1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_MEMORY_GENERATION_HPP
  26 #define SHARE_VM_MEMORY_GENERATION_HPP
  27 
  28 #include "gc_implementation/shared/collectorCounters.hpp"
  29 #include "memory/allocation.hpp"
  30 #include "memory/memRegion.hpp"
  31 #include "memory/referenceProcessor.hpp"
  32 #include "memory/universe.hpp"
  33 #include "memory/watermark.hpp"
  34 #include "runtime/mutex.hpp"
  35 #include "runtime/perfData.hpp"
  36 #include "runtime/virtualspace.hpp"
  37 
  38 // A Generation models a heap area for similarly-aged objects.
  39 // It will contain one ore more spaces holding the actual objects.
  40 //
  41 // The Generation class hierarchy:
  42 //
  43 // Generation                      - abstract base class
  44 // - DefNewGeneration              - allocation area (copy collected)
  45 //   - ParNewGeneration            - a DefNewGeneration that is collected by
  46 //                                   several threads
  47 // - CardGeneration                 - abstract class adding offset array behavior
  48 //   - OneContigSpaceCardGeneration - abstract class holding a single
  49 //                                    contiguous space with card marking
  50 //     - TenuredGeneration         - tenured (old object) space (markSweepCompact)
  51 //   - ConcurrentMarkSweepGeneration - Mostly Concurrent Mark Sweep Generation
  52 //                                       (Detlefs-Printezis refinement of
  53 //                                       Boehm-Demers-Schenker)
  54 //
  55 // The system configurations currently allowed are:
  56 //
  57 //   DefNewGeneration + TenuredGeneration
  58 //   DefNewGeneration + ConcurrentMarkSweepGeneration
  59 //
  60 //   ParNewGeneration + TenuredGeneration
  61 //   ParNewGeneration + ConcurrentMarkSweepGeneration
  62 //
  63 
  64 class DefNewGeneration;
  65 class GenerationSpec;
  66 class CompactibleSpace;
  67 class ContiguousSpace;
  68 class CompactPoint;
  69 class OopsInGenClosure;
  70 class OopClosure;
  71 class ScanClosure;
  72 class FastScanClosure;
  73 class GenCollectedHeap;
  74 class GenRemSet;
  75 class GCStats;
  76 
  77 // A "ScratchBlock" represents a block of memory in one generation usable by
  78 // another.  It represents "num_words" free words, starting at and including
  79 // the address of "this".
  80 struct ScratchBlock {
  81   ScratchBlock* next;
  82   size_t num_words;
  83   HeapWord scratch_space[1];  // Actually, of size "num_words-2" (assuming
  84                               // first two fields are word-sized.)
  85 };
  86 
  87 
  88 class Generation: public CHeapObj<mtGC> {
  89   friend class VMStructs;
  90  private:
  91   jlong _time_of_last_gc; // time when last gc on this generation happened (ms)
  92   MemRegion _prev_used_region; // for collectors that want to "remember" a value for
  93                                // used region at some specific point during collection.
  94 
  95  protected:
  96   // Minimum and maximum addresses for memory reserved (not necessarily
  97   // committed) for generation.
  98   // Used by card marking code. Must not overlap with address ranges of
  99   // other generations.
 100   MemRegion _reserved;
 101 
 102   // Memory area reserved for generation
 103   VirtualSpace _virtual_space;
 104 
 105   // ("Weak") Reference processing support
 106   ReferenceProcessor* _ref_processor;
 107 
 108   // Performance Counters
 109   CollectorCounters* _gc_counters;
 110 
 111   // Statistics for garbage collection
 112   GCStats* _gc_stats;
 113 
 114   // Initialize the generation.
 115   Generation(ReservedSpace rs, size_t initial_byte_size);
 116 
 117   // Apply "cl->do_oop" to (the address of) (exactly) all the ref fields in
 118   // "sp" that point into younger generations.
 119   // The iteration is only over objects allocated at the start of the
 120   // iterations; objects allocated as a result of applying the closure are
 121   // not included.
 122   void younger_refs_in_space_iterate(Space* sp, OopsInGenClosure* cl);
 123 
 124  public:
 125   // The set of possible generation kinds.
 126   enum Name {
 127     DefNew,
 128     ParNew,
 129     MarkSweepCompact,
 130     ConcurrentMarkSweep,
 131     Other
 132   };
 133 
 134   enum Type {
 135     Young,
 136     Old
 137   };
 138 
 139   enum SomePublicConstants {
 140     // Generations are GenGrain-aligned and have size that are multiples of
 141     // GenGrain.
 142     // Note: on ARM we add 1 bit for card_table_base to be properly aligned
 143     // (we expect its low byte to be zero - see implementation of post_barrier)
 144     LogOfGenGrain = 16 ARM_ONLY(+1),
 145     GenGrain = 1 << LogOfGenGrain
 146   };
 147 
 148   // allocate and initialize ("weak") refs processing support
 149   virtual void ref_processor_init();
 150   void set_ref_processor(ReferenceProcessor* rp) {
 151     assert(_ref_processor == NULL, "clobbering existing _ref_processor");
 152     _ref_processor = rp;
 153   }
 154 
 155   virtual Generation::Name kind() { return Generation::Other; }
 156   GenerationSpec* spec();
 157 
 158   // This properly belongs in the collector, but for now this
 159   // will do.
 160   virtual bool refs_discovery_is_atomic() const { return true;  }
 161   virtual bool refs_discovery_is_mt()     const { return false; }
 162 
 163   // Space enquiries (results in bytes)
 164   virtual size_t capacity() const = 0;  // The maximum number of object bytes the
 165                                         // generation can currently hold.
 166   virtual size_t used() const = 0;      // The number of used bytes in the gen.
 167   virtual size_t free() const = 0;      // The number of free bytes in the gen.
 168 
 169   // Support for java.lang.Runtime.maxMemory(); see CollectedHeap.
 170   // Returns the total number of bytes  available in a generation
 171   // for the allocation of objects.
 172   virtual size_t max_capacity() const;
 173 
 174   // If this is a young generation, the maximum number of bytes that can be
 175   // allocated in this generation before a GC is triggered.
 176   virtual size_t capacity_before_gc() const { return 0; }
 177 
 178   // The largest number of contiguous free bytes in the generation,
 179   // including expansion  (Assumes called at a safepoint.)
 180   virtual size_t contiguous_available() const = 0;
 181   // The largest number of contiguous free bytes in this or any higher generation.
 182   virtual size_t max_contiguous_available() const;
 183 
 184   // Returns true if promotions of the specified amount are
 185   // likely to succeed without a promotion failure.
 186   // Promotion of the full amount is not guaranteed but
 187   // might be attempted in the worst case.
 188   virtual bool promotion_attempt_is_safe(size_t max_promotion_in_bytes) const;
 189 
 190   // For a non-young generation, this interface can be used to inform a
 191   // generation that a promotion attempt into that generation failed.
 192   // Typically used to enable diagnostic output for post-mortem analysis,
 193   // but other uses of the interface are not ruled out.
 194   virtual void promotion_failure_occurred() { /* does nothing */ }
 195 
 196   // Return an estimate of the maximum allocation that could be performed
 197   // in the generation without triggering any collection or expansion
 198   // activity.  It is "unsafe" because no locks are taken; the result
 199   // should be treated as an approximation, not a guarantee, for use in
 200   // heuristic resizing decisions.
 201   virtual size_t unsafe_max_alloc_nogc() const = 0;
 202 
 203   // Returns true if this generation cannot be expanded further
 204   // without a GC. Override as appropriate.
 205   virtual bool is_maximal_no_gc() const {
 206     return _virtual_space.uncommitted_size() == 0;
 207   }
 208 
 209   MemRegion reserved() const { return _reserved; }
 210 
 211   // Returns a region guaranteed to contain all the objects in the
 212   // generation.
 213   virtual MemRegion used_region() const { return _reserved; }
 214 
 215   MemRegion prev_used_region() const { return _prev_used_region; }
 216   virtual void  save_used_region()   { _prev_used_region = used_region(); }
 217 
 218   // Returns "TRUE" iff "p" points into the committed areas in the generation.
 219   // For some kinds of generations, this may be an expensive operation.
 220   // To avoid performance problems stemming from its inadvertent use in
 221   // product jvm's, we restrict its use to assertion checking or
 222   // verification only.
 223   virtual bool is_in(const void* p) const;
 224 
 225   /* Returns "TRUE" iff "p" points into the reserved area of the generation. */
 226   bool is_in_reserved(const void* p) const {
 227     return _reserved.contains(p);
 228   }
 229 
 230   // Check that the generation kind is DefNewGeneration or a sub
 231   // class of DefNewGeneration and return a DefNewGeneration*
 232   DefNewGeneration*  as_DefNewGeneration();
 233 
 234   // If some space in the generation contains the given "addr", return a
 235   // pointer to that space, else return "NULL".
 236   virtual Space* space_containing(const void* addr) const;
 237 
 238   // Iteration - do not use for time critical operations
 239   virtual void space_iterate(SpaceClosure* blk, bool usedOnly = false) = 0;
 240 
 241   // Returns the first space, if any, in the generation that can participate
 242   // in compaction, or else "NULL".
 243   virtual CompactibleSpace* first_compaction_space() const = 0;
 244 
 245   // Returns "true" iff this generation should be used to allocate an
 246   // object of the given size.  Young generations might
 247   // wish to exclude very large objects, for example, since, if allocated
 248   // often, they would greatly increase the frequency of young-gen
 249   // collection.
 250   virtual bool should_allocate(size_t word_size, bool is_tlab) {
 251     bool result = false;
 252     size_t overflow_limit = (size_t)1 << (BitsPerSize_t - LogHeapWordSize);
 253     if (!is_tlab || supports_tlab_allocation()) {
 254       result = (word_size > 0) && (word_size < overflow_limit);
 255     }
 256     return result;
 257   }
 258 
 259   // Allocate and returns a block of the requested size, or returns "NULL".
 260   // Assumes the caller has done any necessary locking.
 261   virtual HeapWord* allocate(size_t word_size, bool is_tlab) = 0;
 262 
 263   // Like "allocate", but performs any necessary locking internally.
 264   virtual HeapWord* par_allocate(size_t word_size, bool is_tlab) = 0;
 265 
 266   // A 'younger' gen has reached an allocation limit, and uses this to notify
 267   // the next older gen.  The return value is a new limit, or NULL if none.  The
 268   // caller must do the necessary locking.
 269   virtual HeapWord* allocation_limit_reached(Space* space, HeapWord* top,
 270                                              size_t word_size) {
 271     return NULL;
 272   }
 273 
 274   // Some generation may offer a region for shared, contiguous allocation,
 275   // via inlined code (by exporting the address of the top and end fields
 276   // defining the extent of the contiguous allocation region.)
 277 
 278   // This function returns "true" iff the heap supports this kind of
 279   // allocation.  (More precisely, this means the style of allocation that
 280   // increments *top_addr()" with a CAS.) (Default is "no".)
 281   // A generation that supports this allocation style must use lock-free
 282   // allocation for *all* allocation, since there are times when lock free
 283   // allocation will be concurrent with plain "allocate" calls.
 284   virtual bool supports_inline_contig_alloc() const { return false; }
 285 
 286   // These functions return the addresses of the fields that define the
 287   // boundaries of the contiguous allocation area.  (These fields should be
 288   // physically near to one another.)
 289   virtual HeapWord** top_addr() const { return NULL; }
 290   virtual HeapWord** end_addr() const { return NULL; }
 291 
 292   // Thread-local allocation buffers
 293   virtual bool supports_tlab_allocation() const { return false; }
 294   virtual size_t tlab_capacity() const {
 295     guarantee(false, "Generation doesn't support thread local allocation buffers");
 296     return 0;
 297   }
 298   virtual size_t tlab_used() const {
 299     guarantee(false, "Generation doesn't support thread local allocation buffers");
 300     return 0;
 301   }
 302   virtual size_t unsafe_max_tlab_alloc() const {
 303     guarantee(false, "Generation doesn't support thread local allocation buffers");
 304     return 0;
 305   }
 306 
 307   // "obj" is the address of an object in a younger generation.  Allocate space
 308   // for "obj" in the current (or some higher) generation, and copy "obj" into
 309   // the newly allocated space, if possible, returning the result (or NULL if
 310   // the allocation failed).
 311   //
 312   // The "obj_size" argument is just obj->size(), passed along so the caller can
 313   // avoid repeating the virtual call to retrieve it.
 314   virtual oop promote(oop obj, size_t obj_size);
 315 
 316   // Thread "thread_num" (0 <= i < ParalleGCThreads) wants to promote
 317   // object "obj", whose original mark word was "m", and whose size is
 318   // "word_sz".  If possible, allocate space for "obj", copy obj into it
 319   // (taking care to copy "m" into the mark word when done, since the mark
 320   // word of "obj" may have been overwritten with a forwarding pointer, and
 321   // also taking care to copy the klass pointer *last*.  Returns the new
 322   // object if successful, or else NULL.
 323   virtual oop par_promote(int thread_num,
 324                           oop obj, markOop m, size_t word_sz);
 325 
 326   // Undo, if possible, the most recent par_promote_alloc allocation by
 327   // "thread_num" ("obj", of "word_sz").
 328   virtual void par_promote_alloc_undo(int thread_num,
 329                                       HeapWord* obj, size_t word_sz);
 330 
 331   // Informs the current generation that all par_promote_alloc's in the
 332   // collection have been completed; any supporting data structures can be
 333   // reset.  Default is to do nothing.
 334   virtual void par_promote_alloc_done(int thread_num) {}
 335 
 336   // Informs the current generation that all oop_since_save_marks_iterates
 337   // performed by "thread_num" in the current collection, if any, have been
 338   // completed; any supporting data structures can be reset.  Default is to
 339   // do nothing.
 340   virtual void par_oop_since_save_marks_iterate_done(int thread_num) {}
 341 
 342   // This generation will collect all younger generations
 343   // during a full collection.
 344   virtual bool full_collects_younger_generations() const { return false; }
 345 
 346   // This generation does in-place marking, meaning that mark words
 347   // are mutated during the marking phase and presumably reinitialized
 348   // to a canonical value after the GC. This is currently used by the
 349   // biased locking implementation to determine whether additional
 350   // work is required during the GC prologue and epilogue.
 351   virtual bool performs_in_place_marking() const { return true; }
 352 
 353   // Returns "true" iff collect() should subsequently be called on this
 354   // this generation. See comment below.
 355   // This is a generic implementation which can be overridden.
 356   //
 357   // Note: in the current (1.4) implementation, when genCollectedHeap's
 358   // incremental_collection_will_fail flag is set, all allocations are
 359   // slow path (the only fast-path place to allocate is DefNew, which
 360   // will be full if the flag is set).
 361   // Thus, older generations which collect younger generations should
 362   // test this flag and collect if it is set.
 363   virtual bool should_collect(bool   full,
 364                               size_t word_size,
 365                               bool   is_tlab) {
 366     return (full || should_allocate(word_size, is_tlab));
 367   }
 368 
 369   // Returns true if the collection is likely to be safely
 370   // completed. Even if this method returns true, a collection
 371   // may not be guaranteed to succeed, and the system should be
 372   // able to safely unwind and recover from that failure, albeit
 373   // at some additional cost.
 374   virtual bool collection_attempt_is_safe() {
 375     guarantee(false, "Are you sure you want to call this method?");
 376     return true;
 377   }
 378 
 379   // Perform a garbage collection.
 380   // If full is true attempt a full garbage collection of this generation.
 381   // Otherwise, attempting to (at least) free enough space to support an
 382   // allocation of the given "word_size".
 383   virtual void collect(bool   full,
 384                        bool   clear_all_soft_refs,
 385                        size_t word_size,
 386                        bool   is_tlab) = 0;
 387 
 388   // Perform a heap collection, attempting to create (at least) enough
 389   // space to support an allocation of the given "word_size".  If
 390   // successful, perform the allocation and return the resulting
 391   // "oop" (initializing the allocated block). If the allocation is
 392   // still unsuccessful, return "NULL".
 393   virtual HeapWord* expand_and_allocate(size_t word_size,
 394                                         bool is_tlab,
 395                                         bool parallel = false) = 0;
 396 
 397   // Some generations may require some cleanup or preparation actions before
 398   // allowing a collection.  The default is to do nothing.
 399   virtual void gc_prologue(bool full) {};
 400 
 401   // Some generations may require some cleanup actions after a collection.
 402   // The default is to do nothing.
 403   virtual void gc_epilogue(bool full) {};
 404 
 405   // Save the high water marks for the used space in a generation.
 406   virtual void record_spaces_top() {};
 407 
 408   // Some generations may need to be "fixed-up" after some allocation
 409   // activity to make them parsable again. The default is to do nothing.
 410   virtual void ensure_parsability() {};
 411 
 412   // Time (in ms) when we were last collected or now if a collection is
 413   // in progress.
 414   virtual jlong time_of_last_gc(jlong now) {
 415     // Both _time_of_last_gc and now are set using a time source
 416     // that guarantees monotonically non-decreasing values provided
 417     // the underlying platform provides such a source. So we still
 418     // have to guard against non-monotonicity.
 419     NOT_PRODUCT(
 420       if (now < _time_of_last_gc) {
 421         warning("time warp: "INT64_FORMAT" to "INT64_FORMAT, (int64_t)_time_of_last_gc, (int64_t)now);
 422       }
 423     )
 424     return _time_of_last_gc;
 425   }
 426 
 427   virtual void update_time_of_last_gc(jlong now)  {
 428     _time_of_last_gc = now;
 429   }
 430 
 431   // Generations may keep statistics about collection.  This
 432   // method updates those statistics.  current_level is
 433   // the level of the collection that has most recently
 434   // occurred.  This allows the generation to decide what
 435   // statistics are valid to collect.  For example, the
 436   // generation can decide to gather the amount of promoted data
 437   // if the collection of the younger generations has completed.
 438   GCStats* gc_stats() const { return _gc_stats; }
 439   virtual void update_gc_stats(Generation* current_generation, bool full) {}
 440 
 441   // Mark sweep support phase2
 442   virtual void prepare_for_compaction(CompactPoint* cp);
 443   // Mark sweep support phase3
 444   virtual void adjust_pointers();
 445   // Mark sweep support phase4
 446   virtual void compact();
 447   virtual void post_compact() {ShouldNotReachHere();}
 448 
 449   // Support for CMS's rescan. In this general form we return a pointer
 450   // to an abstract object that can be used, based on specific previously
 451   // decided protocols, to exchange information between generations,
 452   // information that may be useful for speeding up certain types of
 453   // garbage collectors. A NULL value indicates to the client that
 454   // no data recording is expected by the provider. The data-recorder is
 455   // expected to be GC worker thread-local, with the worker index
 456   // indicated by "thr_num".
 457   virtual void* get_data_recorder(int thr_num) { return NULL; }
 458   virtual void sample_eden_chunk() {}
 459 
 460   // Some generations may require some cleanup actions before allowing
 461   // a verification.
 462   virtual void prepare_for_verify() {};
 463 
 464   // Accessing "marks".
 465 
 466   // This function gives a generation a chance to note a point between
 467   // collections.  For example, a contiguous generation might note the
 468   // beginning allocation point post-collection, which might allow some later
 469   // operations to be optimized.
 470   virtual void save_marks() {}
 471 
 472   // This function allows generations to initialize any "saved marks".  That
 473   // is, should only be called when the generation is empty.
 474   virtual void reset_saved_marks() {}
 475 
 476   // This function is "true" iff any no allocations have occurred in the
 477   // generation since the last call to "save_marks".
 478   virtual bool no_allocs_since_save_marks() = 0;
 479 
 480   // Apply "cl->apply" to (the addresses of) all reference fields in objects
 481   // allocated in the current generation since the last call to "save_marks".
 482   // If more objects are allocated in this generation as a result of applying
 483   // the closure, iterates over reference fields in those objects as well.
 484   // Calls "save_marks" at the end of the iteration.
 485   // General signature...
 486   virtual void oop_since_save_marks_iterate_v(OopsInGenClosure* cl) = 0;
 487   // ...and specializations for de-virtualization.  (The general
 488   // implementation of the _nv versions call the virtual version.
 489   // Note that the _nv suffix is not really semantically necessary,
 490   // but it avoids some not-so-useful warnings on Solaris.)
 491 #define Generation_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)             \
 492   virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {    \
 493     oop_since_save_marks_iterate_v((OopsInGenClosure*)cl);                      \
 494   }
 495   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(Generation_SINCE_SAVE_MARKS_DECL)
 496 
 497 #undef Generation_SINCE_SAVE_MARKS_DECL
 498 
 499   // The "requestor" generation is performing some garbage collection
 500   // action for which it would be useful to have scratch space.  If
 501   // the target is not the requestor, no gc actions will be required
 502   // of the target.  The requestor promises to allocate no more than
 503   // "max_alloc_words" in the target generation (via promotion say,
 504   // if the requestor is a young generation and the target is older).
 505   // If the target generation can provide any scratch space, it adds
 506   // it to "list", leaving "list" pointing to the head of the
 507   // augmented list.  The default is to offer no space.
 508   virtual void contribute_scratch(ScratchBlock*& list, Generation* requestor,
 509                                   size_t max_alloc_words) {}
 510 
 511   // Give each generation an opportunity to do clean up for any
 512   // contributed scratch.
 513   virtual void reset_scratch() {};
 514 
 515   // When an older generation has been collected, and perhaps resized,
 516   // this method will be invoked on all younger generations (from older to
 517   // younger), allowing them to resize themselves as appropriate.
 518   virtual void compute_new_size() = 0;
 519 
 520   // Printing
 521   virtual const char* name() const = 0;
 522   virtual const char* short_name() const = 0;
 523 
 524   // Attributes
 525 
 526   // True iff the given generation may only be the youngest generation.
 527   virtual bool must_be_youngest() const = 0;
 528   // True iff the given generation may only be the oldest generation.
 529   virtual bool must_be_oldest() const = 0;
 530 
 531   // Reference Processing accessor
 532   ReferenceProcessor* const ref_processor() { return _ref_processor; }
 533 
 534   // Iteration.
 535 
 536   // Iterate over all the ref-containing fields of all objects in the
 537   // generation, calling "cl.do_oop" on each.
 538   virtual void oop_iterate(ExtendedOopClosure* cl);
 539 
 540   // Iterate over all objects in the generation, calling "cl.do_object" on
 541   // each.
 542   virtual void object_iterate(ObjectClosure* cl);
 543 
 544   // Iterate over all safe objects in the generation, calling "cl.do_object" on
 545   // each.  An object is safe if its references point to other objects in
 546   // the heap.  This defaults to object_iterate() unless overridden.
 547   virtual void safe_object_iterate(ObjectClosure* cl);
 548 
 549   // Apply "cl->do_oop" to (the address of) all and only all the ref fields
 550   // in the current generation that contain pointers to objects in younger
 551   // generations. Objects allocated since the last "save_marks" call are
 552   // excluded.
 553   virtual void younger_refs_iterate(OopsInGenClosure* cl) = 0;
 554 
 555   // Inform a generation that it longer contains references to objects
 556   // in any younger generation.    [e.g. Because younger gens are empty,
 557   // clear the card table.]
 558   virtual void clear_remembered_set() { }
 559 
 560   // Inform a generation that some of its objects have moved.  [e.g. The
 561   // generation's spaces were compacted, invalidating the card table.]
 562   virtual void invalidate_remembered_set() { }
 563 
 564   // Block abstraction.
 565 
 566   // Returns the address of the start of the "block" that contains the
 567   // address "addr".  We say "blocks" instead of "object" since some heaps
 568   // may not pack objects densely; a chunk may either be an object or a
 569   // non-object.
 570   virtual HeapWord* block_start(const void* addr) const;
 571 
 572   // Requires "addr" to be the start of a chunk, and returns its size.
 573   // "addr + size" is required to be the start of a new chunk, or the end
 574   // of the active area of the heap.
 575   virtual size_t block_size(const HeapWord* addr) const ;
 576 
 577   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 578   // the block is an object.
 579   virtual bool block_is_obj(const HeapWord* addr) const;
 580 
 581 
 582   // PrintGC, PrintGCDetails support
 583   void print_heap_change(size_t prev_used) const;
 584 
 585   // PrintHeapAtGC support
 586   virtual void print() const;
 587   virtual void print_on(outputStream* st) const;
 588 
 589   virtual void verify() = 0;
 590 
 591   struct StatRecord {
 592     int invocations;
 593     elapsedTimer accumulated_time;
 594     StatRecord() :
 595       invocations(0),
 596       accumulated_time(elapsedTimer()) {}
 597   };
 598 private:
 599   StatRecord _stat_record;
 600 public:
 601   StatRecord* stat_record() { return &_stat_record; }
 602 
 603   virtual void print_summary_info();
 604   virtual void print_summary_info_on(outputStream* st);
 605 
 606   // Performance Counter support
 607   virtual void update_counters() = 0;
 608   virtual CollectorCounters* counters() { return _gc_counters; }
 609 };
 610 
 611 // Class CardGeneration is a generation that is covered by a card table,
 612 // and uses a card-size block-offset array to implement block_start.
 613 
 614 // class BlockOffsetArray;
 615 // class BlockOffsetArrayContigSpace;
 616 class BlockOffsetSharedArray;
 617 
 618 class CardGeneration: public Generation {
 619   friend class VMStructs;
 620  protected:
 621   // This is shared with other generations.
 622   GenRemSet* _rs;
 623   // This is local to this generation.
 624   BlockOffsetSharedArray* _bts;
 625 
 626   // current shrinking effect: this damps shrinking when the heap gets empty.
 627   size_t _shrink_factor;
 628 
 629   size_t _min_heap_delta_bytes;   // Minimum amount to expand.
 630 
 631   // Some statistics from before gc started.
 632   // These are gathered in the gc_prologue (and should_collect)
 633   // to control growing/shrinking policy in spite of promotions.
 634   size_t _capacity_at_prologue;
 635   size_t _used_at_prologue;
 636 
 637   CardGeneration(ReservedSpace rs, size_t initial_byte_size, GenRemSet* remset);
 638 
 639  public:
 640 
 641   // Attempt to expand the generation by "bytes".  Expand by at a
 642   // minimum "expand_bytes".  Return true if some amount (not
 643   // necessarily the full "bytes") was done.
 644   virtual bool expand(size_t bytes, size_t expand_bytes);
 645 
 646   // Shrink generation with specified size (returns false if unable to shrink)
 647   virtual void shrink(size_t bytes) = 0;
 648 
 649   virtual void compute_new_size();
 650 
 651   virtual void clear_remembered_set();
 652 
 653   virtual void invalidate_remembered_set();
 654 
 655   virtual void prepare_for_verify();
 656 
 657   // Grow generation with specified size (returns false if unable to grow)
 658   virtual bool grow_by(size_t bytes) = 0;
 659   // Grow generation to reserved size.
 660   virtual bool grow_to_reserved() = 0;
 661 };
 662 
 663 // OneContigSpaceCardGeneration models a heap of old objects contained in a single
 664 // contiguous space.
 665 //
 666 // Garbage collection is performed using mark-compact.
 667 
 668 class OneContigSpaceCardGeneration: public CardGeneration {
 669   friend class VMStructs;
 670   // Abstractly, this is a subtype that gets access to protected fields.
 671   friend class VM_PopulateDumpSharedSpace;
 672 
 673  protected:
 674   ContiguousSpace*  _the_space;       // actual space holding objects
 675   WaterMark  _last_gc;                // watermark between objects allocated before
 676                                       // and after last GC.
 677 
 678   // Grow generation with specified size (returns false if unable to grow)
 679   virtual bool grow_by(size_t bytes);
 680   // Grow generation to reserved size.
 681   virtual bool grow_to_reserved();
 682   // Shrink generation with specified size (returns false if unable to shrink)
 683   void shrink_by(size_t bytes);
 684 
 685   // Allocation failure
 686   virtual bool expand(size_t bytes, size_t expand_bytes);
 687   void shrink(size_t bytes);
 688 
 689   // Accessing spaces
 690   ContiguousSpace* the_space() const { return _the_space; }
 691 
 692  public:
 693   OneContigSpaceCardGeneration(ReservedSpace rs, size_t initial_byte_size,
 694                                GenRemSet* remset, ContiguousSpace* space) :
 695     CardGeneration(rs, initial_byte_size, remset),
 696     _the_space(space)
 697   {}
 698 
 699   inline bool is_in(const void* p) const;
 700 
 701   // Space enquiries
 702   size_t capacity() const;
 703   size_t used() const;
 704   size_t free() const;
 705 
 706   MemRegion used_region() const;
 707 
 708   size_t unsafe_max_alloc_nogc() const;
 709   size_t contiguous_available() const;
 710 
 711   // Iteration
 712   void object_iterate(ObjectClosure* blk);
 713   void space_iterate(SpaceClosure* blk, bool usedOnly = false);
 714 
 715   void younger_refs_iterate(OopsInGenClosure* blk);
 716 
 717   inline CompactibleSpace* first_compaction_space() const;
 718 
 719   virtual inline HeapWord* allocate(size_t word_size, bool is_tlab);
 720   virtual inline HeapWord* par_allocate(size_t word_size, bool is_tlab);
 721 
 722   // Accessing marks
 723   inline WaterMark top_mark();
 724   inline WaterMark bottom_mark();
 725 
 726 #define OneContig_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)      \
 727   void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
 728   OneContig_SINCE_SAVE_MARKS_DECL(OopsInGenClosure,_v)
 729   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(OneContig_SINCE_SAVE_MARKS_DECL)
 730 
 731   void save_marks();
 732   void reset_saved_marks();
 733   bool no_allocs_since_save_marks();
 734 
 735   inline size_t block_size(const HeapWord* addr) const;
 736 
 737   inline bool block_is_obj(const HeapWord* addr) const;
 738 
 739   virtual void collect(bool full,
 740                        bool clear_all_soft_refs,
 741                        size_t size,
 742                        bool is_tlab);
 743   HeapWord* expand_and_allocate(size_t size,
 744                                 bool is_tlab,
 745                                 bool parallel = false);
 746 
 747   virtual void prepare_for_verify();
 748 
 749   virtual void gc_epilogue(bool full);
 750 
 751   virtual void record_spaces_top();
 752 
 753   virtual void verify();
 754   virtual void print_on(outputStream* st) const;
 755 };
 756 
 757 #endif // SHARE_VM_MEMORY_GENERATION_HPP