1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.hpp"
  27 #include "gc_implementation/parNew/parNewGeneration.hpp"
  28 #include "gc_implementation/parNew/parOopClosures.inline.hpp"
  29 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  30 #include "gc_implementation/shared/ageTable.hpp"
  31 #include "gc_implementation/shared/copyFailedInfo.hpp"
  32 #include "gc_implementation/shared/gcHeapSummary.hpp"
  33 #include "gc_implementation/shared/gcTimer.hpp"
  34 #include "gc_implementation/shared/gcTrace.hpp"
  35 #include "gc_implementation/shared/gcTraceTime.hpp"
  36 #include "gc_implementation/shared/parGCAllocBuffer.inline.hpp"
  37 #include "gc_implementation/shared/spaceDecorator.hpp"
  38 #include "memory/defNewGeneration.inline.hpp"
  39 #include "memory/genCollectedHeap.hpp"
  40 #include "memory/genOopClosures.inline.hpp"
  41 #include "memory/generation.hpp"
  42 #include "memory/generation.inline.hpp"
  43 #include "memory/referencePolicy.hpp"
  44 #include "memory/resourceArea.hpp"
  45 #include "memory/sharedHeap.hpp"
  46 #include "memory/space.hpp"
  47 #include "oops/objArrayOop.hpp"
  48 #include "oops/oop.inline.hpp"
  49 #include "oops/oop.pcgc.inline.hpp"
  50 #include "runtime/atomic.inline.hpp"
  51 #include "runtime/handles.hpp"
  52 #include "runtime/handles.inline.hpp"
  53 #include "runtime/java.hpp"
  54 #include "runtime/thread.inline.hpp"
  55 #include "utilities/copy.hpp"
  56 #include "utilities/globalDefinitions.hpp"
  57 #include "utilities/workgroup.hpp"
  58 
  59 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  60 
  61 #ifdef _MSC_VER
  62 #pragma warning( push )
  63 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  64 #endif
  65 ParScanThreadState::ParScanThreadState(Space* to_space_,
  66                                        ParNewGeneration* young_gen_,
  67                                        Generation* old_gen_,
  68                                        int thread_num_,
  69                                        ObjToScanQueueSet* work_queue_set_,
  70                                        Stack<oop, mtGC>* overflow_stacks_,
  71                                        size_t desired_plab_sz_,
  72                                        ParallelTaskTerminator& term_)
  73   : _to_space(to_space_),
  74     _old_gen(old_gen_),
  75     _young_gen(young_gen_),
  76     _thread_num(thread_num_),
  77     _work_queue(work_queue_set_->queue(thread_num_)),
  78     _to_space_full(false),
  79     _overflow_stack(overflow_stacks_ ? overflow_stacks_ + thread_num_ : NULL),
  80     _ageTable(false), // false ==> not the global age table, no perf data.
  81     _to_space_alloc_buffer(desired_plab_sz_),
  82     _to_space_closure(young_gen_, this),
  83     _old_gen_closure(young_gen_, this),
  84     _to_space_root_closure(young_gen_, this),
  85     _old_gen_root_closure(young_gen_, this),
  86     _older_gen_closure(young_gen_, this),
  87     _evacuate_followers(this,
  88                         &_to_space_closure,
  89                         &_old_gen_closure,
  90                         &_to_space_root_closure,
  91                         young_gen_,
  92                         &_old_gen_root_closure,
  93                         work_queue_set_,
  94                         &term_),
  95     _is_alive_closure(young_gen_),
  96     _scan_weak_ref_closure(young_gen_, this),
  97     _keep_alive_closure(&_scan_weak_ref_closure),
  98     _strong_roots_time(0.0),
  99     _term_time(0.0) {
 100   #if TASKQUEUE_STATS
 101   _term_attempts = 0;
 102   _overflow_refills = 0;
 103   _overflow_refill_objs = 0;
 104   #endif // TASKQUEUE_STATS
 105 
 106   _survivor_chunk_array = (ChunkArray*) old_gen()->get_data_recorder(thread_num());
 107   _hash_seed = 17;  // Might want to take time-based random value.
 108   _start = os::elapsedTime();
 109   _old_gen_closure.set_generation(old_gen_);
 110   _old_gen_root_closure.set_generation(old_gen_);
 111 }
 112 #ifdef _MSC_VER
 113 #pragma warning( pop )
 114 #endif
 115 
 116 void ParScanThreadState::record_survivor_plab(HeapWord* plab_start,
 117                                               size_t plab_word_size) {
 118   ChunkArray* sca = survivor_chunk_array();
 119   if (sca != NULL) {
 120     // A non-null SCA implies that we want the PLAB data recorded.
 121     sca->record_sample(plab_start, plab_word_size);
 122   }
 123 }
 124 
 125 bool ParScanThreadState::should_be_partially_scanned(oop new_obj, oop old_obj) const {
 126   return new_obj->is_objArray() &&
 127          arrayOop(new_obj)->length() > ParGCArrayScanChunk &&
 128          new_obj != old_obj;
 129 }
 130 
 131 void ParScanThreadState::scan_partial_array_and_push_remainder(oop old) {
 132   assert(old->is_objArray(), "must be obj array");
 133   assert(old->is_forwarded(), "must be forwarded");
 134   assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
 135   assert(!old_gen()->is_in(old), "must be in young generation.");
 136 
 137   objArrayOop obj = objArrayOop(old->forwardee());
 138   // Process ParGCArrayScanChunk elements now
 139   // and push the remainder back onto queue
 140   int start     = arrayOop(old)->length();
 141   int end       = obj->length();
 142   int remainder = end - start;
 143   assert(start <= end, "just checking");
 144   if (remainder > 2 * ParGCArrayScanChunk) {
 145     // Test above combines last partial chunk with a full chunk
 146     end = start + ParGCArrayScanChunk;
 147     arrayOop(old)->set_length(end);
 148     // Push remainder.
 149     bool ok = work_queue()->push(old);
 150     assert(ok, "just popped, push must be okay");
 151   } else {
 152     // Restore length so that it can be used if there
 153     // is a promotion failure and forwarding pointers
 154     // must be removed.
 155     arrayOop(old)->set_length(end);
 156   }
 157 
 158   // process our set of indices (include header in first chunk)
 159   // should make sure end is even (aligned to HeapWord in case of compressed oops)
 160   if ((HeapWord *)obj < young_old_boundary()) {
 161     // object is in to_space
 162     obj->oop_iterate_range(&_to_space_closure, start, end);
 163   } else {
 164     // object is in old generation
 165     obj->oop_iterate_range(&_old_gen_closure, start, end);
 166   }
 167 }
 168 
 169 void ParScanThreadState::trim_queues(int max_size) {
 170   ObjToScanQueue* queue = work_queue();
 171   do {
 172     while (queue->size() > (juint)max_size) {
 173       oop obj_to_scan;
 174       if (queue->pop_local(obj_to_scan)) {
 175         if ((HeapWord *)obj_to_scan < young_old_boundary()) {
 176           if (obj_to_scan->is_objArray() &&
 177               obj_to_scan->is_forwarded() &&
 178               obj_to_scan->forwardee() != obj_to_scan) {
 179             scan_partial_array_and_push_remainder(obj_to_scan);
 180           } else {
 181             // object is in to_space
 182             obj_to_scan->oop_iterate(&_to_space_closure);
 183           }
 184         } else {
 185           // object is in old generation
 186           obj_to_scan->oop_iterate(&_old_gen_closure);
 187         }
 188       }
 189     }
 190     // For the  case of compressed oops, we have a private, non-shared
 191     // overflow stack, so we eagerly drain it so as to more evenly
 192     // distribute load early. Note: this may be good to do in
 193     // general rather than delay for the final stealing phase.
 194     // If applicable, we'll transfer a set of objects over to our
 195     // work queue, allowing them to be stolen and draining our
 196     // private overflow stack.
 197   } while (ParGCTrimOverflow && young_gen()->take_from_overflow_list(this));
 198 }
 199 
 200 bool ParScanThreadState::take_from_overflow_stack() {
 201   assert(ParGCUseLocalOverflow, "Else should not call");
 202   assert(young_gen()->overflow_list() == NULL, "Error");
 203   ObjToScanQueue* queue = work_queue();
 204   Stack<oop, mtGC>* const of_stack = overflow_stack();
 205   const size_t num_overflow_elems = of_stack->size();
 206   const size_t space_available = queue->max_elems() - queue->size();
 207   const size_t num_take_elems = MIN3(space_available / 4,
 208                                      ParGCDesiredObjsFromOverflowList,
 209                                      num_overflow_elems);
 210   // Transfer the most recent num_take_elems from the overflow
 211   // stack to our work queue.
 212   for (size_t i = 0; i != num_take_elems; i++) {
 213     oop cur = of_stack->pop();
 214     oop obj_to_push = cur->forwardee();
 215     assert(Universe::heap()->is_in_reserved(cur), "Should be in heap");
 216     assert(!old_gen()->is_in_reserved(cur), "Should be in young gen");
 217     assert(Universe::heap()->is_in_reserved(obj_to_push), "Should be in heap");
 218     if (should_be_partially_scanned(obj_to_push, cur)) {
 219       assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
 220       obj_to_push = cur;
 221     }
 222     bool ok = queue->push(obj_to_push);
 223     assert(ok, "Should have succeeded");
 224   }
 225   assert(young_gen()->overflow_list() == NULL, "Error");
 226   return num_take_elems > 0;  // was something transferred?
 227 }
 228 
 229 void ParScanThreadState::push_on_overflow_stack(oop p) {
 230   assert(ParGCUseLocalOverflow, "Else should not call");
 231   overflow_stack()->push(p);
 232   assert(young_gen()->overflow_list() == NULL, "Error");
 233 }
 234 
 235 HeapWord* ParScanThreadState::alloc_in_to_space_slow(size_t word_sz) {
 236   // If the object is small enough, try to reallocate the buffer.
 237   HeapWord* obj = NULL;
 238   if (!_to_space_full) {
 239     ParGCAllocBuffer* const plab = to_space_alloc_buffer();
 240     Space*            const sp   = to_space();
 241     if (word_sz * 100 < ParallelGCBufferWastePct * plab->word_sz()) {
 242       // Is small enough; abandon this buffer and start a new one.
 243       plab->retire(false, false);
 244       size_t buf_size = plab->word_sz();
 245       HeapWord* buf_space = sp->par_allocate(buf_size);
 246       if (buf_space == NULL) {
 247         const size_t min_bytes =
 248           ParGCAllocBuffer::min_size() << LogHeapWordSize;
 249         size_t free_bytes = sp->free();
 250         while(buf_space == NULL && free_bytes >= min_bytes) {
 251           buf_size = free_bytes >> LogHeapWordSize;
 252           assert(buf_size == (size_t)align_object_size(buf_size),
 253                  "Invariant");
 254           buf_space  = sp->par_allocate(buf_size);
 255           free_bytes = sp->free();
 256         }
 257       }
 258       if (buf_space != NULL) {
 259         plab->set_word_size(buf_size);
 260         plab->set_buf(buf_space);
 261         record_survivor_plab(buf_space, buf_size);
 262         obj = plab->allocate_aligned(word_sz, SurvivorAlignmentInBytes);
 263         // Note that we cannot compare buf_size < word_sz below
 264         // because of AlignmentReserve (see ParGCAllocBuffer::allocate()).
 265         assert(obj != NULL || plab->words_remaining() < word_sz,
 266                "Else should have been able to allocate");
 267         // It's conceivable that we may be able to use the
 268         // buffer we just grabbed for subsequent small requests
 269         // even if not for this one.
 270       } else {
 271         // We're used up.
 272         _to_space_full = true;
 273       }
 274 
 275     } else {
 276       // Too large; allocate the object individually.
 277       obj = sp->par_allocate(word_sz);
 278     }
 279   }
 280   return obj;
 281 }
 282 
 283 void ParScanThreadState::undo_alloc_in_to_space(HeapWord* obj, size_t word_sz) {
 284   // Is the alloc in the current alloc buffer?
 285   if (to_space_alloc_buffer()->contains(obj)) {
 286     assert(to_space_alloc_buffer()->contains(obj + word_sz - 1),
 287            "Should contain whole object.");
 288     to_space_alloc_buffer()->undo_allocation(obj, word_sz);
 289   } else {
 290     CollectedHeap::fill_with_object(obj, word_sz);
 291   }
 292 }
 293 
 294 void ParScanThreadState::print_promotion_failure_size() {
 295   if (_promotion_failed_info.has_failed() && PrintPromotionFailure) {
 296     gclog_or_tty->print(" (%d: promotion failure size = " SIZE_FORMAT ") ",
 297                         _thread_num, _promotion_failed_info.first_size());
 298   }
 299 }
 300 
 301 class ParScanThreadStateSet: private ResourceArray {
 302 public:
 303   // Initializes states for the specified number of threads;
 304   ParScanThreadStateSet(int                     num_threads,
 305                         Space&                  to_space,
 306                         ParNewGeneration&       gen,
 307                         Generation&             old_gen,
 308                         ObjToScanQueueSet&      queue_set,
 309                         Stack<oop, mtGC>*       overflow_stacks,
 310                         size_t                  desired_plab_sz,
 311                         ParallelTaskTerminator& term);
 312 
 313   ~ParScanThreadStateSet() { TASKQUEUE_STATS_ONLY(reset_stats()); }
 314 
 315   inline ParScanThreadState& thread_state(int i);
 316 
 317   void trace_promotion_failed(YoungGCTracer& gc_tracer);
 318   void reset(int active_workers, bool promotion_failed);
 319   void flush();
 320 
 321   #if TASKQUEUE_STATS
 322   static void
 323     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
 324   void print_termination_stats(outputStream* const st = gclog_or_tty);
 325   static void
 326     print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
 327   void print_taskqueue_stats(outputStream* const st = gclog_or_tty);
 328   void reset_stats();
 329   #endif // TASKQUEUE_STATS
 330 
 331 private:
 332   ParallelTaskTerminator& _term;
 333   ParNewGeneration&       _gen;
 334   Generation&             _old_gen;
 335  public:
 336   bool is_valid(int id) const { return id < length(); }
 337   ParallelTaskTerminator* terminator() { return &_term; }
 338 };
 339 
 340 ParScanThreadStateSet::ParScanThreadStateSet(int num_threads,
 341                                              Space& to_space,
 342                                              ParNewGeneration& gen,
 343                                              Generation& old_gen,
 344                                              ObjToScanQueueSet& queue_set,
 345                                              Stack<oop, mtGC>* overflow_stacks,
 346                                              size_t desired_plab_sz,
 347                                              ParallelTaskTerminator& term)
 348   : ResourceArray(sizeof(ParScanThreadState), num_threads),
 349     _gen(gen),
 350     _old_gen(old_gen),
 351     _term(term) {
 352   assert(num_threads > 0, "sanity check!");
 353   assert(ParGCUseLocalOverflow == (overflow_stacks != NULL),
 354          "overflow_stack allocation mismatch");
 355   // Initialize states.
 356   for (int i = 0; i < num_threads; ++i) {
 357     new ((ParScanThreadState*)_data + i)
 358         ParScanThreadState(&to_space, &gen, &old_gen, i, &queue_set,
 359                            overflow_stacks, desired_plab_sz, term);
 360   }
 361 }
 362 
 363 inline ParScanThreadState& ParScanThreadStateSet::thread_state(int i) {
 364   assert(i >= 0 && i < length(), "sanity check!");
 365   return ((ParScanThreadState*)_data)[i];
 366 }
 367 
 368 void ParScanThreadStateSet::trace_promotion_failed(YoungGCTracer& gc_tracer) {
 369   for (int i = 0; i < length(); ++i) {
 370     if (thread_state(i).promotion_failed()) {
 371       gc_tracer.report_promotion_failed(thread_state(i).promotion_failed_info());
 372       thread_state(i).promotion_failed_info().reset();
 373     }
 374   }
 375 }
 376 
 377 void ParScanThreadStateSet::reset(int active_threads, bool promotion_failed) {
 378   _term.reset_for_reuse(active_threads);
 379   if (promotion_failed) {
 380     for (int i = 0; i < length(); ++i) {
 381       thread_state(i).print_promotion_failure_size();
 382     }
 383   }
 384 }
 385 
 386 #if TASKQUEUE_STATS
 387 void
 388 ParScanThreadState::reset_stats() {
 389   taskqueue_stats().reset();
 390   _term_attempts = 0;
 391   _overflow_refills = 0;
 392   _overflow_refill_objs = 0;
 393 }
 394 
 395 void ParScanThreadStateSet::reset_stats() {
 396   for (int i = 0; i < length(); ++i) {
 397     thread_state(i).reset_stats();
 398   }
 399 }
 400 
 401 void ParScanThreadStateSet::print_termination_stats_hdr(outputStream* const st) {
 402   st->print_raw_cr("GC Termination Stats");
 403   st->print_raw_cr("     elapsed  --strong roots-- "
 404                    "-------termination-------");
 405   st->print_raw_cr("thr     ms        ms       %   "
 406                    "    ms       %   attempts");
 407   st->print_raw_cr("--- --------- --------- ------ "
 408                    "--------- ------ --------");
 409 }
 410 
 411 void ParScanThreadStateSet::print_termination_stats(outputStream* const st) {
 412   print_termination_stats_hdr(st);
 413 
 414   for (int i = 0; i < length(); ++i) {
 415     const ParScanThreadState & pss = thread_state(i);
 416     const double elapsed_ms = pss.elapsed_time() * 1000.0;
 417     const double s_roots_ms = pss.strong_roots_time() * 1000.0;
 418     const double term_ms = pss.term_time() * 1000.0;
 419     st->print_cr("%3d %9.2f %9.2f %6.2f "
 420                  "%9.2f %6.2f " SIZE_FORMAT_W(8),
 421                  i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
 422                  term_ms, term_ms * 100 / elapsed_ms, pss.term_attempts());
 423   }
 424 }
 425 
 426 // Print stats related to work queue activity.
 427 void ParScanThreadStateSet::print_taskqueue_stats_hdr(outputStream* const st) {
 428   st->print_raw_cr("GC Task Stats");
 429   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
 430   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
 431 }
 432 
 433 void ParScanThreadStateSet::print_taskqueue_stats(outputStream* const st) {
 434   print_taskqueue_stats_hdr(st);
 435 
 436   TaskQueueStats totals;
 437   for (int i = 0; i < length(); ++i) {
 438     const ParScanThreadState & pss = thread_state(i);
 439     const TaskQueueStats & stats = pss.taskqueue_stats();
 440     st->print("%3d ", i); stats.print(st); st->cr();
 441     totals += stats;
 442 
 443     if (pss.overflow_refills() > 0) {
 444       st->print_cr("    " SIZE_FORMAT_W(10) " overflow refills    "
 445                    SIZE_FORMAT_W(10) " overflow objects",
 446                    pss.overflow_refills(), pss.overflow_refill_objs());
 447     }
 448   }
 449   st->print("tot "); totals.print(st); st->cr();
 450 
 451   DEBUG_ONLY(totals.verify());
 452 }
 453 #endif // TASKQUEUE_STATS
 454 
 455 void ParScanThreadStateSet::flush() {
 456   // Work in this loop should be kept as lightweight as
 457   // possible since this might otherwise become a bottleneck
 458   // to scaling. Should we add heavy-weight work into this
 459   // loop, consider parallelizing the loop into the worker threads.
 460   for (int i = 0; i < length(); ++i) {
 461     ParScanThreadState& par_scan_state = thread_state(i);
 462 
 463     // Flush stats related to To-space PLAB activity and
 464     // retire the last buffer.
 465     par_scan_state.to_space_alloc_buffer()->
 466       flush_stats_and_retire(_gen.plab_stats(),
 467                              true /* end_of_gc */,
 468                              false /* retain */);
 469 
 470     // Every thread has its own age table.  We need to merge
 471     // them all into one.
 472     ageTable *local_table = par_scan_state.age_table();
 473     _gen.age_table()->merge(local_table);
 474 
 475     // Inform old gen that we're done.
 476     _old_gen.par_promote_alloc_done(i);
 477     _old_gen.par_oop_since_save_marks_iterate_done(i);
 478   }
 479 
 480   if (UseConcMarkSweepGC && ParallelGCThreads > 0) {
 481     // We need to call this even when ResizeOldPLAB is disabled
 482     // so as to avoid breaking some asserts. While we may be able
 483     // to avoid this by reorganizing the code a bit, I am loathe
 484     // to do that unless we find cases where ergo leads to bad
 485     // performance.
 486     CFLS_LAB::compute_desired_plab_size();
 487   }
 488 }
 489 
 490 ParScanClosure::ParScanClosure(ParNewGeneration* g,
 491                                ParScanThreadState* par_scan_state)
 492   : OopsInKlassOrGenClosure(g),
 493     _par_scan_state(par_scan_state),
 494     _g(g) {
 495   _boundary = _g->reserved().end();
 496 }
 497 
 498 void ParScanWithBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, false); }
 499 void ParScanWithBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, false); }
 500 
 501 void ParScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, false); }
 502 void ParScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, false); }
 503 
 504 void ParRootScanWithBarrierTwoGensClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, true); }
 505 void ParRootScanWithBarrierTwoGensClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, true); }
 506 
 507 void ParRootScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, true); }
 508 void ParRootScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, true); }
 509 
 510 ParScanWeakRefClosure::ParScanWeakRefClosure(ParNewGeneration* g,
 511                                              ParScanThreadState* par_scan_state)
 512   : ScanWeakRefClosure(g),
 513     _par_scan_state(par_scan_state) {
 514 }
 515 
 516 void ParScanWeakRefClosure::do_oop(oop* p)       { ParScanWeakRefClosure::do_oop_work(p); }
 517 void ParScanWeakRefClosure::do_oop(narrowOop* p) { ParScanWeakRefClosure::do_oop_work(p); }
 518 
 519 #ifdef WIN32
 520 #pragma warning(disable: 4786) /* identifier was truncated to '255' characters in the browser information */
 521 #endif
 522 
 523 ParEvacuateFollowersClosure::ParEvacuateFollowersClosure(ParScanThreadState* par_scan_state,
 524                                                          ParScanWithoutBarrierClosure* to_space_closure,
 525                                                          ParScanWithBarrierClosure* old_gen_closure,
 526                                                          ParRootScanWithoutBarrierClosure* to_space_root_closure,
 527                                                          ParNewGeneration* par_gen,
 528                                                          ParRootScanWithBarrierTwoGensClosure* old_gen_root_closure,
 529                                                          ObjToScanQueueSet* task_queues,
 530                                                          ParallelTaskTerminator* terminator)
 531   : _par_scan_state(par_scan_state),
 532     _to_space_closure(to_space_closure),
 533     _old_gen_closure(old_gen_closure),
 534     _to_space_root_closure(to_space_root_closure),
 535     _old_gen_root_closure(old_gen_root_closure),
 536     _par_gen(par_gen),
 537     _task_queues(task_queues),
 538     _terminator(terminator) {
 539 }
 540 
 541 void ParEvacuateFollowersClosure::do_void() {
 542   ObjToScanQueue* work_q = par_scan_state()->work_queue();
 543 
 544   while (true) {
 545     // Scan to-space and old-gen objs until we run out of both.
 546     oop obj_to_scan;
 547     par_scan_state()->trim_queues(0);
 548 
 549     // We have no local work, attempt to steal from other threads.
 550 
 551     // attempt to steal work from promoted.
 552     if (task_queues()->steal(par_scan_state()->thread_num(),
 553                              par_scan_state()->hash_seed(),
 554                              obj_to_scan)) {
 555       bool res = work_q->push(obj_to_scan);
 556       assert(res, "Empty queue should have room for a push.");
 557 
 558       //   if successful, goto Start.
 559       continue;
 560 
 561       // try global overflow list.
 562     } else if (par_gen()->take_from_overflow_list(par_scan_state())) {
 563       continue;
 564     }
 565 
 566     // Otherwise, offer termination.
 567     par_scan_state()->start_term_time();
 568     if (terminator()->offer_termination()) break;
 569     par_scan_state()->end_term_time();
 570   }
 571   assert(par_gen()->_overflow_list == NULL && par_gen()->_num_par_pushes == 0,
 572          "Broken overflow list?");
 573   // Finish the last termination pause.
 574   par_scan_state()->end_term_time();
 575 }
 576 
 577 ParNewGenTask::ParNewGenTask(ParNewGeneration* young_gen,
 578                              Generation* old_gen,
 579                              HeapWord* young_old_boundary,
 580                              ParScanThreadStateSet* state_set)
 581   : AbstractGangTask("ParNewGeneration collection"),
 582     _young_gen(young_gen), _old_gen(old_gen),
 583     _young_old_boundary(young_old_boundary),
 584     _state_set(state_set) {
 585 }
 586 
 587 // Reset the terminator for the given number of
 588 // active threads.
 589 void ParNewGenTask::set_for_termination(int active_workers) {
 590   _state_set->reset(active_workers, _young_gen->promotion_failed());
 591   // Should the heap be passed in?  There's only 1 for now so
 592   // grab it instead.
 593   GenCollectedHeap* gch = GenCollectedHeap::heap();
 594   gch->set_n_termination(active_workers);
 595 }
 596 
 597 void ParNewGenTask::work(uint worker_id) {
 598   GenCollectedHeap* gch = GenCollectedHeap::heap();
 599   // Since this is being done in a separate thread, need new resource
 600   // and handle marks.
 601   ResourceMark rm;
 602   HandleMark hm;
 603 
 604   Generation* old_gen = gch->old_gen();
 605 
 606   ParScanThreadState& par_scan_state = _state_set->thread_state(worker_id);
 607   assert(_state_set->is_valid(worker_id), "Should not have been called");
 608 
 609   par_scan_state.set_young_old_boundary(_young_old_boundary);
 610 
 611   KlassScanClosure klass_scan_closure(&par_scan_state.to_space_root_closure(),
 612                                       gch->rem_set()->klass_rem_set());
 613   CLDToKlassAndOopClosure cld_scan_closure(&klass_scan_closure,
 614                                            &par_scan_state.to_space_root_closure(),
 615                                            false);
 616 
 617   par_scan_state.start_strong_roots();
 618   gch->gen_process_roots(Generation::Young,
 619                          true,  // Process younger gens, if any,
 620                                 // as strong roots.
 621                          false, // no scope; this is parallel code
 622                          SharedHeap::SO_ScavengeCodeCache,
 623                          GenCollectedHeap::StrongAndWeakRoots,
 624                          &par_scan_state.to_space_root_closure(),
 625                          &par_scan_state.older_gen_closure(),
 626                          &cld_scan_closure);
 627 
 628   par_scan_state.end_strong_roots();
 629 
 630   // "evacuate followers".
 631   par_scan_state.evacuate_followers_closure().do_void();
 632 }
 633 
 634 #ifdef _MSC_VER
 635 #pragma warning( push )
 636 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 637 #endif
 638 ParNewGeneration::
 639 ParNewGeneration(ReservedSpace rs, size_t initial_byte_size)
 640   : DefNewGeneration(rs, initial_byte_size, "PCopy"),
 641     _overflow_list(NULL),
 642     _is_alive_closure(this),
 643     _plab_stats(YoungPLABSize, PLABWeight) {
 644   NOT_PRODUCT(_overflow_counter = ParGCWorkQueueOverflowInterval;)
 645   NOT_PRODUCT(_num_par_pushes = 0;)
 646   _task_queues = new ObjToScanQueueSet(ParallelGCThreads);
 647   guarantee(_task_queues != NULL, "task_queues allocation failure.");
 648 
 649   for (uint i1 = 0; i1 < ParallelGCThreads; i1++) {
 650     ObjToScanQueue *q = new ObjToScanQueue();
 651     guarantee(q != NULL, "work_queue Allocation failure.");
 652     _task_queues->register_queue(i1, q);
 653   }
 654 
 655   for (uint i2 = 0; i2 < ParallelGCThreads; i2++) {
 656     _task_queues->queue(i2)->initialize();
 657   }
 658 
 659   _overflow_stacks = NULL;
 660   if (ParGCUseLocalOverflow) {
 661     // typedef to workaround NEW_C_HEAP_ARRAY macro, which can not deal
 662     // with ','
 663     typedef Stack<oop, mtGC> GCOopStack;
 664 
 665     _overflow_stacks = NEW_C_HEAP_ARRAY(GCOopStack, ParallelGCThreads, mtGC);
 666     for (size_t i = 0; i < ParallelGCThreads; ++i) {
 667       new (_overflow_stacks + i) Stack<oop, mtGC>();
 668     }
 669   }
 670 
 671   if (UsePerfData) {
 672     EXCEPTION_MARK;
 673     ResourceMark rm;
 674 
 675     const char* cname =
 676          PerfDataManager::counter_name(_gen_counters->name_space(), "threads");
 677     PerfDataManager::create_constant(SUN_GC, cname, PerfData::U_None,
 678                                      ParallelGCThreads, CHECK);
 679   }
 680 }
 681 #ifdef _MSC_VER
 682 #pragma warning( pop )
 683 #endif
 684 
 685 // ParNewGeneration::
 686 ParKeepAliveClosure::ParKeepAliveClosure(ParScanWeakRefClosure* cl)
 687   : DefNewGeneration::KeepAliveClosure(cl), _par_cl(cl) {
 688 }
 689 
 690 template <class T>
 691 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop_work(T* p) {
 692 #ifdef ASSERT
 693   {
 694     assert(!oopDesc::is_null(*p), "expected non-null ref");
 695     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 696     // We never expect to see a null reference being processed
 697     // as a weak reference.
 698     assert(obj->is_oop(), "expected an oop while scanning weak refs");
 699   }
 700 #endif // ASSERT
 701 
 702   _par_cl->do_oop_nv(p);
 703 
 704   if (Universe::heap()->is_in_reserved(p)) {
 705     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 706     _rs->write_ref_field_gc_par(p, obj);
 707   }
 708 }
 709 
 710 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(oop* p)       { ParKeepAliveClosure::do_oop_work(p); }
 711 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(narrowOop* p) { ParKeepAliveClosure::do_oop_work(p); }
 712 
 713 // ParNewGeneration::
 714 KeepAliveClosure::KeepAliveClosure(ScanWeakRefClosure* cl)
 715   : DefNewGeneration::KeepAliveClosure(cl) {
 716 }
 717 
 718 template <class T>
 719 void /*ParNewGeneration::*/KeepAliveClosure::do_oop_work(T* p) {
 720 #ifdef ASSERT
 721   {
 722     assert(!oopDesc::is_null(*p), "expected non-null ref");
 723     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 724     // We never expect to see a null reference being processed
 725     // as a weak reference.
 726     assert(obj->is_oop(), "expected an oop while scanning weak refs");
 727   }
 728 #endif // ASSERT
 729 
 730   _cl->do_oop_nv(p);
 731 
 732   if (Universe::heap()->is_in_reserved(p)) {
 733     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 734     _rs->write_ref_field_gc_par(p, obj);
 735   }
 736 }
 737 
 738 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(oop* p)       { KeepAliveClosure::do_oop_work(p); }
 739 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(narrowOop* p) { KeepAliveClosure::do_oop_work(p); }
 740 
 741 template <class T> void ScanClosureWithParBarrier::do_oop_work(T* p) {
 742   T heap_oop = oopDesc::load_heap_oop(p);
 743   if (!oopDesc::is_null(heap_oop)) {
 744     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 745     if ((HeapWord*)obj < _boundary) {
 746       assert(!_g->to()->is_in_reserved(obj), "Scanning field twice?");
 747       oop new_obj = obj->is_forwarded()
 748                       ? obj->forwardee()
 749                       : _g->DefNewGeneration::copy_to_survivor_space(obj);
 750       oopDesc::encode_store_heap_oop_not_null(p, new_obj);
 751     }
 752     if (_gc_barrier) {
 753       // If p points to a younger generation, mark the card.
 754       if ((HeapWord*)obj < _gen_boundary) {
 755         _rs->write_ref_field_gc_par(p, obj);
 756       }
 757     }
 758   }
 759 }
 760 
 761 void ScanClosureWithParBarrier::do_oop(oop* p)       { ScanClosureWithParBarrier::do_oop_work(p); }
 762 void ScanClosureWithParBarrier::do_oop(narrowOop* p) { ScanClosureWithParBarrier::do_oop_work(p); }
 763 
 764 class ParNewRefProcTaskProxy: public AbstractGangTask {
 765   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
 766 public:
 767   ParNewRefProcTaskProxy(ProcessTask& task, ParNewGeneration& gen,
 768                          Generation& old_gen,
 769                          HeapWord* young_old_boundary,
 770                          ParScanThreadStateSet& state_set);
 771 
 772 private:
 773   virtual void work(uint worker_id);
 774   virtual void set_for_termination(int active_workers) {
 775     _state_set.terminator()->reset_for_reuse(active_workers);
 776   }
 777 private:
 778   ParNewGeneration&      _young_gen;
 779   ProcessTask&           _task;
 780   Generation&            _old_gen;
 781   HeapWord*              _young_old_boundary;
 782   ParScanThreadStateSet& _state_set;
 783 };
 784 
 785 ParNewRefProcTaskProxy::ParNewRefProcTaskProxy(ProcessTask& task,
 786                                                ParNewGeneration& young_gen,
 787                                                Generation& old_gen,
 788                                                HeapWord* young_old_boundary,
 789                                                ParScanThreadStateSet& state_set)
 790   : AbstractGangTask("ParNewGeneration parallel reference processing"),
 791     _young_gen(young_gen),
 792     _task(task),
 793     _old_gen(old_gen),
 794     _young_old_boundary(young_old_boundary),
 795     _state_set(state_set) {
 796 }
 797 
 798 void ParNewRefProcTaskProxy::work(uint worker_id) {
 799   ResourceMark rm;
 800   HandleMark hm;
 801   ParScanThreadState& par_scan_state = _state_set.thread_state(worker_id);
 802   par_scan_state.set_young_old_boundary(_young_old_boundary);
 803   _task.work(worker_id, par_scan_state.is_alive_closure(),
 804              par_scan_state.keep_alive_closure(),
 805              par_scan_state.evacuate_followers_closure());
 806 }
 807 
 808 class ParNewRefEnqueueTaskProxy: public AbstractGangTask {
 809   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
 810   EnqueueTask& _task;
 811 
 812 public:
 813   ParNewRefEnqueueTaskProxy(EnqueueTask& task)
 814     : AbstractGangTask("ParNewGeneration parallel reference enqueue"),
 815       _task(task) {
 816   }
 817 
 818   virtual void work(uint worker_id) {
 819     _task.work(worker_id);
 820   }
 821 };
 822 
 823 void ParNewRefProcTaskExecutor::execute(ProcessTask& task) {
 824   GenCollectedHeap* gch = GenCollectedHeap::heap();
 825   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
 826          "not a generational heap");
 827   FlexibleWorkGang* workers = gch->workers();
 828   assert(workers != NULL, "Need parallel worker threads.");
 829   _state_set.reset(workers->active_workers(), _generation.promotion_failed());
 830   ParNewRefProcTaskProxy rp_task(task, _generation, *(gch->old_gen()),
 831                                  _generation.reserved().end(), _state_set);
 832   workers->run_task(&rp_task);
 833   _state_set.reset(0 /* bad value in debug if not reset */,
 834                    _generation.promotion_failed());
 835 }
 836 
 837 void ParNewRefProcTaskExecutor::execute(EnqueueTask& task) {
 838   GenCollectedHeap* gch = GenCollectedHeap::heap();
 839   FlexibleWorkGang* workers = gch->workers();
 840   assert(workers != NULL, "Need parallel worker threads.");
 841   ParNewRefEnqueueTaskProxy enq_task(task);
 842   workers->run_task(&enq_task);
 843 }
 844 
 845 void ParNewRefProcTaskExecutor::set_single_threaded_mode() {
 846   _state_set.flush();
 847   GenCollectedHeap* gch = GenCollectedHeap::heap();
 848   gch->set_par_threads(0);  // 0 ==> non-parallel.
 849   gch->save_marks();
 850 }
 851 
 852 ScanClosureWithParBarrier::ScanClosureWithParBarrier(ParNewGeneration* g,
 853                                                      bool gc_barrier)
 854   : ScanClosure(g, gc_barrier) {
 855 }
 856 
 857 EvacuateFollowersClosureGeneral::
 858 EvacuateFollowersClosureGeneral(GenCollectedHeap* gch,
 859                                 OopsInGenClosure* cur,
 860                                 OopsInGenClosure* older)
 861   : _gch(gch),
 862     _scan_cur_or_nonheap(cur),
 863     _scan_older(older) {
 864 }
 865 
 866 void EvacuateFollowersClosureGeneral::do_void() {
 867   do {
 868     // Beware: this call will lead to closure applications via virtual
 869     // calls.
 870     _gch->oop_since_save_marks_iterate(Generation::Young,
 871                                        _scan_cur_or_nonheap,
 872                                        _scan_older);
 873   } while (!_gch->no_allocs_since_save_marks(true /* include_young */));
 874 }
 875 
 876 
 877 // A Generation that does parallel young-gen collection.
 878 
 879 bool ParNewGeneration::_avoid_promotion_undo = false;
 880 
 881 void ParNewGeneration::handle_promotion_failed(GenCollectedHeap* gch,
 882                                                ParScanThreadStateSet& thread_state_set,
 883                                                ParNewTracer& gc_tracer) {
 884   assert(_promo_failure_scan_stack.is_empty(), "post condition");
 885   _promo_failure_scan_stack.clear(true); // Clear cached segments.
 886 
 887   remove_forwarding_pointers();
 888   if (PrintGCDetails) {
 889     gclog_or_tty->print(" (promotion failed)");
 890   }
 891   // All the spaces are in play for mark-sweep.
 892   swap_spaces();  // Make life simpler for CMS || rescan; see 6483690.
 893   from()->set_next_compaction_space(to());
 894   gch->set_incremental_collection_failed();
 895   // Inform the next generation that a promotion failure occurred.
 896   _old_gen->promotion_failure_occurred();
 897 
 898   // Trace promotion failure in the parallel GC threads
 899   thread_state_set.trace_promotion_failed(gc_tracer);
 900   // Single threaded code may have reported promotion failure to the global state
 901   if (_promotion_failed_info.has_failed()) {
 902     gc_tracer.report_promotion_failed(_promotion_failed_info);
 903   }
 904   // Reset the PromotionFailureALot counters.
 905   NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
 906 }
 907 
 908 void ParNewGeneration::collect(bool   full,
 909                                bool   clear_all_soft_refs,
 910                                size_t size,
 911                                bool   is_tlab) {
 912   assert(full || size > 0, "otherwise we don't want to collect");
 913 
 914   GenCollectedHeap* gch = GenCollectedHeap::heap();
 915 
 916   _gc_timer->register_gc_start();
 917 
 918   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
 919     "not a CMS generational heap");
 920   AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
 921   FlexibleWorkGang* workers = gch->workers();
 922   assert(workers != NULL, "Need workgang for parallel work");
 923   int active_workers =
 924       AdaptiveSizePolicy::calc_active_workers(workers->total_workers(),
 925                                    workers->active_workers(),
 926                                    Threads::number_of_non_daemon_threads());
 927   workers->set_active_workers(active_workers);
 928   _old_gen = gch->old_gen();
 929   // Do we have to avoid promotion_undo?
 930   if (gch->collector_policy()->is_concurrent_mark_sweep_policy()) {
 931     set_avoid_promotion_undo(true);
 932   }
 933 
 934   // If the next generation is too full to accommodate worst-case promotion
 935   // from this generation, pass on collection; let the next generation
 936   // do it.
 937   if (!collection_attempt_is_safe()) {
 938     gch->set_incremental_collection_failed();  // slight lie, in that we did not even attempt one
 939     return;
 940   }
 941   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
 942 
 943   ParNewTracer gc_tracer;
 944   gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
 945   gch->trace_heap_before_gc(&gc_tracer);
 946 
 947   init_assuming_no_promotion_failure();
 948 
 949   if (UseAdaptiveSizePolicy) {
 950     set_survivor_overflow(false);
 951     size_policy->minor_collection_begin();
 952   }
 953 
 954   GCTraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, NULL, gc_tracer.gc_id());
 955   // Capture heap used before collection (for printing).
 956   size_t gch_prev_used = gch->used();
 957 
 958   SpecializationStats::clear();
 959 
 960   age_table()->clear();
 961   to()->clear(SpaceDecorator::Mangle);
 962 
 963   gch->save_marks();
 964   assert(workers != NULL, "Need parallel worker threads.");
 965   int n_workers = active_workers;
 966 
 967   // Set the correct parallelism (number of queues) in the reference processor
 968   ref_processor()->set_active_mt_degree(n_workers);
 969 
 970   // Always set the terminator for the active number of workers
 971   // because only those workers go through the termination protocol.
 972   ParallelTaskTerminator _term(n_workers, task_queues());
 973   ParScanThreadStateSet thread_state_set(workers->active_workers(),
 974                                          *to(), *this, *_old_gen, *task_queues(),
 975                                          _overflow_stacks, desired_plab_sz(), _term);
 976 
 977   ParNewGenTask tsk(this, _old_gen, reserved().end(), &thread_state_set);
 978   gch->set_par_threads(n_workers);
 979   gch->rem_set()->prepare_for_younger_refs_iterate(true);
 980   // It turns out that even when we're using 1 thread, doing the work in a
 981   // separate thread causes wide variance in run times.  We can't help this
 982   // in the multi-threaded case, but we special-case n=1 here to get
 983   // repeatable measurements of the 1-thread overhead of the parallel code.
 984   if (n_workers > 1) {
 985     GenCollectedHeap::StrongRootsScope srs(gch);
 986     workers->run_task(&tsk);
 987   } else {
 988     GenCollectedHeap::StrongRootsScope srs(gch);
 989     tsk.work(0);
 990   }
 991   thread_state_set.reset(0 /* Bad value in debug if not reset */,
 992                          promotion_failed());
 993 
 994   // Process (weak) reference objects found during scavenge.
 995   ReferenceProcessor* rp = ref_processor();
 996   IsAliveClosure is_alive(this);
 997   ScanWeakRefClosure scan_weak_ref(this);
 998   KeepAliveClosure keep_alive(&scan_weak_ref);
 999   ScanClosure               scan_without_gc_barrier(this, false);
1000   ScanClosureWithParBarrier scan_with_gc_barrier(this, true);
1001   set_promo_failure_scan_stack_closure(&scan_without_gc_barrier);
1002   EvacuateFollowersClosureGeneral evacuate_followers(gch,
1003     &scan_without_gc_barrier, &scan_with_gc_barrier);
1004   rp->setup_policy(clear_all_soft_refs);
1005   // Can  the mt_degree be set later (at run_task() time would be best)?
1006   rp->set_active_mt_degree(active_workers);
1007   ReferenceProcessorStats stats;
1008   if (rp->processing_is_mt()) {
1009     ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
1010     stats = rp->process_discovered_references(&is_alive, &keep_alive,
1011                                               &evacuate_followers, &task_executor,
1012                                               _gc_timer, gc_tracer.gc_id());
1013   } else {
1014     thread_state_set.flush();
1015     gch->set_par_threads(0);  // 0 ==> non-parallel.
1016     gch->save_marks();
1017     stats = rp->process_discovered_references(&is_alive, &keep_alive,
1018                                               &evacuate_followers, NULL,
1019                                               _gc_timer, gc_tracer.gc_id());
1020   }
1021   gc_tracer.report_gc_reference_stats(stats);
1022   if (!promotion_failed()) {
1023     // Swap the survivor spaces.
1024     eden()->clear(SpaceDecorator::Mangle);
1025     from()->clear(SpaceDecorator::Mangle);
1026     if (ZapUnusedHeapArea) {
1027       // This is now done here because of the piece-meal mangling which
1028       // can check for valid mangling at intermediate points in the
1029       // collection(s).  When a minor collection fails to collect
1030       // sufficient space resizing of the young generation can occur
1031       // an redistribute the spaces in the young generation.  Mangle
1032       // here so that unzapped regions don't get distributed to
1033       // other spaces.
1034       to()->mangle_unused_area();
1035     }
1036     swap_spaces();
1037 
1038     // A successful scavenge should restart the GC time limit count which is
1039     // for full GC's.
1040     size_policy->reset_gc_overhead_limit_count();
1041 
1042     assert(to()->is_empty(), "to space should be empty now");
1043 
1044     adjust_desired_tenuring_threshold();
1045   } else {
1046     handle_promotion_failed(gch, thread_state_set, gc_tracer);
1047   }
1048   // set new iteration safe limit for the survivor spaces
1049   from()->set_concurrent_iteration_safe_limit(from()->top());
1050   to()->set_concurrent_iteration_safe_limit(to()->top());
1051 
1052   if (ResizePLAB) {
1053     plab_stats()->adjust_desired_plab_sz(n_workers);
1054   }
1055 
1056   if (PrintGC && !PrintGCDetails) {
1057     gch->print_heap_change(gch_prev_used);
1058   }
1059 
1060   TASKQUEUE_STATS_ONLY(if (PrintTerminationStats) thread_state_set.print_termination_stats());
1061   TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) thread_state_set.print_taskqueue_stats());
1062 
1063   if (UseAdaptiveSizePolicy) {
1064     size_policy->minor_collection_end(gch->gc_cause());
1065     size_policy->avg_survived()->sample(from()->used());
1066   }
1067 
1068   // We need to use a monotonically non-decreasing time in ms
1069   // or we will see time-warp warnings and os::javaTimeMillis()
1070   // does not guarantee monotonicity.
1071   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1072   update_time_of_last_gc(now);
1073 
1074   SpecializationStats::print();
1075 
1076   rp->set_enqueuing_is_done(true);
1077   if (rp->processing_is_mt()) {
1078     ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
1079     rp->enqueue_discovered_references(&task_executor);
1080   } else {
1081     rp->enqueue_discovered_references(NULL);
1082   }
1083   rp->verify_no_references_recorded();
1084 
1085   gch->trace_heap_after_gc(&gc_tracer);
1086   gc_tracer.report_tenuring_threshold(tenuring_threshold());
1087 
1088   _gc_timer->register_gc_end();
1089 
1090   gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
1091 }
1092 
1093 static int sum;
1094 void ParNewGeneration::waste_some_time() {
1095   for (int i = 0; i < 100; i++) {
1096     sum += i;
1097   }
1098 }
1099 
1100 static const oop ClaimedForwardPtr = cast_to_oop<intptr_t>(0x4);
1101 
1102 // Because of concurrency, there are times where an object for which
1103 // "is_forwarded()" is true contains an "interim" forwarding pointer
1104 // value.  Such a value will soon be overwritten with a real value.
1105 // This method requires "obj" to have a forwarding pointer, and waits, if
1106 // necessary for a real one to be inserted, and returns it.
1107 
1108 oop ParNewGeneration::real_forwardee(oop obj) {
1109   oop forward_ptr = obj->forwardee();
1110   if (forward_ptr != ClaimedForwardPtr) {
1111     return forward_ptr;
1112   } else {
1113     return real_forwardee_slow(obj);
1114   }
1115 }
1116 
1117 oop ParNewGeneration::real_forwardee_slow(oop obj) {
1118   // Spin-read if it is claimed but not yet written by another thread.
1119   oop forward_ptr = obj->forwardee();
1120   while (forward_ptr == ClaimedForwardPtr) {
1121     waste_some_time();
1122     assert(obj->is_forwarded(), "precondition");
1123     forward_ptr = obj->forwardee();
1124   }
1125   return forward_ptr;
1126 }
1127 
1128 #ifdef ASSERT
1129 bool ParNewGeneration::is_legal_forward_ptr(oop p) {
1130   return
1131     (_avoid_promotion_undo && p == ClaimedForwardPtr)
1132     || Universe::heap()->is_in_reserved(p);
1133 }
1134 #endif
1135 
1136 void ParNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
1137   if (m->must_be_preserved_for_promotion_failure(obj)) {
1138     // We should really have separate per-worker stacks, rather
1139     // than use locking of a common pair of stacks.
1140     MutexLocker ml(ParGCRareEvent_lock);
1141     preserve_mark(obj, m);
1142   }
1143 }
1144 
1145 // Multiple GC threads may try to promote an object.  If the object
1146 // is successfully promoted, a forwarding pointer will be installed in
1147 // the object in the young generation.  This method claims the right
1148 // to install the forwarding pointer before it copies the object,
1149 // thus avoiding the need to undo the copy as in
1150 // copy_to_survivor_space_avoiding_with_undo.
1151 
1152 oop ParNewGeneration::copy_to_survivor_space_avoiding_promotion_undo(
1153         ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
1154   // In the sequential version, this assert also says that the object is
1155   // not forwarded.  That might not be the case here.  It is the case that
1156   // the caller observed it to be not forwarded at some time in the past.
1157   assert(is_in_reserved(old), "shouldn't be scavenging this oop");
1158 
1159   // The sequential code read "old->age()" below.  That doesn't work here,
1160   // since the age is in the mark word, and that might be overwritten with
1161   // a forwarding pointer by a parallel thread.  So we must save the mark
1162   // word in a local and then analyze it.
1163   oopDesc dummyOld;
1164   dummyOld.set_mark(m);
1165   assert(!dummyOld.is_forwarded(),
1166          "should not be called with forwarding pointer mark word.");
1167 
1168   oop new_obj = NULL;
1169   oop forward_ptr;
1170 
1171   // Try allocating obj in to-space (unless too old)
1172   if (dummyOld.age() < tenuring_threshold()) {
1173     new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
1174     if (new_obj == NULL) {
1175       set_survivor_overflow(true);
1176     }
1177   }
1178 
1179   if (new_obj == NULL) {
1180     // Either to-space is full or we decided to promote
1181     // try allocating obj tenured
1182 
1183     // Attempt to install a null forwarding pointer (atomically),
1184     // to claim the right to install the real forwarding pointer.
1185     forward_ptr = old->forward_to_atomic(ClaimedForwardPtr);
1186     if (forward_ptr != NULL) {
1187       // someone else beat us to it.
1188       return real_forwardee(old);
1189     }
1190 
1191     new_obj = _old_gen->par_promote(par_scan_state->thread_num(), old, m, sz);
1192 
1193     if (new_obj == NULL) {
1194       // promotion failed, forward to self
1195       _promotion_failed = true;
1196       new_obj = old;
1197 
1198       preserve_mark_if_necessary(old, m);
1199       par_scan_state->register_promotion_failure(sz);
1200     }
1201 
1202     old->forward_to(new_obj);
1203     forward_ptr = NULL;
1204   } else {
1205     // Is in to-space; do copying ourselves.
1206     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
1207     forward_ptr = old->forward_to_atomic(new_obj);
1208     // Restore the mark word copied above.
1209     new_obj->set_mark(m);
1210     // Increment age if obj still in new generation
1211     new_obj->incr_age();
1212     par_scan_state->age_table()->add(new_obj, sz);
1213   }
1214   assert(new_obj != NULL, "just checking");
1215 
1216 #ifndef PRODUCT
1217   // This code must come after the CAS test, or it will print incorrect
1218   // information.
1219   if (TraceScavenge) {
1220     gclog_or_tty->print_cr("{%s %s " PTR_FORMAT " -> " PTR_FORMAT " (%d)}",
1221                            is_in_reserved(new_obj) ? "copying" : "tenuring",
1222                            new_obj->klass()->internal_name(),
1223                            (void *)old,
1224                            (void *)new_obj,
1225                            new_obj->size());
1226   }
1227 #endif
1228 
1229   if (forward_ptr == NULL) {
1230     oop obj_to_push = new_obj;
1231     if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
1232       // Length field used as index of next element to be scanned.
1233       // Real length can be obtained from real_forwardee()
1234       arrayOop(old)->set_length(0);
1235       obj_to_push = old;
1236       assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
1237              "push forwarded object");
1238     }
1239     // Push it on one of the queues of to-be-scanned objects.
1240     bool simulate_overflow = false;
1241     NOT_PRODUCT(
1242       if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
1243         // simulate a stack overflow
1244         simulate_overflow = true;
1245       }
1246     )
1247     if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
1248       // Add stats for overflow pushes.
1249       if (Verbose && PrintGCDetails) {
1250         gclog_or_tty->print("queue overflow!\n");
1251       }
1252       push_on_overflow_list(old, par_scan_state);
1253       TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
1254     }
1255 
1256     return new_obj;
1257   }
1258 
1259   // Oops.  Someone beat us to it.  Undo the allocation.  Where did we
1260   // allocate it?
1261   if (is_in_reserved(new_obj)) {
1262     // Must be in to_space.
1263     assert(to()->is_in_reserved(new_obj), "Checking");
1264     if (forward_ptr == ClaimedForwardPtr) {
1265       // Wait to get the real forwarding pointer value.
1266       forward_ptr = real_forwardee(old);
1267     }
1268     par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
1269   }
1270 
1271   return forward_ptr;
1272 }
1273 
1274 
1275 // Multiple GC threads may try to promote the same object.  If two
1276 // or more GC threads copy the object, only one wins the race to install
1277 // the forwarding pointer.  The other threads have to undo their copy.
1278 
1279 oop ParNewGeneration::copy_to_survivor_space_with_undo(
1280         ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
1281 
1282   // In the sequential version, this assert also says that the object is
1283   // not forwarded.  That might not be the case here.  It is the case that
1284   // the caller observed it to be not forwarded at some time in the past.
1285   assert(is_in_reserved(old), "shouldn't be scavenging this oop");
1286 
1287   // The sequential code read "old->age()" below.  That doesn't work here,
1288   // since the age is in the mark word, and that might be overwritten with
1289   // a forwarding pointer by a parallel thread.  So we must save the mark
1290   // word here, install it in a local oopDesc, and then analyze it.
1291   oopDesc dummyOld;
1292   dummyOld.set_mark(m);
1293   assert(!dummyOld.is_forwarded(),
1294          "should not be called with forwarding pointer mark word.");
1295 
1296   bool failed_to_promote = false;
1297   oop new_obj = NULL;
1298   oop forward_ptr;
1299 
1300   // Try allocating obj in to-space (unless too old)
1301   if (dummyOld.age() < tenuring_threshold()) {
1302     new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
1303     if (new_obj == NULL) {
1304       set_survivor_overflow(true);
1305     }
1306   }
1307 
1308   if (new_obj == NULL) {
1309     // Either to-space is full or we decided to promote
1310     // try allocating obj tenured
1311     new_obj = _old_gen->par_promote(par_scan_state->thread_num(),
1312                                     old, m, sz);
1313 
1314     if (new_obj == NULL) {
1315       // promotion failed, forward to self
1316       forward_ptr = old->forward_to_atomic(old);
1317       new_obj = old;
1318 
1319       if (forward_ptr != NULL) {
1320         return forward_ptr;   // someone else succeeded
1321       }
1322 
1323       _promotion_failed = true;
1324       failed_to_promote = true;
1325 
1326       preserve_mark_if_necessary(old, m);
1327       par_scan_state->register_promotion_failure(sz);
1328     }
1329   } else {
1330     // Is in to-space; do copying ourselves.
1331     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
1332     // Restore the mark word copied above.
1333     new_obj->set_mark(m);
1334     // Increment age if new_obj still in new generation
1335     new_obj->incr_age();
1336     par_scan_state->age_table()->add(new_obj, sz);
1337   }
1338   assert(new_obj != NULL, "just checking");
1339 
1340 #ifndef PRODUCT
1341   // This code must come after the CAS test, or it will print incorrect
1342   // information.
1343   if (TraceScavenge) {
1344     gclog_or_tty->print_cr("{%s %s " PTR_FORMAT " -> " PTR_FORMAT " (%d)}",
1345                            is_in_reserved(new_obj) ? "copying" : "tenuring",
1346                            new_obj->klass()->internal_name(),
1347                            (void*)old,
1348                            (void*)new_obj,
1349                            new_obj->size());
1350   }
1351 #endif
1352 
1353   // Now attempt to install the forwarding pointer (atomically).
1354   // We have to copy the mark word before overwriting with forwarding
1355   // ptr, so we can restore it below in the copy.
1356   if (!failed_to_promote) {
1357     forward_ptr = old->forward_to_atomic(new_obj);
1358   }
1359 
1360   if (forward_ptr == NULL) {
1361     oop obj_to_push = new_obj;
1362     if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
1363       // Length field used as index of next element to be scanned.
1364       // Real length can be obtained from real_forwardee()
1365       arrayOop(old)->set_length(0);
1366       obj_to_push = old;
1367       assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
1368              "push forwarded object");
1369     }
1370     // Push it on one of the queues of to-be-scanned objects.
1371     bool simulate_overflow = false;
1372     NOT_PRODUCT(
1373       if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
1374         // simulate a stack overflow
1375         simulate_overflow = true;
1376       }
1377     )
1378     if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
1379       // Add stats for overflow pushes.
1380       push_on_overflow_list(old, par_scan_state);
1381       TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
1382     }
1383 
1384     return new_obj;
1385   }
1386 
1387   // Oops.  Someone beat us to it.  Undo the allocation.  Where did we
1388   // allocate it?
1389   if (is_in_reserved(new_obj)) {
1390     // Must be in to_space.
1391     assert(to()->is_in_reserved(new_obj), "Checking");
1392     par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
1393   } else {
1394     assert(!_avoid_promotion_undo, "Should not be here if avoiding.");
1395     _old_gen->par_promote_alloc_undo(par_scan_state->thread_num(),
1396                                      (HeapWord*)new_obj, sz);
1397   }
1398 
1399   return forward_ptr;
1400 }
1401 
1402 #ifndef PRODUCT
1403 // It's OK to call this multi-threaded;  the worst thing
1404 // that can happen is that we'll get a bunch of closely
1405 // spaced simulated overflows, but that's OK, in fact
1406 // probably good as it would exercise the overflow code
1407 // under contention.
1408 bool ParNewGeneration::should_simulate_overflow() {
1409   if (_overflow_counter-- <= 0) { // just being defensive
1410     _overflow_counter = ParGCWorkQueueOverflowInterval;
1411     return true;
1412   } else {
1413     return false;
1414   }
1415 }
1416 #endif
1417 
1418 // In case we are using compressed oops, we need to be careful.
1419 // If the object being pushed is an object array, then its length
1420 // field keeps track of the "grey boundary" at which the next
1421 // incremental scan will be done (see ParGCArrayScanChunk).
1422 // When using compressed oops, this length field is kept in the
1423 // lower 32 bits of the erstwhile klass word and cannot be used
1424 // for the overflow chaining pointer (OCP below). As such the OCP
1425 // would itself need to be compressed into the top 32-bits in this
1426 // case. Unfortunately, see below, in the event that we have a
1427 // promotion failure, the node to be pushed on the list can be
1428 // outside of the Java heap, so the heap-based pointer compression
1429 // would not work (we would have potential aliasing between C-heap
1430 // and Java-heap pointers). For this reason, when using compressed
1431 // oops, we simply use a worker-thread-local, non-shared overflow
1432 // list in the form of a growable array, with a slightly different
1433 // overflow stack draining strategy. If/when we start using fat
1434 // stacks here, we can go back to using (fat) pointer chains
1435 // (although some performance comparisons would be useful since
1436 // single global lists have their own performance disadvantages
1437 // as we were made painfully aware not long ago, see 6786503).
1438 #define BUSY (cast_to_oop<intptr_t>(0x1aff1aff))
1439 void ParNewGeneration::push_on_overflow_list(oop from_space_obj, ParScanThreadState* par_scan_state) {
1440   assert(is_in_reserved(from_space_obj), "Should be from this generation");
1441   if (ParGCUseLocalOverflow) {
1442     // In the case of compressed oops, we use a private, not-shared
1443     // overflow stack.
1444     par_scan_state->push_on_overflow_stack(from_space_obj);
1445   } else {
1446     assert(!UseCompressedOops, "Error");
1447     // if the object has been forwarded to itself, then we cannot
1448     // use the klass pointer for the linked list.  Instead we have
1449     // to allocate an oopDesc in the C-Heap and use that for the linked list.
1450     // XXX This is horribly inefficient when a promotion failure occurs
1451     // and should be fixed. XXX FIX ME !!!
1452 #ifndef PRODUCT
1453     Atomic::inc_ptr(&_num_par_pushes);
1454     assert(_num_par_pushes > 0, "Tautology");
1455 #endif
1456     if (from_space_obj->forwardee() == from_space_obj) {
1457       oopDesc* listhead = NEW_C_HEAP_ARRAY(oopDesc, 1, mtGC);
1458       listhead->forward_to(from_space_obj);
1459       from_space_obj = listhead;
1460     }
1461     oop observed_overflow_list = _overflow_list;
1462     oop cur_overflow_list;
1463     do {
1464       cur_overflow_list = observed_overflow_list;
1465       if (cur_overflow_list != BUSY) {
1466         from_space_obj->set_klass_to_list_ptr(cur_overflow_list);
1467       } else {
1468         from_space_obj->set_klass_to_list_ptr(NULL);
1469       }
1470       observed_overflow_list =
1471         (oop)Atomic::cmpxchg_ptr(from_space_obj, &_overflow_list, cur_overflow_list);
1472     } while (cur_overflow_list != observed_overflow_list);
1473   }
1474 }
1475 
1476 bool ParNewGeneration::take_from_overflow_list(ParScanThreadState* par_scan_state) {
1477   bool res;
1478 
1479   if (ParGCUseLocalOverflow) {
1480     res = par_scan_state->take_from_overflow_stack();
1481   } else {
1482     assert(!UseCompressedOops, "Error");
1483     res = take_from_overflow_list_work(par_scan_state);
1484   }
1485   return res;
1486 }
1487 
1488 
1489 // *NOTE*: The overflow list manipulation code here and
1490 // in CMSCollector:: are very similar in shape,
1491 // except that in the CMS case we thread the objects
1492 // directly into the list via their mark word, and do
1493 // not need to deal with special cases below related
1494 // to chunking of object arrays and promotion failure
1495 // handling.
1496 // CR 6797058 has been filed to attempt consolidation of
1497 // the common code.
1498 // Because of the common code, if you make any changes in
1499 // the code below, please check the CMS version to see if
1500 // similar changes might be needed.
1501 // See CMSCollector::par_take_from_overflow_list() for
1502 // more extensive documentation comments.
1503 bool ParNewGeneration::take_from_overflow_list_work(ParScanThreadState* par_scan_state) {
1504   ObjToScanQueue* work_q = par_scan_state->work_queue();
1505   // How many to take?
1506   size_t objsFromOverflow = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
1507                                  (size_t)ParGCDesiredObjsFromOverflowList);
1508 
1509   assert(!UseCompressedOops, "Error");
1510   assert(par_scan_state->overflow_stack() == NULL, "Error");
1511   if (_overflow_list == NULL) {
1512     return false;
1513   }
1514 
1515   // Otherwise, there was something there; try claiming the list.
1516   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
1517   // Trim off a prefix of at most objsFromOverflow items
1518   Thread* tid = Thread::current();
1519   size_t spin_count = (size_t)ParallelGCThreads;
1520   size_t sleep_time_millis = MAX2((size_t)1, objsFromOverflow/100);
1521   for (size_t spin = 0; prefix == BUSY && spin < spin_count; spin++) {
1522     // someone grabbed it before we did ...
1523     // ... we spin for a short while...
1524     os::sleep(tid, sleep_time_millis, false);
1525     if (_overflow_list == NULL) {
1526       // nothing left to take
1527       return false;
1528     } else if (_overflow_list != BUSY) {
1529      // try and grab the prefix
1530      prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
1531     }
1532   }
1533   if (prefix == NULL || prefix == BUSY) {
1534      // Nothing to take or waited long enough
1535      if (prefix == NULL) {
1536        // Write back the NULL in case we overwrote it with BUSY above
1537        // and it is still the same value.
1538        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
1539      }
1540      return false;
1541   }
1542   assert(prefix != NULL && prefix != BUSY, "Error");
1543   size_t i = 1;
1544   oop cur = prefix;
1545   while (i < objsFromOverflow && cur->klass_or_null() != NULL) {
1546     i++; cur = cur->list_ptr_from_klass();
1547   }
1548 
1549   // Reattach remaining (suffix) to overflow list
1550   if (cur->klass_or_null() == NULL) {
1551     // Write back the NULL in lieu of the BUSY we wrote
1552     // above and it is still the same value.
1553     if (_overflow_list == BUSY) {
1554       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
1555     }
1556   } else {
1557     assert(cur->klass_or_null() != (Klass*)(address)BUSY, "Error");
1558     oop suffix = cur->list_ptr_from_klass();       // suffix will be put back on global list
1559     cur->set_klass_to_list_ptr(NULL);     // break off suffix
1560     // It's possible that the list is still in the empty(busy) state
1561     // we left it in a short while ago; in that case we may be
1562     // able to place back the suffix.
1563     oop observed_overflow_list = _overflow_list;
1564     oop cur_overflow_list = observed_overflow_list;
1565     bool attached = false;
1566     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
1567       observed_overflow_list =
1568         (oop) Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
1569       if (cur_overflow_list == observed_overflow_list) {
1570         attached = true;
1571         break;
1572       } else cur_overflow_list = observed_overflow_list;
1573     }
1574     if (!attached) {
1575       // Too bad, someone else got in in between; we'll need to do a splice.
1576       // Find the last item of suffix list
1577       oop last = suffix;
1578       while (last->klass_or_null() != NULL) {
1579         last = last->list_ptr_from_klass();
1580       }
1581       // Atomically prepend suffix to current overflow list
1582       observed_overflow_list = _overflow_list;
1583       do {
1584         cur_overflow_list = observed_overflow_list;
1585         if (cur_overflow_list != BUSY) {
1586           // Do the splice ...
1587           last->set_klass_to_list_ptr(cur_overflow_list);
1588         } else { // cur_overflow_list == BUSY
1589           last->set_klass_to_list_ptr(NULL);
1590         }
1591         observed_overflow_list =
1592           (oop)Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
1593       } while (cur_overflow_list != observed_overflow_list);
1594     }
1595   }
1596 
1597   // Push objects on prefix list onto this thread's work queue
1598   assert(prefix != NULL && prefix != BUSY, "program logic");
1599   cur = prefix;
1600   ssize_t n = 0;
1601   while (cur != NULL) {
1602     oop obj_to_push = cur->forwardee();
1603     oop next        = cur->list_ptr_from_klass();
1604     cur->set_klass(obj_to_push->klass());
1605     // This may be an array object that is self-forwarded. In that case, the list pointer
1606     // space, cur, is not in the Java heap, but rather in the C-heap and should be freed.
1607     if (!is_in_reserved(cur)) {
1608       // This can become a scaling bottleneck when there is work queue overflow coincident
1609       // with promotion failure.
1610       oopDesc* f = cur;
1611       FREE_C_HEAP_ARRAY(oopDesc, f, mtGC);
1612     } else if (par_scan_state->should_be_partially_scanned(obj_to_push, cur)) {
1613       assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
1614       obj_to_push = cur;
1615     }
1616     bool ok = work_q->push(obj_to_push);
1617     assert(ok, "Should have succeeded");
1618     cur = next;
1619     n++;
1620   }
1621   TASKQUEUE_STATS_ONLY(par_scan_state->note_overflow_refill(n));
1622 #ifndef PRODUCT
1623   assert(_num_par_pushes >= n, "Too many pops?");
1624   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
1625 #endif
1626   return true;
1627 }
1628 #undef BUSY
1629 
1630 void ParNewGeneration::ref_processor_init() {
1631   if (_ref_processor == NULL) {
1632     // Allocate and initialize a reference processor
1633     _ref_processor =
1634       new ReferenceProcessor(_reserved,                  // span
1635                              ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
1636                              (int) ParallelGCThreads,    // mt processing degree
1637                              refs_discovery_is_mt(),     // mt discovery
1638                              (int) ParallelGCThreads,    // mt discovery degree
1639                              refs_discovery_is_atomic(), // atomic_discovery
1640                              NULL);                      // is_alive_non_header
1641   }
1642 }
1643 
1644 const char* ParNewGeneration::name() const {
1645   return "par new generation";
1646 }