1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/shared/collectorCounters.hpp"
  27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  28 #include "gc_implementation/shared/gcHeapSummary.hpp"
  29 #include "gc_implementation/shared/gcTimer.hpp"
  30 #include "gc_implementation/shared/gcTraceTime.hpp"
  31 #include "gc_implementation/shared/gcTrace.hpp"
  32 #include "gc_implementation/shared/spaceDecorator.hpp"
  33 #include "memory/defNewGeneration.inline.hpp"
  34 #include "memory/gcLocker.inline.hpp"
  35 #include "memory/genCollectedHeap.hpp"
  36 #include "memory/genOopClosures.inline.hpp"
  37 #include "memory/genRemSet.hpp"
  38 #include "memory/generationSpec.hpp"
  39 #include "memory/iterator.hpp"
  40 #include "memory/referencePolicy.hpp"
  41 #include "memory/space.inline.hpp"
  42 #include "oops/instanceRefKlass.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "runtime/atomic.inline.hpp"
  45 #include "runtime/java.hpp"
  46 #include "runtime/prefetch.inline.hpp"
  47 #include "runtime/thread.inline.hpp"
  48 #include "utilities/copy.hpp"
  49 #include "utilities/globalDefinitions.hpp"
  50 #include "utilities/stack.inline.hpp"
  51 
  52 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  53 
  54 //
  55 // DefNewGeneration functions.
  56 
  57 // Methods of protected closure types.
  58 
  59 DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* g) : _g(g) {
  60   assert(g->level() == 0, "Optimized for youngest gen.");
  61 }
  62 bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
  63   return (HeapWord*)p >= _g->reserved().end() || p->is_forwarded();
  64 }
  65 
  66 DefNewGeneration::KeepAliveClosure::
  67 KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
  68   GenRemSet* rs = GenCollectedHeap::heap()->rem_set();
  69   _rs = (CardTableRS*)rs;
  70 }
  71 
  72 void DefNewGeneration::KeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  73 void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  74 
  75 
  76 DefNewGeneration::FastKeepAliveClosure::
  77 FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
  78   DefNewGeneration::KeepAliveClosure(cl) {
  79   _boundary = g->reserved().end();
  80 }
  81 
  82 void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  83 void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  84 
  85 DefNewGeneration::EvacuateFollowersClosure::
  86 EvacuateFollowersClosure(GenCollectedHeap* gch, int level,
  87                          ScanClosure* cur, ScanClosure* older) :
  88   _gch(gch), _level(level),
  89   _scan_cur_or_nonheap(cur), _scan_older(older)
  90 {}
  91 
  92 void DefNewGeneration::EvacuateFollowersClosure::do_void() {
  93   do {
  94     _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
  95                                        _scan_older);
  96   } while (!_gch->no_allocs_since_save_marks(_level));
  97 }
  98 
  99 DefNewGeneration::FastEvacuateFollowersClosure::
 100 FastEvacuateFollowersClosure(GenCollectedHeap* gch, int level,
 101                              DefNewGeneration* gen,
 102                              FastScanClosure* cur, FastScanClosure* older) :
 103   _gch(gch), _level(level), _gen(gen),
 104   _scan_cur_or_nonheap(cur), _scan_older(older)
 105 {}
 106 
 107 void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
 108   do {
 109     _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
 110                                        _scan_older);
 111   } while (!_gch->no_allocs_since_save_marks(_level));
 112   guarantee(_gen->promo_failure_scan_is_complete(), "Failed to finish scan");
 113 }
 114 
 115 ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
 116     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 117 {
 118   assert(_g->level() == 0, "Optimized for youngest generation");
 119   _boundary = _g->reserved().end();
 120 }
 121 
 122 void ScanClosure::do_oop(oop* p)       { ScanClosure::do_oop_work(p); }
 123 void ScanClosure::do_oop(narrowOop* p) { ScanClosure::do_oop_work(p); }
 124 
 125 FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
 126     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 127 {
 128   assert(_g->level() == 0, "Optimized for youngest generation");
 129   _boundary = _g->reserved().end();
 130 }
 131 
 132 void FastScanClosure::do_oop(oop* p)       { FastScanClosure::do_oop_work(p); }
 133 void FastScanClosure::do_oop(narrowOop* p) { FastScanClosure::do_oop_work(p); }
 134 
 135 void KlassScanClosure::do_klass(Klass* klass) {
 136 #ifndef PRODUCT
 137   if (TraceScavenge) {
 138     ResourceMark rm;
 139     gclog_or_tty->print_cr("KlassScanClosure::do_klass " PTR_FORMAT ", %s, dirty: %s",
 140                            klass,
 141                            klass->external_name(),
 142                            klass->has_modified_oops() ? "true" : "false");
 143   }
 144 #endif
 145 
 146   // If the klass has not been dirtied we know that there's
 147   // no references into  the young gen and we can skip it.
 148   if (klass->has_modified_oops()) {
 149     if (_accumulate_modified_oops) {
 150       klass->accumulate_modified_oops();
 151     }
 152 
 153     // Clear this state since we're going to scavenge all the metadata.
 154     klass->clear_modified_oops();
 155 
 156     // Tell the closure which Klass is being scanned so that it can be dirtied
 157     // if oops are left pointing into the young gen.
 158     _scavenge_closure->set_scanned_klass(klass);
 159 
 160     klass->oops_do(_scavenge_closure);
 161 
 162     _scavenge_closure->set_scanned_klass(NULL);
 163   }
 164 }
 165 
 166 ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
 167   _g(g)
 168 {
 169   assert(_g->level() == 0, "Optimized for youngest generation");
 170   _boundary = _g->reserved().end();
 171 }
 172 
 173 void ScanWeakRefClosure::do_oop(oop* p)       { ScanWeakRefClosure::do_oop_work(p); }
 174 void ScanWeakRefClosure::do_oop(narrowOop* p) { ScanWeakRefClosure::do_oop_work(p); }
 175 
 176 void FilteringClosure::do_oop(oop* p)       { FilteringClosure::do_oop_work(p); }
 177 void FilteringClosure::do_oop(narrowOop* p) { FilteringClosure::do_oop_work(p); }
 178 
 179 KlassScanClosure::KlassScanClosure(OopsInKlassOrGenClosure* scavenge_closure,
 180                                    KlassRemSet* klass_rem_set)
 181     : _scavenge_closure(scavenge_closure),
 182       _accumulate_modified_oops(klass_rem_set->accumulate_modified_oops()) {}
 183 
 184 
 185 DefNewGeneration::DefNewGeneration(ReservedSpace rs,
 186                                    size_t initial_size,
 187                                    int level,
 188                                    const char* policy)
 189   : Generation(rs, initial_size, level),
 190     _promo_failure_drain_in_progress(false),
 191     _should_allocate_from_space(false)
 192 {
 193   MemRegion cmr((HeapWord*)_virtual_space.low(),
 194                 (HeapWord*)_virtual_space.high());
 195   Universe::heap()->barrier_set()->resize_covered_region(cmr);
 196 
 197   if (GenCollectedHeap::heap()->collector_policy()->has_soft_ended_eden()) {
 198     _eden_space = new ConcEdenSpace(this);
 199   } else {
 200     _eden_space = new EdenSpace(this);
 201   }
 202   _from_space = new ContiguousSpace();
 203   _to_space   = new ContiguousSpace();
 204 
 205   if (_eden_space == NULL || _from_space == NULL || _to_space == NULL)
 206     vm_exit_during_initialization("Could not allocate a new gen space");
 207 
 208   // Compute the maximum eden and survivor space sizes. These sizes
 209   // are computed assuming the entire reserved space is committed.
 210   // These values are exported as performance counters.
 211   uintx alignment = GenCollectedHeap::heap()->collector_policy()->space_alignment();
 212   uintx size = _virtual_space.reserved_size();
 213   _max_survivor_size = compute_survivor_size(size, alignment);
 214   _max_eden_size = size - (2*_max_survivor_size);
 215 
 216   // allocate the performance counters
 217   GenCollectorPolicy* gcp = (GenCollectorPolicy*) GenCollectedHeap::heap()->collector_policy();
 218 
 219   // Generation counters -- generation 0, 3 subspaces
 220   _gen_counters = new GenerationCounters("new", 0, 3,
 221       gcp->min_young_size(), gcp->max_young_size(), &_virtual_space);
 222   _gc_counters = new CollectorCounters(policy, 0);
 223 
 224   _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
 225                                       _gen_counters);
 226   _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
 227                                       _gen_counters);
 228   _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
 229                                     _gen_counters);
 230 
 231   compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
 232   update_counters();
 233   _old_gen = NULL;
 234   _tenuring_threshold = MaxTenuringThreshold;
 235   _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
 236 
 237   _gc_timer = new (ResourceObj::C_HEAP, mtGC) STWGCTimer();
 238 }
 239 
 240 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
 241                                                 bool clear_space,
 242                                                 bool mangle_space) {
 243   uintx alignment =
 244     GenCollectedHeap::heap()->collector_policy()->space_alignment();
 245 
 246   // If the spaces are being cleared (only done at heap initialization
 247   // currently), the survivor spaces need not be empty.
 248   // Otherwise, no care is taken for used areas in the survivor spaces
 249   // so check.
 250   assert(clear_space || (to()->is_empty() && from()->is_empty()),
 251     "Initialization of the survivor spaces assumes these are empty");
 252 
 253   // Compute sizes
 254   uintx size = _virtual_space.committed_size();
 255   uintx survivor_size = compute_survivor_size(size, alignment);
 256   uintx eden_size = size - (2*survivor_size);
 257   assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 258 
 259   if (eden_size < minimum_eden_size) {
 260     // May happen due to 64Kb rounding, if so adjust eden size back up
 261     minimum_eden_size = align_size_up(minimum_eden_size, alignment);
 262     uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
 263     uintx unaligned_survivor_size =
 264       align_size_down(maximum_survivor_size, alignment);
 265     survivor_size = MAX2(unaligned_survivor_size, alignment);
 266     eden_size = size - (2*survivor_size);
 267     assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 268     assert(eden_size >= minimum_eden_size, "just checking");
 269   }
 270 
 271   char *eden_start = _virtual_space.low();
 272   char *from_start = eden_start + eden_size;
 273   char *to_start   = from_start + survivor_size;
 274   char *to_end     = to_start   + survivor_size;
 275 
 276   assert(to_end == _virtual_space.high(), "just checking");
 277   assert(Space::is_aligned((HeapWord*)eden_start), "checking alignment");
 278   assert(Space::is_aligned((HeapWord*)from_start), "checking alignment");
 279   assert(Space::is_aligned((HeapWord*)to_start),   "checking alignment");
 280 
 281   MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
 282   MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
 283   MemRegion toMR  ((HeapWord*)to_start, (HeapWord*)to_end);
 284 
 285   // A minimum eden size implies that there is a part of eden that
 286   // is being used and that affects the initialization of any
 287   // newly formed eden.
 288   bool live_in_eden = minimum_eden_size > 0;
 289 
 290   // If not clearing the spaces, do some checking to verify that
 291   // the space are already mangled.
 292   if (!clear_space) {
 293     // Must check mangling before the spaces are reshaped.  Otherwise,
 294     // the bottom or end of one space may have moved into another
 295     // a failure of the check may not correctly indicate which space
 296     // is not properly mangled.
 297     if (ZapUnusedHeapArea) {
 298       HeapWord* limit = (HeapWord*) _virtual_space.high();
 299       eden()->check_mangled_unused_area(limit);
 300       from()->check_mangled_unused_area(limit);
 301         to()->check_mangled_unused_area(limit);
 302     }
 303   }
 304 
 305   // Reset the spaces for their new regions.
 306   eden()->initialize(edenMR,
 307                      clear_space && !live_in_eden,
 308                      SpaceDecorator::Mangle);
 309   // If clear_space and live_in_eden, we will not have cleared any
 310   // portion of eden above its top. This can cause newly
 311   // expanded space not to be mangled if using ZapUnusedHeapArea.
 312   // We explicitly do such mangling here.
 313   if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) {
 314     eden()->mangle_unused_area();
 315   }
 316   from()->initialize(fromMR, clear_space, mangle_space);
 317   to()->initialize(toMR, clear_space, mangle_space);
 318 
 319   // Set next compaction spaces.
 320   eden()->set_next_compaction_space(from());
 321   // The to-space is normally empty before a compaction so need
 322   // not be considered.  The exception is during promotion
 323   // failure handling when to-space can contain live objects.
 324   from()->set_next_compaction_space(NULL);
 325 }
 326 
 327 void DefNewGeneration::swap_spaces() {
 328   ContiguousSpace* s = from();
 329   _from_space        = to();
 330   _to_space          = s;
 331   eden()->set_next_compaction_space(from());
 332   // The to-space is normally empty before a compaction so need
 333   // not be considered.  The exception is during promotion
 334   // failure handling when to-space can contain live objects.
 335   from()->set_next_compaction_space(NULL);
 336 
 337   if (UsePerfData) {
 338     CSpaceCounters* c = _from_counters;
 339     _from_counters = _to_counters;
 340     _to_counters = c;
 341   }
 342 }
 343 
 344 bool DefNewGeneration::expand(size_t bytes) {
 345   MutexLocker x(ExpandHeap_lock);
 346   HeapWord* prev_high = (HeapWord*) _virtual_space.high();
 347   bool success = _virtual_space.expand_by(bytes);
 348   if (success && ZapUnusedHeapArea) {
 349     // Mangle newly committed space immediately because it
 350     // can be done here more simply that after the new
 351     // spaces have been computed.
 352     HeapWord* new_high = (HeapWord*) _virtual_space.high();
 353     MemRegion mangle_region(prev_high, new_high);
 354     SpaceMangler::mangle_region(mangle_region);
 355   }
 356 
 357   // Do not attempt an expand-to-the reserve size.  The
 358   // request should properly observe the maximum size of
 359   // the generation so an expand-to-reserve should be
 360   // unnecessary.  Also a second call to expand-to-reserve
 361   // value potentially can cause an undue expansion.
 362   // For example if the first expand fail for unknown reasons,
 363   // but the second succeeds and expands the heap to its maximum
 364   // value.
 365   if (GC_locker::is_active()) {
 366     if (PrintGC && Verbose) {
 367       gclog_or_tty->print_cr("Garbage collection disabled, "
 368         "expanded heap instead");
 369     }
 370   }
 371 
 372   return success;
 373 }
 374 
 375 
 376 void DefNewGeneration::compute_new_size() {
 377   // This is called after a gc that includes the following generation
 378   // (which is required to exist.)  So from-space will normally be empty.
 379   // Note that we check both spaces, since if scavenge failed they revert roles.
 380   // If not we bail out (otherwise we would have to relocate the objects)
 381   if (!from()->is_empty() || !to()->is_empty()) {
 382     return;
 383   }
 384 
 385   int next_level = level() + 1;
 386   GenCollectedHeap* gch = GenCollectedHeap::heap();
 387   assert(next_level < gch->_n_gens,
 388          "DefNewGeneration cannot be an oldest gen");
 389 
 390   Generation* old_gen = gch->old_gen();
 391   size_t old_size = old_gen->capacity();
 392   size_t new_size_before = _virtual_space.committed_size();
 393   size_t min_new_size = spec()->init_size();
 394   size_t max_new_size = reserved().byte_size();
 395   assert(min_new_size <= new_size_before &&
 396          new_size_before <= max_new_size,
 397          "just checking");
 398   // All space sizes must be multiples of Generation::GenGrain.
 399   size_t alignment = Generation::GenGrain;
 400 
 401   // Compute desired new generation size based on NewRatio and
 402   // NewSizeThreadIncrease
 403   size_t desired_new_size = old_size/NewRatio;
 404   int threads_count = Threads::number_of_non_daemon_threads();
 405   size_t thread_increase_size = threads_count * NewSizeThreadIncrease;
 406   desired_new_size = align_size_up(desired_new_size + thread_increase_size, alignment);
 407 
 408   // Adjust new generation size
 409   desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
 410   assert(desired_new_size <= max_new_size, "just checking");
 411 
 412   bool changed = false;
 413   if (desired_new_size > new_size_before) {
 414     size_t change = desired_new_size - new_size_before;
 415     assert(change % alignment == 0, "just checking");
 416     if (expand(change)) {
 417        changed = true;
 418     }
 419     // If the heap failed to expand to the desired size,
 420     // "changed" will be false.  If the expansion failed
 421     // (and at this point it was expected to succeed),
 422     // ignore the failure (leaving "changed" as false).
 423   }
 424   if (desired_new_size < new_size_before && eden()->is_empty()) {
 425     // bail out of shrinking if objects in eden
 426     size_t change = new_size_before - desired_new_size;
 427     assert(change % alignment == 0, "just checking");
 428     _virtual_space.shrink_by(change);
 429     changed = true;
 430   }
 431   if (changed) {
 432     // The spaces have already been mangled at this point but
 433     // may not have been cleared (set top = bottom) and should be.
 434     // Mangling was done when the heap was being expanded.
 435     compute_space_boundaries(eden()->used(),
 436                              SpaceDecorator::Clear,
 437                              SpaceDecorator::DontMangle);
 438     MemRegion cmr((HeapWord*)_virtual_space.low(),
 439                   (HeapWord*)_virtual_space.high());
 440     Universe::heap()->barrier_set()->resize_covered_region(cmr);
 441     if (Verbose && PrintGC) {
 442       size_t new_size_after  = _virtual_space.committed_size();
 443       size_t eden_size_after = eden()->capacity();
 444       size_t survivor_size_after = from()->capacity();
 445       gclog_or_tty->print("New generation size " SIZE_FORMAT "K->"
 446         SIZE_FORMAT "K [eden="
 447         SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
 448         new_size_before/K, new_size_after/K,
 449         eden_size_after/K, survivor_size_after/K);
 450       if (WizardMode) {
 451         gclog_or_tty->print("[allowed " SIZE_FORMAT "K extra for %d threads]",
 452           thread_increase_size/K, threads_count);
 453       }
 454       gclog_or_tty->cr();
 455     }
 456   }
 457 }
 458 
 459 void DefNewGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
 460   assert(false, "NYI -- are you sure you want to call this?");
 461 }
 462 
 463 
 464 size_t DefNewGeneration::capacity() const {
 465   return eden()->capacity()
 466        + from()->capacity();  // to() is only used during scavenge
 467 }
 468 
 469 
 470 size_t DefNewGeneration::used() const {
 471   return eden()->used()
 472        + from()->used();      // to() is only used during scavenge
 473 }
 474 
 475 
 476 size_t DefNewGeneration::free() const {
 477   return eden()->free()
 478        + from()->free();      // to() is only used during scavenge
 479 }
 480 
 481 size_t DefNewGeneration::max_capacity() const {
 482   const size_t alignment = GenCollectedHeap::heap()->collector_policy()->space_alignment();
 483   const size_t reserved_bytes = reserved().byte_size();
 484   return reserved_bytes - compute_survivor_size(reserved_bytes, alignment);
 485 }
 486 
 487 size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
 488   return eden()->free();
 489 }
 490 
 491 size_t DefNewGeneration::capacity_before_gc() const {
 492   return eden()->capacity();
 493 }
 494 
 495 size_t DefNewGeneration::contiguous_available() const {
 496   return eden()->free();
 497 }
 498 
 499 
 500 HeapWord** DefNewGeneration::top_addr() const { return eden()->top_addr(); }
 501 HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
 502 
 503 void DefNewGeneration::object_iterate(ObjectClosure* blk) {
 504   eden()->object_iterate(blk);
 505   from()->object_iterate(blk);
 506 }
 507 
 508 
 509 void DefNewGeneration::space_iterate(SpaceClosure* blk,
 510                                      bool usedOnly) {
 511   blk->do_space(eden());
 512   blk->do_space(from());
 513   blk->do_space(to());
 514 }
 515 
 516 // The last collection bailed out, we are running out of heap space,
 517 // so we try to allocate the from-space, too.
 518 HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
 519   HeapWord* result = NULL;
 520   if (Verbose && PrintGCDetails) {
 521     gclog_or_tty->print("DefNewGeneration::allocate_from_space(" SIZE_FORMAT "):"
 522                         "  will_fail: %s"
 523                         "  heap_lock: %s"
 524                         "  free: " SIZE_FORMAT,
 525                         size,
 526                         GenCollectedHeap::heap()->incremental_collection_will_fail(false /* don't consult_young */) ?
 527                           "true" : "false",
 528                         Heap_lock->is_locked() ? "locked" : "unlocked",
 529                         from()->free());
 530   }
 531   if (should_allocate_from_space() || GC_locker::is_active_and_needs_gc()) {
 532     if (Heap_lock->owned_by_self() ||
 533         (SafepointSynchronize::is_at_safepoint() &&
 534          Thread::current()->is_VM_thread())) {
 535       // If the Heap_lock is not locked by this thread, this will be called
 536       // again later with the Heap_lock held.
 537       result = from()->allocate(size);
 538     } else if (PrintGC && Verbose) {
 539       gclog_or_tty->print_cr("  Heap_lock is not owned by self");
 540     }
 541   } else if (PrintGC && Verbose) {
 542     gclog_or_tty->print_cr("  should_allocate_from_space: NOT");
 543   }
 544   if (PrintGC && Verbose) {
 545     gclog_or_tty->print_cr("  returns %s", result == NULL ? "NULL" : "object");
 546   }
 547   return result;
 548 }
 549 
 550 HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
 551                                                 bool   is_tlab,
 552                                                 bool   parallel) {
 553   // We don't attempt to expand the young generation (but perhaps we should.)
 554   return allocate(size, is_tlab);
 555 }
 556 
 557 void DefNewGeneration::adjust_desired_tenuring_threshold() {
 558   // Set the desired survivor size to half the real survivor space
 559   _tenuring_threshold =
 560     age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
 561 }
 562 
 563 void DefNewGeneration::collect(bool   full,
 564                                bool   clear_all_soft_refs,
 565                                size_t size,
 566                                bool   is_tlab) {
 567   assert(full || size > 0, "otherwise we don't want to collect");
 568 
 569   GenCollectedHeap* gch = GenCollectedHeap::heap();
 570 
 571   _gc_timer->register_gc_start();
 572   DefNewTracer gc_tracer;
 573   gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
 574 
 575   _old_gen = gch->old_gen();
 576 
 577   // If the next generation is too full to accommodate promotion
 578   // from this generation, pass on collection; let the next generation
 579   // do it.
 580   if (!collection_attempt_is_safe()) {
 581     if (Verbose && PrintGCDetails) {
 582       gclog_or_tty->print(" :: Collection attempt not safe :: ");
 583     }
 584     gch->set_incremental_collection_failed(); // Slight lie: we did not even attempt one
 585     return;
 586   }
 587   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
 588 
 589   init_assuming_no_promotion_failure();
 590 
 591   GCTraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, NULL, gc_tracer.gc_id());
 592   // Capture heap used before collection (for printing).
 593   size_t gch_prev_used = gch->used();
 594 
 595   gch->trace_heap_before_gc(&gc_tracer);
 596 
 597   SpecializationStats::clear();
 598 
 599   // These can be shared for all code paths
 600   IsAliveClosure is_alive(this);
 601   ScanWeakRefClosure scan_weak_ref(this);
 602 
 603   age_table()->clear();
 604   to()->clear(SpaceDecorator::Mangle);
 605 
 606   gch->rem_set()->prepare_for_younger_refs_iterate(false);
 607 
 608   assert(gch->no_allocs_since_save_marks(0),
 609          "save marks have not been newly set.");
 610 
 611   // Not very pretty.
 612   CollectorPolicy* cp = gch->collector_policy();
 613 
 614   FastScanClosure fsc_with_no_gc_barrier(this, false);
 615   FastScanClosure fsc_with_gc_barrier(this, true);
 616 
 617   KlassScanClosure klass_scan_closure(&fsc_with_no_gc_barrier,
 618                                       gch->rem_set()->klass_rem_set());
 619   CLDToKlassAndOopClosure cld_scan_closure(&klass_scan_closure,
 620                                            &fsc_with_no_gc_barrier,
 621                                            false);
 622 
 623   set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
 624   FastEvacuateFollowersClosure evacuate_followers(gch, _level, this,
 625                                                   &fsc_with_no_gc_barrier,
 626                                                   &fsc_with_gc_barrier);
 627 
 628   assert(gch->no_allocs_since_save_marks(0),
 629          "save marks have not been newly set.");
 630 
 631   gch->gen_process_roots(_level,
 632                          true,  // Process younger gens, if any,
 633                                 // as strong roots.
 634                          true,  // activate StrongRootsScope
 635                          SharedHeap::SO_ScavengeCodeCache,
 636                          GenCollectedHeap::StrongAndWeakRoots,
 637                          &fsc_with_no_gc_barrier,
 638                          &fsc_with_gc_barrier,
 639                          &cld_scan_closure);
 640 
 641   // "evacuate followers".
 642   evacuate_followers.do_void();
 643 
 644   FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
 645   ReferenceProcessor* rp = ref_processor();
 646   rp->setup_policy(clear_all_soft_refs);
 647   const ReferenceProcessorStats& stats =
 648   rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
 649                                     NULL, _gc_timer, gc_tracer.gc_id());
 650   gc_tracer.report_gc_reference_stats(stats);
 651 
 652   if (!_promotion_failed) {
 653     // Swap the survivor spaces.
 654     eden()->clear(SpaceDecorator::Mangle);
 655     from()->clear(SpaceDecorator::Mangle);
 656     if (ZapUnusedHeapArea) {
 657       // This is now done here because of the piece-meal mangling which
 658       // can check for valid mangling at intermediate points in the
 659       // collection(s).  When a minor collection fails to collect
 660       // sufficient space resizing of the young generation can occur
 661       // an redistribute the spaces in the young generation.  Mangle
 662       // here so that unzapped regions don't get distributed to
 663       // other spaces.
 664       to()->mangle_unused_area();
 665     }
 666     swap_spaces();
 667 
 668     assert(to()->is_empty(), "to space should be empty now");
 669 
 670     adjust_desired_tenuring_threshold();
 671 
 672     // A successful scavenge should restart the GC time limit count which is
 673     // for full GC's.
 674     AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
 675     size_policy->reset_gc_overhead_limit_count();
 676     assert(!gch->incremental_collection_failed(), "Should be clear");
 677   } else {
 678     assert(_promo_failure_scan_stack.is_empty(), "post condition");
 679     _promo_failure_scan_stack.clear(true); // Clear cached segments.
 680 
 681     remove_forwarding_pointers();
 682     if (PrintGCDetails) {
 683       gclog_or_tty->print(" (promotion failed) ");
 684     }
 685     // Add to-space to the list of space to compact
 686     // when a promotion failure has occurred.  In that
 687     // case there can be live objects in to-space
 688     // as a result of a partial evacuation of eden
 689     // and from-space.
 690     swap_spaces();   // For uniformity wrt ParNewGeneration.
 691     from()->set_next_compaction_space(to());
 692     gch->set_incremental_collection_failed();
 693 
 694     // Inform the next generation that a promotion failure occurred.
 695     _old_gen->promotion_failure_occurred();
 696     gc_tracer.report_promotion_failed(_promotion_failed_info);
 697 
 698     // Reset the PromotionFailureALot counters.
 699     NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
 700   }
 701   if (PrintGC && !PrintGCDetails) {
 702     gch->print_heap_change(gch_prev_used);
 703   }
 704   // set new iteration safe limit for the survivor spaces
 705   from()->set_concurrent_iteration_safe_limit(from()->top());
 706   to()->set_concurrent_iteration_safe_limit(to()->top());
 707   SpecializationStats::print();
 708 
 709   // We need to use a monotonically non-decreasing time in ms
 710   // or we will see time-warp warnings and os::javaTimeMillis()
 711   // does not guarantee monotonicity.
 712   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 713   update_time_of_last_gc(now);
 714 
 715   gch->trace_heap_after_gc(&gc_tracer);
 716   gc_tracer.report_tenuring_threshold(tenuring_threshold());
 717 
 718   _gc_timer->register_gc_end();
 719 
 720   gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
 721 }
 722 
 723 class RemoveForwardPointerClosure: public ObjectClosure {
 724 public:
 725   void do_object(oop obj) {
 726     obj->init_mark();
 727   }
 728 };
 729 
 730 void DefNewGeneration::init_assuming_no_promotion_failure() {
 731   _promotion_failed = false;
 732   _promotion_failed_info.reset();
 733   from()->set_next_compaction_space(NULL);
 734 }
 735 
 736 void DefNewGeneration::remove_forwarding_pointers() {
 737   RemoveForwardPointerClosure rspc;
 738   eden()->object_iterate(&rspc);
 739   from()->object_iterate(&rspc);
 740 
 741   // Now restore saved marks, if any.
 742   assert(_objs_with_preserved_marks.size() == _preserved_marks_of_objs.size(),
 743          "should be the same");
 744   while (!_objs_with_preserved_marks.is_empty()) {
 745     oop obj   = _objs_with_preserved_marks.pop();
 746     markOop m = _preserved_marks_of_objs.pop();
 747     obj->set_mark(m);
 748   }
 749   _objs_with_preserved_marks.clear(true);
 750   _preserved_marks_of_objs.clear(true);
 751 }
 752 
 753 void DefNewGeneration::preserve_mark(oop obj, markOop m) {
 754   assert(_promotion_failed && m->must_be_preserved_for_promotion_failure(obj),
 755          "Oversaving!");
 756   _objs_with_preserved_marks.push(obj);
 757   _preserved_marks_of_objs.push(m);
 758 }
 759 
 760 void DefNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
 761   if (m->must_be_preserved_for_promotion_failure(obj)) {
 762     preserve_mark(obj, m);
 763   }
 764 }
 765 
 766 void DefNewGeneration::handle_promotion_failure(oop old) {
 767   if (PrintPromotionFailure && !_promotion_failed) {
 768     gclog_or_tty->print(" (promotion failure size = %d) ",
 769                         old->size());
 770   }
 771   _promotion_failed = true;
 772   _promotion_failed_info.register_copy_failure(old->size());
 773   preserve_mark_if_necessary(old, old->mark());
 774   // forward to self
 775   old->forward_to(old);
 776 
 777   _promo_failure_scan_stack.push(old);
 778 
 779   if (!_promo_failure_drain_in_progress) {
 780     // prevent recursion in copy_to_survivor_space()
 781     _promo_failure_drain_in_progress = true;
 782     drain_promo_failure_scan_stack();
 783     _promo_failure_drain_in_progress = false;
 784   }
 785 }
 786 
 787 oop DefNewGeneration::copy_to_survivor_space(oop old) {
 788   assert(is_in_reserved(old) && !old->is_forwarded(),
 789          "shouldn't be scavenging this oop");
 790   size_t s = old->size();
 791   oop obj = NULL;
 792 
 793   // Try allocating obj in to-space (unless too old)
 794   if (old->age() < tenuring_threshold()) {
 795     obj = (oop) to()->allocate_aligned(s);
 796   }
 797 
 798   // Otherwise try allocating obj tenured
 799   if (obj == NULL) {
 800     obj = _old_gen->promote(old, s);
 801     if (obj == NULL) {
 802       handle_promotion_failure(old);
 803       return old;
 804     }
 805   } else {
 806     // Prefetch beyond obj
 807     const intx interval = PrefetchCopyIntervalInBytes;
 808     Prefetch::write(obj, interval);
 809 
 810     // Copy obj
 811     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
 812 
 813     // Increment age if obj still in new generation
 814     obj->incr_age();
 815     age_table()->add(obj, s);
 816   }
 817 
 818   // Done, insert forward pointer to obj in this header
 819   old->forward_to(obj);
 820 
 821   return obj;
 822 }
 823 
 824 void DefNewGeneration::drain_promo_failure_scan_stack() {
 825   while (!_promo_failure_scan_stack.is_empty()) {
 826      oop obj = _promo_failure_scan_stack.pop();
 827      obj->oop_iterate(_promo_failure_scan_stack_closure);
 828   }
 829 }
 830 
 831 void DefNewGeneration::save_marks() {
 832   eden()->set_saved_mark();
 833   to()->set_saved_mark();
 834   from()->set_saved_mark();
 835 }
 836 
 837 
 838 void DefNewGeneration::reset_saved_marks() {
 839   eden()->reset_saved_mark();
 840   to()->reset_saved_mark();
 841   from()->reset_saved_mark();
 842 }
 843 
 844 
 845 bool DefNewGeneration::no_allocs_since_save_marks() {
 846   assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
 847   assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
 848   return to()->saved_mark_at_top();
 849 }
 850 
 851 #define DefNew_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
 852                                                                 \
 853 void DefNewGeneration::                                         \
 854 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
 855   cl->set_generation(this);                                     \
 856   eden()->oop_since_save_marks_iterate##nv_suffix(cl);          \
 857   to()->oop_since_save_marks_iterate##nv_suffix(cl);            \
 858   from()->oop_since_save_marks_iterate##nv_suffix(cl);          \
 859   cl->reset_generation();                                       \
 860   save_marks();                                                 \
 861 }
 862 
 863 ALL_SINCE_SAVE_MARKS_CLOSURES(DefNew_SINCE_SAVE_MARKS_DEFN)
 864 
 865 #undef DefNew_SINCE_SAVE_MARKS_DEFN
 866 
 867 void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
 868                                          size_t max_alloc_words) {
 869   if (requestor == this || _promotion_failed) return;
 870   assert(requestor->level() > level(), "DefNewGeneration must be youngest");
 871 
 872   /* $$$ Assert this?  "trace" is a "MarkSweep" function so that's not appropriate.
 873   if (to_space->top() > to_space->bottom()) {
 874     trace("to_space not empty when contribute_scratch called");
 875   }
 876   */
 877 
 878   ContiguousSpace* to_space = to();
 879   assert(to_space->end() >= to_space->top(), "pointers out of order");
 880   size_t free_words = pointer_delta(to_space->end(), to_space->top());
 881   if (free_words >= MinFreeScratchWords) {
 882     ScratchBlock* sb = (ScratchBlock*)to_space->top();
 883     sb->num_words = free_words;
 884     sb->next = list;
 885     list = sb;
 886   }
 887 }
 888 
 889 void DefNewGeneration::reset_scratch() {
 890   // If contributing scratch in to_space, mangle all of
 891   // to_space if ZapUnusedHeapArea.  This is needed because
 892   // top is not maintained while using to-space as scratch.
 893   if (ZapUnusedHeapArea) {
 894     to()->mangle_unused_area_complete();
 895   }
 896 }
 897 
 898 bool DefNewGeneration::collection_attempt_is_safe() {
 899   if (!to()->is_empty()) {
 900     if (Verbose && PrintGCDetails) {
 901       gclog_or_tty->print(" :: to is not empty :: ");
 902     }
 903     return false;
 904   }
 905   if (_old_gen == NULL) {
 906     GenCollectedHeap* gch = GenCollectedHeap::heap();
 907     _old_gen = gch->old_gen();
 908   }
 909   return _old_gen->promotion_attempt_is_safe(used());
 910 }
 911 
 912 void DefNewGeneration::gc_epilogue(bool full) {
 913   DEBUG_ONLY(static bool seen_incremental_collection_failed = false;)
 914 
 915   assert(!GC_locker::is_active(), "We should not be executing here");
 916   // Check if the heap is approaching full after a collection has
 917   // been done.  Generally the young generation is empty at
 918   // a minimum at the end of a collection.  If it is not, then
 919   // the heap is approaching full.
 920   GenCollectedHeap* gch = GenCollectedHeap::heap();
 921   if (full) {
 922     DEBUG_ONLY(seen_incremental_collection_failed = false;)
 923     if (!collection_attempt_is_safe() && !_eden_space->is_empty()) {
 924       if (Verbose && PrintGCDetails) {
 925         gclog_or_tty->print("DefNewEpilogue: cause(%s), full, not safe, set_failed, set_alloc_from, clear_seen",
 926                             GCCause::to_string(gch->gc_cause()));
 927       }
 928       gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state
 929       set_should_allocate_from_space(); // we seem to be running out of space
 930     } else {
 931       if (Verbose && PrintGCDetails) {
 932         gclog_or_tty->print("DefNewEpilogue: cause(%s), full, safe, clear_failed, clear_alloc_from, clear_seen",
 933                             GCCause::to_string(gch->gc_cause()));
 934       }
 935       gch->clear_incremental_collection_failed(); // We just did a full collection
 936       clear_should_allocate_from_space(); // if set
 937     }
 938   } else {
 939 #ifdef ASSERT
 940     // It is possible that incremental_collection_failed() == true
 941     // here, because an attempted scavenge did not succeed. The policy
 942     // is normally expected to cause a full collection which should
 943     // clear that condition, so we should not be here twice in a row
 944     // with incremental_collection_failed() == true without having done
 945     // a full collection in between.
 946     if (!seen_incremental_collection_failed &&
 947         gch->incremental_collection_failed()) {
 948       if (Verbose && PrintGCDetails) {
 949         gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, not_seen_failed, failed, set_seen_failed",
 950                             GCCause::to_string(gch->gc_cause()));
 951       }
 952       seen_incremental_collection_failed = true;
 953     } else if (seen_incremental_collection_failed) {
 954       if (Verbose && PrintGCDetails) {
 955         gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, seen_failed, will_clear_seen_failed",
 956                             GCCause::to_string(gch->gc_cause()));
 957       }
 958       assert(gch->gc_cause() == GCCause::_scavenge_alot ||
 959              (gch->gc_cause() == GCCause::_java_lang_system_gc && UseConcMarkSweepGC && ExplicitGCInvokesConcurrent) ||
 960              !gch->incremental_collection_failed(),
 961              "Twice in a row");
 962       seen_incremental_collection_failed = false;
 963     }
 964 #endif // ASSERT
 965   }
 966 
 967   if (ZapUnusedHeapArea) {
 968     eden()->check_mangled_unused_area_complete();
 969     from()->check_mangled_unused_area_complete();
 970     to()->check_mangled_unused_area_complete();
 971   }
 972 
 973   if (!CleanChunkPoolAsync) {
 974     Chunk::clean_chunk_pool();
 975   }
 976 
 977   // update the generation and space performance counters
 978   update_counters();
 979   gch->collector_policy()->counters()->update_counters();
 980 }
 981 
 982 void DefNewGeneration::record_spaces_top() {
 983   assert(ZapUnusedHeapArea, "Not mangling unused space");
 984   eden()->set_top_for_allocations();
 985   to()->set_top_for_allocations();
 986   from()->set_top_for_allocations();
 987 }
 988 
 989 void DefNewGeneration::ref_processor_init() {
 990   Generation::ref_processor_init();
 991 }
 992 
 993 
 994 void DefNewGeneration::update_counters() {
 995   if (UsePerfData) {
 996     _eden_counters->update_all();
 997     _from_counters->update_all();
 998     _to_counters->update_all();
 999     _gen_counters->update_all();
1000   }
1001 }
1002 
1003 void DefNewGeneration::verify() {
1004   eden()->verify();
1005   from()->verify();
1006     to()->verify();
1007 }
1008 
1009 void DefNewGeneration::print_on(outputStream* st) const {
1010   Generation::print_on(st);
1011   st->print("  eden");
1012   eden()->print_on(st);
1013   st->print("  from");
1014   from()->print_on(st);
1015   st->print("  to  ");
1016   to()->print_on(st);
1017 }
1018 
1019 
1020 const char* DefNewGeneration::name() const {
1021   return "def new generation";
1022 }
1023 
1024 // Moved from inline file as they are not called inline
1025 CompactibleSpace* DefNewGeneration::first_compaction_space() const {
1026   return eden();
1027 }
1028 
1029 HeapWord* DefNewGeneration::allocate(size_t word_size, bool is_tlab) {
1030   // This is the slow-path allocation for the DefNewGeneration.
1031   // Most allocations are fast-path in compiled code.
1032   // We try to allocate from the eden.  If that works, we are happy.
1033   // Note that since DefNewGeneration supports lock-free allocation, we
1034   // have to use it here, as well.
1035   HeapWord* result = eden()->par_allocate(word_size);
1036   if (result != NULL) {
1037     if (CMSEdenChunksRecordAlways && _old_gen != NULL) {
1038       _old_gen->sample_eden_chunk();
1039     }
1040     return result;
1041   }
1042   do {
1043     HeapWord* old_limit = eden()->soft_end();
1044     if (old_limit < eden()->end()) {
1045       // Tell the old generation we reached a limit.
1046       HeapWord* new_limit =
1047         _old_gen->allocation_limit_reached(eden(), eden()->top(), word_size);
1048       if (new_limit != NULL) {
1049         Atomic::cmpxchg_ptr(new_limit, eden()->soft_end_addr(), old_limit);
1050       } else {
1051         assert(eden()->soft_end() == eden()->end(),
1052                "invalid state after allocation_limit_reached returned null");
1053       }
1054     } else {
1055       // The allocation failed and the soft limit is equal to the hard limit,
1056       // there are no reasons to do an attempt to allocate
1057       assert(old_limit == eden()->end(), "sanity check");
1058       break;
1059     }
1060     // Try to allocate until succeeded or the soft limit can't be adjusted
1061     result = eden()->par_allocate(word_size);
1062   } while (result == NULL);
1063 
1064   // If the eden is full and the last collection bailed out, we are running
1065   // out of heap space, and we try to allocate the from-space, too.
1066   // allocate_from_space can't be inlined because that would introduce a
1067   // circular dependency at compile time.
1068   if (result == NULL) {
1069     result = allocate_from_space(word_size);
1070   } else if (CMSEdenChunksRecordAlways && _old_gen != NULL) {
1071     _old_gen->sample_eden_chunk();
1072   }
1073   return result;
1074 }
1075 
1076 HeapWord* DefNewGeneration::par_allocate(size_t word_size,
1077                                          bool is_tlab) {
1078   HeapWord* res = eden()->par_allocate(word_size);
1079   if (CMSEdenChunksRecordAlways && _old_gen != NULL) {
1080     _old_gen->sample_eden_chunk();
1081   }
1082   return res;
1083 }
1084 
1085 void DefNewGeneration::gc_prologue(bool full) {
1086   // Ensure that _end and _soft_end are the same in eden space.
1087   eden()->set_soft_end(eden()->end());
1088 }
1089 
1090 size_t DefNewGeneration::tlab_capacity() const {
1091   return eden()->capacity();
1092 }
1093 
1094 size_t DefNewGeneration::tlab_used() const {
1095   return eden()->used();
1096 }
1097 
1098 size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
1099   return unsafe_max_alloc_nogc();
1100 }