1 /*
   2  * Copyright (c) 2000, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc_implementation/shared/collectorCounters.hpp"
  31 #include "gc_implementation/shared/gcTrace.hpp"
  32 #include "gc_implementation/shared/gcTraceTime.hpp"
  33 #include "gc_implementation/shared/vmGCOperations.hpp"
  34 #include "gc_interface/collectedHeap.inline.hpp"
  35 #include "memory/filemap.hpp"
  36 #include "memory/gcLocker.inline.hpp"
  37 #include "memory/genCollectedHeap.hpp"
  38 #include "memory/genOopClosures.inline.hpp"
  39 #include "memory/generation.inline.hpp"
  40 #include "memory/generationSpec.hpp"
  41 #include "memory/resourceArea.hpp"
  42 #include "memory/sharedHeap.hpp"
  43 #include "memory/space.hpp"
  44 #include "oops/oop.inline.hpp"
  45 #include "oops/oop.inline2.hpp"
  46 #include "runtime/biasedLocking.hpp"
  47 #include "runtime/fprofiler.hpp"
  48 #include "runtime/handles.hpp"
  49 #include "runtime/handles.inline.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/vmThread.hpp"
  52 #include "services/memoryService.hpp"
  53 #include "utilities/vmError.hpp"
  54 #include "utilities/workgroup.hpp"
  55 #include "utilities/macros.hpp"
  56 #if INCLUDE_ALL_GCS
  57 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  58 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  59 #endif // INCLUDE_ALL_GCS
  60 
  61 GenCollectedHeap* GenCollectedHeap::_gch;
  62 NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)
  63 
  64 // The set of potentially parallel tasks in root scanning.
  65 enum GCH_strong_roots_tasks {
  66   // We probably want to parallelize both of these internally, but for now...
  67   GCH_PS_younger_gens,
  68   // Leave this one last.
  69   GCH_PS_NumElements
  70 };
  71 
  72 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
  73   SharedHeap(policy),
  74   _gen_policy(policy),
  75   _gen_process_roots_tasks(new SubTasksDone(GCH_PS_NumElements)),
  76   _full_collections_completed(0)
  77 {
  78   if (_gen_process_roots_tasks == NULL ||
  79       !_gen_process_roots_tasks->valid()) {
  80     vm_exit_during_initialization("Failed necessary allocation.");
  81   }
  82   assert(policy != NULL, "Sanity check");
  83 }
  84 
  85 jint GenCollectedHeap::initialize() {
  86   CollectedHeap::pre_initialize();
  87 
  88   // While there are no constraints in the GC code that HeapWordSize
  89   // be any particular value, there are multiple other areas in the
  90   // system which believe this to be true (e.g. oop->object_size in some
  91   // cases incorrectly returns the size in wordSize units rather than
  92   // HeapWordSize).
  93   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  94 
  95   // Allocate space for the heap.
  96 
  97   char* heap_address;
  98   size_t total_reserved = 0;
  99   int n_covered_regions = 0;
 100   ReservedSpace heap_rs;
 101 
 102   size_t heap_alignment = collector_policy()->heap_alignment();
 103 
 104   heap_address = allocate(heap_alignment, &total_reserved,
 105                           &n_covered_regions, &heap_rs);
 106 
 107   if (!heap_rs.is_reserved()) {
 108     vm_shutdown_during_initialization(
 109       "Could not reserve enough space for object heap");
 110     return JNI_ENOMEM;
 111   }
 112 
 113   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
 114 
 115   _rem_set = collector_policy()->create_rem_set(reserved_region(), n_covered_regions);
 116   set_barrier_set(rem_set()->bs());
 117 
 118   _gch = this;
 119 
 120   ReservedSpace young_rs = heap_rs.first_part(gen_policy()->young_gen_spec()->max_size(), false, false);
 121   _young_gen = gen_policy()->young_gen_spec()->init(young_rs, rem_set());
 122   heap_rs = heap_rs.last_part(gen_policy()->young_gen_spec()->max_size());
 123 
 124   ReservedSpace old_rs = heap_rs.first_part(gen_policy()->old_gen_spec()->max_size(), false, false);
 125   _old_gen = gen_policy()->old_gen_spec()->init(old_rs, rem_set());
 126   heap_rs = heap_rs.last_part(gen_policy()->old_gen_spec()->max_size());
 127 
 128   clear_incremental_collection_failed();
 129 
 130 #if INCLUDE_ALL_GCS
 131   // If we are running CMS, create the collector responsible
 132   // for collecting the CMS generations.
 133   if (collector_policy()->is_concurrent_mark_sweep_policy()) {
 134     bool success = create_cms_collector();
 135     if (!success) return JNI_ENOMEM;
 136   }
 137 #endif // INCLUDE_ALL_GCS
 138 
 139   return JNI_OK;
 140 }
 141 
 142 char* GenCollectedHeap::allocate(size_t alignment,
 143                                  size_t* _total_reserved,
 144                                  int* _n_covered_regions,
 145                                  ReservedSpace* heap_rs){
 146   const char overflow_msg[] = "The size of the object heap + VM data exceeds "
 147     "the maximum representable size";
 148 
 149   // Now figure out the total size.
 150   const size_t pageSize = UseLargePages ? os::large_page_size() : os::vm_page_size();
 151   assert(alignment % pageSize == 0, "Must be");
 152 
 153   size_t total_reserved = gen_policy()->young_gen_spec()->max_size() +
 154                           gen_policy()->old_gen_spec()->max_size();
 155   if (total_reserved < gen_policy()->young_gen_spec()->max_size() ||
 156       total_reserved < gen_policy()->old_gen_spec()->max_size()) {
 157     vm_exit_during_initialization(overflow_msg);
 158   }
 159   assert(total_reserved % alignment == 0,
 160          err_msg("Gen size; total_reserved=" SIZE_FORMAT ", alignment="
 161                  SIZE_FORMAT, total_reserved, alignment));
 162 
 163   int n_covered_regions = 2; // Young + Old
 164 
 165   // Needed until the cardtable is fixed to have the right number
 166   // of covered regions.
 167   n_covered_regions += 2;
 168 
 169   *_total_reserved = total_reserved;
 170   *_n_covered_regions = n_covered_regions;
 171 
 172   *heap_rs = Universe::reserve_heap(total_reserved, alignment);
 173   return heap_rs->base();
 174 }
 175 
 176 void GenCollectedHeap::post_initialize() {
 177   SharedHeap::post_initialize();
 178   GenCollectorPolicy *policy = (GenCollectorPolicy *)collector_policy();
 179   guarantee(policy->is_generation_policy(), "Illegal policy type");
 180   DefNewGeneration* def_new_gen = (DefNewGeneration*) _young_gen;
 181   assert(def_new_gen->kind() == Generation::DefNew ||
 182          def_new_gen->kind() == Generation::ParNew,
 183          "Wrong generation kind");
 184 
 185   assert(_old_gen->kind() == Generation::ConcurrentMarkSweep ||
 186          _old_gen->kind() == Generation::MarkSweepCompact,
 187     "Wrong generation kind");
 188 
 189   policy->initialize_size_policy(def_new_gen->eden()->capacity(),
 190                                  _old_gen->capacity(),
 191                                  def_new_gen->from()->capacity());
 192   policy->initialize_gc_policy_counters();
 193 }
 194 
 195 void GenCollectedHeap::ref_processing_init() {
 196   SharedHeap::ref_processing_init();
 197   _young_gen->ref_processor_init();
 198   _old_gen->ref_processor_init();
 199 }
 200 
 201 size_t GenCollectedHeap::capacity() const {
 202   return _young_gen->capacity() + _old_gen->capacity();
 203 }
 204 
 205 size_t GenCollectedHeap::used() const {
 206   return _young_gen->used() + _old_gen->used();
 207 }
 208 
 209 void GenCollectedHeap::save_used_regions() {
 210   _old_gen->save_used_region();
 211   _young_gen->save_used_region();
 212 }
 213 
 214 size_t GenCollectedHeap::max_capacity() const {
 215   return _young_gen->max_capacity() + _old_gen->max_capacity();
 216 }
 217 
 218 // Update the _full_collections_completed counter
 219 // at the end of a stop-world full GC.
 220 unsigned int GenCollectedHeap::update_full_collections_completed() {
 221   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 222   assert(_full_collections_completed <= _total_full_collections,
 223          "Can't complete more collections than were started");
 224   _full_collections_completed = _total_full_collections;
 225   ml.notify_all();
 226   return _full_collections_completed;
 227 }
 228 
 229 // Update the _full_collections_completed counter, as appropriate,
 230 // at the end of a concurrent GC cycle. Note the conditional update
 231 // below to allow this method to be called by a concurrent collector
 232 // without synchronizing in any manner with the VM thread (which
 233 // may already have initiated a STW full collection "concurrently").
 234 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
 235   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 236   assert((_full_collections_completed <= _total_full_collections) &&
 237          (count <= _total_full_collections),
 238          "Can't complete more collections than were started");
 239   if (count > _full_collections_completed) {
 240     _full_collections_completed = count;
 241     ml.notify_all();
 242   }
 243   return _full_collections_completed;
 244 }
 245 
 246 
 247 #ifndef PRODUCT
 248 // Override of memory state checking method in CollectedHeap:
 249 // Some collectors (CMS for example) can't have badHeapWordVal written
 250 // in the first two words of an object. (For instance , in the case of
 251 // CMS these words hold state used to synchronize between certain
 252 // (concurrent) GC steps and direct allocating mutators.)
 253 // The skip_header_HeapWords() method below, allows us to skip
 254 // over the requisite number of HeapWord's. Note that (for
 255 // generational collectors) this means that those many words are
 256 // skipped in each object, irrespective of the generation in which
 257 // that object lives. The resultant loss of precision seems to be
 258 // harmless and the pain of avoiding that imprecision appears somewhat
 259 // higher than we are prepared to pay for such rudimentary debugging
 260 // support.
 261 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
 262                                                          size_t size) {
 263   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 264     // We are asked to check a size in HeapWords,
 265     // but the memory is mangled in juint words.
 266     juint* start = (juint*) (addr + skip_header_HeapWords());
 267     juint* end   = (juint*) (addr + size);
 268     for (juint* slot = start; slot < end; slot += 1) {
 269       assert(*slot == badHeapWordVal,
 270              "Found non badHeapWordValue in pre-allocation check");
 271     }
 272   }
 273 }
 274 #endif
 275 
 276 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 277                                                bool is_tlab,
 278                                                bool first_only) {
 279   HeapWord* res = NULL;
 280 
 281   if (_young_gen->should_allocate(size, is_tlab)) {
 282     res = _young_gen->allocate(size, is_tlab);
 283     if (res != NULL || first_only) {
 284       return res;
 285     }
 286   }
 287 
 288   if (_old_gen->should_allocate(size, is_tlab)) {
 289     res = _old_gen->allocate(size, is_tlab);
 290   }
 291 
 292   return res;
 293 }
 294 
 295 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 296                                          bool* gc_overhead_limit_was_exceeded) {
 297   return collector_policy()->mem_allocate_work(size,
 298                                                false /* is_tlab */,
 299                                                gc_overhead_limit_was_exceeded);
 300 }
 301 
 302 bool GenCollectedHeap::must_clear_all_soft_refs() {
 303   return _gc_cause == GCCause::_last_ditch_collection;
 304 }
 305 
 306 bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
 307   return UseConcMarkSweepGC &&
 308          ((cause == GCCause::_gc_locker && GCLockerInvokesConcurrent) ||
 309           (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
 310 }
 311 
 312 void GenCollectedHeap::collect_generation(Generation* gen, bool full, size_t size,
 313                                           bool is_tlab, bool run_verification, bool clear_soft_refs) {
 314   // Timer for individual generations. Last argument is false: no CR
 315   // FIXME: We should try to start the timing earlier to cover more of the GC pause
 316   // The PrintGCDetails logging starts before we have incremented the GC id. We will do that later
 317   // so we can assume here that the next GC id is what we want.
 318   GCTraceTime t1(gen->short_name(), PrintGCDetails, false, NULL, GCId::peek());
 319   TraceCollectorStats tcs(gen->counters());
 320   TraceMemoryManagerStats tmms(gen->kind(),gc_cause());
 321 
 322   size_t prev_used = gen->used();
 323   gen->stat_record()->invocations++;
 324   gen->stat_record()->accumulated_time.start();
 325 
 326   // Must be done anew before each collection because
 327   // a previous collection will do mangling and will
 328   // change top of some spaces.
 329   record_gen_tops_before_GC();
 330 
 331   if (PrintGC && Verbose) {
 332     // I didn't want to change the logging when removing the level concept,
 333     // but I guess this logging could say young/old or something instead of 0/1.
 334     int level;
 335     if (gen == GenCollectedHeap::heap()->young_gen()) {
 336       level = 0;
 337     } else {
 338       level = 1;
 339     }
 340     gclog_or_tty->print("level=%d invoke=%d size=" SIZE_FORMAT,
 341                         level,
 342                         gen->stat_record()->invocations,
 343                         size * HeapWordSize);
 344   }
 345 
 346   if (run_verification && VerifyBeforeGC) {
 347     HandleMark hm;  // Discard invalid handles created during verification
 348     Universe::verify(" VerifyBeforeGC:");
 349   }
 350   COMPILER2_PRESENT(DerivedPointerTable::clear());
 351 
 352   // Do collection work
 353   {
 354     // Note on ref discovery: For what appear to be historical reasons,
 355     // GCH enables and disabled (by enqueing) refs discovery.
 356     // In the future this should be moved into the generation's
 357     // collect method so that ref discovery and enqueueing concerns
 358     // are local to a generation. The collect method could return
 359     // an appropriate indication in the case that notification on
 360     // the ref lock was needed. This will make the treatment of
 361     // weak refs more uniform (and indeed remove such concerns
 362     // from GCH). XXX
 363 
 364     HandleMark hm;  // Discard invalid handles created during gc
 365     save_marks();   // save marks for all gens
 366     // We want to discover references, but not process them yet.
 367     // This mode is disabled in process_discovered_references if the
 368     // generation does some collection work, or in
 369     // enqueue_discovered_references if the generation returns
 370     // without doing any work.
 371     ReferenceProcessor* rp = gen->ref_processor();
 372     // If the discovery of ("weak") refs in this generation is
 373     // atomic wrt other collectors in this configuration, we
 374     // are guaranteed to have empty discovered ref lists.
 375     if (rp->discovery_is_atomic()) {
 376       rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
 377       rp->setup_policy(clear_soft_refs);
 378     } else {
 379       // collect() below will enable discovery as appropriate
 380     }
 381     gen->collect(full, clear_soft_refs, size, is_tlab);
 382     if (!rp->enqueuing_is_done()) {
 383       rp->enqueue_discovered_references();
 384     } else {
 385       rp->set_enqueuing_is_done(false);
 386     }
 387     rp->verify_no_references_recorded();
 388   }
 389 
 390   // Determine if allocation request was met.
 391   if (size > 0) {
 392     if (!is_tlab || gen->supports_tlab_allocation()) {
 393       if (size * HeapWordSize <= gen->unsafe_max_alloc_nogc()) {
 394         size = 0;
 395       }
 396     }
 397   }
 398 
 399   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 400 
 401   gen->stat_record()->accumulated_time.stop();
 402 
 403   update_gc_stats(gen, full);
 404 
 405   if (run_verification && VerifyAfterGC) {
 406     HandleMark hm;  // Discard invalid handles created during verification
 407     Universe::verify(" VerifyAfterGC:");
 408   }
 409 
 410   if (PrintGCDetails) {
 411     gclog_or_tty->print(":");
 412     gen->print_heap_change(prev_used);
 413   }
 414 }
 415 
 416 void GenCollectedHeap::do_collection(bool             full,
 417                                      bool             clear_all_soft_refs,
 418                                      size_t           size,
 419                                      bool             is_tlab,
 420                                      Generation::Type max_generation) {
 421   ResourceMark rm;
 422   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 423 
 424   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 425   assert(my_thread->is_VM_thread() ||
 426          my_thread->is_ConcurrentGC_thread(),
 427          "incorrect thread type capability");
 428   assert(Heap_lock->is_locked(),
 429          "the requesting thread should have the Heap_lock");
 430   guarantee(!is_gc_active(), "collection is not reentrant");
 431 
 432   if (GC_locker::check_active_before_gc()) {
 433     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 434   }
 435 
 436   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 437                           collector_policy()->should_clear_all_soft_refs();
 438 
 439   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
 440 
 441   const size_t metadata_prev_used = MetaspaceAux::used_bytes();
 442 
 443   print_heap_before_gc();
 444 
 445   {
 446     FlagSetting fl(_is_gc_active, true);
 447 
 448     bool complete = full && (max_generation == Generation::Old);
 449     const char* gc_cause_prefix = complete ? "Full GC" : "GC";
 450     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
 451     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
 452     // The PrintGCDetails logging starts before we have incremented the GC id. We will do that later
 453     // so we can assume here that the next GC id is what we want.
 454     GCTraceTime t(GCCauseString(gc_cause_prefix, gc_cause()), PrintGCDetails, false, NULL, GCId::peek());
 455 
 456     gc_prologue(complete);
 457     increment_total_collections(complete);
 458 
 459     size_t gch_prev_used = used();
 460     bool must_restore_marks_for_biased_locking = false;
 461     bool old_collected = false;
 462     bool run_verification = total_collections() >= VerifyGCStartAt;
 463 
 464     if (_young_gen->performs_in_place_marking() ||
 465         _old_gen->performs_in_place_marking()) {
 466       // We want to avoid doing this for
 467       // scavenge-only collections where it's unnecessary.
 468       must_restore_marks_for_biased_locking = true;
 469       BiasedLocking::preserve_marks();
 470     }
 471 
 472     bool prepared_for_verification = false;
 473     if (!(full && _old_gen->full_collects_younger_generations()) &&
 474         _young_gen->should_collect(full, size, is_tlab)) {
 475       if (run_verification && VerifyGCLevel <= 0 && VerifyBeforeGC) {
 476         prepare_for_verify();
 477         prepared_for_verification = true;
 478       }
 479       collect_generation(_young_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 0, do_clear_all_soft_refs);
 480     }
 481     if (max_generation == Generation::Old && _old_gen->should_collect(full, size, is_tlab)) {
 482       if (!complete) {
 483         // The full_collections increment was missed above.
 484         increment_total_full_collections();
 485       }
 486       pre_full_gc_dump(NULL);    // do any pre full gc dumps
 487       if (run_verification && VerifyGCLevel <= 1 && VerifyBeforeGC) {
 488         if (!prepared_for_verification) {
 489           prepare_for_verify();
 490         }
 491       }
 492       collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs);
 493       old_collected = true;
 494     }
 495 
 496     // Update "complete" boolean wrt what actually transpired --
 497     // for instance, a promotion failure could have led to
 498     // a whole heap collection.
 499     complete = complete || old_collected;
 500 
 501     if (complete) { // We did a "major" collection
 502       // FIXME: See comment at pre_full_gc_dump call
 503       post_full_gc_dump(NULL);   // do any post full gc dumps
 504     }
 505 
 506     if (PrintGCDetails) {
 507       print_heap_change(gch_prev_used);
 508 
 509       // Print metaspace info for full GC with PrintGCDetails flag.
 510       if (complete) {
 511         MetaspaceAux::print_metaspace_change(metadata_prev_used);
 512       }
 513     }
 514 
 515     // Adjust generation sizes.
 516     if (old_collected) {
 517       _old_gen->compute_new_size();
 518     }
 519     _young_gen->compute_new_size();
 520 
 521     if (complete) {
 522       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 523       ClassLoaderDataGraph::purge();
 524       MetaspaceAux::verify_metrics();
 525       // Resize the metaspace capacity after full collections
 526       MetaspaceGC::compute_new_size();
 527       update_full_collections_completed();
 528     }
 529 
 530     // Track memory usage and detect low memory after GC finishes
 531     MemoryService::track_memory_usage();
 532 
 533     gc_epilogue(complete);
 534 
 535     if (must_restore_marks_for_biased_locking) {
 536       BiasedLocking::restore_marks();
 537     }
 538   }
 539 
 540   print_heap_after_gc();
 541 
 542 #ifdef TRACESPINNING
 543   ParallelTaskTerminator::print_termination_counts();
 544 #endif
 545 }
 546 
 547 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 548   return collector_policy()->satisfy_failed_allocation(size, is_tlab);
 549 }
 550 
 551 void GenCollectedHeap::set_par_threads(uint t) {
 552   SharedHeap::set_par_threads(t);
 553   _gen_process_roots_tasks->set_n_threads(t);
 554 }
 555 
 556 void GenCollectedHeap::
 557 gen_process_roots(Generation::Type type,
 558                   bool younger_gens_as_roots,
 559                   bool activate_scope,
 560                   SharedHeap::ScanningOption so,
 561                   OopsInGenClosure* not_older_gens,
 562                   OopsInGenClosure* weak_roots,
 563                   OopsInGenClosure* older_gens,
 564                   CLDClosure* cld_closure,
 565                   CLDClosure* weak_cld_closure,
 566                   CodeBlobClosure* code_closure) {
 567 
 568   // General roots.
 569   SharedHeap::process_roots(activate_scope, so,
 570                             not_older_gens, weak_roots,
 571                             cld_closure, weak_cld_closure,
 572                             code_closure);
 573 
 574   if (younger_gens_as_roots) {
 575     if (!_gen_process_roots_tasks->is_task_claimed(GCH_PS_younger_gens)) {
 576       if (type == Generation::Old) {
 577         not_older_gens->set_generation(_young_gen);
 578         _young_gen->oop_iterate(not_older_gens);
 579       }
 580       not_older_gens->reset_generation();
 581     }
 582   }
 583   // When collection is parallel, all threads get to cooperate to do
 584   // old generation scanning.
 585   if (type == Generation::Young) {
 586     older_gens->set_generation(_old_gen);
 587     rem_set()->younger_refs_iterate(_old_gen, older_gens);
 588     older_gens->reset_generation();
 589   }
 590 
 591   _gen_process_roots_tasks->all_tasks_completed();
 592 }
 593 
 594 void GenCollectedHeap::
 595 gen_process_roots(Generation::Type type,
 596                   bool younger_gens_as_roots,
 597                   bool activate_scope,
 598                   SharedHeap::ScanningOption so,
 599                   bool only_strong_roots,
 600                   OopsInGenClosure* not_older_gens,
 601                   OopsInGenClosure* older_gens,
 602                   CLDClosure* cld_closure) {
 603 
 604   const bool is_adjust_phase = !only_strong_roots && !younger_gens_as_roots;
 605 
 606   bool is_moving_collection = false;
 607   if (type == Generation::Young || is_adjust_phase) {
 608     // young collections are always moving
 609     is_moving_collection = true;
 610   }
 611 
 612   MarkingCodeBlobClosure mark_code_closure(not_older_gens, is_moving_collection);
 613   CodeBlobClosure* code_closure = &mark_code_closure;
 614 
 615   gen_process_roots(type,
 616                     younger_gens_as_roots,
 617                     activate_scope, so,
 618                     not_older_gens, only_strong_roots ? NULL : not_older_gens,
 619                     older_gens,
 620                     cld_closure, only_strong_roots ? NULL : cld_closure,
 621                     code_closure);
 622 
 623 }
 624 
 625 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
 626   SharedHeap::process_weak_roots(root_closure);
 627   // "Local" "weak" refs
 628   _young_gen->ref_processor()->weak_oops_do(root_closure);
 629   _old_gen->ref_processor()->weak_oops_do(root_closure);
 630 }
 631 
 632 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
 633 void GenCollectedHeap::                                                 \
 634 oop_since_save_marks_iterate(Generation::Type gen,                      \
 635                              OopClosureType* cur,                       \
 636                              OopClosureType* older) {                   \
 637   if (gen == Generation::Young) {                                       \
 638     _young_gen->oop_since_save_marks_iterate##nv_suffix(cur);           \
 639     _old_gen->oop_since_save_marks_iterate##nv_suffix(older);           \
 640   } else {                                                              \
 641     _old_gen->oop_since_save_marks_iterate##nv_suffix(cur);             \
 642   }                                                                     \
 643 }
 644 
 645 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
 646 
 647 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
 648 
 649 bool GenCollectedHeap::no_allocs_since_save_marks(bool include_young) {
 650   return include_young && _young_gen->no_allocs_since_save_marks() ||
 651       _old_gen->no_allocs_since_save_marks();
 652 }
 653 
 654 bool GenCollectedHeap::supports_inline_contig_alloc() const {
 655   return _young_gen->supports_inline_contig_alloc();
 656 }
 657 
 658 HeapWord** GenCollectedHeap::top_addr() const {
 659   return _young_gen->top_addr();
 660 }
 661 
 662 HeapWord** GenCollectedHeap::end_addr() const {
 663   return _young_gen->end_addr();
 664 }
 665 
 666 // public collection interfaces
 667 
 668 void GenCollectedHeap::collect(GCCause::Cause cause) {
 669   if (should_do_concurrent_full_gc(cause)) {
 670 #if INCLUDE_ALL_GCS
 671     // mostly concurrent full collection
 672     collect_mostly_concurrent(cause);
 673 #else  // INCLUDE_ALL_GCS
 674     ShouldNotReachHere();
 675 #endif // INCLUDE_ALL_GCS
 676   } else if (cause == GCCause::_wb_young_gc) {
 677     // minor collection for WhiteBox API
 678     collect(cause, Generation::Young);
 679   } else {
 680 #ifdef ASSERT
 681     if (cause == GCCause::_scavenge_alot) {
 682       // minor collection only
 683       collect(cause, Generation::Young);
 684     } else {
 685       // Stop-the-world full collection
 686       collect(cause, Generation::Old);
 687     }
 688 #else
 689     // Stop-the-world full collection
 690     collect(cause, Generation::Old);
 691 #endif
 692   }
 693 }
 694 
 695 void GenCollectedHeap::collect(GCCause::Cause cause, Generation::Type max_gen) {
 696   // The caller doesn't have the Heap_lock
 697   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 698   MutexLocker ml(Heap_lock);
 699   collect_locked(cause, max_gen);
 700 }
 701 
 702 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
 703   // The caller has the Heap_lock
 704   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
 705   collect_locked(cause, Generation::Old);
 706 }
 707 
 708 // this is the private collection interface
 709 // The Heap_lock is expected to be held on entry.
 710 
 711 void GenCollectedHeap::collect_locked(GCCause::Cause cause, Generation::Type max_generation) {
 712   // Read the GC count while holding the Heap_lock
 713   unsigned int gc_count_before      = total_collections();
 714   unsigned int full_gc_count_before = total_full_collections();
 715   {
 716     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
 717     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 718                          cause, max_generation);
 719     VMThread::execute(&op);
 720   }
 721 }
 722 
 723 #if INCLUDE_ALL_GCS
 724 bool GenCollectedHeap::create_cms_collector() {
 725 
 726   assert(_old_gen->kind() == Generation::ConcurrentMarkSweep,
 727          "Unexpected generation kinds");
 728   // Skip two header words in the block content verification
 729   NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();)
 730   CMSCollector* collector = new CMSCollector(
 731     (ConcurrentMarkSweepGeneration*)_old_gen,
 732     _rem_set->as_CardTableRS(),
 733     (ConcurrentMarkSweepPolicy*) collector_policy());
 734 
 735   if (collector == NULL || !collector->completed_initialization()) {
 736     if (collector) {
 737       delete collector;  // Be nice in embedded situation
 738     }
 739     vm_shutdown_during_initialization("Could not create CMS collector");
 740     return false;
 741   }
 742   return true;  // success
 743 }
 744 
 745 void GenCollectedHeap::collect_mostly_concurrent(GCCause::Cause cause) {
 746   assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");
 747 
 748   MutexLocker ml(Heap_lock);
 749   // Read the GC counts while holding the Heap_lock
 750   unsigned int full_gc_count_before = total_full_collections();
 751   unsigned int gc_count_before      = total_collections();
 752   {
 753     MutexUnlocker mu(Heap_lock);
 754     VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
 755     VMThread::execute(&op);
 756   }
 757 }
 758 #endif // INCLUDE_ALL_GCS
 759 
 760 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 761    do_full_collection(clear_all_soft_refs, Generation::Old);
 762 }
 763 
 764 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
 765                                           Generation::Type max_gen) {
 766   Generation::Type local_max_gen;
 767   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
 768       gc_cause() == GCCause::_gc_locker) {
 769     local_max_gen = Generation::Young;
 770   } else {
 771     local_max_gen = max_gen;
 772   }
 773 
 774   do_collection(true                 /* full */,
 775                 clear_all_soft_refs  /* clear_all_soft_refs */,
 776                 0                    /* size */,
 777                 false                /* is_tlab */,
 778                 local_max_gen        /* max_gen */);
 779   // Hack XXX FIX ME !!!
 780   // A scavenge may not have been attempted, or may have
 781   // been attempted and failed, because the old gen was too full
 782   if (local_max_gen == Generation::Young && gc_cause() == GCCause::_gc_locker &&
 783       incremental_collection_will_fail(false /* don't consult_young */)) {
 784     if (PrintGCDetails) {
 785       gclog_or_tty->print_cr("GC locker: Trying a full collection "
 786                              "because scavenge failed");
 787     }
 788     // This time allow the old gen to be collected as well
 789     do_collection(true                 /* full */,
 790                   clear_all_soft_refs  /* clear_all_soft_refs */,
 791                   0                    /* size */,
 792                   false                /* is_tlab */,
 793                   Generation::Old      /* max_gen */);
 794   }
 795 }
 796 
 797 bool GenCollectedHeap::is_in_young(oop p) {
 798   bool result = ((HeapWord*)p) < _old_gen->reserved().start();
 799   assert(result == _young_gen->is_in_reserved(p),
 800          err_msg("incorrect test - result=%d, p=" INTPTR_FORMAT, result, p2i((void*)p)));
 801   return result;
 802 }
 803 
 804 // Returns "TRUE" iff "p" points into the committed areas of the heap.
 805 bool GenCollectedHeap::is_in(const void* p) const {
 806   #ifndef ASSERT
 807   guarantee(VerifyBeforeGC      ||
 808             VerifyDuringGC      ||
 809             VerifyBeforeExit    ||
 810             VerifyDuringStartup ||
 811             PrintAssembly       ||
 812             tty->count() != 0   ||   // already printing
 813             VerifyAfterGC       ||
 814     VMError::fatal_error_in_progress(), "too expensive");
 815 
 816   #endif
 817   // This might be sped up with a cache of the last generation that
 818   // answered yes.
 819   if (_young_gen->is_in(p) || _old_gen->is_in(p)) {
 820     return true;
 821   }
 822   // Otherwise...
 823   return false;
 824 }
 825 
 826 #ifdef ASSERT
 827 // Don't implement this by using is_in_young().  This method is used
 828 // in some cases to check that is_in_young() is correct.
 829 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
 830   assert(is_in_reserved(p) || p == NULL,
 831     "Does not work if address is non-null and outside of the heap");
 832   return p < _young_gen->reserved().end() && p != NULL;
 833 }
 834 #endif
 835 
 836 void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
 837   _young_gen->oop_iterate(cl);
 838   _old_gen->oop_iterate(cl);
 839 }
 840 
 841 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
 842   _young_gen->object_iterate(cl);
 843   _old_gen->object_iterate(cl);
 844 }
 845 
 846 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
 847   _young_gen->safe_object_iterate(cl);
 848   _old_gen->safe_object_iterate(cl);
 849 }
 850 
 851 Space* GenCollectedHeap::space_containing(const void* addr) const {
 852   Space* res = _young_gen->space_containing(addr);
 853   if (res != NULL) {
 854     return res;
 855   }
 856   res = _old_gen->space_containing(addr);
 857   assert(res != NULL, "Could not find containing space");
 858   return res;
 859 }
 860 
 861 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
 862   assert(is_in_reserved(addr), "block_start of address outside of heap");
 863   if (_young_gen->is_in_reserved(addr)) {
 864     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
 865     return _young_gen->block_start(addr);
 866   }
 867 
 868   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 869   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
 870   return _old_gen->block_start(addr);
 871 }
 872 
 873 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
 874   assert(is_in_reserved(addr), "block_size of address outside of heap");
 875   if (_young_gen->is_in_reserved(addr)) {
 876     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
 877     return _young_gen->block_size(addr);
 878   }
 879 
 880   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 881   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
 882   return _old_gen->block_size(addr);
 883 }
 884 
 885 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
 886   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
 887   assert(block_start(addr) == addr, "addr must be a block start");
 888   if (_young_gen->is_in_reserved(addr)) {
 889     return _young_gen->block_is_obj(addr);
 890   }
 891 
 892   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 893   return _old_gen->block_is_obj(addr);
 894 }
 895 
 896 bool GenCollectedHeap::supports_tlab_allocation() const {
 897   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 898   return _young_gen->supports_tlab_allocation();
 899 }
 900 
 901 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
 902   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 903   if (_young_gen->supports_tlab_allocation()) {
 904     return _young_gen->tlab_capacity();
 905   }
 906   return 0;
 907 }
 908 
 909 size_t GenCollectedHeap::tlab_used(Thread* thr) const {
 910   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 911   if (_young_gen->supports_tlab_allocation()) {
 912     return _young_gen->tlab_used();
 913   }
 914   return 0;
 915 }
 916 
 917 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
 918   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 919   if (_young_gen->supports_tlab_allocation()) {
 920     return _young_gen->unsafe_max_tlab_alloc();
 921   }
 922   return 0;
 923 }
 924 
 925 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
 926   bool gc_overhead_limit_was_exceeded;
 927   return collector_policy()->mem_allocate_work(size /* size */,
 928                                                true /* is_tlab */,
 929                                                &gc_overhead_limit_was_exceeded);
 930 }
 931 
 932 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
 933 // from the list headed by "*prev_ptr".
 934 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
 935   bool first = true;
 936   size_t min_size = 0;   // "first" makes this conceptually infinite.
 937   ScratchBlock **smallest_ptr, *smallest;
 938   ScratchBlock  *cur = *prev_ptr;
 939   while (cur) {
 940     assert(*prev_ptr == cur, "just checking");
 941     if (first || cur->num_words < min_size) {
 942       smallest_ptr = prev_ptr;
 943       smallest     = cur;
 944       min_size     = smallest->num_words;
 945       first        = false;
 946     }
 947     prev_ptr = &cur->next;
 948     cur     =  cur->next;
 949   }
 950   smallest      = *smallest_ptr;
 951   *smallest_ptr = smallest->next;
 952   return smallest;
 953 }
 954 
 955 // Sort the scratch block list headed by res into decreasing size order,
 956 // and set "res" to the result.
 957 static void sort_scratch_list(ScratchBlock*& list) {
 958   ScratchBlock* sorted = NULL;
 959   ScratchBlock* unsorted = list;
 960   while (unsorted) {
 961     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
 962     smallest->next  = sorted;
 963     sorted          = smallest;
 964   }
 965   list = sorted;
 966 }
 967 
 968 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
 969                                                size_t max_alloc_words) {
 970   ScratchBlock* res = NULL;
 971   _young_gen->contribute_scratch(res, requestor, max_alloc_words);
 972   _old_gen->contribute_scratch(res, requestor, max_alloc_words);
 973   sort_scratch_list(res);
 974   return res;
 975 }
 976 
 977 void GenCollectedHeap::release_scratch() {
 978   _young_gen->reset_scratch();
 979   _old_gen->reset_scratch();
 980 }
 981 
 982 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
 983   void do_generation(Generation* gen) {
 984     gen->prepare_for_verify();
 985   }
 986 };
 987 
 988 void GenCollectedHeap::prepare_for_verify() {
 989   ensure_parsability(false);        // no need to retire TLABs
 990   GenPrepareForVerifyClosure blk;
 991   generation_iterate(&blk, false);
 992 }
 993 
 994 void GenCollectedHeap::generation_iterate(GenClosure* cl,
 995                                           bool old_to_young) {
 996   if (old_to_young) {
 997     cl->do_generation(_old_gen);
 998     cl->do_generation(_young_gen);
 999   } else {
1000     cl->do_generation(_young_gen);
1001     cl->do_generation(_old_gen);
1002   }
1003 }
1004 
1005 void GenCollectedHeap::space_iterate(SpaceClosure* cl) {
1006   _young_gen->space_iterate(cl, true);
1007   _old_gen->space_iterate(cl, true);
1008 }
1009 
1010 bool GenCollectedHeap::is_maximal_no_gc() const {
1011   return _young_gen->is_maximal_no_gc() && _old_gen->is_maximal_no_gc();
1012 }
1013 
1014 void GenCollectedHeap::save_marks() {
1015   _young_gen->save_marks();
1016   _old_gen->save_marks();
1017 }
1018 
1019 GenCollectedHeap* GenCollectedHeap::heap() {
1020   assert(_gch != NULL, "Uninitialized access to GenCollectedHeap::heap()");
1021   assert(_gch->kind() == CollectedHeap::GenCollectedHeap, "not a generational heap");
1022   return _gch;
1023 }
1024 
1025 void GenCollectedHeap::prepare_for_compaction() {
1026   // Start by compacting into same gen.
1027   CompactPoint cp(_old_gen);
1028   _old_gen->prepare_for_compaction(&cp);
1029   _young_gen->prepare_for_compaction(&cp);
1030 }
1031 
1032 void GenCollectedHeap::verify(bool silent, VerifyOption option /* ignored */) {
1033   if (!silent) {
1034     gclog_or_tty->print("%s", _old_gen->name());
1035     gclog_or_tty->print(" ");
1036   }
1037   _old_gen->verify();
1038 
1039   if (!silent) {
1040     gclog_or_tty->print("%s", _young_gen->name());
1041     gclog_or_tty->print(" ");
1042   }
1043   _young_gen->verify();
1044 
1045   if (!silent) {
1046     gclog_or_tty->print("remset ");
1047   }
1048   rem_set()->verify();
1049 }
1050 
1051 void GenCollectedHeap::print_on(outputStream* st) const {
1052   _young_gen->print_on(st);
1053   _old_gen->print_on(st);
1054   MetaspaceAux::print_on(st);
1055 }
1056 
1057 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1058   if (workers() != NULL) {
1059     workers()->threads_do(tc);
1060   }
1061 #if INCLUDE_ALL_GCS
1062   if (UseConcMarkSweepGC) {
1063     ConcurrentMarkSweepThread::threads_do(tc);
1064   }
1065 #endif // INCLUDE_ALL_GCS
1066 }
1067 
1068 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
1069 #if INCLUDE_ALL_GCS
1070   if (UseParNewGC) {
1071     workers()->print_worker_threads_on(st);
1072   }
1073   if (UseConcMarkSweepGC) {
1074     ConcurrentMarkSweepThread::print_all_on(st);
1075   }
1076 #endif // INCLUDE_ALL_GCS
1077 }
1078 
1079 void GenCollectedHeap::print_on_error(outputStream* st) const {
1080   this->CollectedHeap::print_on_error(st);
1081 
1082 #if INCLUDE_ALL_GCS
1083   if (UseConcMarkSweepGC) {
1084     st->cr();
1085     CMSCollector::print_on_error(st);
1086   }
1087 #endif // INCLUDE_ALL_GCS
1088 }
1089 
1090 void GenCollectedHeap::print_tracing_info() const {
1091   if (TraceYoungGenTime) {
1092     _young_gen->print_summary_info();
1093   }
1094   if (TraceOldGenTime) {
1095     _old_gen->print_summary_info();
1096   }
1097 }
1098 
1099 void GenCollectedHeap::print_heap_change(size_t prev_used) const {
1100   if (PrintGCDetails && Verbose) {
1101     gclog_or_tty->print(" "  SIZE_FORMAT
1102                         "->" SIZE_FORMAT
1103                         "("  SIZE_FORMAT ")",
1104                         prev_used, used(), capacity());
1105   } else {
1106     gclog_or_tty->print(" "  SIZE_FORMAT "K"
1107                         "->" SIZE_FORMAT "K"
1108                         "("  SIZE_FORMAT "K)",
1109                         prev_used / K, used() / K, capacity() / K);
1110   }
1111 }
1112 
1113 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1114  private:
1115   bool _full;
1116  public:
1117   void do_generation(Generation* gen) {
1118     gen->gc_prologue(_full);
1119   }
1120   GenGCPrologueClosure(bool full) : _full(full) {};
1121 };
1122 
1123 void GenCollectedHeap::gc_prologue(bool full) {
1124   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1125 
1126   always_do_update_barrier = false;
1127   // Fill TLAB's and such
1128   CollectedHeap::accumulate_statistics_all_tlabs();
1129   ensure_parsability(true);   // retire TLABs
1130 
1131   // Walk generations
1132   GenGCPrologueClosure blk(full);
1133   generation_iterate(&blk, false);  // not old-to-young.
1134 };
1135 
1136 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1137  private:
1138   bool _full;
1139  public:
1140   void do_generation(Generation* gen) {
1141     gen->gc_epilogue(_full);
1142   }
1143   GenGCEpilogueClosure(bool full) : _full(full) {};
1144 };
1145 
1146 void GenCollectedHeap::gc_epilogue(bool full) {
1147 #ifdef COMPILER2
1148   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1149   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1150   guarantee(actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1151 #endif /* COMPILER2 */
1152 
1153   resize_all_tlabs();
1154 
1155   GenGCEpilogueClosure blk(full);
1156   generation_iterate(&blk, false);  // not old-to-young.
1157 
1158   if (!CleanChunkPoolAsync) {
1159     Chunk::clean_chunk_pool();
1160   }
1161 
1162   MetaspaceCounters::update_performance_counters();
1163   CompressedClassSpaceCounters::update_performance_counters();
1164 
1165   always_do_update_barrier = UseConcMarkSweepGC;
1166 };
1167 
1168 #ifndef PRODUCT
1169 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1170  private:
1171  public:
1172   void do_generation(Generation* gen) {
1173     gen->record_spaces_top();
1174   }
1175 };
1176 
1177 void GenCollectedHeap::record_gen_tops_before_GC() {
1178   if (ZapUnusedHeapArea) {
1179     GenGCSaveTopsBeforeGCClosure blk;
1180     generation_iterate(&blk, false);  // not old-to-young.
1181   }
1182 }
1183 #endif  // not PRODUCT
1184 
1185 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1186  public:
1187   void do_generation(Generation* gen) {
1188     gen->ensure_parsability();
1189   }
1190 };
1191 
1192 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1193   CollectedHeap::ensure_parsability(retire_tlabs);
1194   GenEnsureParsabilityClosure ep_cl;
1195   generation_iterate(&ep_cl, false);
1196 }
1197 
1198 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
1199                                               oop obj,
1200                                               size_t obj_size) {
1201   guarantee(old_gen == _old_gen, "We only get here with an old generation");
1202   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1203   HeapWord* result = NULL;
1204 
1205   result = old_gen->expand_and_allocate(obj_size, false);
1206 
1207   if (result != NULL) {
1208     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
1209   }
1210   return oop(result);
1211 }
1212 
1213 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1214   jlong _time;   // in ms
1215   jlong _now;    // in ms
1216 
1217  public:
1218   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1219 
1220   jlong time() { return _time; }
1221 
1222   void do_generation(Generation* gen) {
1223     _time = MIN2(_time, gen->time_of_last_gc(_now));
1224   }
1225 };
1226 
1227 jlong GenCollectedHeap::millis_since_last_gc() {
1228   // We need a monotonically non-decreasing time in ms but
1229   // os::javaTimeMillis() does not guarantee monotonicity.
1230   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1231   GenTimeOfLastGCClosure tolgc_cl(now);
1232   // iterate over generations getting the oldest
1233   // time that a generation was collected
1234   generation_iterate(&tolgc_cl, false);
1235 
1236   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
1237   // provided the underlying platform provides such a time source
1238   // (and it is bug free). So we still have to guard against getting
1239   // back a time later than 'now'.
1240   jlong retVal = now - tolgc_cl.time();
1241   if (retVal < 0) {
1242     NOT_PRODUCT(warning("time warp: "INT64_FORMAT, (int64_t) retVal);)
1243     return 0;
1244   }
1245   return retVal;
1246 }