1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_MEMORY_GENERATION_HPP
  26 #define SHARE_VM_MEMORY_GENERATION_HPP
  27 
  28 #include "gc_implementation/shared/collectorCounters.hpp"
  29 #include "memory/allocation.hpp"
  30 #include "memory/memRegion.hpp"
  31 #include "memory/referenceProcessor.hpp"
  32 #include "memory/universe.hpp"
  33 #include "memory/watermark.hpp"
  34 #include "runtime/mutex.hpp"
  35 #include "runtime/perfData.hpp"
  36 #include "runtime/virtualspace.hpp"
  37 
  38 // A Generation models a heap area for similarly-aged objects.
  39 // It will contain one ore more spaces holding the actual objects.
  40 //
  41 // The Generation class hierarchy:
  42 //
  43 // Generation                      - abstract base class
  44 // - DefNewGeneration              - allocation area (copy collected)
  45 //   - ParNewGeneration            - a DefNewGeneration that is collected by
  46 //                                   several threads
  47 // - CardGeneration                 - abstract class adding offset array behavior
  48 //   - OneContigSpaceCardGeneration - abstract class holding a single
  49 //                                    contiguous space with card marking
  50 //     - TenuredGeneration         - tenured (old object) space (markSweepCompact)
  51 //   - ConcurrentMarkSweepGeneration - Mostly Concurrent Mark Sweep Generation
  52 //                                       (Detlefs-Printezis refinement of
  53 //                                       Boehm-Demers-Schenker)
  54 //
  55 // The system configurations currently allowed are:
  56 //
  57 //   DefNewGeneration + TenuredGeneration
  58 //   DefNewGeneration + ConcurrentMarkSweepGeneration
  59 //
  60 //   ParNewGeneration + TenuredGeneration
  61 //   ParNewGeneration + ConcurrentMarkSweepGeneration
  62 //
  63 
  64 class DefNewGeneration;
  65 class GenerationSpec;
  66 class CompactibleSpace;
  67 class ContiguousSpace;
  68 class CompactPoint;
  69 class OopsInGenClosure;
  70 class OopClosure;
  71 class ScanClosure;
  72 class FastScanClosure;
  73 class GenCollectedHeap;
  74 class GenRemSet;
  75 class GCStats;
  76 
  77 // A "ScratchBlock" represents a block of memory in one generation usable by
  78 // another.  It represents "num_words" free words, starting at and including
  79 // the address of "this".
  80 struct ScratchBlock {
  81   ScratchBlock* next;
  82   size_t num_words;
  83   HeapWord scratch_space[1];  // Actually, of size "num_words-2" (assuming
  84                               // first two fields are word-sized.)
  85 };
  86 
  87 
  88 class Generation: public CHeapObj<mtGC> {
  89   friend class VMStructs;
  90  private:
  91   jlong _time_of_last_gc; // time when last gc on this generation happened (ms)
  92   MemRegion _prev_used_region; // for collectors that want to "remember" a value for
  93                                // used region at some specific point during collection.
  94 
  95  protected:
  96   // Minimum and maximum addresses for memory reserved (not necessarily
  97   // committed) for generation.
  98   // Used by card marking code. Must not overlap with address ranges of
  99   // other generations.
 100   MemRegion _reserved;
 101 
 102   // Memory area reserved for generation
 103   VirtualSpace _virtual_space;
 104 
 105   // Level in the generation hierarchy.
 106   int _level;
 107 
 108   // ("Weak") Reference processing support
 109   ReferenceProcessor* _ref_processor;
 110 
 111   // Performance Counters
 112   CollectorCounters* _gc_counters;
 113 
 114   // Statistics for garbage collection
 115   GCStats* _gc_stats;
 116 
 117   // Returns the next generation in the configuration, or else NULL if this
 118   // is the highest generation.
 119   Generation* next_gen() const;
 120 
 121   // Initialize the generation.
 122   Generation(ReservedSpace rs, size_t initial_byte_size, int level);
 123 
 124   // Apply "cl->do_oop" to (the address of) (exactly) all the ref fields in
 125   // "sp" that point into younger generations.
 126   // The iteration is only over objects allocated at the start of the
 127   // iterations; objects allocated as a result of applying the closure are
 128   // not included.
 129   void younger_refs_in_space_iterate(Space* sp, OopsInGenClosure* cl);
 130 
 131  public:
 132   // The set of possible generation kinds.
 133   enum Name {
 134     DefNew,
 135     ParNew,
 136     MarkSweepCompact,
 137     ConcurrentMarkSweep,
 138     Other
 139   };
 140 
 141   enum SomePublicConstants {
 142     // Generations are GenGrain-aligned and have size that are multiples of
 143     // GenGrain.
 144     // Note: on ARM we add 1 bit for card_table_base to be properly aligned
 145     // (we expect its low byte to be zero - see implementation of post_barrier)
 146     LogOfGenGrain = 16 ARM_ONLY(+1),
 147     GenGrain = 1 << LogOfGenGrain
 148   };
 149 
 150   // allocate and initialize ("weak") refs processing support
 151   virtual void ref_processor_init();
 152   void set_ref_processor(ReferenceProcessor* rp) {
 153     assert(_ref_processor == NULL, "clobbering existing _ref_processor");
 154     _ref_processor = rp;
 155   }
 156 
 157   virtual Generation::Name kind() { return Generation::Other; }
 158   GenerationSpec* spec();
 159 
 160   // This properly belongs in the collector, but for now this
 161   // will do.
 162   virtual bool refs_discovery_is_atomic() const { return true;  }
 163   virtual bool refs_discovery_is_mt()     const { return false; }
 164 
 165   // Space enquiries (results in bytes)
 166   virtual size_t capacity() const = 0;  // The maximum number of object bytes the
 167                                         // generation can currently hold.
 168   virtual size_t used() const = 0;      // The number of used bytes in the gen.
 169   virtual size_t free() const = 0;      // The number of free bytes in the gen.
 170 
 171   // Support for java.lang.Runtime.maxMemory(); see CollectedHeap.
 172   // Returns the total number of bytes  available in a generation
 173   // for the allocation of objects.
 174   virtual size_t max_capacity() const;
 175 
 176   // If this is a young generation, the maximum number of bytes that can be
 177   // allocated in this generation before a GC is triggered.
 178   virtual size_t capacity_before_gc() const { return 0; }
 179 
 180   // The largest number of contiguous free bytes in the generation,
 181   // including expansion  (Assumes called at a safepoint.)
 182   virtual size_t contiguous_available() const = 0;
 183   // The largest number of contiguous free bytes in this or any higher generation.
 184   virtual size_t max_contiguous_available() const;
 185 
 186   // Returns true if promotions of the specified amount are
 187   // likely to succeed without a promotion failure.
 188   // Promotion of the full amount is not guaranteed but
 189   // might be attempted in the worst case.
 190   virtual bool promotion_attempt_is_safe(size_t max_promotion_in_bytes) const;
 191 
 192   // For a non-young generation, this interface can be used to inform a
 193   // generation that a promotion attempt into that generation failed.
 194   // Typically used to enable diagnostic output for post-mortem analysis,
 195   // but other uses of the interface are not ruled out.
 196   virtual void promotion_failure_occurred() { /* does nothing */ }
 197 
 198   // Return an estimate of the maximum allocation that could be performed
 199   // in the generation without triggering any collection or expansion
 200   // activity.  It is "unsafe" because no locks are taken; the result
 201   // should be treated as an approximation, not a guarantee, for use in
 202   // heuristic resizing decisions.
 203   virtual size_t unsafe_max_alloc_nogc() const = 0;
 204 
 205   // Returns true if this generation cannot be expanded further
 206   // without a GC. Override as appropriate.
 207   virtual bool is_maximal_no_gc() const {
 208     return _virtual_space.uncommitted_size() == 0;
 209   }
 210 
 211   MemRegion reserved() const { return _reserved; }
 212 
 213   // Returns a region guaranteed to contain all the objects in the
 214   // generation.
 215   virtual MemRegion used_region() const { return _reserved; }
 216 
 217   MemRegion prev_used_region() const { return _prev_used_region; }
 218   virtual void  save_used_region()   { _prev_used_region = used_region(); }
 219 
 220   // Returns "TRUE" iff "p" points into the committed areas in the generation.
 221   // For some kinds of generations, this may be an expensive operation.
 222   // To avoid performance problems stemming from its inadvertent use in
 223   // product jvm's, we restrict its use to assertion checking or
 224   // verification only.
 225   virtual bool is_in(const void* p) const;
 226 
 227   /* Returns "TRUE" iff "p" points into the reserved area of the generation. */
 228   bool is_in_reserved(const void* p) const {
 229     return _reserved.contains(p);
 230   }
 231 
 232   // Check that the generation kind is DefNewGeneration or a sub
 233   // class of DefNewGeneration and return a DefNewGeneration*
 234   DefNewGeneration*  as_DefNewGeneration();
 235 
 236   // If some space in the generation contains the given "addr", return a
 237   // pointer to that space, else return "NULL".
 238   virtual Space* space_containing(const void* addr) const;
 239 
 240   // Iteration - do not use for time critical operations
 241   virtual void space_iterate(SpaceClosure* blk, bool usedOnly = false) = 0;
 242 
 243   // Returns the first space, if any, in the generation that can participate
 244   // in compaction, or else "NULL".
 245   virtual CompactibleSpace* first_compaction_space() const = 0;
 246 
 247   // Returns "true" iff this generation should be used to allocate an
 248   // object of the given size.  Young generations might
 249   // wish to exclude very large objects, for example, since, if allocated
 250   // often, they would greatly increase the frequency of young-gen
 251   // collection.
 252   virtual bool should_allocate(size_t word_size, bool is_tlab) {
 253     bool result = false;
 254     size_t overflow_limit = (size_t)1 << (BitsPerSize_t - LogHeapWordSize);
 255     if (!is_tlab || supports_tlab_allocation()) {
 256       result = (word_size > 0) && (word_size < overflow_limit);
 257     }
 258     return result;
 259   }
 260 
 261   // Allocate and returns a block of the requested size, or returns "NULL".
 262   // Assumes the caller has done any necessary locking.
 263   virtual HeapWord* allocate(size_t word_size, bool is_tlab) = 0;
 264 
 265   // Like "allocate", but performs any necessary locking internally.
 266   virtual HeapWord* par_allocate(size_t word_size, bool is_tlab) = 0;
 267 
 268   // A 'younger' gen has reached an allocation limit, and uses this to notify
 269   // the next older gen.  The return value is a new limit, or NULL if none.  The
 270   // caller must do the necessary locking.
 271   virtual HeapWord* allocation_limit_reached(Space* space, HeapWord* top,
 272                                              size_t word_size) {
 273     return NULL;
 274   }
 275 
 276   // Some generation may offer a region for shared, contiguous allocation,
 277   // via inlined code (by exporting the address of the top and end fields
 278   // defining the extent of the contiguous allocation region.)
 279 
 280   // This function returns "true" iff the heap supports this kind of
 281   // allocation.  (More precisely, this means the style of allocation that
 282   // increments *top_addr()" with a CAS.) (Default is "no".)
 283   // A generation that supports this allocation style must use lock-free
 284   // allocation for *all* allocation, since there are times when lock free
 285   // allocation will be concurrent with plain "allocate" calls.
 286   virtual bool supports_inline_contig_alloc() const { return false; }
 287 
 288   // These functions return the addresses of the fields that define the
 289   // boundaries of the contiguous allocation area.  (These fields should be
 290   // physically near to one another.)
 291   virtual HeapWord** top_addr() const { return NULL; }
 292   virtual HeapWord** end_addr() const { return NULL; }
 293 
 294   // Thread-local allocation buffers
 295   virtual bool supports_tlab_allocation() const { return false; }
 296   virtual size_t tlab_capacity() const {
 297     guarantee(false, "Generation doesn't support thread local allocation buffers");
 298     return 0;
 299   }
 300   virtual size_t tlab_used() const {
 301     guarantee(false, "Generation doesn't support thread local allocation buffers");
 302     return 0;
 303   }
 304   virtual size_t unsafe_max_tlab_alloc() const {
 305     guarantee(false, "Generation doesn't support thread local allocation buffers");
 306     return 0;
 307   }
 308 
 309   // "obj" is the address of an object in a younger generation.  Allocate space
 310   // for "obj" in the current (or some higher) generation, and copy "obj" into
 311   // the newly allocated space, if possible, returning the result (or NULL if
 312   // the allocation failed).
 313   //
 314   // The "obj_size" argument is just obj->size(), passed along so the caller can
 315   // avoid repeating the virtual call to retrieve it.
 316   virtual oop promote(oop obj, size_t obj_size);
 317 
 318   // Thread "thread_num" (0 <= i < ParalleGCThreads) wants to promote
 319   // object "obj", whose original mark word was "m", and whose size is
 320   // "word_sz".  If possible, allocate space for "obj", copy obj into it
 321   // (taking care to copy "m" into the mark word when done, since the mark
 322   // word of "obj" may have been overwritten with a forwarding pointer, and
 323   // also taking care to copy the klass pointer *last*.  Returns the new
 324   // object if successful, or else NULL.
 325   virtual oop par_promote(int thread_num,
 326                           oop obj, markOop m, size_t word_sz);
 327 
 328   // Undo, if possible, the most recent par_promote_alloc allocation by
 329   // "thread_num" ("obj", of "word_sz").
 330   virtual void par_promote_alloc_undo(int thread_num,
 331                                       HeapWord* obj, size_t word_sz);
 332 
 333   // Informs the current generation that all par_promote_alloc's in the
 334   // collection have been completed; any supporting data structures can be
 335   // reset.  Default is to do nothing.
 336   virtual void par_promote_alloc_done(int thread_num) {}
 337 
 338   // Informs the current generation that all oop_since_save_marks_iterates
 339   // performed by "thread_num" in the current collection, if any, have been
 340   // completed; any supporting data structures can be reset.  Default is to
 341   // do nothing.
 342   virtual void par_oop_since_save_marks_iterate_done(int thread_num) {}
 343 
 344   // This generation will collect all younger generations
 345   // during a full collection.
 346   virtual bool full_collects_younger_generations() const { return false; }
 347 
 348   // This generation does in-place marking, meaning that mark words
 349   // are mutated during the marking phase and presumably reinitialized
 350   // to a canonical value after the GC. This is currently used by the
 351   // biased locking implementation to determine whether additional
 352   // work is required during the GC prologue and epilogue.
 353   virtual bool performs_in_place_marking() const { return true; }
 354 
 355   // Returns "true" iff collect() should subsequently be called on this
 356   // this generation. See comment below.
 357   // This is a generic implementation which can be overridden.
 358   //
 359   // Note: in the current (1.4) implementation, when genCollectedHeap's
 360   // incremental_collection_will_fail flag is set, all allocations are
 361   // slow path (the only fast-path place to allocate is DefNew, which
 362   // will be full if the flag is set).
 363   // Thus, older generations which collect younger generations should
 364   // test this flag and collect if it is set.
 365   virtual bool should_collect(bool   full,
 366                               size_t word_size,
 367                               bool   is_tlab) {
 368     return (full || should_allocate(word_size, is_tlab));
 369   }
 370 
 371   // Returns true if the collection is likely to be safely
 372   // completed. Even if this method returns true, a collection
 373   // may not be guaranteed to succeed, and the system should be
 374   // able to safely unwind and recover from that failure, albeit
 375   // at some additional cost.
 376   virtual bool collection_attempt_is_safe() {
 377     guarantee(false, "Are you sure you want to call this method?");
 378     return true;
 379   }
 380 
 381   // Perform a garbage collection.
 382   // If full is true attempt a full garbage collection of this generation.
 383   // Otherwise, attempting to (at least) free enough space to support an
 384   // allocation of the given "word_size".
 385   virtual void collect(bool   full,
 386                        bool   clear_all_soft_refs,
 387                        size_t word_size,
 388                        bool   is_tlab) = 0;
 389 
 390   // Perform a heap collection, attempting to create (at least) enough
 391   // space to support an allocation of the given "word_size".  If
 392   // successful, perform the allocation and return the resulting
 393   // "oop" (initializing the allocated block). If the allocation is
 394   // still unsuccessful, return "NULL".
 395   virtual HeapWord* expand_and_allocate(size_t word_size,
 396                                         bool is_tlab,
 397                                         bool parallel = false) = 0;
 398 
 399   // Some generations may require some cleanup or preparation actions before
 400   // allowing a collection.  The default is to do nothing.
 401   virtual void gc_prologue(bool full) {};
 402 
 403   // Some generations may require some cleanup actions after a collection.
 404   // The default is to do nothing.
 405   virtual void gc_epilogue(bool full) {};
 406 
 407   // Save the high water marks for the used space in a generation.
 408   virtual void record_spaces_top() {};
 409 
 410   // Some generations may need to be "fixed-up" after some allocation
 411   // activity to make them parsable again. The default is to do nothing.
 412   virtual void ensure_parsability() {};
 413 
 414   // Time (in ms) when we were last collected or now if a collection is
 415   // in progress.
 416   virtual jlong time_of_last_gc(jlong now) {
 417     // Both _time_of_last_gc and now are set using a time source
 418     // that guarantees monotonically non-decreasing values provided
 419     // the underlying platform provides such a source. So we still
 420     // have to guard against non-monotonicity.
 421     NOT_PRODUCT(
 422       if (now < _time_of_last_gc) {
 423         warning("time warp: "INT64_FORMAT" to "INT64_FORMAT, (int64_t)_time_of_last_gc, (int64_t)now);
 424       }
 425     )
 426     return _time_of_last_gc;
 427   }
 428 
 429   virtual void update_time_of_last_gc(jlong now)  {
 430     _time_of_last_gc = now;
 431   }
 432 
 433   // Generations may keep statistics about collection.  This
 434   // method updates those statistics.  current_level is
 435   // the level of the collection that has most recently
 436   // occurred.  This allows the generation to decide what
 437   // statistics are valid to collect.  For example, the
 438   // generation can decide to gather the amount of promoted data
 439   // if the collection of the younger generations has completed.
 440   GCStats* gc_stats() const { return _gc_stats; }
 441   virtual void update_gc_stats(int current_level, bool full) {}
 442 
 443   // Mark sweep support phase2
 444   virtual void prepare_for_compaction(CompactPoint* cp);
 445   // Mark sweep support phase3
 446   virtual void adjust_pointers();
 447   // Mark sweep support phase4
 448   virtual void compact();
 449   virtual void post_compact() {ShouldNotReachHere();}
 450 
 451   // Support for CMS's rescan. In this general form we return a pointer
 452   // to an abstract object that can be used, based on specific previously
 453   // decided protocols, to exchange information between generations,
 454   // information that may be useful for speeding up certain types of
 455   // garbage collectors. A NULL value indicates to the client that
 456   // no data recording is expected by the provider. The data-recorder is
 457   // expected to be GC worker thread-local, with the worker index
 458   // indicated by "thr_num".
 459   virtual void* get_data_recorder(int thr_num) { return NULL; }
 460   virtual void sample_eden_chunk() {}
 461 
 462   // Some generations may require some cleanup actions before allowing
 463   // a verification.
 464   virtual void prepare_for_verify() {};
 465 
 466   // Accessing "marks".
 467 
 468   // This function gives a generation a chance to note a point between
 469   // collections.  For example, a contiguous generation might note the
 470   // beginning allocation point post-collection, which might allow some later
 471   // operations to be optimized.
 472   virtual void save_marks() {}
 473 
 474   // This function allows generations to initialize any "saved marks".  That
 475   // is, should only be called when the generation is empty.
 476   virtual void reset_saved_marks() {}
 477 
 478   // This function is "true" iff any no allocations have occurred in the
 479   // generation since the last call to "save_marks".
 480   virtual bool no_allocs_since_save_marks() = 0;
 481 
 482   // Apply "cl->apply" to (the addresses of) all reference fields in objects
 483   // allocated in the current generation since the last call to "save_marks".
 484   // If more objects are allocated in this generation as a result of applying
 485   // the closure, iterates over reference fields in those objects as well.
 486   // Calls "save_marks" at the end of the iteration.
 487   // General signature...
 488   virtual void oop_since_save_marks_iterate_v(OopsInGenClosure* cl) = 0;
 489   // ...and specializations for de-virtualization.  (The general
 490   // implementation of the _nv versions call the virtual version.
 491   // Note that the _nv suffix is not really semantically necessary,
 492   // but it avoids some not-so-useful warnings on Solaris.)
 493 #define Generation_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)             \
 494   virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {    \
 495     oop_since_save_marks_iterate_v((OopsInGenClosure*)cl);                      \
 496   }
 497   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(Generation_SINCE_SAVE_MARKS_DECL)
 498 
 499 #undef Generation_SINCE_SAVE_MARKS_DECL
 500 
 501   // The "requestor" generation is performing some garbage collection
 502   // action for which it would be useful to have scratch space.  If
 503   // the target is not the requestor, no gc actions will be required
 504   // of the target.  The requestor promises to allocate no more than
 505   // "max_alloc_words" in the target generation (via promotion say,
 506   // if the requestor is a young generation and the target is older).
 507   // If the target generation can provide any scratch space, it adds
 508   // it to "list", leaving "list" pointing to the head of the
 509   // augmented list.  The default is to offer no space.
 510   virtual void contribute_scratch(ScratchBlock*& list, Generation* requestor,
 511                                   size_t max_alloc_words) {}
 512 
 513   // Give each generation an opportunity to do clean up for any
 514   // contributed scratch.
 515   virtual void reset_scratch() {};
 516 
 517   // When an older generation has been collected, and perhaps resized,
 518   // this method will be invoked on all younger generations (from older to
 519   // younger), allowing them to resize themselves as appropriate.
 520   virtual void compute_new_size() = 0;
 521 
 522   // Printing
 523   virtual const char* name() const = 0;
 524   virtual const char* short_name() const = 0;
 525 
 526   int level() const { return _level; }
 527 
 528   // Attributes
 529 
 530   // True iff the given generation may only be the youngest generation.
 531   virtual bool must_be_youngest() const = 0;
 532   // True iff the given generation may only be the oldest generation.
 533   virtual bool must_be_oldest() const = 0;
 534 
 535   // Reference Processing accessor
 536   ReferenceProcessor* const ref_processor() { return _ref_processor; }
 537 
 538   // Iteration.
 539 
 540   // Iterate over all the ref-containing fields of all objects in the
 541   // generation, calling "cl.do_oop" on each.
 542   virtual void oop_iterate(ExtendedOopClosure* cl);
 543 
 544   // Iterate over all objects in the generation, calling "cl.do_object" on
 545   // each.
 546   virtual void object_iterate(ObjectClosure* cl);
 547 
 548   // Iterate over all safe objects in the generation, calling "cl.do_object" on
 549   // each.  An object is safe if its references point to other objects in
 550   // the heap.  This defaults to object_iterate() unless overridden.
 551   virtual void safe_object_iterate(ObjectClosure* cl);
 552 
 553   // Apply "cl->do_oop" to (the address of) all and only all the ref fields
 554   // in the current generation that contain pointers to objects in younger
 555   // generations. Objects allocated since the last "save_marks" call are
 556   // excluded.
 557   virtual void younger_refs_iterate(OopsInGenClosure* cl) = 0;
 558 
 559   // Inform a generation that it longer contains references to objects
 560   // in any younger generation.    [e.g. Because younger gens are empty,
 561   // clear the card table.]
 562   virtual void clear_remembered_set() { }
 563 
 564   // Inform a generation that some of its objects have moved.  [e.g. The
 565   // generation's spaces were compacted, invalidating the card table.]
 566   virtual void invalidate_remembered_set() { }
 567 
 568   // Block abstraction.
 569 
 570   // Returns the address of the start of the "block" that contains the
 571   // address "addr".  We say "blocks" instead of "object" since some heaps
 572   // may not pack objects densely; a chunk may either be an object or a
 573   // non-object.
 574   virtual HeapWord* block_start(const void* addr) const;
 575 
 576   // Requires "addr" to be the start of a chunk, and returns its size.
 577   // "addr + size" is required to be the start of a new chunk, or the end
 578   // of the active area of the heap.
 579   virtual size_t block_size(const HeapWord* addr) const ;
 580 
 581   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 582   // the block is an object.
 583   virtual bool block_is_obj(const HeapWord* addr) const;
 584 
 585 
 586   // PrintGC, PrintGCDetails support
 587   void print_heap_change(size_t prev_used) const;
 588 
 589   // PrintHeapAtGC support
 590   virtual void print() const;
 591   virtual void print_on(outputStream* st) const;
 592 
 593   virtual void verify() = 0;
 594 
 595   struct StatRecord {
 596     int invocations;
 597     elapsedTimer accumulated_time;
 598     StatRecord() :
 599       invocations(0),
 600       accumulated_time(elapsedTimer()) {}
 601   };
 602 private:
 603   StatRecord _stat_record;
 604 public:
 605   StatRecord* stat_record() { return &_stat_record; }
 606 
 607   virtual void print_summary_info();
 608   virtual void print_summary_info_on(outputStream* st);
 609 
 610   // Performance Counter support
 611   virtual void update_counters() = 0;
 612   virtual CollectorCounters* counters() { return _gc_counters; }
 613 };
 614 
 615 // Class CardGeneration is a generation that is covered by a card table,
 616 // and uses a card-size block-offset array to implement block_start.
 617 
 618 // class BlockOffsetArray;
 619 // class BlockOffsetArrayContigSpace;
 620 class BlockOffsetSharedArray;
 621 
 622 class CardGeneration: public Generation {
 623   friend class VMStructs;
 624  protected:
 625   // This is shared with other generations.
 626   GenRemSet* _rs;
 627   // This is local to this generation.
 628   BlockOffsetSharedArray* _bts;
 629 
 630   // current shrinking effect: this damps shrinking when the heap gets empty.
 631   size_t _shrink_factor;
 632 
 633   size_t _min_heap_delta_bytes;   // Minimum amount to expand.
 634 
 635   // Some statistics from before gc started.
 636   // These are gathered in the gc_prologue (and should_collect)
 637   // to control growing/shrinking policy in spite of promotions.
 638   size_t _capacity_at_prologue;
 639   size_t _used_at_prologue;
 640 
 641   CardGeneration(ReservedSpace rs, size_t initial_byte_size, int level,
 642                  GenRemSet* remset);
 643 
 644  public:
 645 
 646   // Attempt to expand the generation by "bytes".  Expand by at a
 647   // minimum "expand_bytes".  Return true if some amount (not
 648   // necessarily the full "bytes") was done.
 649   virtual bool expand(size_t bytes, size_t expand_bytes);
 650 
 651   // Shrink generation with specified size (returns false if unable to shrink)
 652   virtual void shrink(size_t bytes) = 0;
 653 
 654   virtual void compute_new_size();
 655 
 656   virtual void clear_remembered_set();
 657 
 658   virtual void invalidate_remembered_set();
 659 
 660   virtual void prepare_for_verify();
 661 
 662   // Grow generation with specified size (returns false if unable to grow)
 663   virtual bool grow_by(size_t bytes) = 0;
 664   // Grow generation to reserved size.
 665   virtual bool grow_to_reserved() = 0;
 666 };
 667 
 668 // OneContigSpaceCardGeneration models a heap of old objects contained in a single
 669 // contiguous space.
 670 //
 671 // Garbage collection is performed using mark-compact.
 672 
 673 class OneContigSpaceCardGeneration: public CardGeneration {
 674   friend class VMStructs;
 675   // Abstractly, this is a subtype that gets access to protected fields.
 676   friend class VM_PopulateDumpSharedSpace;
 677 
 678  protected:
 679   ContiguousSpace*  _the_space;       // actual space holding objects
 680   WaterMark  _last_gc;                // watermark between objects allocated before
 681                                       // and after last GC.
 682 
 683   // Grow generation with specified size (returns false if unable to grow)
 684   virtual bool grow_by(size_t bytes);
 685   // Grow generation to reserved size.
 686   virtual bool grow_to_reserved();
 687   // Shrink generation with specified size (returns false if unable to shrink)
 688   void shrink_by(size_t bytes);
 689 
 690   // Allocation failure
 691   virtual bool expand(size_t bytes, size_t expand_bytes);
 692   void shrink(size_t bytes);
 693 
 694   // Accessing spaces
 695   ContiguousSpace* the_space() const { return _the_space; }
 696 
 697  public:
 698   OneContigSpaceCardGeneration(ReservedSpace rs, size_t initial_byte_size,
 699                                int level, GenRemSet* remset,
 700                                ContiguousSpace* space) :
 701     CardGeneration(rs, initial_byte_size, level, remset),
 702     _the_space(space)
 703   {}
 704 
 705   inline bool is_in(const void* p) const;
 706 
 707   // Space enquiries
 708   size_t capacity() const;
 709   size_t used() const;
 710   size_t free() const;
 711 
 712   MemRegion used_region() const;
 713 
 714   size_t unsafe_max_alloc_nogc() const;
 715   size_t contiguous_available() const;
 716 
 717   // Iteration
 718   void object_iterate(ObjectClosure* blk);
 719   void space_iterate(SpaceClosure* blk, bool usedOnly = false);
 720 
 721   void younger_refs_iterate(OopsInGenClosure* blk);
 722 
 723   inline CompactibleSpace* first_compaction_space() const;
 724 
 725   virtual inline HeapWord* allocate(size_t word_size, bool is_tlab);
 726   virtual inline HeapWord* par_allocate(size_t word_size, bool is_tlab);
 727 
 728   // Accessing marks
 729   inline WaterMark top_mark();
 730   inline WaterMark bottom_mark();
 731 
 732 #define OneContig_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)      \
 733   void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
 734   OneContig_SINCE_SAVE_MARKS_DECL(OopsInGenClosure,_v)
 735   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(OneContig_SINCE_SAVE_MARKS_DECL)
 736 
 737   void save_marks();
 738   void reset_saved_marks();
 739   bool no_allocs_since_save_marks();
 740 
 741   inline size_t block_size(const HeapWord* addr) const;
 742 
 743   inline bool block_is_obj(const HeapWord* addr) const;
 744 
 745   virtual void collect(bool full,
 746                        bool clear_all_soft_refs,
 747                        size_t size,
 748                        bool is_tlab);
 749   HeapWord* expand_and_allocate(size_t size,
 750                                 bool is_tlab,
 751                                 bool parallel = false);
 752 
 753   virtual void prepare_for_verify();
 754 
 755   virtual void gc_epilogue(bool full);
 756 
 757   virtual void record_spaces_top();
 758 
 759   virtual void verify();
 760   virtual void print_on(outputStream* st) const;
 761 };
 762 
 763 #endif // SHARE_VM_MEMORY_GENERATION_HPP