1 /*
   2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
  26 #define SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
  27 
  28 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  29 #include "memory/collectorPolicy.hpp"
  30 #include "memory/generation.hpp"
  31 #include "memory/sharedHeap.hpp"
  32 
  33 class SubTasksDone;
  34 
  35 // A "GenCollectedHeap" is a SharedHeap that uses generational
  36 // collection.  It is represented with a sequence of Generation's.
  37 class GenCollectedHeap : public SharedHeap {
  38   friend class GenCollectorPolicy;
  39   friend class Generation;
  40   friend class DefNewGeneration;
  41   friend class TenuredGeneration;
  42   friend class ConcurrentMarkSweepGeneration;
  43   friend class CMSCollector;
  44   friend class GenMarkSweep;
  45   friend class VM_GenCollectForAllocation;
  46   friend class VM_GenCollectFull;
  47   friend class VM_GenCollectFullConcurrent;
  48   friend class VM_GC_HeapInspection;
  49   friend class VM_HeapDumper;
  50   friend class HeapInspection;
  51   friend class GCCauseSetter;
  52   friend class VMStructs;
  53 public:
  54   enum SomeConstants {
  55     max_gens = 10
  56   };
  57 
  58   friend class VM_PopulateDumpSharedSpace;
  59 
  60  protected:
  61   // Fields:
  62   static GenCollectedHeap* _gch;
  63 
  64  private:
  65   int _n_gens;
  66   Generation* _gens[max_gens];
  67   GenerationSpec** _gen_specs;
  68 
  69   // The generational collector policy.
  70   GenCollectorPolicy* _gen_policy;
  71 
  72   // Indicates that the most recent previous incremental collection failed.
  73   // The flag is cleared when an action is taken that might clear the
  74   // condition that caused that incremental collection to fail.
  75   bool _incremental_collection_failed;
  76 
  77   // In support of ExplicitGCInvokesConcurrent functionality
  78   unsigned int _full_collections_completed;
  79 
  80   // Data structure for claiming the (potentially) parallel tasks in
  81   // (gen-specific) strong roots processing.
  82   SubTasksDone* _gen_process_strong_tasks;
  83   SubTasksDone* gen_process_strong_tasks() { return _gen_process_strong_tasks; }
  84 
  85   // In block contents verification, the number of header words to skip
  86   NOT_PRODUCT(static size_t _skip_header_HeapWords;)
  87 
  88 protected:
  89   // Helper functions for allocation
  90   HeapWord* attempt_allocation(size_t size,
  91                                bool   is_tlab,
  92                                bool   first_only);
  93 
  94   // Helper function for two callbacks below.
  95   // Considers collection of the first max_level+1 generations.
  96   void do_collection(bool   full,
  97                      bool   clear_all_soft_refs,
  98                      size_t size,
  99                      bool   is_tlab,
 100                      int    max_level);
 101 
 102   // Callback from VM_GenCollectForAllocation operation.
 103   // This function does everything necessary/possible to satisfy an
 104   // allocation request that failed in the youngest generation that should
 105   // have handled it (including collection, expansion, etc.)
 106   HeapWord* satisfy_failed_allocation(size_t size, bool is_tlab);
 107 
 108   // Callback from VM_GenCollectFull operation.
 109   // Perform a full collection of the first max_level+1 generations.
 110   virtual void do_full_collection(bool clear_all_soft_refs);
 111   void do_full_collection(bool clear_all_soft_refs, int max_level);
 112 
 113   // Does the "cause" of GC indicate that
 114   // we absolutely __must__ clear soft refs?
 115   bool must_clear_all_soft_refs();
 116 
 117 public:
 118   GenCollectedHeap(GenCollectorPolicy *policy);
 119 
 120   GCStats* gc_stats(int level) const;
 121 
 122   // Returns JNI_OK on success
 123   virtual jint initialize();
 124   char* allocate(size_t alignment,
 125                  size_t* _total_reserved, int* _n_covered_regions,
 126                  ReservedSpace* heap_rs);
 127 
 128   // Does operations required after initialization has been done.
 129   void post_initialize();
 130 
 131   // Initialize ("weak") refs processing support
 132   virtual void ref_processing_init();
 133 
 134   virtual CollectedHeap::Name kind() const {
 135     return CollectedHeap::GenCollectedHeap;
 136   }
 137 
 138   // The generational collector policy.
 139   GenCollectorPolicy* gen_policy() const { return _gen_policy; }
 140   virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) gen_policy(); }
 141 
 142   // Adaptive size policy
 143   virtual AdaptiveSizePolicy* size_policy() {
 144     return gen_policy()->size_policy();
 145   }
 146 
 147   // Return the (conservative) maximum heap alignment
 148   static size_t conservative_max_heap_alignment() {
 149     return Generation::GenGrain;
 150   }
 151 
 152   size_t capacity() const;
 153   size_t used() const;
 154 
 155   // Save the "used_region" for generations level and lower.
 156   void save_used_regions(int level);
 157 
 158   size_t max_capacity() const;
 159 
 160   HeapWord* mem_allocate(size_t size,
 161                          bool*  gc_overhead_limit_was_exceeded);
 162 
 163   // We may support a shared contiguous allocation area, if the youngest
 164   // generation does.
 165   bool supports_inline_contig_alloc() const;
 166   HeapWord** top_addr() const;
 167   HeapWord** end_addr() const;
 168 
 169   // Does this heap support heap inspection? (+PrintClassHistogram)
 170   virtual bool supports_heap_inspection() const { return true; }
 171 
 172   // Perform a full collection of the heap; intended for use in implementing
 173   // "System.gc". This implies as full a collection as the CollectedHeap
 174   // supports. Caller does not hold the Heap_lock on entry.
 175   void collect(GCCause::Cause cause);
 176 
 177   // The same as above but assume that the caller holds the Heap_lock.
 178   void collect_locked(GCCause::Cause cause);
 179 
 180   // Perform a full collection of the first max_level+1 generations.
 181   // Mostly used for testing purposes. Caller does not hold the Heap_lock on entry.
 182   void collect(GCCause::Cause cause, int max_level);
 183 
 184   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 185   // The methods is_in(), is_in_closed_subset() and is_in_youngest() may
 186   // be expensive to compute in general, so, to prevent
 187   // their inadvertent use in product jvm's, we restrict their use to
 188   // assertion checking or verification only.
 189   bool is_in(const void* p) const;
 190 
 191   // override
 192   bool is_in_closed_subset(const void* p) const {
 193     if (UseConcMarkSweepGC) {
 194       return is_in_reserved(p);
 195     } else {
 196       return is_in(p);
 197     }
 198   }
 199 
 200   // Returns true if the reference is to an object in the reserved space
 201   // for the young generation.
 202   // Assumes the the young gen address range is less than that of the old gen.
 203   bool is_in_young(oop p);
 204 
 205 #ifdef ASSERT
 206   virtual bool is_in_partial_collection(const void* p);
 207 #endif
 208 
 209   virtual bool is_scavengable(const void* addr) {
 210     return is_in_young((oop)addr);
 211   }
 212 
 213   // Iteration functions.
 214   void oop_iterate(ExtendedOopClosure* cl);
 215   void object_iterate(ObjectClosure* cl);
 216   void safe_object_iterate(ObjectClosure* cl);
 217   Space* space_containing(const void* addr) const;
 218 
 219   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 220   // each address in the (reserved) heap is a member of exactly
 221   // one block.  The defining characteristic of a block is that it is
 222   // possible to find its size, and thus to progress forward to the next
 223   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 224   // represent Java objects, or they might be free blocks in a
 225   // free-list-based heap (or subheap), as long as the two kinds are
 226   // distinguishable and the size of each is determinable.
 227 
 228   // Returns the address of the start of the "block" that contains the
 229   // address "addr".  We say "blocks" instead of "object" since some heaps
 230   // may not pack objects densely; a chunk may either be an object or a
 231   // non-object.
 232   virtual HeapWord* block_start(const void* addr) const;
 233 
 234   // Requires "addr" to be the start of a chunk, and returns its size.
 235   // "addr + size" is required to be the start of a new chunk, or the end
 236   // of the active area of the heap. Assumes (and verifies in non-product
 237   // builds) that addr is in the allocated part of the heap and is
 238   // the start of a chunk.
 239   virtual size_t block_size(const HeapWord* addr) const;
 240 
 241   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 242   // the block is an object. Assumes (and verifies in non-product
 243   // builds) that addr is in the allocated part of the heap and is
 244   // the start of a chunk.
 245   virtual bool block_is_obj(const HeapWord* addr) const;
 246 
 247   // Section on TLAB's.
 248   virtual bool supports_tlab_allocation() const;
 249   virtual size_t tlab_capacity(Thread* thr) const;
 250   virtual size_t tlab_used(Thread* thr) const;
 251   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
 252   virtual HeapWord* allocate_new_tlab(size_t size);
 253 
 254   // Can a compiler initialize a new object without store barriers?
 255   // This permission only extends from the creation of a new object
 256   // via a TLAB up to the first subsequent safepoint.
 257   virtual bool can_elide_tlab_store_barriers() const {
 258     return true;
 259   }
 260 
 261   virtual bool card_mark_must_follow_store() const {
 262     return UseConcMarkSweepGC;
 263   }
 264 
 265   // We don't need barriers for stores to objects in the
 266   // young gen and, a fortiori, for initializing stores to
 267   // objects therein. This applies to {DefNew,ParNew}+{Tenured,CMS}
 268   // only and may need to be re-examined in case other
 269   // kinds of collectors are implemented in the future.
 270   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
 271     // We wanted to assert that:-
 272     // assert(UseParNewGC || UseSerialGC || UseConcMarkSweepGC,
 273     //       "Check can_elide_initializing_store_barrier() for this collector");
 274     // but unfortunately the flag UseSerialGC need not necessarily always
 275     // be set when DefNew+Tenured are being used.
 276     return is_in_young(new_obj);
 277   }
 278 
 279   // The "requestor" generation is performing some garbage collection
 280   // action for which it would be useful to have scratch space.  The
 281   // requestor promises to allocate no more than "max_alloc_words" in any
 282   // older generation (via promotion say.)   Any blocks of space that can
 283   // be provided are returned as a list of ScratchBlocks, sorted by
 284   // decreasing size.
 285   ScratchBlock* gather_scratch(Generation* requestor, size_t max_alloc_words);
 286   // Allow each generation to reset any scratch space that it has
 287   // contributed as it needs.
 288   void release_scratch();
 289 
 290   // Ensure parsability: override
 291   virtual void ensure_parsability(bool retire_tlabs);
 292 
 293   // Time in ms since the longest time a collector ran in
 294   // in any generation.
 295   virtual jlong millis_since_last_gc();
 296 
 297   // Total number of full collections completed.
 298   unsigned int total_full_collections_completed() {
 299     assert(_full_collections_completed <= _total_full_collections,
 300            "Can't complete more collections than were started");
 301     return _full_collections_completed;
 302   }
 303 
 304   // Update above counter, as appropriate, at the end of a stop-world GC cycle
 305   unsigned int update_full_collections_completed();
 306   // Update above counter, as appropriate, at the end of a concurrent GC cycle
 307   unsigned int update_full_collections_completed(unsigned int count);
 308 
 309   // Update "time of last gc" for all constituent generations
 310   // to "now".
 311   void update_time_of_last_gc(jlong now) {
 312     for (int i = 0; i < _n_gens; i++) {
 313       _gens[i]->update_time_of_last_gc(now);
 314     }
 315   }
 316 
 317   // Update the gc statistics for each generation.
 318   // "level" is the level of the latest collection.
 319   void update_gc_stats(int current_level, bool full) {
 320     for (int i = 0; i < _n_gens; i++) {
 321       _gens[i]->update_gc_stats(current_level, full);
 322     }
 323   }
 324 
 325   // Override.
 326   bool no_gc_in_progress() { return !is_gc_active(); }
 327 
 328   // Override.
 329   void prepare_for_verify();
 330 
 331   // Override.
 332   void verify(bool silent, VerifyOption option);
 333 
 334   // Override.
 335   virtual void print_on(outputStream* st) const;
 336   virtual void print_gc_threads_on(outputStream* st) const;
 337   virtual void gc_threads_do(ThreadClosure* tc) const;
 338   virtual void print_tracing_info() const;
 339   virtual void print_on_error(outputStream* st) const;
 340 
 341   // PrintGC, PrintGCDetails support
 342   void print_heap_change(size_t prev_used) const;
 343 
 344   // The functions below are helper functions that a subclass of
 345   // "CollectedHeap" can use in the implementation of its virtual
 346   // functions.
 347 
 348   class GenClosure : public StackObj {
 349    public:
 350     virtual void do_generation(Generation* gen) = 0;
 351   };
 352 
 353   // Apply "cl.do_generation" to all generations in the heap
 354   // If "old_to_young" determines the order.
 355   void generation_iterate(GenClosure* cl, bool old_to_young);
 356 
 357   void space_iterate(SpaceClosure* cl);
 358 
 359   // Return "true" if all generations have reached the
 360   // maximal committed limit that they can reach, without a garbage
 361   // collection.
 362   virtual bool is_maximal_no_gc() const;
 363 
 364   // Return the generation before "gen".
 365   Generation* prev_gen(Generation* gen) const {
 366     int l = gen->level();
 367     guarantee(l > 0, "Out of bounds");
 368     return _gens[l-1];
 369   }
 370 
 371   // Return the generation after "gen".
 372   Generation* next_gen(Generation* gen) const {
 373     int l = gen->level() + 1;
 374     guarantee(l < _n_gens, "Out of bounds");
 375     return _gens[l];
 376   }
 377 
 378   Generation* get_gen(int i) const {
 379     guarantee(i >= 0 && i < _n_gens, "Out of bounds");
 380     return _gens[i];
 381   }
 382 
 383   int n_gens() const {
 384     assert(_n_gens == gen_policy()->number_of_generations(), "Sanity");
 385     return _n_gens;
 386   }
 387 
 388   // Convenience function to be used in situations where the heap type can be
 389   // asserted to be this type.
 390   static GenCollectedHeap* heap();
 391 
 392   void set_par_threads(uint t);
 393 
 394   // Invoke the "do_oop" method of one of the closures "not_older_gens"
 395   // or "older_gens" on root locations for the generation at
 396   // "level".  (The "older_gens" closure is used for scanning references
 397   // from older generations; "not_older_gens" is used everywhere else.)
 398   // If "younger_gens_as_roots" is false, younger generations are
 399   // not scanned as roots; in this case, the caller must be arranging to
 400   // scan the younger generations itself.  (For example, a generation might
 401   // explicitly mark reachable objects in younger generations, to avoid
 402   // excess storage retention.)
 403   // The "so" argument determines which of the roots
 404   // the closure is applied to:
 405   // "SO_None" does none;
 406   // "SO_AllClasses" applies the closure to all entries in the SystemDictionary;
 407   // "SO_SystemClasses" to all the "system" classes and loaders;
 408   // "SO_Strings" applies the closure to all entries in the StringTable.
 409   void gen_process_strong_roots(int level,
 410                                 bool younger_gens_as_roots,
 411                                 // The remaining arguments are in an order
 412                                 // consistent with SharedHeap::process_strong_roots:
 413                                 bool activate_scope,
 414                                 SharedHeap::ScanningOption so,
 415                                 OopsInGenClosure* not_older_gens,
 416                                 OopsInGenClosure* older_gens,
 417                                 KlassClosure* klass_closure);
 418 
 419   // Apply "root_closure" to all the weak roots of the system.
 420   // These include JNI weak roots, string table,
 421   // and referents of reachable weak refs.
 422   void gen_process_weak_roots(OopClosure* root_closure);
 423 
 424   // Set the saved marks of generations, if that makes sense.
 425   // In particular, if any generation might iterate over the oops
 426   // in other generations, it should call this method.
 427   void save_marks();
 428 
 429   // Apply "cur->do_oop" or "older->do_oop" to all the oops in objects
 430   // allocated since the last call to save_marks in generations at or above
 431   // "level".  The "cur" closure is
 432   // applied to references in the generation at "level", and the "older"
 433   // closure to older generations.
 434 #define GCH_SINCE_SAVE_MARKS_ITERATE_DECL(OopClosureType, nv_suffix)    \
 435   void oop_since_save_marks_iterate(int level,                          \
 436                                     OopClosureType* cur,                \
 437                                     OopClosureType* older);
 438 
 439   ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DECL)
 440 
 441 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DECL
 442 
 443   // Returns "true" iff no allocations have occurred in any generation at
 444   // "level" or above since the last
 445   // call to "save_marks".
 446   bool no_allocs_since_save_marks(int level);
 447 
 448   // Returns true if an incremental collection is likely to fail.
 449   // We optionally consult the young gen, if asked to do so;
 450   // otherwise we base our answer on whether the previous incremental
 451   // collection attempt failed with no corrective action as of yet.
 452   bool incremental_collection_will_fail(bool consult_young) {
 453     // Assumes a 2-generation system; the first disjunct remembers if an
 454     // incremental collection failed, even when we thought (second disjunct)
 455     // that it would not.
 456     assert(heap()->collector_policy()->is_generation_policy(),
 457            "the following definition may not be suitable for an n(>2)-generation system");
 458     return incremental_collection_failed() ||
 459            (consult_young && !get_gen(0)->collection_attempt_is_safe());
 460   }
 461 
 462   // If a generation bails out of an incremental collection,
 463   // it sets this flag.
 464   bool incremental_collection_failed() const {
 465     return _incremental_collection_failed;
 466   }
 467   void set_incremental_collection_failed() {
 468     _incremental_collection_failed = true;
 469   }
 470   void clear_incremental_collection_failed() {
 471     _incremental_collection_failed = false;
 472   }
 473 
 474   // Promotion of obj into gen failed.  Try to promote obj to higher
 475   // gens in ascending order; return the new location of obj if successful.
 476   // Otherwise, try expand-and-allocate for obj in both the young and old
 477   // generation; return the new location of obj if successful.  Otherwise, return NULL.
 478   oop handle_failed_promotion(Generation* old_gen,
 479                               oop obj,
 480                               size_t obj_size);
 481 
 482 private:
 483   // Accessor for memory state verification support
 484   NOT_PRODUCT(
 485     static size_t skip_header_HeapWords() { return _skip_header_HeapWords; }
 486   )
 487 
 488   // Override
 489   void check_for_non_bad_heap_word_value(HeapWord* addr,
 490     size_t size) PRODUCT_RETURN;
 491 
 492   // For use by mark-sweep.  As implemented, mark-sweep-compact is global
 493   // in an essential way: compaction is performed across generations, by
 494   // iterating over spaces.
 495   void prepare_for_compaction();
 496 
 497   // Perform a full collection of the first max_level+1 generations.
 498   // This is the low level interface used by the public versions of
 499   // collect() and collect_locked(). Caller holds the Heap_lock on entry.
 500   void collect_locked(GCCause::Cause cause, int max_level);
 501 
 502   // Returns success or failure.
 503   bool create_cms_collector();
 504 
 505   // In support of ExplicitGCInvokesConcurrent functionality
 506   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 507   void collect_mostly_concurrent(GCCause::Cause cause);
 508 
 509   // Save the tops of the spaces in all generations
 510   void record_gen_tops_before_GC() PRODUCT_RETURN;
 511 
 512 protected:
 513   virtual void gc_prologue(bool full);
 514   virtual void gc_epilogue(bool full);
 515 };
 516 
 517 #endif // SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP