1 /*
   2  * Copyright (c) 2000, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc_implementation/shared/collectorCounters.hpp"
  31 #include "gc_implementation/shared/gcTrace.hpp"
  32 #include "gc_implementation/shared/gcTraceTime.hpp"
  33 #include "gc_implementation/shared/vmGCOperations.hpp"
  34 #include "gc_interface/collectedHeap.inline.hpp"
  35 #include "memory/filemap.hpp"
  36 #include "memory/gcLocker.inline.hpp"
  37 #include "memory/genCollectedHeap.hpp"
  38 #include "memory/genOopClosures.inline.hpp"
  39 #include "memory/generation.inline.hpp"
  40 #include "memory/generationSpec.hpp"
  41 #include "memory/resourceArea.hpp"
  42 #include "memory/sharedHeap.hpp"
  43 #include "memory/space.hpp"
  44 #include "oops/oop.inline.hpp"
  45 #include "oops/oop.inline2.hpp"
  46 #include "runtime/biasedLocking.hpp"
  47 #include "runtime/fprofiler.hpp"
  48 #include "runtime/handles.hpp"
  49 #include "runtime/handles.inline.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/vmThread.hpp"
  52 #include "services/memoryService.hpp"
  53 #include "utilities/vmError.hpp"
  54 #include "utilities/workgroup.hpp"
  55 #include "utilities/macros.hpp"
  56 #if INCLUDE_ALL_GCS
  57 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  58 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  59 #endif // INCLUDE_ALL_GCS
  60 
  61 GenCollectedHeap* GenCollectedHeap::_gch;
  62 NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)
  63 
  64 // The set of potentially parallel tasks in root scanning.
  65 enum GCH_strong_roots_tasks {
  66   // We probably want to parallelize both of these internally, but for now...
  67   GCH_PS_younger_gens,
  68   // Leave this one last.
  69   GCH_PS_NumElements
  70 };
  71 
  72 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
  73   SharedHeap(policy),
  74   _gen_policy(policy),
  75   _gen_process_roots_tasks(new SubTasksDone(GCH_PS_NumElements)),
  76   _full_collections_completed(0)
  77 {
  78   if (_gen_process_roots_tasks == NULL ||
  79       !_gen_process_roots_tasks->valid()) {
  80     vm_exit_during_initialization("Failed necessary allocation.");
  81   }
  82   assert(policy != NULL, "Sanity check");
  83 }
  84 
  85 jint GenCollectedHeap::initialize() {
  86   CollectedHeap::pre_initialize();
  87 
  88   int i;
  89   _n_gens = gen_policy()->number_of_generations();
  90 
  91   // While there are no constraints in the GC code that HeapWordSize
  92   // be any particular value, there are multiple other areas in the
  93   // system which believe this to be true (e.g. oop->object_size in some
  94   // cases incorrectly returns the size in wordSize units rather than
  95   // HeapWordSize).
  96   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  97 
  98   // The heap must be at least as aligned as generations.
  99   size_t gen_alignment = Generation::GenGrain;
 100 
 101   _gen_specs = gen_policy()->generations();
 102 
 103   // Make sure the sizes are all aligned.
 104   for (i = 0; i < _n_gens; i++) {
 105     _gen_specs[i]->align(gen_alignment);
 106   }
 107 
 108   // Allocate space for the heap.
 109 
 110   char* heap_address;
 111   size_t total_reserved = 0;
 112   int n_covered_regions = 0;
 113   ReservedSpace heap_rs;
 114 
 115   size_t heap_alignment = collector_policy()->heap_alignment();
 116 
 117   heap_address = allocate(heap_alignment, &total_reserved,
 118                           &n_covered_regions, &heap_rs);
 119 
 120   if (!heap_rs.is_reserved()) {
 121     vm_shutdown_during_initialization(
 122       "Could not reserve enough space for object heap");
 123     return JNI_ENOMEM;
 124   }
 125 
 126   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
 127 
 128   _rem_set = collector_policy()->create_rem_set(reserved_region(), n_covered_regions);
 129   set_barrier_set(rem_set()->bs());
 130 
 131   _gch = this;
 132 
 133   ReservedSpace young_rs = heap_rs.first_part(_gen_specs[0]->max_size(), false, false);
 134   _young_gen = _gen_specs[0]->init(young_rs, 0, rem_set());
 135   heap_rs = heap_rs.last_part(_gen_specs[0]->max_size());
 136 
 137   ReservedSpace old_rs = heap_rs.first_part(_gen_specs[1]->max_size(), false, false);
 138   _old_gen = _gen_specs[1]->init(old_rs, 1, rem_set());
 139   heap_rs = heap_rs.last_part(_gen_specs[1]->max_size());
 140   clear_incremental_collection_failed();
 141 
 142 #if INCLUDE_ALL_GCS
 143   // If we are running CMS, create the collector responsible
 144   // for collecting the CMS generations.
 145   if (collector_policy()->is_concurrent_mark_sweep_policy()) {
 146     bool success = create_cms_collector();
 147     if (!success) return JNI_ENOMEM;
 148   }
 149 #endif // INCLUDE_ALL_GCS
 150 
 151   return JNI_OK;
 152 }
 153 
 154 char* GenCollectedHeap::allocate(size_t alignment,
 155                                  size_t* _total_reserved,
 156                                  int* _n_covered_regions,
 157                                  ReservedSpace* heap_rs){
 158   const char overflow_msg[] = "The size of the object heap + VM data exceeds "
 159     "the maximum representable size";
 160 
 161   // Now figure out the total size.
 162   size_t total_reserved = 0;
 163   int n_covered_regions = 0;
 164   const size_t pageSize = UseLargePages ?
 165       os::large_page_size() : os::vm_page_size();
 166 
 167   assert(alignment % pageSize == 0, "Must be");
 168 
 169   for (int i = 0; i < _n_gens; i++) {
 170     total_reserved += _gen_specs[i]->max_size();
 171     if (total_reserved < _gen_specs[i]->max_size()) {
 172       vm_exit_during_initialization(overflow_msg);
 173     }
 174     n_covered_regions += _gen_specs[i]->n_covered_regions();
 175   }
 176   assert(total_reserved % alignment == 0,
 177          err_msg("Gen size; total_reserved=" SIZE_FORMAT ", alignment="
 178                  SIZE_FORMAT, total_reserved, alignment));
 179 
 180   // Needed until the cardtable is fixed to have the right number
 181   // of covered regions.
 182   n_covered_regions += 2;
 183 
 184   *_total_reserved = total_reserved;
 185   *_n_covered_regions = n_covered_regions;
 186 
 187   *heap_rs = Universe::reserve_heap(total_reserved, alignment);
 188   return heap_rs->base();
 189 }
 190 
 191 void GenCollectedHeap::post_initialize() {
 192   SharedHeap::post_initialize();
 193   GenCollectorPolicy *policy = (GenCollectorPolicy *)collector_policy();
 194   guarantee(policy->is_generation_policy(), "Illegal policy type");
 195   DefNewGeneration* def_new_gen = (DefNewGeneration*) get_gen(0);
 196   assert(def_new_gen->kind() == Generation::DefNew ||
 197          def_new_gen->kind() == Generation::ParNew,
 198          "Wrong generation kind");
 199 
 200   Generation* old_gen = get_gen(1);
 201   assert(old_gen->kind() == Generation::ConcurrentMarkSweep ||
 202          old_gen->kind() == Generation::MarkSweepCompact,
 203     "Wrong generation kind");
 204 
 205   policy->initialize_size_policy(def_new_gen->eden()->capacity(),
 206                                  old_gen->capacity(),
 207                                  def_new_gen->from()->capacity());
 208   policy->initialize_gc_policy_counters();
 209 }
 210 
 211 void GenCollectedHeap::ref_processing_init() {
 212   SharedHeap::ref_processing_init();
 213   _young_gen->ref_processor_init();
 214   _old_gen->ref_processor_init();
 215 }
 216 
 217 size_t GenCollectedHeap::capacity() const {
 218   return _young_gen->capacity() + _old_gen->capacity();
 219 }
 220 
 221 size_t GenCollectedHeap::used() const {
 222   return _young_gen->used() + _old_gen->used();
 223 }
 224 
 225 // Save the "used_region" for generations level and lower.
 226 void GenCollectedHeap::save_used_regions(int level) {
 227   assert(level < _n_gens, "Illegal level parameter");
 228   if (level == 1) {
 229     _old_gen->save_used_region();
 230   }
 231   _young_gen->save_used_region();
 232 }
 233 
 234 size_t GenCollectedHeap::max_capacity() const {
 235   return _young_gen->max_capacity() + _old_gen->max_capacity();
 236 }
 237 
 238 // Update the _full_collections_completed counter
 239 // at the end of a stop-world full GC.
 240 unsigned int GenCollectedHeap::update_full_collections_completed() {
 241   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 242   assert(_full_collections_completed <= _total_full_collections,
 243          "Can't complete more collections than were started");
 244   _full_collections_completed = _total_full_collections;
 245   ml.notify_all();
 246   return _full_collections_completed;
 247 }
 248 
 249 // Update the _full_collections_completed counter, as appropriate,
 250 // at the end of a concurrent GC cycle. Note the conditional update
 251 // below to allow this method to be called by a concurrent collector
 252 // without synchronizing in any manner with the VM thread (which
 253 // may already have initiated a STW full collection "concurrently").
 254 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
 255   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 256   assert((_full_collections_completed <= _total_full_collections) &&
 257          (count <= _total_full_collections),
 258          "Can't complete more collections than were started");
 259   if (count > _full_collections_completed) {
 260     _full_collections_completed = count;
 261     ml.notify_all();
 262   }
 263   return _full_collections_completed;
 264 }
 265 
 266 
 267 #ifndef PRODUCT
 268 // Override of memory state checking method in CollectedHeap:
 269 // Some collectors (CMS for example) can't have badHeapWordVal written
 270 // in the first two words of an object. (For instance , in the case of
 271 // CMS these words hold state used to synchronize between certain
 272 // (concurrent) GC steps and direct allocating mutators.)
 273 // The skip_header_HeapWords() method below, allows us to skip
 274 // over the requisite number of HeapWord's. Note that (for
 275 // generational collectors) this means that those many words are
 276 // skipped in each object, irrespective of the generation in which
 277 // that object lives. The resultant loss of precision seems to be
 278 // harmless and the pain of avoiding that imprecision appears somewhat
 279 // higher than we are prepared to pay for such rudimentary debugging
 280 // support.
 281 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
 282                                                          size_t size) {
 283   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 284     // We are asked to check a size in HeapWords,
 285     // but the memory is mangled in juint words.
 286     juint* start = (juint*) (addr + skip_header_HeapWords());
 287     juint* end   = (juint*) (addr + size);
 288     for (juint* slot = start; slot < end; slot += 1) {
 289       assert(*slot == badHeapWordVal,
 290              "Found non badHeapWordValue in pre-allocation check");
 291     }
 292   }
 293 }
 294 #endif
 295 
 296 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 297                                                bool is_tlab,
 298                                                bool first_only) {
 299   HeapWord* res = NULL;
 300 
 301   if (_young_gen->should_allocate(size, is_tlab)) {
 302     res = _young_gen->allocate(size, is_tlab);
 303     if (res != NULL || first_only) {
 304       return res;
 305     }
 306   }
 307 
 308   if (_old_gen->should_allocate(size, is_tlab)) {
 309     res = _old_gen->allocate(size, is_tlab);
 310   }
 311 
 312   return res;
 313 }
 314 
 315 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 316                                          bool* gc_overhead_limit_was_exceeded) {
 317   return collector_policy()->mem_allocate_work(size,
 318                                                false /* is_tlab */,
 319                                                gc_overhead_limit_was_exceeded);
 320 }
 321 
 322 bool GenCollectedHeap::must_clear_all_soft_refs() {
 323   return _gc_cause == GCCause::_last_ditch_collection;
 324 }
 325 
 326 bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
 327   return UseConcMarkSweepGC &&
 328          ((cause == GCCause::_gc_locker && GCLockerInvokesConcurrent) ||
 329           (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
 330 }
 331 
 332 void GenCollectedHeap::collect_generation(Generation* gen, bool full, size_t size,
 333                                           bool is_tlab, bool run_verification, bool clear_soft_refs) {
 334   // Timer for individual generations. Last argument is false: no CR
 335   // FIXME: We should try to start the timing earlier to cover more of the GC pause
 336   // The PrintGCDetails logging starts before we have incremented the GC id. We will do that later
 337   // so we can assume here that the next GC id is what we want.
 338   GCTraceTime t1(gen->short_name(), PrintGCDetails, false, NULL, GCId::peek());
 339   TraceCollectorStats tcs(gen->counters());
 340   TraceMemoryManagerStats tmms(gen->kind(),gc_cause());
 341 
 342   size_t prev_used = gen->used();
 343   gen->stat_record()->invocations++;
 344   gen->stat_record()->accumulated_time.start();
 345 
 346   // Must be done anew before each collection because
 347   // a previous collection will do mangling and will
 348   // change top of some spaces.
 349   record_gen_tops_before_GC();
 350 
 351   if (PrintGC && Verbose) {
 352     gclog_or_tty->print("level=%d invoke=%d size=" SIZE_FORMAT,
 353                         gen->level(),
 354                         gen->stat_record()->invocations,
 355                         size * HeapWordSize);
 356   }
 357 
 358   if (run_verification && VerifyBeforeGC) {
 359     HandleMark hm;  // Discard invalid handles created during verification
 360     Universe::verify(" VerifyBeforeGC:");
 361   }
 362   COMPILER2_PRESENT(DerivedPointerTable::clear());
 363 
 364   // Do collection work
 365   {
 366     // Note on ref discovery: For what appear to be historical reasons,
 367     // GCH enables and disabled (by enqueing) refs discovery.
 368     // In the future this should be moved into the generation's
 369     // collect method so that ref discovery and enqueueing concerns
 370     // are local to a generation. The collect method could return
 371     // an appropriate indication in the case that notification on
 372     // the ref lock was needed. This will make the treatment of
 373     // weak refs more uniform (and indeed remove such concerns
 374     // from GCH). XXX
 375 
 376     HandleMark hm;  // Discard invalid handles created during gc
 377     save_marks();   // save marks for all gens
 378     // We want to discover references, but not process them yet.
 379     // This mode is disabled in process_discovered_references if the
 380     // generation does some collection work, or in
 381     // enqueue_discovered_references if the generation returns
 382     // without doing any work.
 383     ReferenceProcessor* rp = gen->ref_processor();
 384     // If the discovery of ("weak") refs in this generation is
 385     // atomic wrt other collectors in this configuration, we
 386     // are guaranteed to have empty discovered ref lists.
 387     if (rp->discovery_is_atomic()) {
 388       rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
 389       rp->setup_policy(clear_soft_refs);
 390     } else {
 391       // collect() below will enable discovery as appropriate
 392     }
 393     gen->collect(full, clear_soft_refs, size, is_tlab);
 394     if (!rp->enqueuing_is_done()) {
 395       rp->enqueue_discovered_references();
 396     } else {
 397       rp->set_enqueuing_is_done(false);
 398     }
 399     rp->verify_no_references_recorded();
 400   }
 401 
 402   // Determine if allocation request was met.
 403   if (size > 0) {
 404     if (!is_tlab || gen->supports_tlab_allocation()) {
 405       if (size * HeapWordSize <= gen->unsafe_max_alloc_nogc()) {
 406         size = 0;
 407       }
 408     }
 409   }
 410 
 411   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 412 
 413   gen->stat_record()->accumulated_time.stop();
 414 
 415   update_gc_stats(gen->level(), full);
 416 
 417   if (run_verification && VerifyAfterGC) {
 418     HandleMark hm;  // Discard invalid handles created during verification
 419     Universe::verify(" VerifyAfterGC:");
 420   }
 421 
 422   if (PrintGCDetails) {
 423     gclog_or_tty->print(":");
 424     gen->print_heap_change(prev_used);
 425   }
 426 }
 427 
 428 void GenCollectedHeap::do_collection(bool   full,
 429                                      bool   clear_all_soft_refs,
 430                                      size_t size,
 431                                      bool   is_tlab,
 432                                      int    max_level) {
 433   ResourceMark rm;
 434   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 435 
 436   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 437   assert(my_thread->is_VM_thread() ||
 438          my_thread->is_ConcurrentGC_thread(),
 439          "incorrect thread type capability");
 440   assert(Heap_lock->is_locked(),
 441          "the requesting thread should have the Heap_lock");
 442   guarantee(!is_gc_active(), "collection is not reentrant");
 443   assert(max_level < n_gens(), "sanity check");
 444 
 445   if (GC_locker::check_active_before_gc()) {
 446     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 447   }
 448 
 449   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 450                           collector_policy()->should_clear_all_soft_refs();
 451 
 452   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
 453 
 454   const size_t metadata_prev_used = MetaspaceAux::used_bytes();
 455 
 456   print_heap_before_gc();
 457 
 458   {
 459     FlagSetting fl(_is_gc_active, true);
 460 
 461     bool complete = full && (max_level == (n_gens()-1));
 462     const char* gc_cause_prefix = complete ? "Full GC" : "GC";
 463     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
 464     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
 465     // The PrintGCDetails logging starts before we have incremented the GC id. We will do that later
 466     // so we can assume here that the next GC id is what we want.
 467     GCTraceTime t(GCCauseString(gc_cause_prefix, gc_cause()), PrintGCDetails, false, NULL, GCId::peek());
 468 
 469     gc_prologue(complete);
 470     increment_total_collections(complete);
 471 
 472     size_t gch_prev_used = used();
 473     bool must_restore_marks_for_biased_locking = false;
 474     bool run_verification = total_collections() >= VerifyGCStartAt;
 475 
 476     if (_young_gen->performs_in_place_marking() ||
 477         _old_gen->performs_in_place_marking()) {
 478       // We want to avoid doing this for
 479       // scavenge-only collections where it's unnecessary.
 480       must_restore_marks_for_biased_locking = true;
 481       BiasedLocking::preserve_marks();
 482     }
 483 
 484     bool prepared_for_verification = false;
 485     int max_level_collected = 0;
 486     if (!(full && _old_gen->full_collects_younger_generations()) &&
 487         _young_gen->should_collect(full, size, is_tlab)) {
 488       if (run_verification && VerifyGCLevel <= 0 && VerifyBeforeGC) {
 489         prepare_for_verify();
 490         prepared_for_verification = true;
 491       }
 492       collect_generation(_young_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 0, do_clear_all_soft_refs);
 493     }
 494     if (max_level == 1 && _old_gen->should_collect(full, size, is_tlab)) {
 495       if (!complete) {
 496         // The full_collections increment was missed above.
 497         increment_total_full_collections();
 498       }
 499       pre_full_gc_dump(NULL);    // do any pre full gc dumps
 500       if (run_verification && VerifyGCLevel <= 1 && VerifyBeforeGC) {
 501         if (!prepared_for_verification) {
 502           prepare_for_verify();
 503         }
 504       }
 505       collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs);
 506       max_level_collected = 1;
 507     }
 508 
 509     // Update "complete" boolean wrt what actually transpired --
 510     // for instance, a promotion failure could have led to
 511     // a whole heap collection.
 512     complete = complete || (max_level_collected == n_gens() - 1);
 513 
 514     if (complete) { // We did a "major" collection
 515       // FIXME: See comment at pre_full_gc_dump call
 516       post_full_gc_dump(NULL);   // do any post full gc dumps
 517     }
 518 
 519     if (PrintGCDetails) {
 520       print_heap_change(gch_prev_used);
 521 
 522       // Print metaspace info for full GC with PrintGCDetails flag.
 523       if (complete) {
 524         MetaspaceAux::print_metaspace_change(metadata_prev_used);
 525       }
 526     }
 527 
 528     // Adjust generation sizes.
 529     if (max_level_collected == 1) {
 530       _old_gen->compute_new_size();
 531     }
 532     _young_gen->compute_new_size();
 533 
 534     if (complete) {
 535       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 536       ClassLoaderDataGraph::purge();
 537       MetaspaceAux::verify_metrics();
 538       // Resize the metaspace capacity after full collections
 539       MetaspaceGC::compute_new_size();
 540       update_full_collections_completed();
 541     }
 542 
 543     // Track memory usage and detect low memory after GC finishes
 544     MemoryService::track_memory_usage();
 545 
 546     gc_epilogue(complete);
 547 
 548     if (must_restore_marks_for_biased_locking) {
 549       BiasedLocking::restore_marks();
 550     }
 551   }
 552 
 553   print_heap_after_gc();
 554 
 555 #ifdef TRACESPINNING
 556   ParallelTaskTerminator::print_termination_counts();
 557 #endif
 558 }
 559 
 560 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 561   return collector_policy()->satisfy_failed_allocation(size, is_tlab);
 562 }
 563 
 564 void GenCollectedHeap::set_par_threads(uint t) {
 565   SharedHeap::set_par_threads(t);
 566   _gen_process_roots_tasks->set_n_threads(t);
 567 }
 568 
 569 void GenCollectedHeap::
 570 gen_process_roots(int level,
 571                   bool younger_gens_as_roots,
 572                   bool activate_scope,
 573                   SharedHeap::ScanningOption so,
 574                   OopsInGenClosure* not_older_gens,
 575                   OopsInGenClosure* weak_roots,
 576                   OopsInGenClosure* older_gens,
 577                   CLDClosure* cld_closure,
 578                   CLDClosure* weak_cld_closure,
 579                   CodeBlobClosure* code_closure) {
 580 
 581   // General roots.
 582   SharedHeap::process_roots(activate_scope, so,
 583                             not_older_gens, weak_roots,
 584                             cld_closure, weak_cld_closure,
 585                             code_closure);
 586 
 587   if (younger_gens_as_roots) {
 588     if (!_gen_process_roots_tasks->is_task_claimed(GCH_PS_younger_gens)) {
 589       if (level == 1) {
 590         not_older_gens->set_generation(_young_gen);
 591         _young_gen->oop_iterate(not_older_gens);
 592       }
 593       not_older_gens->reset_generation();
 594     }
 595   }
 596   // When collection is parallel, all threads get to cooperate to do
 597   // older-gen scanning.
 598   if (level == 0) {
 599     older_gens->set_generation(_old_gen);
 600     rem_set()->younger_refs_iterate(_old_gen, older_gens);
 601     older_gens->reset_generation();
 602   }
 603 
 604   _gen_process_roots_tasks->all_tasks_completed();
 605 }
 606 
 607 void GenCollectedHeap::
 608 gen_process_roots(int level,
 609                   bool younger_gens_as_roots,
 610                   bool activate_scope,
 611                   SharedHeap::ScanningOption so,
 612                   bool only_strong_roots,
 613                   OopsInGenClosure* not_older_gens,
 614                   OopsInGenClosure* older_gens,
 615                   CLDClosure* cld_closure) {
 616 
 617   const bool is_adjust_phase = !only_strong_roots && !younger_gens_as_roots;
 618 
 619   bool is_moving_collection = false;
 620   if (level == 0 || is_adjust_phase) {
 621     // young collections are always moving
 622     is_moving_collection = true;
 623   }
 624 
 625   MarkingCodeBlobClosure mark_code_closure(not_older_gens, is_moving_collection);
 626   CodeBlobClosure* code_closure = &mark_code_closure;
 627 
 628   gen_process_roots(level,
 629                     younger_gens_as_roots,
 630                     activate_scope, so,
 631                     not_older_gens, only_strong_roots ? NULL : not_older_gens,
 632                     older_gens,
 633                     cld_closure, only_strong_roots ? NULL : cld_closure,
 634                     code_closure);
 635 
 636 }
 637 
 638 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
 639   SharedHeap::process_weak_roots(root_closure);
 640   // "Local" "weak" refs
 641   _young_gen->ref_processor()->weak_oops_do(root_closure);
 642   _old_gen->ref_processor()->weak_oops_do(root_closure);
 643 }
 644 
 645 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
 646 void GenCollectedHeap::                                                 \
 647 oop_since_save_marks_iterate(int level,                                 \
 648                              OopClosureType* cur,                       \
 649                              OopClosureType* older) {                   \
 650   if (level == 0) {                                                     \
 651     _young_gen->oop_since_save_marks_iterate##nv_suffix(cur);           \
 652     _old_gen->oop_since_save_marks_iterate##nv_suffix(older);           \
 653   } else {                                                              \
 654     _old_gen->oop_since_save_marks_iterate##nv_suffix(cur);             \
 655   }                                                                     \
 656 }
 657 
 658 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
 659 
 660 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
 661 
 662 bool GenCollectedHeap::no_allocs_since_save_marks(int level) {
 663   if (level == 0) {
 664     if (!_young_gen->no_allocs_since_save_marks()) return false;
 665   }
 666   if (!_old_gen->no_allocs_since_save_marks()) return false;
 667   return true;
 668 }
 669 
 670 bool GenCollectedHeap::supports_inline_contig_alloc() const {
 671   return _young_gen->supports_inline_contig_alloc();
 672 }
 673 
 674 HeapWord** GenCollectedHeap::top_addr() const {
 675   return _young_gen->top_addr();
 676 }
 677 
 678 HeapWord** GenCollectedHeap::end_addr() const {
 679   return _young_gen->end_addr();
 680 }
 681 
 682 // public collection interfaces
 683 
 684 void GenCollectedHeap::collect(GCCause::Cause cause) {
 685   if (should_do_concurrent_full_gc(cause)) {
 686 #if INCLUDE_ALL_GCS
 687     // mostly concurrent full collection
 688     collect_mostly_concurrent(cause);
 689 #else  // INCLUDE_ALL_GCS
 690     ShouldNotReachHere();
 691 #endif // INCLUDE_ALL_GCS
 692   } else if (cause == GCCause::_wb_young_gc) {
 693     // minor collection for WhiteBox API
 694     collect(cause, 0);
 695   } else {
 696 #ifdef ASSERT
 697   if (cause == GCCause::_scavenge_alot) {
 698     // minor collection only
 699     collect(cause, 0);
 700   } else {
 701     // Stop-the-world full collection
 702     collect(cause, n_gens() - 1);
 703   }
 704 #else
 705     // Stop-the-world full collection
 706     collect(cause, n_gens() - 1);
 707 #endif
 708   }
 709 }
 710 
 711 void GenCollectedHeap::collect(GCCause::Cause cause, int max_level) {
 712   // The caller doesn't have the Heap_lock
 713   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 714   MutexLocker ml(Heap_lock);
 715   collect_locked(cause, max_level);
 716 }
 717 
 718 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
 719   // The caller has the Heap_lock
 720   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
 721   collect_locked(cause, n_gens() - 1);
 722 }
 723 
 724 // this is the private collection interface
 725 // The Heap_lock is expected to be held on entry.
 726 
 727 void GenCollectedHeap::collect_locked(GCCause::Cause cause, int max_level) {
 728   // Read the GC count while holding the Heap_lock
 729   unsigned int gc_count_before      = total_collections();
 730   unsigned int full_gc_count_before = total_full_collections();
 731   {
 732     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
 733     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 734                          cause, max_level);
 735     VMThread::execute(&op);
 736   }
 737 }
 738 
 739 #if INCLUDE_ALL_GCS
 740 bool GenCollectedHeap::create_cms_collector() {
 741 
 742   assert(_old_gen->kind() == Generation::ConcurrentMarkSweep,
 743          "Unexpected generation kinds");
 744   // Skip two header words in the block content verification
 745   NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();)
 746   CMSCollector* collector = new CMSCollector(
 747     (ConcurrentMarkSweepGeneration*)_old_gen,
 748     _rem_set->as_CardTableRS(),
 749     (ConcurrentMarkSweepPolicy*) collector_policy());
 750 
 751   if (collector == NULL || !collector->completed_initialization()) {
 752     if (collector) {
 753       delete collector;  // Be nice in embedded situation
 754     }
 755     vm_shutdown_during_initialization("Could not create CMS collector");
 756     return false;
 757   }
 758   return true;  // success
 759 }
 760 
 761 void GenCollectedHeap::collect_mostly_concurrent(GCCause::Cause cause) {
 762   assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");
 763 
 764   MutexLocker ml(Heap_lock);
 765   // Read the GC counts while holding the Heap_lock
 766   unsigned int full_gc_count_before = total_full_collections();
 767   unsigned int gc_count_before      = total_collections();
 768   {
 769     MutexUnlocker mu(Heap_lock);
 770     VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
 771     VMThread::execute(&op);
 772   }
 773 }
 774 #endif // INCLUDE_ALL_GCS
 775 
 776 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 777    do_full_collection(clear_all_soft_refs, _n_gens - 1);
 778 }
 779 
 780 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
 781                                           int max_level) {
 782   int local_max_level;
 783   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
 784       gc_cause() == GCCause::_gc_locker) {
 785     local_max_level = 0;
 786   } else {
 787     local_max_level = max_level;
 788   }
 789 
 790   do_collection(true                 /* full */,
 791                 clear_all_soft_refs  /* clear_all_soft_refs */,
 792                 0                    /* size */,
 793                 false                /* is_tlab */,
 794                 local_max_level      /* max_level */);
 795   // Hack XXX FIX ME !!!
 796   // A scavenge may not have been attempted, or may have
 797   // been attempted and failed, because the old gen was too full
 798   if (local_max_level == 0 && gc_cause() == GCCause::_gc_locker &&
 799       incremental_collection_will_fail(false /* don't consult_young */)) {
 800     if (PrintGCDetails) {
 801       gclog_or_tty->print_cr("GC locker: Trying a full collection "
 802                              "because scavenge failed");
 803     }
 804     // This time allow the old gen to be collected as well
 805     do_collection(true                 /* full */,
 806                   clear_all_soft_refs  /* clear_all_soft_refs */,
 807                   0                    /* size */,
 808                   false                /* is_tlab */,
 809                   n_gens() - 1         /* max_level */);
 810   }
 811 }
 812 
 813 bool GenCollectedHeap::is_in_young(oop p) {
 814   bool result = ((HeapWord*)p) < _old_gen->reserved().start();
 815   assert(result == _young_gen->is_in_reserved(p),
 816          err_msg("incorrect test - result=%d, p=" INTPTR_FORMAT, result, p2i((void*)p)));
 817   return result;
 818 }
 819 
 820 // Returns "TRUE" iff "p" points into the committed areas of the heap.
 821 bool GenCollectedHeap::is_in(const void* p) const {
 822   #ifndef ASSERT
 823   guarantee(VerifyBeforeGC      ||
 824             VerifyDuringGC      ||
 825             VerifyBeforeExit    ||
 826             VerifyDuringStartup ||
 827             PrintAssembly       ||
 828             tty->count() != 0   ||   // already printing
 829             VerifyAfterGC       ||
 830     VMError::fatal_error_in_progress(), "too expensive");
 831 
 832   #endif
 833   // This might be sped up with a cache of the last generation that
 834   // answered yes.
 835   if (_young_gen->is_in(p) || _old_gen->is_in(p)) {
 836     return true;
 837   }
 838   // Otherwise...
 839   return false;
 840 }
 841 
 842 #ifdef ASSERT
 843 // Don't implement this by using is_in_young().  This method is used
 844 // in some cases to check that is_in_young() is correct.
 845 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
 846   assert(is_in_reserved(p) || p == NULL,
 847     "Does not work if address is non-null and outside of the heap");
 848   return p < _young_gen->reserved().end() && p != NULL;
 849 }
 850 #endif
 851 
 852 void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
 853   _young_gen->oop_iterate(cl);
 854   _old_gen->oop_iterate(cl);
 855 }
 856 
 857 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
 858   _young_gen->object_iterate(cl);
 859   _old_gen->object_iterate(cl);
 860 }
 861 
 862 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
 863   _young_gen->safe_object_iterate(cl);
 864   _old_gen->safe_object_iterate(cl);
 865 }
 866 
 867 Space* GenCollectedHeap::space_containing(const void* addr) const {
 868   Space* res = _young_gen->space_containing(addr);
 869   if (res != NULL) {
 870     return res;
 871   }
 872   res = _old_gen->space_containing(addr);
 873   assert(res != NULL, "Could not find containing space");
 874   return res;
 875 }
 876 
 877 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
 878   assert(is_in_reserved(addr), "block_start of address outside of heap");
 879   if (_young_gen->is_in_reserved(addr)) {
 880     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
 881     return _young_gen->block_start(addr);
 882   }
 883 
 884   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 885   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
 886   return _old_gen->block_start(addr);
 887 }
 888 
 889 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
 890   assert(is_in_reserved(addr), "block_size of address outside of heap");
 891   if (_young_gen->is_in_reserved(addr)) {
 892     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
 893     return _young_gen->block_size(addr);
 894   }
 895 
 896   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 897   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
 898   return _old_gen->block_size(addr);
 899 }
 900 
 901 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
 902   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
 903   assert(block_start(addr) == addr, "addr must be a block start");
 904   if (_young_gen->is_in_reserved(addr)) {
 905     return _young_gen->block_is_obj(addr);
 906   }
 907 
 908   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 909   return _old_gen->block_is_obj(addr);
 910 }
 911 
 912 bool GenCollectedHeap::supports_tlab_allocation() const {
 913   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 914   return _young_gen->supports_tlab_allocation();
 915 }
 916 
 917 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
 918   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 919   if (_young_gen->supports_tlab_allocation()) {
 920     return _young_gen->tlab_capacity();
 921   }
 922   return 0;
 923 }
 924 
 925 size_t GenCollectedHeap::tlab_used(Thread* thr) const {
 926   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 927   if (_young_gen->supports_tlab_allocation()) {
 928     return _young_gen->tlab_used();
 929   }
 930   return 0;
 931 }
 932 
 933 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
 934   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 935   if (_young_gen->supports_tlab_allocation()) {
 936     return _young_gen->unsafe_max_tlab_alloc();
 937   }
 938   return 0;
 939 }
 940 
 941 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
 942   bool gc_overhead_limit_was_exceeded;
 943   return collector_policy()->mem_allocate_work(size /* size */,
 944                                                true /* is_tlab */,
 945                                                &gc_overhead_limit_was_exceeded);
 946 }
 947 
 948 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
 949 // from the list headed by "*prev_ptr".
 950 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
 951   bool first = true;
 952   size_t min_size = 0;   // "first" makes this conceptually infinite.
 953   ScratchBlock **smallest_ptr, *smallest;
 954   ScratchBlock  *cur = *prev_ptr;
 955   while (cur) {
 956     assert(*prev_ptr == cur, "just checking");
 957     if (first || cur->num_words < min_size) {
 958       smallest_ptr = prev_ptr;
 959       smallest     = cur;
 960       min_size     = smallest->num_words;
 961       first        = false;
 962     }
 963     prev_ptr = &cur->next;
 964     cur     =  cur->next;
 965   }
 966   smallest      = *smallest_ptr;
 967   *smallest_ptr = smallest->next;
 968   return smallest;
 969 }
 970 
 971 // Sort the scratch block list headed by res into decreasing size order,
 972 // and set "res" to the result.
 973 static void sort_scratch_list(ScratchBlock*& list) {
 974   ScratchBlock* sorted = NULL;
 975   ScratchBlock* unsorted = list;
 976   while (unsorted) {
 977     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
 978     smallest->next  = sorted;
 979     sorted          = smallest;
 980   }
 981   list = sorted;
 982 }
 983 
 984 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
 985                                                size_t max_alloc_words) {
 986   ScratchBlock* res = NULL;
 987   _young_gen->contribute_scratch(res, requestor, max_alloc_words);
 988   _old_gen->contribute_scratch(res, requestor, max_alloc_words);
 989   sort_scratch_list(res);
 990   return res;
 991 }
 992 
 993 void GenCollectedHeap::release_scratch() {
 994   _young_gen->reset_scratch();
 995   _old_gen->reset_scratch();
 996 }
 997 
 998 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
 999   void do_generation(Generation* gen) {
1000     gen->prepare_for_verify();
1001   }
1002 };
1003 
1004 void GenCollectedHeap::prepare_for_verify() {
1005   ensure_parsability(false);        // no need to retire TLABs
1006   GenPrepareForVerifyClosure blk;
1007   generation_iterate(&blk, false);
1008 }
1009 
1010 void GenCollectedHeap::generation_iterate(GenClosure* cl,
1011                                           bool old_to_young) {
1012   if (old_to_young) {
1013     cl->do_generation(_old_gen);
1014     cl->do_generation(_young_gen);
1015   } else {
1016     cl->do_generation(_young_gen);
1017     cl->do_generation(_old_gen);
1018   }
1019 }
1020 
1021 void GenCollectedHeap::space_iterate(SpaceClosure* cl) {
1022   _young_gen->space_iterate(cl, true);
1023   _old_gen->space_iterate(cl, true);
1024 }
1025 
1026 bool GenCollectedHeap::is_maximal_no_gc() const {
1027   return _young_gen->is_maximal_no_gc() && _old_gen->is_maximal_no_gc();
1028 }
1029 
1030 void GenCollectedHeap::save_marks() {
1031   _young_gen->save_marks();
1032   _old_gen->save_marks();
1033 }
1034 
1035 GenCollectedHeap* GenCollectedHeap::heap() {
1036   assert(_gch != NULL, "Uninitialized access to GenCollectedHeap::heap()");
1037   assert(_gch->kind() == CollectedHeap::GenCollectedHeap, "not a generational heap");
1038   return _gch;
1039 }
1040 
1041 
1042 void GenCollectedHeap::prepare_for_compaction() {
1043   guarantee(_n_gens = 2, "Wrong number of generations");
1044   Generation* old_gen = _old_gen;
1045   // Start by compacting into same gen.
1046   CompactPoint cp(old_gen);
1047   old_gen->prepare_for_compaction(&cp);
1048   Generation* young_gen = _young_gen;
1049   young_gen->prepare_for_compaction(&cp);
1050 }
1051 
1052 GCStats* GenCollectedHeap::gc_stats(int level) const {
1053   if (level == 0) {
1054     return _young_gen->gc_stats();
1055   } else {
1056     return _old_gen->gc_stats();
1057   }
1058 }
1059 
1060 void GenCollectedHeap::verify(bool silent, VerifyOption option /* ignored */) {
1061   if (!silent) {
1062     gclog_or_tty->print("%s", _old_gen->name());
1063     gclog_or_tty->print(" ");
1064   }
1065   _old_gen->verify();
1066 
1067   if (!silent) {
1068     gclog_or_tty->print("%s", _young_gen->name());
1069     gclog_or_tty->print(" ");
1070   }
1071   _young_gen->verify();
1072 
1073   if (!silent) {
1074     gclog_or_tty->print("remset ");
1075   }
1076   rem_set()->verify();
1077 }
1078 
1079 void GenCollectedHeap::print_on(outputStream* st) const {
1080   _young_gen->print_on(st);
1081   _old_gen->print_on(st);
1082   MetaspaceAux::print_on(st);
1083 }
1084 
1085 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1086   if (workers() != NULL) {
1087     workers()->threads_do(tc);
1088   }
1089 #if INCLUDE_ALL_GCS
1090   if (UseConcMarkSweepGC) {
1091     ConcurrentMarkSweepThread::threads_do(tc);
1092   }
1093 #endif // INCLUDE_ALL_GCS
1094 }
1095 
1096 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
1097 #if INCLUDE_ALL_GCS
1098   if (UseParNewGC) {
1099     workers()->print_worker_threads_on(st);
1100   }
1101   if (UseConcMarkSweepGC) {
1102     ConcurrentMarkSweepThread::print_all_on(st);
1103   }
1104 #endif // INCLUDE_ALL_GCS
1105 }
1106 
1107 void GenCollectedHeap::print_on_error(outputStream* st) const {
1108   this->CollectedHeap::print_on_error(st);
1109 
1110 #if INCLUDE_ALL_GCS
1111   if (UseConcMarkSweepGC) {
1112     st->cr();
1113     CMSCollector::print_on_error(st);
1114   }
1115 #endif // INCLUDE_ALL_GCS
1116 }
1117 
1118 void GenCollectedHeap::print_tracing_info() const {
1119   if (TraceYoungGenTime) {
1120     get_gen(0)->print_summary_info();
1121   }
1122   if (TraceOldGenTime) {
1123     get_gen(1)->print_summary_info();
1124   }
1125 }
1126 
1127 void GenCollectedHeap::print_heap_change(size_t prev_used) const {
1128   if (PrintGCDetails && Verbose) {
1129     gclog_or_tty->print(" "  SIZE_FORMAT
1130                         "->" SIZE_FORMAT
1131                         "("  SIZE_FORMAT ")",
1132                         prev_used, used(), capacity());
1133   } else {
1134     gclog_or_tty->print(" "  SIZE_FORMAT "K"
1135                         "->" SIZE_FORMAT "K"
1136                         "("  SIZE_FORMAT "K)",
1137                         prev_used / K, used() / K, capacity() / K);
1138   }
1139 }
1140 
1141 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1142  private:
1143   bool _full;
1144  public:
1145   void do_generation(Generation* gen) {
1146     gen->gc_prologue(_full);
1147   }
1148   GenGCPrologueClosure(bool full) : _full(full) {};
1149 };
1150 
1151 void GenCollectedHeap::gc_prologue(bool full) {
1152   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1153 
1154   always_do_update_barrier = false;
1155   // Fill TLAB's and such
1156   CollectedHeap::accumulate_statistics_all_tlabs();
1157   ensure_parsability(true);   // retire TLABs
1158 
1159   // Walk generations
1160   GenGCPrologueClosure blk(full);
1161   generation_iterate(&blk, false);  // not old-to-young.
1162 };
1163 
1164 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1165  private:
1166   bool _full;
1167  public:
1168   void do_generation(Generation* gen) {
1169     gen->gc_epilogue(_full);
1170   }
1171   GenGCEpilogueClosure(bool full) : _full(full) {};
1172 };
1173 
1174 void GenCollectedHeap::gc_epilogue(bool full) {
1175 #ifdef COMPILER2
1176   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1177   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1178   guarantee(actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1179 #endif /* COMPILER2 */
1180 
1181   resize_all_tlabs();
1182 
1183   GenGCEpilogueClosure blk(full);
1184   generation_iterate(&blk, false);  // not old-to-young.
1185 
1186   if (!CleanChunkPoolAsync) {
1187     Chunk::clean_chunk_pool();
1188   }
1189 
1190   MetaspaceCounters::update_performance_counters();
1191   CompressedClassSpaceCounters::update_performance_counters();
1192 
1193   always_do_update_barrier = UseConcMarkSweepGC;
1194 };
1195 
1196 #ifndef PRODUCT
1197 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1198  private:
1199  public:
1200   void do_generation(Generation* gen) {
1201     gen->record_spaces_top();
1202   }
1203 };
1204 
1205 void GenCollectedHeap::record_gen_tops_before_GC() {
1206   if (ZapUnusedHeapArea) {
1207     GenGCSaveTopsBeforeGCClosure blk;
1208     generation_iterate(&blk, false);  // not old-to-young.
1209   }
1210 }
1211 #endif  // not PRODUCT
1212 
1213 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1214  public:
1215   void do_generation(Generation* gen) {
1216     gen->ensure_parsability();
1217   }
1218 };
1219 
1220 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1221   CollectedHeap::ensure_parsability(retire_tlabs);
1222   GenEnsureParsabilityClosure ep_cl;
1223   generation_iterate(&ep_cl, false);
1224 }
1225 
1226 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
1227                                               oop obj,
1228                                               size_t obj_size) {
1229   guarantee(old_gen->level() == 1, "We only get here with an old generation");
1230   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1231   HeapWord* result = NULL;
1232 
1233   result = old_gen->expand_and_allocate(obj_size, false);
1234 
1235   if (result != NULL) {
1236     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
1237   }
1238   return oop(result);
1239 }
1240 
1241 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1242   jlong _time;   // in ms
1243   jlong _now;    // in ms
1244 
1245  public:
1246   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1247 
1248   jlong time() { return _time; }
1249 
1250   void do_generation(Generation* gen) {
1251     _time = MIN2(_time, gen->time_of_last_gc(_now));
1252   }
1253 };
1254 
1255 jlong GenCollectedHeap::millis_since_last_gc() {
1256   // We need a monotonically non-decreasing time in ms but
1257   // os::javaTimeMillis() does not guarantee monotonicity.
1258   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1259   GenTimeOfLastGCClosure tolgc_cl(now);
1260   // iterate over generations getting the oldest
1261   // time that a generation was collected
1262   generation_iterate(&tolgc_cl, false);
1263 
1264   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
1265   // provided the underlying platform provides such a time source
1266   // (and it is bug free). So we still have to guard against getting
1267   // back a time later than 'now'.
1268   jlong retVal = now - tolgc_cl.time();
1269   if (retVal < 0) {
1270     NOT_PRODUCT(warning("time warp: "INT64_FORMAT, (int64_t) retVal);)
1271     return 0;
1272   }
1273   return retVal;
1274 }