1 /*
   2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
  26 #define SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
  27 
  28 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  29 #include "memory/collectorPolicy.hpp"
  30 #include "memory/generation.hpp"
  31 #include "memory/sharedHeap.hpp"
  32 
  33 class SubTasksDone;
  34 
  35 // A "GenCollectedHeap" is a SharedHeap that uses generational
  36 // collection.  It has two generations, young and old.
  37 class GenCollectedHeap : public SharedHeap {
  38   friend class GenCollectorPolicy;
  39   friend class Generation;
  40   friend class DefNewGeneration;
  41   friend class TenuredGeneration;
  42   friend class ConcurrentMarkSweepGeneration;
  43   friend class CMSCollector;
  44   friend class GenMarkSweep;
  45   friend class VM_GenCollectForAllocation;
  46   friend class VM_GenCollectFull;
  47   friend class VM_GenCollectFullConcurrent;
  48   friend class VM_GC_HeapInspection;
  49   friend class VM_HeapDumper;
  50   friend class HeapInspection;
  51   friend class GCCauseSetter;
  52   friend class VMStructs;
  53 public:
  54   friend class VM_PopulateDumpSharedSpace;
  55 
  56  protected:
  57   // Fields:
  58   static GenCollectedHeap* _gch;
  59 
  60  private:
  61   Generation* _young_gen;
  62   Generation* _old_gen;
  63 
  64   // The generational collector policy.
  65   GenCollectorPolicy* _gen_policy;
  66 
  67   // Indicates that the most recent previous incremental collection failed.
  68   // The flag is cleared when an action is taken that might clear the
  69   // condition that caused that incremental collection to fail.
  70   bool _incremental_collection_failed;
  71 
  72   // In support of ExplicitGCInvokesConcurrent functionality
  73   unsigned int _full_collections_completed;
  74 
  75   // Data structure for claiming the (potentially) parallel tasks in
  76   // (gen-specific) roots processing.
  77   SubTasksDone* _gen_process_roots_tasks;
  78   SubTasksDone* gen_process_roots_tasks() { return _gen_process_roots_tasks; }
  79 
  80   void collect_generation(Generation* gen, bool full, size_t size, bool is_tlab,
  81                           bool run_verification, bool clear_soft_refs);
  82 
  83   // In block contents verification, the number of header words to skip
  84   NOT_PRODUCT(static size_t _skip_header_HeapWords;)
  85 
  86 protected:
  87   // Helper functions for allocation
  88   HeapWord* attempt_allocation(size_t size,
  89                                bool   is_tlab,
  90                                bool   first_only);
  91 
  92   // Helper function for two callbacks below.
  93   // Considers collection of the first max_level+1 generations.
  94   void do_collection(bool             full,
  95                      bool             clear_all_soft_refs,
  96                      size_t           size,
  97                      bool             is_tlab,
  98                      Generation::Type max_generation);
  99 
 100   // Callback from VM_GenCollectForAllocation operation.
 101   // This function does everything necessary/possible to satisfy an
 102   // allocation request that failed in the youngest generation that should
 103   // have handled it (including collection, expansion, etc.)
 104   HeapWord* satisfy_failed_allocation(size_t size, bool is_tlab);
 105 
 106   // Callback from VM_GenCollectFull operation.
 107   // Perform a full collection of the first max_level+1 generations.
 108   virtual void do_full_collection(bool clear_all_soft_refs);
 109   void do_full_collection(bool clear_all_soft_refs, Generation::Type max_gen);
 110 
 111   // Does the "cause" of GC indicate that
 112   // we absolutely __must__ clear soft refs?
 113   bool must_clear_all_soft_refs();
 114 
 115 public:
 116   GenCollectedHeap(GenCollectorPolicy *policy);
 117 
 118   GCStats* gc_stats(Generation* gen) const;
 119 
 120   // Returns JNI_OK on success
 121   virtual jint initialize();
 122 
 123   char* allocate(size_t alignment,
 124                  size_t* _total_reserved, int* _n_covered_regions,
 125                  ReservedSpace* heap_rs);
 126 
 127   // Does operations required after initialization has been done.
 128   void post_initialize();
 129 
 130   // Initialize ("weak") refs processing support
 131   virtual void ref_processing_init();
 132 
 133   virtual CollectedHeap::Name kind() const {
 134     return CollectedHeap::GenCollectedHeap;
 135   }
 136 
 137   Generation* young_gen() const { return _young_gen; }
 138   Generation* old_gen()   const { return _old_gen; }
 139 
 140   // The generational collector policy.
 141   GenCollectorPolicy* gen_policy() const { return _gen_policy; }
 142 
 143   virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) gen_policy(); }
 144 
 145   // Adaptive size policy
 146   virtual AdaptiveSizePolicy* size_policy() {
 147     return gen_policy()->size_policy();
 148   }
 149 
 150   // Return the (conservative) maximum heap alignment
 151   static size_t conservative_max_heap_alignment() {
 152     return Generation::GenGrain;
 153   }
 154 
 155   size_t capacity() const;
 156   size_t used() const;
 157 
 158   // Save the "used_region" for both generations.
 159   void save_used_regions();
 160 
 161   size_t max_capacity() const;
 162 
 163   HeapWord* mem_allocate(size_t size, bool*  gc_overhead_limit_was_exceeded);
 164 
 165   // We may support a shared contiguous allocation area, if the youngest
 166   // generation does.
 167   bool supports_inline_contig_alloc() const;
 168   HeapWord** top_addr() const;
 169   HeapWord** end_addr() const;
 170 
 171   // Does this heap support heap inspection? (+PrintClassHistogram)
 172   virtual bool supports_heap_inspection() const { return true; }
 173 
 174   // Perform a full collection of the heap; intended for use in implementing
 175   // "System.gc". This implies as full a collection as the CollectedHeap
 176   // supports. Caller does not hold the Heap_lock on entry.
 177   void collect(GCCause::Cause cause);
 178 
 179   // The same as above but assume that the caller holds the Heap_lock.
 180   void collect_locked(GCCause::Cause cause);
 181 
 182   // Perform a full collection of generations up to and including max_gen.
 183   // Mostly used for testing purposes. Caller does not hold the Heap_lock on entry.
 184   void collect(GCCause::Cause cause, Generation::Type max_gen);
 185 
 186   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 187   // The methods is_in(), is_in_closed_subset() and is_in_youngest() may
 188   // be expensive to compute in general, so, to prevent
 189   // their inadvertent use in product jvm's, we restrict their use to
 190   // assertion checking or verification only.
 191   bool is_in(const void* p) const;
 192 
 193   // override
 194   bool is_in_closed_subset(const void* p) const {
 195     if (UseConcMarkSweepGC) {
 196       return is_in_reserved(p);
 197     } else {
 198       return is_in(p);
 199     }
 200   }
 201 
 202   // Returns true if the reference is to an object in the reserved space
 203   // for the young generation.
 204   // Assumes the the young gen address range is less than that of the old gen.
 205   bool is_in_young(oop p);
 206 
 207 #ifdef ASSERT
 208   virtual bool is_in_partial_collection(const void* p);
 209 #endif
 210 
 211   virtual bool is_scavengable(const void* addr) {
 212     return is_in_young((oop)addr);
 213   }
 214 
 215   // Iteration functions.
 216   void oop_iterate(ExtendedOopClosure* cl);
 217   void object_iterate(ObjectClosure* cl);
 218   void safe_object_iterate(ObjectClosure* cl);
 219   Space* space_containing(const void* addr) const;
 220 
 221   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 222   // each address in the (reserved) heap is a member of exactly
 223   // one block.  The defining characteristic of a block is that it is
 224   // possible to find its size, and thus to progress forward to the next
 225   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 226   // represent Java objects, or they might be free blocks in a
 227   // free-list-based heap (or subheap), as long as the two kinds are
 228   // distinguishable and the size of each is determinable.
 229 
 230   // Returns the address of the start of the "block" that contains the
 231   // address "addr".  We say "blocks" instead of "object" since some heaps
 232   // may not pack objects densely; a chunk may either be an object or a
 233   // non-object.
 234   virtual HeapWord* block_start(const void* addr) const;
 235 
 236   // Requires "addr" to be the start of a chunk, and returns its size.
 237   // "addr + size" is required to be the start of a new chunk, or the end
 238   // of the active area of the heap. Assumes (and verifies in non-product
 239   // builds) that addr is in the allocated part of the heap and is
 240   // the start of a chunk.
 241   virtual size_t block_size(const HeapWord* addr) const;
 242 
 243   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 244   // the block is an object. Assumes (and verifies in non-product
 245   // builds) that addr is in the allocated part of the heap and is
 246   // the start of a chunk.
 247   virtual bool block_is_obj(const HeapWord* addr) const;
 248 
 249   // Section on TLAB's.
 250   virtual bool supports_tlab_allocation() const;
 251   virtual size_t tlab_capacity(Thread* thr) const;
 252   virtual size_t tlab_used(Thread* thr) const;
 253   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
 254   virtual HeapWord* allocate_new_tlab(size_t size);
 255 
 256   // Can a compiler initialize a new object without store barriers?
 257   // This permission only extends from the creation of a new object
 258   // via a TLAB up to the first subsequent safepoint.
 259   virtual bool can_elide_tlab_store_barriers() const {
 260     return true;
 261   }
 262 
 263   virtual bool card_mark_must_follow_store() const {
 264     return UseConcMarkSweepGC;
 265   }
 266 
 267   // We don't need barriers for stores to objects in the
 268   // young gen and, a fortiori, for initializing stores to
 269   // objects therein. This applies to {DefNew,ParNew}+{Tenured,CMS}
 270   // only and may need to be re-examined in case other
 271   // kinds of collectors are implemented in the future.
 272   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
 273     // We wanted to assert that:-
 274     // assert(UseParNewGC || UseSerialGC || UseConcMarkSweepGC,
 275     //       "Check can_elide_initializing_store_barrier() for this collector");
 276     // but unfortunately the flag UseSerialGC need not necessarily always
 277     // be set when DefNew+Tenured are being used.
 278     return is_in_young(new_obj);
 279   }
 280 
 281   // The "requestor" generation is performing some garbage collection
 282   // action for which it would be useful to have scratch space.  The
 283   // requestor promises to allocate no more than "max_alloc_words" in any
 284   // older generation (via promotion say.)   Any blocks of space that can
 285   // be provided are returned as a list of ScratchBlocks, sorted by
 286   // decreasing size.
 287   ScratchBlock* gather_scratch(Generation* requestor, size_t max_alloc_words);
 288   // Allow each generation to reset any scratch space that it has
 289   // contributed as it needs.
 290   void release_scratch();
 291 
 292   // Ensure parsability: override
 293   virtual void ensure_parsability(bool retire_tlabs);
 294 
 295   // Time in ms since the longest time a collector ran in
 296   // in any generation.
 297   virtual jlong millis_since_last_gc();
 298 
 299   // Total number of full collections completed.
 300   unsigned int total_full_collections_completed() {
 301     assert(_full_collections_completed <= _total_full_collections,
 302            "Can't complete more collections than were started");
 303     return _full_collections_completed;
 304   }
 305 
 306   // Update above counter, as appropriate, at the end of a stop-world GC cycle
 307   unsigned int update_full_collections_completed();
 308   // Update above counter, as appropriate, at the end of a concurrent GC cycle
 309   unsigned int update_full_collections_completed(unsigned int count);
 310 
 311   // Update "time of last gc" for all generations to "now".
 312   void update_time_of_last_gc(jlong now) {
 313     _young_gen->update_time_of_last_gc(now);
 314     _old_gen->update_time_of_last_gc(now);
 315   }
 316 
 317   // Update the gc statistics for each generation.
 318   void update_gc_stats(Generation* current_generation, bool full) {
 319     _old_gen->update_gc_stats(current_generation, full);
 320   }
 321 
 322   // Override.
 323   bool no_gc_in_progress() { return !is_gc_active(); }
 324 
 325   // Override.
 326   void prepare_for_verify();
 327 
 328   // Override.
 329   void verify(bool silent, VerifyOption option);
 330 
 331   // Override.
 332   virtual void print_on(outputStream* st) const;
 333   virtual void print_gc_threads_on(outputStream* st) const;
 334   virtual void gc_threads_do(ThreadClosure* tc) const;
 335   virtual void print_tracing_info() const;
 336   virtual void print_on_error(outputStream* st) const;
 337 
 338   // PrintGC, PrintGCDetails support
 339   void print_heap_change(size_t prev_used) const;
 340 
 341   // The functions below are helper functions that a subclass of
 342   // "CollectedHeap" can use in the implementation of its virtual
 343   // functions.
 344 
 345   class GenClosure : public StackObj {
 346    public:
 347     virtual void do_generation(Generation* gen) = 0;
 348   };
 349 
 350   // Apply "cl.do_generation" to all generations in the heap
 351   // If "old_to_young" determines the order.
 352   void generation_iterate(GenClosure* cl, bool old_to_young);
 353 
 354   void space_iterate(SpaceClosure* cl);
 355 
 356   // Return "true" if all generations have reached the
 357   // maximal committed limit that they can reach, without a garbage
 358   // collection.
 359   virtual bool is_maximal_no_gc() const;
 360 
 361   // Convenience function to be used in situations where the heap type can be
 362   // asserted to be this type.
 363   static GenCollectedHeap* heap();
 364 
 365   void set_par_threads(uint t);
 366 
 367   // Invoke the "do_oop" method of one of the closures "not_older_gens"
 368   // or "older_gens" on root locations for the generations depending on
 369   // the type.  (The "older_gens" closure is used for scanning references
 370   // from older generations; "not_older_gens" is used everywhere else.)
 371   // If "younger_gens_as_roots" is false, younger generations are
 372   // not scanned as roots; in this case, the caller must be arranging to
 373   // scan the younger generations itself.  (For example, a generation might
 374   // explicitly mark reachable objects in younger generations, to avoid
 375   // excess storage retention.)
 376   // The "so" argument determines which of the roots
 377   // the closure is applied to:
 378   // "SO_None" does none;
 379  private:
 380   void gen_process_roots(Generation::Type type,
 381                          bool younger_gens_as_roots,
 382                          bool activate_scope,
 383                          SharedHeap::ScanningOption so,
 384                          OopsInGenClosure* not_older_gens,
 385                          OopsInGenClosure* weak_roots,
 386                          OopsInGenClosure* older_gens,
 387                          CLDClosure* cld_closure,
 388                          CLDClosure* weak_cld_closure,
 389                          CodeBlobClosure* code_closure);
 390 
 391  public:
 392   static const bool StrongAndWeakRoots = false;
 393   static const bool StrongRootsOnly    = true;
 394 
 395   void gen_process_roots(Generation::Type type,
 396                          bool younger_gens_as_roots,
 397                          bool activate_scope,
 398                          SharedHeap::ScanningOption so,
 399                          bool only_strong_roots,
 400                          OopsInGenClosure* not_older_gens,
 401                          OopsInGenClosure* older_gens,
 402                          CLDClosure* cld_closure);
 403 
 404   // Apply "root_closure" to all the weak roots of the system.
 405   // These include JNI weak roots, string table,
 406   // and referents of reachable weak refs.
 407   void gen_process_weak_roots(OopClosure* root_closure);
 408 
 409   // Set the saved marks of generations, if that makes sense.
 410   // In particular, if any generation might iterate over the oops
 411   // in other generations, it should call this method.
 412   void save_marks();
 413 
 414   // Apply "cur->do_oop" or "older->do_oop" to all the oops in objects
 415   // allocated since the last call to save_marks in generations at or above
 416   // "level".  The "cur" closure is
 417   // applied to references in the generation at "level", and the "older"
 418   // closure to older generations.
 419 #define GCH_SINCE_SAVE_MARKS_ITERATE_DECL(OopClosureType, nv_suffix)    \
 420   void oop_since_save_marks_iterate(Generation::Type start_gen,         \
 421                                     OopClosureType* cur,                \
 422                                     OopClosureType* older);
 423 
 424   ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DECL)
 425 
 426 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DECL
 427 
 428   // Returns "true" iff no allocations have occurred since the last
 429   // call to "save_marks".
 430   bool no_allocs_since_save_marks(bool include_young);
 431 
 432   // Returns true if an incremental collection is likely to fail.
 433   // We optionally consult the young gen, if asked to do so;
 434   // otherwise we base our answer on whether the previous incremental
 435   // collection attempt failed with no corrective action as of yet.
 436   bool incremental_collection_will_fail(bool consult_young) {
 437     // The first disjunct remembers if an incremental collection failed, even
 438     // when we thought (second disjunct) that it would not.
 439     return incremental_collection_failed() ||
 440            (consult_young && !_young_gen->collection_attempt_is_safe());
 441   }
 442 
 443   // If a generation bails out of an incremental collection,
 444   // it sets this flag.
 445   bool incremental_collection_failed() const {
 446     return _incremental_collection_failed;
 447   }
 448   void set_incremental_collection_failed() {
 449     _incremental_collection_failed = true;
 450   }
 451   void clear_incremental_collection_failed() {
 452     _incremental_collection_failed = false;
 453   }
 454 
 455   // Promotion of obj into gen failed.  Try to promote obj to higher
 456   // gens in ascending order; return the new location of obj if successful.
 457   // Otherwise, try expand-and-allocate for obj in both the young and old
 458   // generation; return the new location of obj if successful.  Otherwise, return NULL.
 459   oop handle_failed_promotion(Generation* old_gen,
 460                               oop obj,
 461                               size_t obj_size);
 462 
 463 private:
 464   // Accessor for memory state verification support
 465   NOT_PRODUCT(
 466     static size_t skip_header_HeapWords() { return _skip_header_HeapWords; }
 467   )
 468 
 469   // Override
 470   void check_for_non_bad_heap_word_value(HeapWord* addr,
 471     size_t size) PRODUCT_RETURN;
 472 
 473   // For use by mark-sweep.  As implemented, mark-sweep-compact is global
 474   // in an essential way: compaction is performed across generations, by
 475   // iterating over spaces.
 476   void prepare_for_compaction();
 477 
 478   // Perform a full collection of the generations up to and including max_gen.
 479   // This is the low level interface used by the public versions of
 480   // collect() and collect_locked(). Caller holds the Heap_lock on entry.
 481   void collect_locked(GCCause::Cause cause, Generation::Type max_gen);
 482 
 483   // Returns success or failure.
 484   bool create_cms_collector();
 485 
 486   // In support of ExplicitGCInvokesConcurrent functionality
 487   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 488   void collect_mostly_concurrent(GCCause::Cause cause);
 489 
 490   // Save the tops of the spaces in all generations
 491   void record_gen_tops_before_GC() PRODUCT_RETURN;
 492 
 493 protected:
 494   virtual void gc_prologue(bool full);
 495   virtual void gc_epilogue(bool full);
 496 };
 497 
 498 #endif // SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP