1 /*
   2  * Copyright (c) 2000, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc_implementation/shared/collectorCounters.hpp"
  31 #include "gc_implementation/shared/gcTrace.hpp"
  32 #include "gc_implementation/shared/gcTraceTime.hpp"
  33 #include "gc_implementation/shared/vmGCOperations.hpp"
  34 #include "gc_interface/collectedHeap.inline.hpp"
  35 #include "memory/filemap.hpp"
  36 #include "memory/gcLocker.inline.hpp"
  37 #include "memory/genCollectedHeap.hpp"
  38 #include "memory/genOopClosures.inline.hpp"
  39 #include "memory/generation.inline.hpp"
  40 #include "memory/generationSpec.hpp"
  41 #include "memory/resourceArea.hpp"
  42 #include "memory/sharedHeap.hpp"
  43 #include "memory/space.hpp"
  44 #include "oops/oop.inline.hpp"
  45 #include "oops/oop.inline2.hpp"
  46 #include "runtime/biasedLocking.hpp"
  47 #include "runtime/fprofiler.hpp"
  48 #include "runtime/handles.hpp"
  49 #include "runtime/handles.inline.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/vmThread.hpp"
  52 #include "services/memoryService.hpp"
  53 #include "utilities/vmError.hpp"
  54 #include "utilities/workgroup.hpp"
  55 #include "utilities/macros.hpp"
  56 #if INCLUDE_ALL_GCS
  57 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  58 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  59 #endif // INCLUDE_ALL_GCS
  60 
  61 GenCollectedHeap* GenCollectedHeap::_gch;
  62 NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)
  63 
  64 // The set of potentially parallel tasks in root scanning.
  65 enum GCH_strong_roots_tasks {
  66   // We probably want to parallelize both of these internally, but for now...
  67   GCH_PS_younger_gens,
  68   // Leave this one last.
  69   GCH_PS_NumElements
  70 };
  71 
  72 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
  73   SharedHeap(policy),
  74   _gen_policy(policy),
  75   _gen_process_roots_tasks(new SubTasksDone(GCH_PS_NumElements)),
  76   _full_collections_completed(0)
  77 {
  78   if (_gen_process_roots_tasks == NULL ||
  79       !_gen_process_roots_tasks->valid()) {
  80     vm_exit_during_initialization("Failed necessary allocation.");
  81   }
  82   assert(policy != NULL, "Sanity check");
  83 }
  84 
  85 jint GenCollectedHeap::initialize() {
  86   CollectedHeap::pre_initialize();
  87 
  88   int i;
  89   _n_gens = gen_policy()->number_of_generations();
  90 
  91   // While there are no constraints in the GC code that HeapWordSize
  92   // be any particular value, there are multiple other areas in the
  93   // system which believe this to be true (e.g. oop->object_size in some
  94   // cases incorrectly returns the size in wordSize units rather than
  95   // HeapWordSize).
  96   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  97 
  98   // The heap must be at least as aligned as generations.
  99   size_t gen_alignment = Generation::GenGrain;
 100 
 101   _gen_specs = gen_policy()->generations();
 102 
 103   // Make sure the sizes are all aligned.
 104   for (i = 0; i < _n_gens; i++) {
 105     _gen_specs[i]->align(gen_alignment);
 106   }
 107 
 108   // Allocate space for the heap.
 109 
 110   char* heap_address;
 111   size_t total_reserved = 0;
 112   int n_covered_regions = 0;
 113   ReservedSpace heap_rs;
 114 
 115   size_t heap_alignment = collector_policy()->heap_alignment();
 116 
 117   heap_address = allocate(heap_alignment, &total_reserved,
 118                           &n_covered_regions, &heap_rs);
 119 
 120   if (!heap_rs.is_reserved()) {
 121     vm_shutdown_during_initialization(
 122       "Could not reserve enough space for object heap");
 123     return JNI_ENOMEM;
 124   }
 125 
 126   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
 127 
 128   _rem_set = collector_policy()->create_rem_set(reserved_region(), n_covered_regions);
 129   set_barrier_set(rem_set()->bs());
 130 
 131   _gch = this;
 132 
 133   for (i = 0; i < _n_gens; i++) {
 134     ReservedSpace this_rs = heap_rs.first_part(_gen_specs[i]->max_size(), false, false);
 135     _gens[i] = _gen_specs[i]->init(this_rs, i, rem_set());
 136     heap_rs = heap_rs.last_part(_gen_specs[i]->max_size());
 137   }
 138   clear_incremental_collection_failed();
 139 
 140 #if INCLUDE_ALL_GCS
 141   // If we are running CMS, create the collector responsible
 142   // for collecting the CMS generations.
 143   if (collector_policy()->is_concurrent_mark_sweep_policy()) {
 144     bool success = create_cms_collector();
 145     if (!success) return JNI_ENOMEM;
 146   }
 147 #endif // INCLUDE_ALL_GCS
 148 
 149   return JNI_OK;
 150 }
 151 
 152 
 153 char* GenCollectedHeap::allocate(size_t alignment,
 154                                  size_t* _total_reserved,
 155                                  int* _n_covered_regions,
 156                                  ReservedSpace* heap_rs){
 157   const char overflow_msg[] = "The size of the object heap + VM data exceeds "
 158     "the maximum representable size";
 159 
 160   // Now figure out the total size.
 161   size_t total_reserved = 0;
 162   int n_covered_regions = 0;
 163   const size_t pageSize = UseLargePages ?
 164       os::large_page_size() : os::vm_page_size();
 165 
 166   assert(alignment % pageSize == 0, "Must be");
 167 
 168   for (int i = 0; i < _n_gens; i++) {
 169     total_reserved += _gen_specs[i]->max_size();
 170     if (total_reserved < _gen_specs[i]->max_size()) {
 171       vm_exit_during_initialization(overflow_msg);
 172     }
 173     n_covered_regions += _gen_specs[i]->n_covered_regions();
 174   }
 175   assert(total_reserved % alignment == 0,
 176          err_msg("Gen size; total_reserved=" SIZE_FORMAT ", alignment="
 177                  SIZE_FORMAT, total_reserved, alignment));
 178 
 179   // Needed until the cardtable is fixed to have the right number
 180   // of covered regions.
 181   n_covered_regions += 2;
 182 
 183   *_total_reserved = total_reserved;
 184   *_n_covered_regions = n_covered_regions;
 185 
 186   *heap_rs = Universe::reserve_heap(total_reserved, alignment);
 187   return heap_rs->base();
 188 }
 189 
 190 
 191 void GenCollectedHeap::post_initialize() {
 192   SharedHeap::post_initialize();
 193   GenCollectorPolicy *policy = (GenCollectorPolicy *)collector_policy();
 194   guarantee(policy->is_generation_policy(), "Illegal policy type");
 195   DefNewGeneration* def_new_gen = (DefNewGeneration*) get_gen(0);
 196   assert(def_new_gen->kind() == Generation::DefNew ||
 197          def_new_gen->kind() == Generation::ParNew,
 198          "Wrong generation kind");
 199 
 200   Generation* old_gen = get_gen(1);
 201   assert(old_gen->kind() == Generation::ConcurrentMarkSweep ||
 202          old_gen->kind() == Generation::MarkSweepCompact,
 203     "Wrong generation kind");
 204 
 205   policy->initialize_size_policy(def_new_gen->eden()->capacity(),
 206                                  old_gen->capacity(),
 207                                  def_new_gen->from()->capacity());
 208   policy->initialize_gc_policy_counters();
 209 }
 210 
 211 void GenCollectedHeap::ref_processing_init() {
 212   SharedHeap::ref_processing_init();
 213   for (int i = 0; i < _n_gens; i++) {
 214     _gens[i]->ref_processor_init();
 215   }
 216 }
 217 
 218 size_t GenCollectedHeap::capacity() const {
 219   size_t res = 0;
 220   for (int i = 0; i < _n_gens; i++) {
 221     res += _gens[i]->capacity();
 222   }
 223   return res;
 224 }
 225 
 226 size_t GenCollectedHeap::used() const {
 227   size_t res = 0;
 228   for (int i = 0; i < _n_gens; i++) {
 229     res += _gens[i]->used();
 230   }
 231   return res;
 232 }
 233 
 234 // Save the "used_region" for generations level and lower.
 235 void GenCollectedHeap::save_used_regions(int level) {
 236   assert(level < _n_gens, "Illegal level parameter");
 237   for (int i = level; i >= 0; i--) {
 238     _gens[i]->save_used_region();
 239   }
 240 }
 241 
 242 size_t GenCollectedHeap::max_capacity() const {
 243   size_t res = 0;
 244   for (int i = 0; i < _n_gens; i++) {
 245     res += _gens[i]->max_capacity();
 246   }
 247   return res;
 248 }
 249 
 250 // Update the _full_collections_completed counter
 251 // at the end of a stop-world full GC.
 252 unsigned int GenCollectedHeap::update_full_collections_completed() {
 253   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 254   assert(_full_collections_completed <= _total_full_collections,
 255          "Can't complete more collections than were started");
 256   _full_collections_completed = _total_full_collections;
 257   ml.notify_all();
 258   return _full_collections_completed;
 259 }
 260 
 261 // Update the _full_collections_completed counter, as appropriate,
 262 // at the end of a concurrent GC cycle. Note the conditional update
 263 // below to allow this method to be called by a concurrent collector
 264 // without synchronizing in any manner with the VM thread (which
 265 // may already have initiated a STW full collection "concurrently").
 266 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
 267   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 268   assert((_full_collections_completed <= _total_full_collections) &&
 269          (count <= _total_full_collections),
 270          "Can't complete more collections than were started");
 271   if (count > _full_collections_completed) {
 272     _full_collections_completed = count;
 273     ml.notify_all();
 274   }
 275   return _full_collections_completed;
 276 }
 277 
 278 
 279 #ifndef PRODUCT
 280 // Override of memory state checking method in CollectedHeap:
 281 // Some collectors (CMS for example) can't have badHeapWordVal written
 282 // in the first two words of an object. (For instance , in the case of
 283 // CMS these words hold state used to synchronize between certain
 284 // (concurrent) GC steps and direct allocating mutators.)
 285 // The skip_header_HeapWords() method below, allows us to skip
 286 // over the requisite number of HeapWord's. Note that (for
 287 // generational collectors) this means that those many words are
 288 // skipped in each object, irrespective of the generation in which
 289 // that object lives. The resultant loss of precision seems to be
 290 // harmless and the pain of avoiding that imprecision appears somewhat
 291 // higher than we are prepared to pay for such rudimentary debugging
 292 // support.
 293 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
 294                                                          size_t size) {
 295   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 296     // We are asked to check a size in HeapWords,
 297     // but the memory is mangled in juint words.
 298     juint* start = (juint*) (addr + skip_header_HeapWords());
 299     juint* end   = (juint*) (addr + size);
 300     for (juint* slot = start; slot < end; slot += 1) {
 301       assert(*slot == badHeapWordVal,
 302              "Found non badHeapWordValue in pre-allocation check");
 303     }
 304   }
 305 }
 306 #endif
 307 
 308 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 309                                                bool is_tlab,
 310                                                bool first_only) {
 311   HeapWord* res;
 312   for (int i = 0; i < _n_gens; i++) {
 313     if (_gens[i]->should_allocate(size, is_tlab)) {
 314       res = _gens[i]->allocate(size, is_tlab);
 315       if (res != NULL) return res;
 316       else if (first_only) break;
 317     }
 318   }
 319   // Otherwise...
 320   return NULL;
 321 }
 322 
 323 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 324                                          bool* gc_overhead_limit_was_exceeded) {
 325   return collector_policy()->mem_allocate_work(size,
 326                                                false /* is_tlab */,
 327                                                gc_overhead_limit_was_exceeded);
 328 }
 329 
 330 bool GenCollectedHeap::must_clear_all_soft_refs() {
 331   return _gc_cause == GCCause::_last_ditch_collection;
 332 }
 333 
 334 bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
 335   return UseConcMarkSweepGC &&
 336          ((cause == GCCause::_gc_locker && GCLockerInvokesConcurrent) ||
 337           (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
 338 }
 339 
 340 void GenCollectedHeap::do_collection(bool  full,
 341                                      bool   clear_all_soft_refs,
 342                                      size_t size,
 343                                      bool   is_tlab,
 344                                      int    max_level) {
 345   bool prepared_for_verification = false;
 346   ResourceMark rm;
 347   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 348 
 349   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 350   assert(my_thread->is_VM_thread() ||
 351          my_thread->is_ConcurrentGC_thread(),
 352          "incorrect thread type capability");
 353   assert(Heap_lock->is_locked(),
 354          "the requesting thread should have the Heap_lock");
 355   guarantee(!is_gc_active(), "collection is not reentrant");
 356   assert(max_level < n_gens(), "sanity check");
 357 
 358   if (GC_locker::check_active_before_gc()) {
 359     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 360   }
 361 
 362   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 363                           collector_policy()->should_clear_all_soft_refs();
 364 
 365   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
 366 
 367   const size_t metadata_prev_used = MetaspaceAux::used_bytes();
 368 
 369   print_heap_before_gc();
 370 
 371   {
 372     FlagSetting fl(_is_gc_active, true);
 373 
 374     bool complete = full && (max_level == (n_gens()-1));
 375     const char* gc_cause_prefix = complete ? "Full GC" : "GC";
 376     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
 377     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
 378     // The PrintGCDetails logging starts before we have incremented the GC id. We will do that later
 379     // so we can assume here that the next GC id is what we want.
 380     GCTraceTime t(GCCauseString(gc_cause_prefix, gc_cause()), PrintGCDetails, false, NULL, GCId::peek());
 381 
 382     gc_prologue(complete);
 383     increment_total_collections(complete);
 384 
 385     size_t gch_prev_used = used();
 386 
 387     int starting_level = 0;
 388     if (full) {
 389       // Search for the oldest generation which will collect all younger
 390       // generations, and start collection loop there.
 391       for (int i = max_level; i >= 0; i--) {
 392         if (_gens[i]->full_collects_younger_generations()) {
 393           starting_level = i;
 394           break;
 395         }
 396       }
 397     }
 398 
 399     bool must_restore_marks_for_biased_locking = false;
 400 
 401     int max_level_collected = starting_level;
 402     for (int i = starting_level; i <= max_level; i++) {
 403       if (_gens[i]->should_collect(full, size, is_tlab)) {
 404         if (i == n_gens() - 1) {  // a major collection is to happen
 405           if (!complete) {
 406             // The full_collections increment was missed above.
 407             increment_total_full_collections();
 408           }
 409           pre_full_gc_dump(NULL);    // do any pre full gc dumps
 410         }
 411         // Timer for individual generations. Last argument is false: no CR
 412         // FIXME: We should try to start the timing earlier to cover more of the GC pause
 413         // The PrintGCDetails logging starts before we have incremented the GC id. We will do that later
 414         // so we can assume here that the next GC id is what we want.
 415         GCTraceTime t1(_gens[i]->short_name(), PrintGCDetails, false, NULL, GCId::peek());
 416         TraceCollectorStats tcs(_gens[i]->counters());
 417         TraceMemoryManagerStats tmms(_gens[i]->kind(),gc_cause());
 418 
 419         size_t prev_used = _gens[i]->used();
 420         _gens[i]->stat_record()->invocations++;
 421         _gens[i]->stat_record()->accumulated_time.start();
 422 
 423         // Must be done anew before each collection because
 424         // a previous collection will do mangling and will
 425         // change top of some spaces.
 426         record_gen_tops_before_GC();
 427 
 428         if (PrintGC && Verbose) {
 429           gclog_or_tty->print("level=%d invoke=%d size=" SIZE_FORMAT,
 430                      i,
 431                      _gens[i]->stat_record()->invocations,
 432                      size*HeapWordSize);
 433         }
 434 
 435         if (VerifyBeforeGC && i >= VerifyGCLevel &&
 436             total_collections() >= VerifyGCStartAt) {
 437           HandleMark hm;  // Discard invalid handles created during verification
 438           if (!prepared_for_verification) {
 439             prepare_for_verify();
 440             prepared_for_verification = true;
 441           }
 442           Universe::verify(" VerifyBeforeGC:");
 443         }
 444         COMPILER2_PRESENT(DerivedPointerTable::clear());
 445 
 446         if (!must_restore_marks_for_biased_locking &&
 447             _gens[i]->performs_in_place_marking()) {
 448           // We perform this mark word preservation work lazily
 449           // because it's only at this point that we know whether we
 450           // absolutely have to do it; we want to avoid doing it for
 451           // scavenge-only collections where it's unnecessary
 452           must_restore_marks_for_biased_locking = true;
 453           BiasedLocking::preserve_marks();
 454         }
 455 
 456         // Do collection work
 457         {
 458           // Note on ref discovery: For what appear to be historical reasons,
 459           // GCH enables and disabled (by enqueing) refs discovery.
 460           // In the future this should be moved into the generation's
 461           // collect method so that ref discovery and enqueueing concerns
 462           // are local to a generation. The collect method could return
 463           // an appropriate indication in the case that notification on
 464           // the ref lock was needed. This will make the treatment of
 465           // weak refs more uniform (and indeed remove such concerns
 466           // from GCH). XXX
 467 
 468           HandleMark hm;  // Discard invalid handles created during gc
 469           save_marks();   // save marks for all gens
 470           // We want to discover references, but not process them yet.
 471           // This mode is disabled in process_discovered_references if the
 472           // generation does some collection work, or in
 473           // enqueue_discovered_references if the generation returns
 474           // without doing any work.
 475           ReferenceProcessor* rp = _gens[i]->ref_processor();
 476           // If the discovery of ("weak") refs in this generation is
 477           // atomic wrt other collectors in this configuration, we
 478           // are guaranteed to have empty discovered ref lists.
 479           if (rp->discovery_is_atomic()) {
 480             rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
 481             rp->setup_policy(do_clear_all_soft_refs);
 482           } else {
 483             // collect() below will enable discovery as appropriate
 484           }
 485           _gens[i]->collect(full, do_clear_all_soft_refs, size, is_tlab);
 486           if (!rp->enqueuing_is_done()) {
 487             rp->enqueue_discovered_references();
 488           } else {
 489             rp->set_enqueuing_is_done(false);
 490           }
 491           rp->verify_no_references_recorded();
 492         }
 493         max_level_collected = i;
 494 
 495         // Determine if allocation request was met.
 496         if (size > 0) {
 497           if (!is_tlab || _gens[i]->supports_tlab_allocation()) {
 498             if (size*HeapWordSize <= _gens[i]->unsafe_max_alloc_nogc()) {
 499               size = 0;
 500             }
 501           }
 502         }
 503 
 504         COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 505 
 506         _gens[i]->stat_record()->accumulated_time.stop();
 507 
 508         update_gc_stats(i, full);
 509 
 510         if (VerifyAfterGC && i >= VerifyGCLevel &&
 511             total_collections() >= VerifyGCStartAt) {
 512           HandleMark hm;  // Discard invalid handles created during verification
 513           Universe::verify(" VerifyAfterGC:");
 514         }
 515 
 516         if (PrintGCDetails) {
 517           gclog_or_tty->print(":");
 518           _gens[i]->print_heap_change(prev_used);
 519         }
 520       }
 521     }
 522 
 523     // Update "complete" boolean wrt what actually transpired --
 524     // for instance, a promotion failure could have led to
 525     // a whole heap collection.
 526     complete = complete || (max_level_collected == n_gens() - 1);
 527 
 528     if (complete) { // We did a "major" collection
 529       // FIXME: See comment at pre_full_gc_dump call
 530       post_full_gc_dump(NULL);   // do any post full gc dumps
 531     }
 532 
 533     if (PrintGCDetails) {
 534       print_heap_change(gch_prev_used);
 535 
 536       // Print metaspace info for full GC with PrintGCDetails flag.
 537       if (complete) {
 538         MetaspaceAux::print_metaspace_change(metadata_prev_used);
 539       }
 540     }
 541 
 542     for (int j = max_level_collected; j >= 0; j -= 1) {
 543       // Adjust generation sizes.
 544       _gens[j]->compute_new_size();
 545     }
 546 
 547     if (complete) {
 548       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 549       ClassLoaderDataGraph::purge();
 550       MetaspaceAux::verify_metrics();
 551       // Resize the metaspace capacity after full collections
 552       MetaspaceGC::compute_new_size();
 553       update_full_collections_completed();
 554     }
 555 
 556     // Track memory usage and detect low memory after GC finishes
 557     MemoryService::track_memory_usage();
 558 
 559     gc_epilogue(complete);
 560 
 561     if (must_restore_marks_for_biased_locking) {
 562       BiasedLocking::restore_marks();
 563     }
 564   }
 565 
 566   print_heap_after_gc();
 567 
 568 #ifdef TRACESPINNING
 569   ParallelTaskTerminator::print_termination_counts();
 570 #endif
 571 }
 572 
 573 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 574   return collector_policy()->satisfy_failed_allocation(size, is_tlab);
 575 }
 576 
 577 void GenCollectedHeap::set_par_threads(uint t) {
 578   SharedHeap::set_par_threads(t);
 579   _gen_process_roots_tasks->set_n_threads(t);
 580 }
 581 
 582 void GenCollectedHeap::
 583 gen_process_roots(int level,
 584                   bool younger_gens_as_roots,
 585                   bool activate_scope,
 586                   SharedHeap::ScanningOption so,
 587                   OopsInGenClosure* not_older_gens,
 588                   OopsInGenClosure* weak_roots,
 589                   OopsInGenClosure* older_gens,
 590                   CLDClosure* cld_closure,
 591                   CLDClosure* weak_cld_closure,
 592                   CodeBlobClosure* code_closure) {
 593 
 594   // General roots.
 595   SharedHeap::process_roots(activate_scope, so,
 596                             not_older_gens, weak_roots,
 597                             cld_closure, weak_cld_closure,
 598                             code_closure);
 599 
 600   if (younger_gens_as_roots) {
 601     if (!_gen_process_roots_tasks->is_task_claimed(GCH_PS_younger_gens)) {
 602       for (int i = 0; i < level; i++) {
 603         not_older_gens->set_generation(_gens[i]);
 604         _gens[i]->oop_iterate(not_older_gens);
 605       }
 606       not_older_gens->reset_generation();
 607     }
 608   }
 609   // When collection is parallel, all threads get to cooperate to do
 610   // older-gen scanning.
 611   for (int i = level+1; i < _n_gens; i++) {
 612     older_gens->set_generation(_gens[i]);
 613     rem_set()->younger_refs_iterate(_gens[i], older_gens);
 614     older_gens->reset_generation();
 615   }
 616 
 617   _gen_process_roots_tasks->all_tasks_completed();
 618 }
 619 
 620 void GenCollectedHeap::
 621 gen_process_roots(int level,
 622                   bool younger_gens_as_roots,
 623                   bool activate_scope,
 624                   SharedHeap::ScanningOption so,
 625                   bool only_strong_roots,
 626                   OopsInGenClosure* not_older_gens,
 627                   OopsInGenClosure* older_gens,
 628                   CLDClosure* cld_closure) {
 629 
 630   const bool is_adjust_phase = !only_strong_roots && !younger_gens_as_roots;
 631 
 632   bool is_moving_collection = false;
 633   if (level == 0 || is_adjust_phase) {
 634     // young collections are always moving
 635     is_moving_collection = true;
 636   }
 637 
 638   MarkingCodeBlobClosure mark_code_closure(not_older_gens, is_moving_collection);
 639   CodeBlobClosure* code_closure = &mark_code_closure;
 640 
 641   gen_process_roots(level,
 642                     younger_gens_as_roots,
 643                     activate_scope, so,
 644                     not_older_gens, only_strong_roots ? NULL : not_older_gens,
 645                     older_gens,
 646                     cld_closure, only_strong_roots ? NULL : cld_closure,
 647                     code_closure);
 648 
 649 }
 650 
 651 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
 652   SharedHeap::process_weak_roots(root_closure);
 653   // "Local" "weak" refs
 654   for (int i = 0; i < _n_gens; i++) {
 655     _gens[i]->ref_processor()->weak_oops_do(root_closure);
 656   }
 657 }
 658 
 659 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
 660 void GenCollectedHeap::                                                 \
 661 oop_since_save_marks_iterate(int level,                                 \
 662                              OopClosureType* cur,                       \
 663                              OopClosureType* older) {                   \
 664   _gens[level]->oop_since_save_marks_iterate##nv_suffix(cur);           \
 665   for (int i = level+1; i < n_gens(); i++) {                            \
 666     _gens[i]->oop_since_save_marks_iterate##nv_suffix(older);           \
 667   }                                                                     \
 668 }
 669 
 670 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
 671 
 672 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
 673 
 674 bool GenCollectedHeap::no_allocs_since_save_marks(int level) {
 675   for (int i = level; i < _n_gens; i++) {
 676     if (!_gens[i]->no_allocs_since_save_marks()) return false;
 677   }
 678   return true;
 679 }
 680 
 681 bool GenCollectedHeap::supports_inline_contig_alloc() const {
 682   return _gens[0]->supports_inline_contig_alloc();
 683 }
 684 
 685 HeapWord** GenCollectedHeap::top_addr() const {
 686   return _gens[0]->top_addr();
 687 }
 688 
 689 HeapWord** GenCollectedHeap::end_addr() const {
 690   return _gens[0]->end_addr();
 691 }
 692 
 693 // public collection interfaces
 694 
 695 void GenCollectedHeap::collect(GCCause::Cause cause) {
 696   if (should_do_concurrent_full_gc(cause)) {
 697 #if INCLUDE_ALL_GCS
 698     // mostly concurrent full collection
 699     collect_mostly_concurrent(cause);
 700 #else  // INCLUDE_ALL_GCS
 701     ShouldNotReachHere();
 702 #endif // INCLUDE_ALL_GCS
 703   } else if (cause == GCCause::_wb_young_gc) {
 704     // minor collection for WhiteBox API
 705     collect(cause, 0);
 706   } else {
 707 #ifdef ASSERT
 708   if (cause == GCCause::_scavenge_alot) {
 709     // minor collection only
 710     collect(cause, 0);
 711   } else {
 712     // Stop-the-world full collection
 713     collect(cause, n_gens() - 1);
 714   }
 715 #else
 716     // Stop-the-world full collection
 717     collect(cause, n_gens() - 1);
 718 #endif
 719   }
 720 }
 721 
 722 void GenCollectedHeap::collect(GCCause::Cause cause, int max_level) {
 723   // The caller doesn't have the Heap_lock
 724   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 725   MutexLocker ml(Heap_lock);
 726   collect_locked(cause, max_level);
 727 }
 728 
 729 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
 730   // The caller has the Heap_lock
 731   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
 732   collect_locked(cause, n_gens() - 1);
 733 }
 734 
 735 // this is the private collection interface
 736 // The Heap_lock is expected to be held on entry.
 737 
 738 void GenCollectedHeap::collect_locked(GCCause::Cause cause, int max_level) {
 739   // Read the GC count while holding the Heap_lock
 740   unsigned int gc_count_before      = total_collections();
 741   unsigned int full_gc_count_before = total_full_collections();
 742   {
 743     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
 744     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 745                          cause, max_level);
 746     VMThread::execute(&op);
 747   }
 748 }
 749 
 750 #if INCLUDE_ALL_GCS
 751 bool GenCollectedHeap::create_cms_collector() {
 752 
 753   assert(_gens[1]->kind() == Generation::ConcurrentMarkSweep,
 754          "Unexpected generation kinds");
 755   // Skip two header words in the block content verification
 756   NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();)
 757   CMSCollector* collector = new CMSCollector(
 758     (ConcurrentMarkSweepGeneration*)_gens[1],
 759     _rem_set->as_CardTableRS(),
 760     (ConcurrentMarkSweepPolicy*) collector_policy());
 761 
 762   if (collector == NULL || !collector->completed_initialization()) {
 763     if (collector) {
 764       delete collector;  // Be nice in embedded situation
 765     }
 766     vm_shutdown_during_initialization("Could not create CMS collector");
 767     return false;
 768   }
 769   return true;  // success
 770 }
 771 
 772 void GenCollectedHeap::collect_mostly_concurrent(GCCause::Cause cause) {
 773   assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");
 774 
 775   MutexLocker ml(Heap_lock);
 776   // Read the GC counts while holding the Heap_lock
 777   unsigned int full_gc_count_before = total_full_collections();
 778   unsigned int gc_count_before      = total_collections();
 779   {
 780     MutexUnlocker mu(Heap_lock);
 781     VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
 782     VMThread::execute(&op);
 783   }
 784 }
 785 #endif // INCLUDE_ALL_GCS
 786 
 787 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 788    do_full_collection(clear_all_soft_refs, _n_gens - 1);
 789 }
 790 
 791 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
 792                                           int max_level) {
 793   int local_max_level;
 794   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
 795       gc_cause() == GCCause::_gc_locker) {
 796     local_max_level = 0;
 797   } else {
 798     local_max_level = max_level;
 799   }
 800 
 801   do_collection(true                 /* full */,
 802                 clear_all_soft_refs  /* clear_all_soft_refs */,
 803                 0                    /* size */,
 804                 false                /* is_tlab */,
 805                 local_max_level      /* max_level */);
 806   // Hack XXX FIX ME !!!
 807   // A scavenge may not have been attempted, or may have
 808   // been attempted and failed, because the old gen was too full
 809   if (local_max_level == 0 && gc_cause() == GCCause::_gc_locker &&
 810       incremental_collection_will_fail(false /* don't consult_young */)) {
 811     if (PrintGCDetails) {
 812       gclog_or_tty->print_cr("GC locker: Trying a full collection "
 813                              "because scavenge failed");
 814     }
 815     // This time allow the old gen to be collected as well
 816     do_collection(true                 /* full */,
 817                   clear_all_soft_refs  /* clear_all_soft_refs */,
 818                   0                    /* size */,
 819                   false                /* is_tlab */,
 820                   n_gens() - 1         /* max_level */);
 821   }
 822 }
 823 
 824 bool GenCollectedHeap::is_in_young(oop p) {
 825   bool result = ((HeapWord*)p) < _gens[_n_gens - 1]->reserved().start();
 826   assert(result == _gens[0]->is_in_reserved(p),
 827          err_msg("incorrect test - result=%d, p=" INTPTR_FORMAT, result, p2i((void*)p)));
 828   return result;
 829 }
 830 
 831 // Returns "TRUE" iff "p" points into the committed areas of the heap.
 832 bool GenCollectedHeap::is_in(const void* p) const {
 833   #ifndef ASSERT
 834   guarantee(VerifyBeforeGC      ||
 835             VerifyDuringGC      ||
 836             VerifyBeforeExit    ||
 837             VerifyDuringStartup ||
 838             PrintAssembly       ||
 839             tty->count() != 0   ||   // already printing
 840             VerifyAfterGC       ||
 841     VMError::fatal_error_in_progress(), "too expensive");
 842 
 843   #endif
 844   // This might be sped up with a cache of the last generation that
 845   // answered yes.
 846   for (int i = 0; i < _n_gens; i++) {
 847     if (_gens[i]->is_in(p)) return true;
 848   }
 849   // Otherwise...
 850   return false;
 851 }
 852 
 853 #ifdef ASSERT
 854 // Don't implement this by using is_in_young().  This method is used
 855 // in some cases to check that is_in_young() is correct.
 856 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
 857   assert(is_in_reserved(p) || p == NULL,
 858     "Does not work if address is non-null and outside of the heap");
 859   return p < _gens[_n_gens - 2]->reserved().end() && p != NULL;
 860 }
 861 #endif
 862 
 863 void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
 864   for (int i = 0; i < _n_gens; i++) {
 865     _gens[i]->oop_iterate(cl);
 866   }
 867 }
 868 
 869 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
 870   for (int i = 0; i < _n_gens; i++) {
 871     _gens[i]->object_iterate(cl);
 872   }
 873 }
 874 
 875 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
 876   for (int i = 0; i < _n_gens; i++) {
 877     _gens[i]->safe_object_iterate(cl);
 878   }
 879 }
 880 
 881 Space* GenCollectedHeap::space_containing(const void* addr) const {
 882   for (int i = 0; i < _n_gens; i++) {
 883     Space* res = _gens[i]->space_containing(addr);
 884     if (res != NULL) return res;
 885   }
 886   // Otherwise...
 887   assert(false, "Could not find containing space");
 888   return NULL;
 889 }
 890 
 891 
 892 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
 893   assert(is_in_reserved(addr), "block_start of address outside of heap");
 894   for (int i = 0; i < _n_gens; i++) {
 895     if (_gens[i]->is_in_reserved(addr)) {
 896       assert(_gens[i]->is_in(addr),
 897              "addr should be in allocated part of generation");
 898       return _gens[i]->block_start(addr);
 899     }
 900   }
 901   assert(false, "Some generation should contain the address");
 902   return NULL;
 903 }
 904 
 905 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
 906   assert(is_in_reserved(addr), "block_size of address outside of heap");
 907   for (int i = 0; i < _n_gens; i++) {
 908     if (_gens[i]->is_in_reserved(addr)) {
 909       assert(_gens[i]->is_in(addr),
 910              "addr should be in allocated part of generation");
 911       return _gens[i]->block_size(addr);
 912     }
 913   }
 914   assert(false, "Some generation should contain the address");
 915   return 0;
 916 }
 917 
 918 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
 919   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
 920   assert(block_start(addr) == addr, "addr must be a block start");
 921   for (int i = 0; i < _n_gens; i++) {
 922     if (_gens[i]->is_in_reserved(addr)) {
 923       return _gens[i]->block_is_obj(addr);
 924     }
 925   }
 926   assert(false, "Some generation should contain the address");
 927   return false;
 928 }
 929 
 930 bool GenCollectedHeap::supports_tlab_allocation() const {
 931   for (int i = 0; i < _n_gens; i += 1) {
 932     if (_gens[i]->supports_tlab_allocation()) {
 933       return true;
 934     }
 935   }
 936   return false;
 937 }
 938 
 939 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
 940   size_t result = 0;
 941   for (int i = 0; i < _n_gens; i += 1) {
 942     if (_gens[i]->supports_tlab_allocation()) {
 943       result += _gens[i]->tlab_capacity();
 944     }
 945   }
 946   return result;
 947 }
 948 
 949 size_t GenCollectedHeap::tlab_used(Thread* thr) const {
 950   size_t result = 0;
 951   for (int i = 0; i < _n_gens; i += 1) {
 952     if (_gens[i]->supports_tlab_allocation()) {
 953       result += _gens[i]->tlab_used();
 954     }
 955   }
 956   return result;
 957 }
 958 
 959 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
 960   size_t result = 0;
 961   for (int i = 0; i < _n_gens; i += 1) {
 962     if (_gens[i]->supports_tlab_allocation()) {
 963       result += _gens[i]->unsafe_max_tlab_alloc();
 964     }
 965   }
 966   return result;
 967 }
 968 
 969 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
 970   bool gc_overhead_limit_was_exceeded;
 971   return collector_policy()->mem_allocate_work(size /* size */,
 972                                                true /* is_tlab */,
 973                                                &gc_overhead_limit_was_exceeded);
 974 }
 975 
 976 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
 977 // from the list headed by "*prev_ptr".
 978 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
 979   bool first = true;
 980   size_t min_size = 0;   // "first" makes this conceptually infinite.
 981   ScratchBlock **smallest_ptr, *smallest;
 982   ScratchBlock  *cur = *prev_ptr;
 983   while (cur) {
 984     assert(*prev_ptr == cur, "just checking");
 985     if (first || cur->num_words < min_size) {
 986       smallest_ptr = prev_ptr;
 987       smallest     = cur;
 988       min_size     = smallest->num_words;
 989       first        = false;
 990     }
 991     prev_ptr = &cur->next;
 992     cur     =  cur->next;
 993   }
 994   smallest      = *smallest_ptr;
 995   *smallest_ptr = smallest->next;
 996   return smallest;
 997 }
 998 
 999 // Sort the scratch block list headed by res into decreasing size order,
1000 // and set "res" to the result.
1001 static void sort_scratch_list(ScratchBlock*& list) {
1002   ScratchBlock* sorted = NULL;
1003   ScratchBlock* unsorted = list;
1004   while (unsorted) {
1005     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
1006     smallest->next  = sorted;
1007     sorted          = smallest;
1008   }
1009   list = sorted;
1010 }
1011 
1012 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
1013                                                size_t max_alloc_words) {
1014   ScratchBlock* res = NULL;
1015   for (int i = 0; i < _n_gens; i++) {
1016     _gens[i]->contribute_scratch(res, requestor, max_alloc_words);
1017   }
1018   sort_scratch_list(res);
1019   return res;
1020 }
1021 
1022 void GenCollectedHeap::release_scratch() {
1023   for (int i = 0; i < _n_gens; i++) {
1024     _gens[i]->reset_scratch();
1025   }
1026 }
1027 
1028 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
1029   void do_generation(Generation* gen) {
1030     gen->prepare_for_verify();
1031   }
1032 };
1033 
1034 void GenCollectedHeap::prepare_for_verify() {
1035   ensure_parsability(false);        // no need to retire TLABs
1036   GenPrepareForVerifyClosure blk;
1037   generation_iterate(&blk, false);
1038 }
1039 
1040 
1041 void GenCollectedHeap::generation_iterate(GenClosure* cl,
1042                                           bool old_to_young) {
1043   if (old_to_young) {
1044     for (int i = _n_gens-1; i >= 0; i--) {
1045       cl->do_generation(_gens[i]);
1046     }
1047   } else {
1048     for (int i = 0; i < _n_gens; i++) {
1049       cl->do_generation(_gens[i]);
1050     }
1051   }
1052 }
1053 
1054 void GenCollectedHeap::space_iterate(SpaceClosure* cl) {
1055   for (int i = 0; i < _n_gens; i++) {
1056     _gens[i]->space_iterate(cl, true);
1057   }
1058 }
1059 
1060 bool GenCollectedHeap::is_maximal_no_gc() const {
1061   for (int i = 0; i < _n_gens; i++) {
1062     if (!_gens[i]->is_maximal_no_gc()) {
1063       return false;
1064     }
1065   }
1066   return true;
1067 }
1068 
1069 void GenCollectedHeap::save_marks() {
1070   for (int i = 0; i < _n_gens; i++) {
1071     _gens[i]->save_marks();
1072   }
1073 }
1074 
1075 GenCollectedHeap* GenCollectedHeap::heap() {
1076   assert(_gch != NULL, "Uninitialized access to GenCollectedHeap::heap()");
1077   assert(_gch->kind() == CollectedHeap::GenCollectedHeap, "not a generational heap");
1078   return _gch;
1079 }
1080 
1081 
1082 void GenCollectedHeap::prepare_for_compaction() {
1083   guarantee(_n_gens = 2, "Wrong number of generations");
1084   Generation* old_gen = _gens[1];
1085   // Start by compacting into same gen.
1086   CompactPoint cp(old_gen);
1087   old_gen->prepare_for_compaction(&cp);
1088   Generation* young_gen = _gens[0];
1089   young_gen->prepare_for_compaction(&cp);
1090 }
1091 
1092 GCStats* GenCollectedHeap::gc_stats(int level) const {
1093   return _gens[level]->gc_stats();
1094 }
1095 
1096 void GenCollectedHeap::verify(bool silent, VerifyOption option /* ignored */) {
1097   for (int i = _n_gens-1; i >= 0; i--) {
1098     Generation* g = _gens[i];
1099     if (!silent) {
1100       gclog_or_tty->print("%s", g->name());
1101       gclog_or_tty->print(" ");
1102     }
1103     g->verify();
1104   }
1105   if (!silent) {
1106     gclog_or_tty->print("remset ");
1107   }
1108   rem_set()->verify();
1109 }
1110 
1111 void GenCollectedHeap::print_on(outputStream* st) const {
1112   for (int i = 0; i < _n_gens; i++) {
1113     _gens[i]->print_on(st);
1114   }
1115   MetaspaceAux::print_on(st);
1116 }
1117 
1118 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1119   if (workers() != NULL) {
1120     workers()->threads_do(tc);
1121   }
1122 #if INCLUDE_ALL_GCS
1123   if (UseConcMarkSweepGC) {
1124     ConcurrentMarkSweepThread::threads_do(tc);
1125   }
1126 #endif // INCLUDE_ALL_GCS
1127 }
1128 
1129 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
1130 #if INCLUDE_ALL_GCS
1131   if (UseParNewGC) {
1132     workers()->print_worker_threads_on(st);
1133   }
1134   if (UseConcMarkSweepGC) {
1135     ConcurrentMarkSweepThread::print_all_on(st);
1136   }
1137 #endif // INCLUDE_ALL_GCS
1138 }
1139 
1140 void GenCollectedHeap::print_on_error(outputStream* st) const {
1141   this->CollectedHeap::print_on_error(st);
1142 
1143 #if INCLUDE_ALL_GCS
1144   if (UseConcMarkSweepGC) {
1145     st->cr();
1146     CMSCollector::print_on_error(st);
1147   }
1148 #endif // INCLUDE_ALL_GCS
1149 }
1150 
1151 void GenCollectedHeap::print_tracing_info() const {
1152   if (TraceYoungGenTime) {
1153     get_gen(0)->print_summary_info();
1154   }
1155   if (TraceOldGenTime) {
1156     get_gen(1)->print_summary_info();
1157   }
1158 }
1159 
1160 void GenCollectedHeap::print_heap_change(size_t prev_used) const {
1161   if (PrintGCDetails && Verbose) {
1162     gclog_or_tty->print(" "  SIZE_FORMAT
1163                         "->" SIZE_FORMAT
1164                         "("  SIZE_FORMAT ")",
1165                         prev_used, used(), capacity());
1166   } else {
1167     gclog_or_tty->print(" "  SIZE_FORMAT "K"
1168                         "->" SIZE_FORMAT "K"
1169                         "("  SIZE_FORMAT "K)",
1170                         prev_used / K, used() / K, capacity() / K);
1171   }
1172 }
1173 
1174 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1175  private:
1176   bool _full;
1177  public:
1178   void do_generation(Generation* gen) {
1179     gen->gc_prologue(_full);
1180   }
1181   GenGCPrologueClosure(bool full) : _full(full) {};
1182 };
1183 
1184 void GenCollectedHeap::gc_prologue(bool full) {
1185   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1186 
1187   always_do_update_barrier = false;
1188   // Fill TLAB's and such
1189   CollectedHeap::accumulate_statistics_all_tlabs();
1190   ensure_parsability(true);   // retire TLABs
1191 
1192   // Walk generations
1193   GenGCPrologueClosure blk(full);
1194   generation_iterate(&blk, false);  // not old-to-young.
1195 };
1196 
1197 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1198  private:
1199   bool _full;
1200  public:
1201   void do_generation(Generation* gen) {
1202     gen->gc_epilogue(_full);
1203   }
1204   GenGCEpilogueClosure(bool full) : _full(full) {};
1205 };
1206 
1207 void GenCollectedHeap::gc_epilogue(bool full) {
1208 #ifdef COMPILER2
1209   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1210   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1211   guarantee(actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1212 #endif /* COMPILER2 */
1213 
1214   resize_all_tlabs();
1215 
1216   GenGCEpilogueClosure blk(full);
1217   generation_iterate(&blk, false);  // not old-to-young.
1218 
1219   if (!CleanChunkPoolAsync) {
1220     Chunk::clean_chunk_pool();
1221   }
1222 
1223   MetaspaceCounters::update_performance_counters();
1224   CompressedClassSpaceCounters::update_performance_counters();
1225 
1226   always_do_update_barrier = UseConcMarkSweepGC;
1227 };
1228 
1229 #ifndef PRODUCT
1230 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1231  private:
1232  public:
1233   void do_generation(Generation* gen) {
1234     gen->record_spaces_top();
1235   }
1236 };
1237 
1238 void GenCollectedHeap::record_gen_tops_before_GC() {
1239   if (ZapUnusedHeapArea) {
1240     GenGCSaveTopsBeforeGCClosure blk;
1241     generation_iterate(&blk, false);  // not old-to-young.
1242   }
1243 }
1244 #endif  // not PRODUCT
1245 
1246 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1247  public:
1248   void do_generation(Generation* gen) {
1249     gen->ensure_parsability();
1250   }
1251 };
1252 
1253 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1254   CollectedHeap::ensure_parsability(retire_tlabs);
1255   GenEnsureParsabilityClosure ep_cl;
1256   generation_iterate(&ep_cl, false);
1257 }
1258 
1259 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
1260                                               oop obj,
1261                                               size_t obj_size) {
1262   guarantee(old_gen->level() == 1, "We only get here with an old generation");
1263   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1264   HeapWord* result = NULL;
1265 
1266   result = old_gen->expand_and_allocate(obj_size, false);
1267 
1268   if (result != NULL) {
1269     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
1270   }
1271   return oop(result);
1272 }
1273 
1274 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1275   jlong _time;   // in ms
1276   jlong _now;    // in ms
1277 
1278  public:
1279   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1280 
1281   jlong time() { return _time; }
1282 
1283   void do_generation(Generation* gen) {
1284     _time = MIN2(_time, gen->time_of_last_gc(_now));
1285   }
1286 };
1287 
1288 jlong GenCollectedHeap::millis_since_last_gc() {
1289   // We need a monotonically non-decreasing time in ms but
1290   // os::javaTimeMillis() does not guarantee monotonicity.
1291   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1292   GenTimeOfLastGCClosure tolgc_cl(now);
1293   // iterate over generations getting the oldest
1294   // time that a generation was collected
1295   generation_iterate(&tolgc_cl, false);
1296 
1297   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
1298   // provided the underlying platform provides such a time source
1299   // (and it is bug free). So we still have to guard against getting
1300   // back a time later than 'now'.
1301   jlong retVal = now - tolgc_cl.time();
1302   if (retVal < 0) {
1303     NOT_PRODUCT(warning("time warp: "INT64_FORMAT, (int64_t) retVal);)
1304     return 0;
1305   }
1306   return retVal;
1307 }