1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_MEMORY_GENERATION_HPP
  26 #define SHARE_VM_MEMORY_GENERATION_HPP
  27 
  28 #include "gc_implementation/shared/collectorCounters.hpp"
  29 #include "memory/allocation.hpp"
  30 #include "memory/memRegion.hpp"
  31 #include "memory/referenceProcessor.hpp"
  32 #include "memory/universe.hpp"
  33 #include "memory/watermark.hpp"
  34 #include "runtime/mutex.hpp"
  35 #include "runtime/perfData.hpp"
  36 #include "runtime/virtualspace.hpp"
  37 
  38 // A Generation models a heap area for similarly-aged objects.
  39 // It will contain one ore more spaces holding the actual objects.
  40 //
  41 // The Generation class hierarchy:
  42 //
  43 // Generation                      - abstract base class
  44 // - DefNewGeneration              - allocation area (copy collected)
  45 //   - ParNewGeneration            - a DefNewGeneration that is collected by
  46 //                                   several threads
  47 // - CardGeneration                 - abstract class adding offset array behavior
  48 //   - OneContigSpaceCardGeneration - abstract class holding a single
  49 //                                    contiguous space with card marking
  50 //     - TenuredGeneration         - tenured (old object) space (markSweepCompact)
  51 //   - ConcurrentMarkSweepGeneration - Mostly Concurrent Mark Sweep Generation
  52 //                                       (Detlefs-Printezis refinement of
  53 //                                       Boehm-Demers-Schenker)
  54 //
  55 // The system configurations currently allowed are:
  56 //
  57 //   DefNewGeneration + TenuredGeneration
  58 //   DefNewGeneration + ConcurrentMarkSweepGeneration
  59 //
  60 //   ParNewGeneration + TenuredGeneration
  61 //   ParNewGeneration + ConcurrentMarkSweepGeneration
  62 //
  63 
  64 class DefNewGeneration;
  65 class GenerationSpec;
  66 class CompactibleSpace;
  67 class ContiguousSpace;
  68 class CompactPoint;
  69 class OopsInGenClosure;
  70 class OopClosure;
  71 class ScanClosure;
  72 class FastScanClosure;
  73 class GenCollectedHeap;
  74 class GenRemSet;
  75 class GCStats;
  76 
  77 // A "ScratchBlock" represents a block of memory in one generation usable by
  78 // another.  It represents "num_words" free words, starting at and including
  79 // the address of "this".
  80 struct ScratchBlock {
  81   ScratchBlock* next;
  82   size_t num_words;
  83   HeapWord scratch_space[1];  // Actually, of size "num_words-2" (assuming
  84                               // first two fields are word-sized.)
  85 };
  86 
  87 class Generation: public CHeapObj<mtGC> {
  88   friend class VMStructs;
  89  private:
  90   jlong _time_of_last_gc; // time when last gc on this generation happened (ms)
  91   MemRegion _prev_used_region; // for collectors that want to "remember" a value for
  92                                // used region at some specific point during collection.
  93 
  94  protected:
  95   // Minimum and maximum addresses for memory reserved (not necessarily
  96   // committed) for generation.
  97   // Used by card marking code. Must not overlap with address ranges of
  98   // other generations.
  99   MemRegion _reserved;
 100 
 101   // Memory area reserved for generation
 102   VirtualSpace _virtual_space;
 103 
 104   // ("Weak") Reference processing support
 105   ReferenceProcessor* _ref_processor;
 106 
 107   // Performance Counters
 108   CollectorCounters* _gc_counters;
 109 
 110   // Statistics for garbage collection
 111   GCStats* _gc_stats;
 112 
 113   // Initialize the generation.
 114   Generation(ReservedSpace rs, size_t initial_byte_size);
 115 
 116   // Apply "cl->do_oop" to (the address of) (exactly) all the ref fields in
 117   // "sp" that point into younger generations.
 118   // The iteration is only over objects allocated at the start of the
 119   // iterations; objects allocated as a result of applying the closure are
 120   // not included.
 121   void younger_refs_in_space_iterate(Space* sp, OopsInGenClosure* cl);
 122 
 123  public:
 124   // The set of possible generation kinds.
 125   enum Name {
 126     DefNew,
 127     ParNew,
 128     MarkSweepCompact,
 129     ConcurrentMarkSweep,
 130     Other
 131   };
 132 
 133   enum Type {
 134     Young,
 135     Old
 136   };
 137 
 138   enum SomePublicConstants {
 139     // Generations are GenGrain-aligned and have size that are multiples of
 140     // GenGrain.
 141     // Note: on ARM we add 1 bit for card_table_base to be properly aligned
 142     // (we expect its low byte to be zero - see implementation of post_barrier)
 143     LogOfGenGrain = 16 ARM_ONLY(+1),
 144     GenGrain = 1 << LogOfGenGrain
 145   };
 146 
 147   // allocate and initialize ("weak") refs processing support
 148   virtual void ref_processor_init();
 149   void set_ref_processor(ReferenceProcessor* rp) {
 150     assert(_ref_processor == NULL, "clobbering existing _ref_processor");
 151     _ref_processor = rp;
 152   }
 153 
 154   virtual Generation::Name kind() { return Generation::Other; }
 155   GenerationSpec* spec();
 156 
 157   // This properly belongs in the collector, but for now this
 158   // will do.
 159   virtual bool refs_discovery_is_atomic() const { return true;  }
 160   virtual bool refs_discovery_is_mt()     const { return false; }
 161 
 162   // Space enquiries (results in bytes)
 163   virtual size_t capacity() const = 0;  // The maximum number of object bytes the
 164                                         // generation can currently hold.
 165   virtual size_t used() const = 0;      // The number of used bytes in the gen.
 166   virtual size_t free() const = 0;      // The number of free bytes in the gen.
 167 
 168   // Support for java.lang.Runtime.maxMemory(); see CollectedHeap.
 169   // Returns the total number of bytes  available in a generation
 170   // for the allocation of objects.
 171   virtual size_t max_capacity() const;
 172 
 173   // If this is a young generation, the maximum number of bytes that can be
 174   // allocated in this generation before a GC is triggered.
 175   virtual size_t capacity_before_gc() const { return 0; }
 176 
 177   // The largest number of contiguous free bytes in the generation,
 178   // including expansion  (Assumes called at a safepoint.)
 179   virtual size_t contiguous_available() const = 0;
 180   // The largest number of contiguous free bytes in this or any higher generation.
 181   virtual size_t max_contiguous_available() const;
 182 
 183   // Returns true if promotions of the specified amount are
 184   // likely to succeed without a promotion failure.
 185   // Promotion of the full amount is not guaranteed but
 186   // might be attempted in the worst case.
 187   virtual bool promotion_attempt_is_safe(size_t max_promotion_in_bytes) const;
 188 
 189   // For a non-young generation, this interface can be used to inform a
 190   // generation that a promotion attempt into that generation failed.
 191   // Typically used to enable diagnostic output for post-mortem analysis,
 192   // but other uses of the interface are not ruled out.
 193   virtual void promotion_failure_occurred() { /* does nothing */ }
 194 
 195   // Return an estimate of the maximum allocation that could be performed
 196   // in the generation without triggering any collection or expansion
 197   // activity.  It is "unsafe" because no locks are taken; the result
 198   // should be treated as an approximation, not a guarantee, for use in
 199   // heuristic resizing decisions.
 200   virtual size_t unsafe_max_alloc_nogc() const = 0;
 201 
 202   // Returns true if this generation cannot be expanded further
 203   // without a GC. Override as appropriate.
 204   virtual bool is_maximal_no_gc() const {
 205     return _virtual_space.uncommitted_size() == 0;
 206   }
 207 
 208   MemRegion reserved() const { return _reserved; }
 209 
 210   // Returns a region guaranteed to contain all the objects in the
 211   // generation.
 212   virtual MemRegion used_region() const { return _reserved; }
 213 
 214   MemRegion prev_used_region() const { return _prev_used_region; }
 215   virtual void  save_used_region()   { _prev_used_region = used_region(); }
 216 
 217   // Returns "TRUE" iff "p" points into the committed areas in the generation.
 218   // For some kinds of generations, this may be an expensive operation.
 219   // To avoid performance problems stemming from its inadvertent use in
 220   // product jvm's, we restrict its use to assertion checking or
 221   // verification only.
 222   virtual bool is_in(const void* p) const;
 223 
 224   /* Returns "TRUE" iff "p" points into the reserved area of the generation. */
 225   bool is_in_reserved(const void* p) const {
 226     return _reserved.contains(p);
 227   }
 228 
 229   // Check that the generation kind is DefNewGeneration or a sub
 230   // class of DefNewGeneration and return a DefNewGeneration*
 231   DefNewGeneration*  as_DefNewGeneration();
 232 
 233   // If some space in the generation contains the given "addr", return a
 234   // pointer to that space, else return "NULL".
 235   virtual Space* space_containing(const void* addr) const;
 236 
 237   // Iteration - do not use for time critical operations
 238   virtual void space_iterate(SpaceClosure* blk, bool usedOnly = false) = 0;
 239 
 240   // Returns the first space, if any, in the generation that can participate
 241   // in compaction, or else "NULL".
 242   virtual CompactibleSpace* first_compaction_space() const = 0;
 243 
 244   // Returns "true" iff this generation should be used to allocate an
 245   // object of the given size.  Young generations might
 246   // wish to exclude very large objects, for example, since, if allocated
 247   // often, they would greatly increase the frequency of young-gen
 248   // collection.
 249   virtual bool should_allocate(size_t word_size, bool is_tlab) {
 250     bool result = false;
 251     size_t overflow_limit = (size_t)1 << (BitsPerSize_t - LogHeapWordSize);
 252     if (!is_tlab || supports_tlab_allocation()) {
 253       result = (word_size > 0) && (word_size < overflow_limit);
 254     }
 255     return result;
 256   }
 257 
 258   // Allocate and returns a block of the requested size, or returns "NULL".
 259   // Assumes the caller has done any necessary locking.
 260   virtual HeapWord* allocate(size_t word_size, bool is_tlab) = 0;
 261 
 262   // Like "allocate", but performs any necessary locking internally.
 263   virtual HeapWord* par_allocate(size_t word_size, bool is_tlab) = 0;
 264 
 265   // A 'younger' gen has reached an allocation limit, and uses this to notify
 266   // the next older gen.  The return value is a new limit, or NULL if none.  The
 267   // caller must do the necessary locking.
 268   virtual HeapWord* allocation_limit_reached(Space* space, HeapWord* top,
 269                                              size_t word_size) {
 270     return NULL;
 271   }
 272 
 273   // Some generation may offer a region for shared, contiguous allocation,
 274   // via inlined code (by exporting the address of the top and end fields
 275   // defining the extent of the contiguous allocation region.)
 276 
 277   // This function returns "true" iff the heap supports this kind of
 278   // allocation.  (More precisely, this means the style of allocation that
 279   // increments *top_addr()" with a CAS.) (Default is "no".)
 280   // A generation that supports this allocation style must use lock-free
 281   // allocation for *all* allocation, since there are times when lock free
 282   // allocation will be concurrent with plain "allocate" calls.
 283   virtual bool supports_inline_contig_alloc() const { return false; }
 284 
 285   // These functions return the addresses of the fields that define the
 286   // boundaries of the contiguous allocation area.  (These fields should be
 287   // physically near to one another.)
 288   virtual HeapWord** top_addr() const { return NULL; }
 289   virtual HeapWord** end_addr() const { return NULL; }
 290 
 291   // Thread-local allocation buffers
 292   virtual bool supports_tlab_allocation() const { return false; }
 293   virtual size_t tlab_capacity() const {
 294     guarantee(false, "Generation doesn't support thread local allocation buffers");
 295     return 0;
 296   }
 297   virtual size_t tlab_used() const {
 298     guarantee(false, "Generation doesn't support thread local allocation buffers");
 299     return 0;
 300   }
 301   virtual size_t unsafe_max_tlab_alloc() const {
 302     guarantee(false, "Generation doesn't support thread local allocation buffers");
 303     return 0;
 304   }
 305 
 306   // "obj" is the address of an object in a younger generation.  Allocate space
 307   // for "obj" in the current (or some higher) generation, and copy "obj" into
 308   // the newly allocated space, if possible, returning the result (or NULL if
 309   // the allocation failed).
 310   //
 311   // The "obj_size" argument is just obj->size(), passed along so the caller can
 312   // avoid repeating the virtual call to retrieve it.
 313   virtual oop promote(oop obj, size_t obj_size);
 314 
 315   // Thread "thread_num" (0 <= i < ParalleGCThreads) wants to promote
 316   // object "obj", whose original mark word was "m", and whose size is
 317   // "word_sz".  If possible, allocate space for "obj", copy obj into it
 318   // (taking care to copy "m" into the mark word when done, since the mark
 319   // word of "obj" may have been overwritten with a forwarding pointer, and
 320   // also taking care to copy the klass pointer *last*.  Returns the new
 321   // object if successful, or else NULL.
 322   virtual oop par_promote(int thread_num,
 323                           oop obj, markOop m, size_t word_sz);
 324 
 325   // Undo, if possible, the most recent par_promote_alloc allocation by
 326   // "thread_num" ("obj", of "word_sz").
 327   virtual void par_promote_alloc_undo(int thread_num,
 328                                       HeapWord* obj, size_t word_sz);
 329 
 330   // Informs the current generation that all par_promote_alloc's in the
 331   // collection have been completed; any supporting data structures can be
 332   // reset.  Default is to do nothing.
 333   virtual void par_promote_alloc_done(int thread_num) {}
 334 
 335   // Informs the current generation that all oop_since_save_marks_iterates
 336   // performed by "thread_num" in the current collection, if any, have been
 337   // completed; any supporting data structures can be reset.  Default is to
 338   // do nothing.
 339   virtual void par_oop_since_save_marks_iterate_done(int thread_num) {}
 340 
 341   // This generation will collect all younger generations
 342   // during a full collection.
 343   virtual bool full_collects_younger_generations() const { return false; }
 344 
 345   // This generation does in-place marking, meaning that mark words
 346   // are mutated during the marking phase and presumably reinitialized
 347   // to a canonical value after the GC. This is currently used by the
 348   // biased locking implementation to determine whether additional
 349   // work is required during the GC prologue and epilogue.
 350   virtual bool performs_in_place_marking() const { return true; }
 351 
 352   // Returns "true" iff collect() should subsequently be called on this
 353   // this generation. See comment below.
 354   // This is a generic implementation which can be overridden.
 355   //
 356   // Note: in the current (1.4) implementation, when genCollectedHeap's
 357   // incremental_collection_will_fail flag is set, all allocations are
 358   // slow path (the only fast-path place to allocate is DefNew, which
 359   // will be full if the flag is set).
 360   // Thus, older generations which collect younger generations should
 361   // test this flag and collect if it is set.
 362   virtual bool should_collect(bool   full,
 363                               size_t word_size,
 364                               bool   is_tlab) {
 365     return (full || should_allocate(word_size, is_tlab));
 366   }
 367 
 368   // Returns true if the collection is likely to be safely
 369   // completed. Even if this method returns true, a collection
 370   // may not be guaranteed to succeed, and the system should be
 371   // able to safely unwind and recover from that failure, albeit
 372   // at some additional cost.
 373   virtual bool collection_attempt_is_safe() {
 374     guarantee(false, "Are you sure you want to call this method?");
 375     return true;
 376   }
 377 
 378   // Perform a garbage collection.
 379   // If full is true attempt a full garbage collection of this generation.
 380   // Otherwise, attempting to (at least) free enough space to support an
 381   // allocation of the given "word_size".
 382   virtual void collect(bool   full,
 383                        bool   clear_all_soft_refs,
 384                        size_t word_size,
 385                        bool   is_tlab) = 0;
 386 
 387   // Perform a heap collection, attempting to create (at least) enough
 388   // space to support an allocation of the given "word_size".  If
 389   // successful, perform the allocation and return the resulting
 390   // "oop" (initializing the allocated block). If the allocation is
 391   // still unsuccessful, return "NULL".
 392   virtual HeapWord* expand_and_allocate(size_t word_size,
 393                                         bool is_tlab,
 394                                         bool parallel = false) = 0;
 395 
 396   // Some generations may require some cleanup or preparation actions before
 397   // allowing a collection.  The default is to do nothing.
 398   virtual void gc_prologue(bool full) {};
 399 
 400   // Some generations may require some cleanup actions after a collection.
 401   // The default is to do nothing.
 402   virtual void gc_epilogue(bool full) {};
 403 
 404   // Save the high water marks for the used space in a generation.
 405   virtual void record_spaces_top() {};
 406 
 407   // Some generations may need to be "fixed-up" after some allocation
 408   // activity to make them parsable again. The default is to do nothing.
 409   virtual void ensure_parsability() {};
 410 
 411   // Time (in ms) when we were last collected or now if a collection is
 412   // in progress.
 413   virtual jlong time_of_last_gc(jlong now) {
 414     // Both _time_of_last_gc and now are set using a time source
 415     // that guarantees monotonically non-decreasing values provided
 416     // the underlying platform provides such a source. So we still
 417     // have to guard against non-monotonicity.
 418     NOT_PRODUCT(
 419       if (now < _time_of_last_gc) {
 420         warning("time warp: "INT64_FORMAT" to "INT64_FORMAT, (int64_t)_time_of_last_gc, (int64_t)now);
 421       }
 422     )
 423     return _time_of_last_gc;
 424   }
 425 
 426   virtual void update_time_of_last_gc(jlong now)  {
 427     _time_of_last_gc = now;
 428   }
 429 
 430   // Generations may keep statistics about collection.  This
 431   // method updates those statistics.  current_level is
 432   // the level of the collection that has most recently
 433   // occurred.  This allows the generation to decide what
 434   // statistics are valid to collect.  For example, the
 435   // generation can decide to gather the amount of promoted data
 436   // if the collection of the younger generations has completed.
 437   GCStats* gc_stats() const { return _gc_stats; }
 438   virtual void update_gc_stats(Generation* current_generation, bool full) {}
 439 
 440   // Mark sweep support phase2
 441   virtual void prepare_for_compaction(CompactPoint* cp);
 442   // Mark sweep support phase3
 443   virtual void adjust_pointers();
 444   // Mark sweep support phase4
 445   virtual void compact();
 446   virtual void post_compact() {ShouldNotReachHere();}
 447 
 448   // Support for CMS's rescan. In this general form we return a pointer
 449   // to an abstract object that can be used, based on specific previously
 450   // decided protocols, to exchange information between generations,
 451   // information that may be useful for speeding up certain types of
 452   // garbage collectors. A NULL value indicates to the client that
 453   // no data recording is expected by the provider. The data-recorder is
 454   // expected to be GC worker thread-local, with the worker index
 455   // indicated by "thr_num".
 456   virtual void* get_data_recorder(int thr_num) { return NULL; }
 457   virtual void sample_eden_chunk() {}
 458 
 459   // Some generations may require some cleanup actions before allowing
 460   // a verification.
 461   virtual void prepare_for_verify() {};
 462 
 463   // Accessing "marks".
 464 
 465   // This function gives a generation a chance to note a point between
 466   // collections.  For example, a contiguous generation might note the
 467   // beginning allocation point post-collection, which might allow some later
 468   // operations to be optimized.
 469   virtual void save_marks() {}
 470 
 471   // This function allows generations to initialize any "saved marks".  That
 472   // is, should only be called when the generation is empty.
 473   virtual void reset_saved_marks() {}
 474 
 475   // This function is "true" iff any no allocations have occurred in the
 476   // generation since the last call to "save_marks".
 477   virtual bool no_allocs_since_save_marks() = 0;
 478 
 479   // Apply "cl->apply" to (the addresses of) all reference fields in objects
 480   // allocated in the current generation since the last call to "save_marks".
 481   // If more objects are allocated in this generation as a result of applying
 482   // the closure, iterates over reference fields in those objects as well.
 483   // Calls "save_marks" at the end of the iteration.
 484   // General signature...
 485   virtual void oop_since_save_marks_iterate_v(OopsInGenClosure* cl) = 0;
 486   // ...and specializations for de-virtualization.  (The general
 487   // implementation of the _nv versions call the virtual version.
 488   // Note that the _nv suffix is not really semantically necessary,
 489   // but it avoids some not-so-useful warnings on Solaris.)
 490 #define Generation_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)             \
 491   virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {    \
 492     oop_since_save_marks_iterate_v((OopsInGenClosure*)cl);                      \
 493   }
 494   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(Generation_SINCE_SAVE_MARKS_DECL)
 495 
 496 #undef Generation_SINCE_SAVE_MARKS_DECL
 497 
 498   // The "requestor" generation is performing some garbage collection
 499   // action for which it would be useful to have scratch space.  If
 500   // the target is not the requestor, no gc actions will be required
 501   // of the target.  The requestor promises to allocate no more than
 502   // "max_alloc_words" in the target generation (via promotion say,
 503   // if the requestor is a young generation and the target is older).
 504   // If the target generation can provide any scratch space, it adds
 505   // it to "list", leaving "list" pointing to the head of the
 506   // augmented list.  The default is to offer no space.
 507   virtual void contribute_scratch(ScratchBlock*& list, Generation* requestor,
 508                                   size_t max_alloc_words) {}
 509 
 510   // Give each generation an opportunity to do clean up for any
 511   // contributed scratch.
 512   virtual void reset_scratch() {};
 513 
 514   // When an older generation has been collected, and perhaps resized,
 515   // this method will be invoked on all younger generations (from older to
 516   // younger), allowing them to resize themselves as appropriate.
 517   virtual void compute_new_size() = 0;
 518 
 519   // Printing
 520   virtual const char* name() const = 0;
 521   virtual const char* short_name() const = 0;
 522 
 523   // Attributes
 524 
 525   // True iff the given generation may only be the youngest generation.
 526   virtual bool must_be_youngest() const = 0;
 527   // True iff the given generation may only be the oldest generation.
 528   virtual bool must_be_oldest() const = 0;
 529 
 530   // Reference Processing accessor
 531   ReferenceProcessor* const ref_processor() { return _ref_processor; }
 532 
 533   // Iteration.
 534 
 535   // Iterate over all the ref-containing fields of all objects in the
 536   // generation, calling "cl.do_oop" on each.
 537   virtual void oop_iterate(ExtendedOopClosure* cl);
 538 
 539   // Iterate over all objects in the generation, calling "cl.do_object" on
 540   // each.
 541   virtual void object_iterate(ObjectClosure* cl);
 542 
 543   // Iterate over all safe objects in the generation, calling "cl.do_object" on
 544   // each.  An object is safe if its references point to other objects in
 545   // the heap.  This defaults to object_iterate() unless overridden.
 546   virtual void safe_object_iterate(ObjectClosure* cl);
 547 
 548   // Apply "cl->do_oop" to (the address of) all and only all the ref fields
 549   // in the current generation that contain pointers to objects in younger
 550   // generations. Objects allocated since the last "save_marks" call are
 551   // excluded.
 552   virtual void younger_refs_iterate(OopsInGenClosure* cl) = 0;
 553 
 554   // Inform a generation that it longer contains references to objects
 555   // in any younger generation.    [e.g. Because younger gens are empty,
 556   // clear the card table.]
 557   virtual void clear_remembered_set() { }
 558 
 559   // Inform a generation that some of its objects have moved.  [e.g. The
 560   // generation's spaces were compacted, invalidating the card table.]
 561   virtual void invalidate_remembered_set() { }
 562 
 563   // Block abstraction.
 564 
 565   // Returns the address of the start of the "block" that contains the
 566   // address "addr".  We say "blocks" instead of "object" since some heaps
 567   // may not pack objects densely; a chunk may either be an object or a
 568   // non-object.
 569   virtual HeapWord* block_start(const void* addr) const;
 570 
 571   // Requires "addr" to be the start of a chunk, and returns its size.
 572   // "addr + size" is required to be the start of a new chunk, or the end
 573   // of the active area of the heap.
 574   virtual size_t block_size(const HeapWord* addr) const ;
 575 
 576   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 577   // the block is an object.
 578   virtual bool block_is_obj(const HeapWord* addr) const;
 579 
 580 
 581   // PrintGC, PrintGCDetails support
 582   void print_heap_change(size_t prev_used) const;
 583 
 584   // PrintHeapAtGC support
 585   virtual void print() const;
 586   virtual void print_on(outputStream* st) const;
 587 
 588   virtual void verify() = 0;
 589 
 590   struct StatRecord {
 591     int invocations;
 592     elapsedTimer accumulated_time;
 593     StatRecord() :
 594       invocations(0),
 595       accumulated_time(elapsedTimer()) {}
 596   };
 597 private:
 598   StatRecord _stat_record;
 599 public:
 600   StatRecord* stat_record() { return &_stat_record; }
 601 
 602   virtual void print_summary_info();
 603   virtual void print_summary_info_on(outputStream* st);
 604 
 605   // Performance Counter support
 606   virtual void update_counters() = 0;
 607   virtual CollectorCounters* counters() { return _gc_counters; }
 608 };
 609 
 610 // Class CardGeneration is a generation that is covered by a card table,
 611 // and uses a card-size block-offset array to implement block_start.
 612 
 613 // class BlockOffsetArray;
 614 // class BlockOffsetArrayContigSpace;
 615 class BlockOffsetSharedArray;
 616 
 617 class CardGeneration: public Generation {
 618   friend class VMStructs;
 619  protected:
 620   // This is shared with other generations.
 621   GenRemSet* _rs;
 622   // This is local to this generation.
 623   BlockOffsetSharedArray* _bts;
 624 
 625   // current shrinking effect: this damps shrinking when the heap gets empty.
 626   size_t _shrink_factor;
 627 
 628   size_t _min_heap_delta_bytes;   // Minimum amount to expand.
 629 
 630   // Some statistics from before gc started.
 631   // These are gathered in the gc_prologue (and should_collect)
 632   // to control growing/shrinking policy in spite of promotions.
 633   size_t _capacity_at_prologue;
 634   size_t _used_at_prologue;
 635 
 636   CardGeneration(ReservedSpace rs, size_t initial_byte_size, GenRemSet* remset);
 637 
 638  public:
 639 
 640   // Attempt to expand the generation by "bytes".  Expand by at a
 641   // minimum "expand_bytes".  Return true if some amount (not
 642   // necessarily the full "bytes") was done.
 643   virtual bool expand(size_t bytes, size_t expand_bytes);
 644 
 645   // Shrink generation with specified size (returns false if unable to shrink)
 646   virtual void shrink(size_t bytes) = 0;
 647 
 648   virtual void compute_new_size();
 649 
 650   virtual void clear_remembered_set();
 651 
 652   virtual void invalidate_remembered_set();
 653 
 654   virtual void prepare_for_verify();
 655 
 656   // Grow generation with specified size (returns false if unable to grow)
 657   virtual bool grow_by(size_t bytes) = 0;
 658   // Grow generation to reserved size.
 659   virtual bool grow_to_reserved() = 0;
 660 };
 661 
 662 // OneContigSpaceCardGeneration models a heap of old objects contained in a single
 663 // contiguous space.
 664 //
 665 // Garbage collection is performed using mark-compact.
 666 
 667 class OneContigSpaceCardGeneration: public CardGeneration {
 668   friend class VMStructs;
 669   // Abstractly, this is a subtype that gets access to protected fields.
 670   friend class VM_PopulateDumpSharedSpace;
 671 
 672  protected:
 673   ContiguousSpace*  _the_space;       // actual space holding objects
 674   WaterMark  _last_gc;                // watermark between objects allocated before
 675                                       // and after last GC.
 676 
 677   // Grow generation with specified size (returns false if unable to grow)
 678   virtual bool grow_by(size_t bytes);
 679   // Grow generation to reserved size.
 680   virtual bool grow_to_reserved();
 681   // Shrink generation with specified size (returns false if unable to shrink)
 682   void shrink_by(size_t bytes);
 683 
 684   // Allocation failure
 685   virtual bool expand(size_t bytes, size_t expand_bytes);
 686   void shrink(size_t bytes);
 687 
 688   // Accessing spaces
 689   ContiguousSpace* the_space() const { return _the_space; }
 690 
 691  public:
 692   OneContigSpaceCardGeneration(ReservedSpace rs, size_t initial_byte_size,
 693                                GenRemSet* remset, ContiguousSpace* space) :
 694     CardGeneration(rs, initial_byte_size, remset),
 695     _the_space(space)
 696   {}
 697 
 698   inline bool is_in(const void* p) const;
 699 
 700   // Space enquiries
 701   size_t capacity() const;
 702   size_t used() const;
 703   size_t free() const;
 704 
 705   MemRegion used_region() const;
 706 
 707   size_t unsafe_max_alloc_nogc() const;
 708   size_t contiguous_available() const;
 709 
 710   // Iteration
 711   void object_iterate(ObjectClosure* blk);
 712   void space_iterate(SpaceClosure* blk, bool usedOnly = false);
 713 
 714   void younger_refs_iterate(OopsInGenClosure* blk);
 715 
 716   inline CompactibleSpace* first_compaction_space() const;
 717 
 718   virtual inline HeapWord* allocate(size_t word_size, bool is_tlab);
 719   virtual inline HeapWord* par_allocate(size_t word_size, bool is_tlab);
 720 
 721   // Accessing marks
 722   inline WaterMark top_mark();
 723   inline WaterMark bottom_mark();
 724 
 725 #define OneContig_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)      \
 726   void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
 727   OneContig_SINCE_SAVE_MARKS_DECL(OopsInGenClosure,_v)
 728   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(OneContig_SINCE_SAVE_MARKS_DECL)
 729 
 730   void save_marks();
 731   void reset_saved_marks();
 732   bool no_allocs_since_save_marks();
 733 
 734   inline size_t block_size(const HeapWord* addr) const;
 735 
 736   inline bool block_is_obj(const HeapWord* addr) const;
 737 
 738   virtual void collect(bool full,
 739                        bool clear_all_soft_refs,
 740                        size_t size,
 741                        bool is_tlab);
 742   HeapWord* expand_and_allocate(size_t size,
 743                                 bool is_tlab,
 744                                 bool parallel = false);
 745 
 746   virtual void prepare_for_verify();
 747 
 748   virtual void gc_epilogue(bool full);
 749 
 750   virtual void record_spaces_top();
 751 
 752   virtual void verify();
 753   virtual void print_on(outputStream* st) const;
 754 };
 755 
 756 #endif // SHARE_VM_MEMORY_GENERATION_HPP