocation_state());
 522   assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
 523 
 524   // In general gc_overhead_limit_was_exceeded should be false so
 525   // set it so here and reset it to true only if the gc time
 526   // limit is being exceeded as checked below.
 527   *gc_overhead_limit_was_exceeded = false;
 528 
 529   HeapWord* result = NULL;
 530 
 531   // Loop until the allocation is satisified,
 532   // or unsatisfied after GC.
 533   for (int try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
 534     HandleMark hm; // discard any handles allocated in each iteration
 535 
 536     // First allocation attempt is lock-free.
 537     Generation *gen0 = gch->get_gen(0);
 538     assert(gen0->supports_inline_contig_alloc(),
 539       "Otherwise, must do alloc within heap lock");
 540     if (gen0->should_allocate(size, is_tlab)) {
 541       result = gen0->par_allocate(size, is_tlab);
 542       if (result != NULL) {
 543         assert(gch->is_in_reserved(result), "result not in heap");
 544         return result;
 545       }
 546     }
 547     unsigned int gc_count_before;  // read inside the Heap_lock locked region
 548     {
 549       MutexLocker ml(Heap_lock);
 550       if (PrintGC && Verbose) {
 551         gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
 552                       " attempting locked slow path allocation");
 553       }
 554       // Note that only large objects get a shot at being
 555       // allocated in later generations.
 556       bool first_only = ! should_try_older_generation_allocation(size);
 557 
 558       result = gch->attempt_allocation(size, is_tlab, first_only);
 559       if (result != NULL) {
 560         assert(gch->is_in_reserved(result), "result not in heap");
 561         return result;
 562       }
 563 
 564       if (GC_locker::is_active_and_needs_gc()) {
 565         if (is_tlab) {
 566           return NULL;  // Caller will retry allocating individual object
 567         }
 568         if (!gch->is_maximal_no_gc()) {
 569           // Try and expand heap to satisfy request
 570           result = expand_heap_and_allocate(size, is_tlab);
 571           // result could be null if we are out of space
 572           if (result != NULL) {
 573             return result;
 574           }
 575         }
 576 
 577         if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 578           return NULL; // we didn't get to do a GC and we didn't get any memory
 579         }
 580 
 581         // If this thread is not in a jni critical section, we stall
 582         // the requestor until the critical section has cleared and
 583         // GC allowed. When the critical section clears, a GC is
 584         // initiated by the last thread exiting the critical section; so
 585         // we retry the allocation sequence from the beginning of the loop,
 586         // rather than causing more, now probably unnecessary, GC attempts.
 587         JavaThread* jthr = JavaThread::current();
 588         if (!jthr->in_critical()) {
 589           MutexUnlocker mul(Heap_lock);
 590           // Wait for JNI critical section to be exited
 591           GC_locker::stall_until_clear();
 592           gclocker_stalled_count += 1;
 593           continue;
 594         } else {
 595           if (CheckJNICalls) {
 596             fatal("Possible deadlock due to allocating while"
 597                   " in jni critical section");
 598           }
 599           return NULL;
 600         }
 601       }
 602 
 603       // Read the gc count while the heap lock is held.
 604       gc_count_before = Universe::heap()->total_collections();
 605     }
 606 
 607     VM_GenCollectForAllocation op(size,
 608                                   is_tlab,
 609                                   gc_count_before);
 610     VMThread::execute(&op);
 611     if (op.prologue_succeeded()) {
 612       result = op.result();
 613       if (op.gc_locked()) {
 614          assert(result == NULL, "must be NULL if gc_locked() is true");
 615          continue;  // retry and/or stall as necessary
 616       }
 617 
 618       // Allocation has failed and a collection
 619       // has been done.  If the gc time limit was exceeded the
 620       // this time, return NULL so that an out-of-memory
 621       // will be thrown.  Clear gc_overhead_limit_exceeded
 622       // so that the overhead exceeded does not persist.
 623 
 624       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 625       const bool softrefs_clear = all_soft_refs_clear();
 626 
 627       if (limit_exceeded && softrefs_clear) {
 628         *gc_overhead_limit_was_exceeded = true;
 629         size_policy()->set_gc_overhead_limit_exceeded(false);
 630         if (op.result() != NULL) {
 631           CollectedHeap::fill_with_object(op.result(), size);
 632         }
 633         return NULL;
 634       }
 635       assert(result == NULL || gch->is_in_reserved(result),
 636              "result not in heap");
 637       return result;
 638     }
 639 
 640     // Give a warning if we seem to be looping forever.
 641     if ((QueuedAllocationWarningCount > 0) &&
 642         (try_count % QueuedAllocationWarningCount == 0)) {
 643           warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
 644                   " size=%d %s", try_count, size, is_tlab ? "(TLAB)" : "");
 645     }
 646   }
 647 }
 648 
 649 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
 650                                                        bool   is_tlab) {
 651   GenCollectedHeap *gch = GenCollectedHeap::heap();
 652   HeapWord* result = NULL;
 653   for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
 654     Generation *gen = gch->get_gen(i);
 655     if (gen->should_allocate(size, is_tlab)) {
 656       result = gen->expand_and_allocate(size, is_tlab);
 657     }
 658   }
 659   assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
 660   return result;
 661 }
 662 
 663 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
 664                                                         bool   is_tlab) {
 665   GenCollectedHeap *gch = GenCollectedHeap::heap();
 666   GCCauseSetter x(gch, GCCause::_allocation_failure);
 667   HeapWord* result = NULL;
 668 
 669   assert(size != 0, "Precondition violated");
 670   if (GC_locker::is_active_and_needs_gc()) {
 671     // GC locker is active; instead of a collection we will attempt
 672     // to expand the heap, if there's room for expansion.
 673     if (!gch->is_maximal_no_gc()) {
 674       result = expand_heap_and_allocate(size, is_tlab);
 675     }
 676     return result;   // could be null if we are out of space
 677   } else if (!gch->incremental_collection_will_fail(false /* don't consult_young */)) {
 678     // Do an incremental collection.
 679     gch->do_collection(false            /* full */,
 680                        false            /* clear_all_soft_refs */,
 681                        size             /* size */,
 682                        is_tlab          /* is_tlab */,
 683                        number_of_generations() - 1 /* max_level */);
 684   } else {
 685     if (Verbose && PrintGCDetails) {
 686       gclog_or_tty->print(" :: Trying full because partial may fail :: ");
 687     }
 688     // Try a full collection; see delta for bug id 6266275
 689     // for the original code and why this has been simplified
 690     // with from-space allocation criteria modified and
 691     // such allocation moved out of the safepoint path.
 692     gch->do_collection(true             /* full */,
 693                        false            /* clear_all_soft_refs */,
 694                        size             /* size */,
 695                        is_tlab          /* is_tlab */,
 696                        number_of_generations() - 1 /* max_level */);
 697   }
 698 
 699   result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
 700 
 701   if (result != NULL) {
 702     assert(gch->is_in_reserved(result), "result not in heap");
 703     return result;
 704   }
 705 
 706   // OK, collection failed, try expansion.
 707   result = expand_heap_and_allocate(size, is_tlab);
 708   if (result != NULL) {
 709     return result;
 710   }
 711 
 712   // If we reach this point, we're really out of memory. Try every trick
 713   // we can to reclaim memory. Force collection of soft references. Force
 714   // a complete compaction of the heap. Any additional methods for finding
 715   // free memory should be here, especially if they are expensive. If this
 716   // attempt fails, an OOM exception will be thrown.
 717   {
 718     UIntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
 719 
 720     gch->do_collection(true             /* full */,
 721                        true             /* clear_all_soft_refs */,
 722                        size             /* size */,
 723                        is_tlab          /* is_tlab */,
 724                        number_of_generations() - 1 /* max_level */);
 725   }
 726 
 727   result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
 728   if (result != NULL) {
 729     assert(gch->is_in_reserved(result), "result not in heap");
 730     return result;
 731   }
 732 
 733   assert(!should_clear_all_soft_refs(),
 734     "Flag should have been handled and cleared prior to this point");
 735 
 736   // What else?  We might try synchronous finalization later.  If the total
 737   // space available is large enough for the allocation, then a more
 738   // complete compaction phase than we've tried so far might be
 739   // appropriate.
 740   return NULL;
 741 }
 742 
 743 MetaWord* CollectorPolicy::satisfy_failed_metadata_allocation(
 744                                                  ClassLoaderData* loader_data,
 745                                                  size_t word_size,
 746                                                  Metaspace::MetadataType mdtype) {
 747   uint loop_count = 0;
 748   uint gc_count = 0;
 749   uint full_gc_count = 0;
 750 
 751   assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock");
 752 
 753   do {
 754     MetaWord* result = NULL;
 755     if (GC_locker::is_active_and_needs_gc()) {
 756       // If the GC_locker is active, just expand and allocate.
 757       // If that does not succeed, wait if this thread is not
 758       // in a critical section itself.
 759       result =
 760         loader_data->metaspace_non_null()->expand_and_allocate(word_size,
 761                                                                mdtype);
 762       if (result != NULL) {
 763         return result;
 764       }
 765       JavaThread* jthr = JavaThread::current();
 766       if (!jthr->in_critical()) {
 767         // Wait for JNI critical section to be exited
 768         GC_locker::stall_until_clear();
 769         // The GC invoked by the last thread leaving the critical
 770         // section will be a young collection and a full collection
 771         // is (currently) needed for unloading classes so continue
 772         // to the next iteration to get a full GC.
 773         continue;
 774       } else {
 775         if (CheckJNICalls) {
 776           fatal("Possible deadlock due to allocating while"
 777                 " in jni critical section");
 778         }
 779         return NULL;
 780       }
 781     }
 782 
 783     {  // Need lock to get self consistent gc_count's
 784       MutexLocker ml(Heap_lock);
 785       gc_count      = Universe::heap()->total_collections();
 786       full_gc_count = Universe::heap()->total_full_collections();
 787     }
 788 
 789     // Generate a VM operation
 790     VM_CollectForMetadataAllocation op(loader_data,
 791                                        word_size,
 792                                        mdtype,
 793                                        gc_count,
 794                                        full_gc_count,
 795                                        GCCause::_metadata_GC_threshold);
 796     VMThread::execute(&op);
 797 
 798     // If GC was locked out, try again.  Check
 799     // before checking success because the prologue
 800     // could have succeeded and the GC still have
 801     // been locked out.
 802     if (op.gc_locked()) {
 803       continue;
 804     }
 805 
 806     if (op.prologue_succeeded()) {
 807       return op.result();
 808     }
 809     loop_count++;
 810     if ((QueuedAllocationWarningCount > 0) &&
 811         (loop_count % QueuedAllocationWarningCount == 0)) {
 812       warning("satisfy_failed_metadata_allocation() retries %d times \n\t"
 813               " size=%d", loop_count, word_size);
 814     }
 815   } while (true);  // Until a GC is done
 816 }
 817 
 818 // Return true if any of the following is true:
 819 // . the allocation won't fit into the current young gen heap
 820 // . gc locker is occupied (jni critical section)
 821 // . heap memory is tight -- the most recent previous collection
 822 //   was a full collection because a partial collection (would
 823 //   have) failed and is likely to fail again
 824 bool GenCollectorPolicy::should_try_older_generation_allocation(
 825         size_t word_size) const {
 826   GenCollectedHeap* gch = GenCollectedHeap::heap();
 827   size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
 828   return    (word_size > heap_word_size(gen0_capacity))
 829          || GC_locker::is_active_and_needs_gc()
 830          || gch->incremental_collection_failed();
 831 }
 832 
 833 
 834 //
 835 // MarkSweepPolicy methods
 836 //
 837 
 838 MarkSweepPolicy::MarkSweepPolicy() {
 839   initialize_all();
 840 }
 841 
 842 void MarkSweepPolicy::initialize_generations() {
 843   _generations = NEW_C_HEAP_ARRAY3(GenerationSpecPtr, number_of_generations(), mtGC, 0, AllocFailStrategy::RETURN_NULL);
 844   if (_generations == NULL)
 845     vm_exit_during_initialization("Unable to allocate gen spec");
 846 
 847   if (UseParNewGC) {
 848     _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
 849   } else {
 850     _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
 851   }
 852   _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
 853 
 854   if (_generations[0] == NULL || _generations[1] == NULL)
 855     vm_exit_during_initialization("Unable to allocate gen spec");
 856 }
 857 
 858 void MarkSweepPolicy::initialize_gc_policy_counters() {
 859   // initialize the policy counters - 2 collectors, 3 generations
 860   if (UseParNewGC) {
 861     _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
 862   } else {
 863     _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
 864   }
 865 }