1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/shared/collectorCounters.hpp"
  27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  28 #include "gc_implementation/shared/gcHeapSummary.hpp"
  29 #include "gc_implementation/shared/gcTimer.hpp"
  30 #include "gc_implementation/shared/gcTraceTime.hpp"
  31 #include "gc_implementation/shared/gcTrace.hpp"
  32 #include "gc_implementation/shared/spaceDecorator.hpp"
  33 #include "memory/defNewGeneration.inline.hpp"
  34 #include "memory/gcLocker.inline.hpp"
  35 #include "memory/genCollectedHeap.hpp"
  36 #include "memory/genOopClosures.inline.hpp"
  37 #include "memory/genRemSet.hpp"
  38 #include "memory/generationSpec.hpp"
  39 #include "memory/iterator.hpp"
  40 #include "memory/referencePolicy.hpp"
  41 #include "memory/space.inline.hpp"
  42 #include "oops/instanceRefKlass.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "runtime/atomic.inline.hpp"
  45 #include "runtime/java.hpp"
  46 #include "runtime/prefetch.inline.hpp"
  47 #include "runtime/thread.inline.hpp"
  48 #include "utilities/copy.hpp"
  49 #include "utilities/globalDefinitions.hpp"
  50 #include "utilities/stack.inline.hpp"
  51 
  52 //
  53 // DefNewGeneration functions.
  54 
  55 // Methods of protected closure types.
  56 
  57 DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* g) : _g(g) {
  58   assert(g->level() == 0, "Optimized for youngest gen.");
  59 }
  60 bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
  61   return (HeapWord*)p >= _g->reserved().end() || p->is_forwarded();
  62 }
  63 
  64 DefNewGeneration::KeepAliveClosure::
  65 KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
  66   GenRemSet* rs = GenCollectedHeap::heap()->rem_set();
  67   _rs = (CardTableRS*)rs;
  68 }
  69 
  70 void DefNewGeneration::KeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  71 void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  72 
  73 
  74 DefNewGeneration::FastKeepAliveClosure::
  75 FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
  76   DefNewGeneration::KeepAliveClosure(cl) {
  77   _boundary = g->reserved().end();
  78 }
  79 
  80 void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  81 void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  82 
  83 DefNewGeneration::EvacuateFollowersClosure::
  84 EvacuateFollowersClosure(GenCollectedHeap* gch, int level,
  85                          ScanClosure* cur, ScanClosure* older) :
  86   _gch(gch), _level(level),
  87   _scan_cur_or_nonheap(cur), _scan_older(older)
  88 {}
  89 
  90 void DefNewGeneration::EvacuateFollowersClosure::do_void() {
  91   do {
  92     _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
  93                                        _scan_older);
  94   } while (!_gch->no_allocs_since_save_marks(_level));
  95 }
  96 
  97 DefNewGeneration::FastEvacuateFollowersClosure::
  98 FastEvacuateFollowersClosure(GenCollectedHeap* gch, int level,
  99                              DefNewGeneration* gen,
 100                              FastScanClosure* cur, FastScanClosure* older) :
 101   _gch(gch), _level(level), _gen(gen),
 102   _scan_cur_or_nonheap(cur), _scan_older(older)
 103 {}
 104 
 105 void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
 106   do {
 107     _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
 108                                        _scan_older);
 109   } while (!_gch->no_allocs_since_save_marks(_level));
 110   guarantee(_gen->promo_failure_scan_is_complete(), "Failed to finish scan");
 111 }
 112 
 113 ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
 114     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 115 {
 116   assert(_g->level() == 0, "Optimized for youngest generation");
 117   _boundary = _g->reserved().end();
 118 }
 119 
 120 void ScanClosure::do_oop(oop* p)       { ScanClosure::do_oop_work(p); }
 121 void ScanClosure::do_oop(narrowOop* p) { ScanClosure::do_oop_work(p); }
 122 
 123 FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
 124     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 125 {
 126   assert(_g->level() == 0, "Optimized for youngest generation");
 127   _boundary = _g->reserved().end();
 128 }
 129 
 130 void FastScanClosure::do_oop(oop* p)       { FastScanClosure::do_oop_work(p); }
 131 void FastScanClosure::do_oop(narrowOop* p) { FastScanClosure::do_oop_work(p); }
 132 
 133 void KlassScanClosure::do_klass(Klass* klass) {
 134 #ifndef PRODUCT
 135   if (TraceScavenge) {
 136     ResourceMark rm;
 137     gclog_or_tty->print_cr("KlassScanClosure::do_klass " PTR_FORMAT ", %s, dirty: %s",
 138                            p2i(klass),
 139                            klass->external_name(),
 140                            klass->has_modified_oops() ? "true" : "false");
 141   }
 142 #endif
 143 
 144   // If the klass has not been dirtied we know that there's
 145   // no references into  the young gen and we can skip it.
 146   if (klass->has_modified_oops()) {
 147     if (_accumulate_modified_oops) {
 148       klass->accumulate_modified_oops();
 149     }
 150 
 151     // Clear this state since we're going to scavenge all the metadata.
 152     klass->clear_modified_oops();
 153 
 154     // Tell the closure which Klass is being scanned so that it can be dirtied
 155     // if oops are left pointing into the young gen.
 156     _scavenge_closure->set_scanned_klass(klass);
 157 
 158     klass->oops_do(_scavenge_closure);
 159 
 160     _scavenge_closure->set_scanned_klass(NULL);
 161   }
 162 }
 163 
 164 ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
 165   _g(g)
 166 {
 167   assert(_g->level() == 0, "Optimized for youngest generation");
 168   _boundary = _g->reserved().end();
 169 }
 170 
 171 void ScanWeakRefClosure::do_oop(oop* p)       { ScanWeakRefClosure::do_oop_work(p); }
 172 void ScanWeakRefClosure::do_oop(narrowOop* p) { ScanWeakRefClosure::do_oop_work(p); }
 173 
 174 void FilteringClosure::do_oop(oop* p)       { FilteringClosure::do_oop_work(p); }
 175 void FilteringClosure::do_oop(narrowOop* p) { FilteringClosure::do_oop_work(p); }
 176 
 177 KlassScanClosure::KlassScanClosure(OopsInKlassOrGenClosure* scavenge_closure,
 178                                    KlassRemSet* klass_rem_set)
 179     : _scavenge_closure(scavenge_closure),
 180       _accumulate_modified_oops(klass_rem_set->accumulate_modified_oops()) {}
 181 
 182 
 183 DefNewGeneration::DefNewGeneration(ReservedSpace rs,
 184                                    size_t initial_size,
 185                                    int level,
 186                                    const char* policy)
 187   : Generation(rs, initial_size, level),
 188     _promo_failure_drain_in_progress(false),
 189     _should_allocate_from_space(false)
 190 {
 191   MemRegion cmr((HeapWord*)_virtual_space.low(),
 192                 (HeapWord*)_virtual_space.high());
 193   Universe::heap()->barrier_set()->resize_covered_region(cmr);
 194 
 195   _eden_space = new ContiguousSpace();
 196   _from_space = new ContiguousSpace();
 197   _to_space   = new ContiguousSpace();
 198 
 199   if (_eden_space == NULL || _from_space == NULL || _to_space == NULL)
 200     vm_exit_during_initialization("Could not allocate a new gen space");
 201 
 202   // Compute the maximum eden and survivor space sizes. These sizes
 203   // are computed assuming the entire reserved space is committed.
 204   // These values are exported as performance counters.
 205   uintx alignment = GenCollectedHeap::heap()->collector_policy()->space_alignment();
 206   uintx size = _virtual_space.reserved_size();
 207   _max_survivor_size = compute_survivor_size(size, alignment);
 208   _max_eden_size = size - (2*_max_survivor_size);
 209 
 210   // allocate the performance counters
 211   GenCollectorPolicy* gcp = (GenCollectorPolicy*) GenCollectedHeap::heap()->collector_policy();
 212 
 213   // Generation counters -- generation 0, 3 subspaces
 214   _gen_counters = new GenerationCounters("new", 0, 3,
 215       gcp->min_young_size(), gcp->max_young_size(), &_virtual_space);
 216   _gc_counters = new CollectorCounters(policy, 0);
 217 
 218   _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
 219                                       _gen_counters);
 220   _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
 221                                       _gen_counters);
 222   _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
 223                                     _gen_counters);
 224 
 225   compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
 226   update_counters();
 227   _old_gen = NULL;
 228   _tenuring_threshold = MaxTenuringThreshold;
 229   _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
 230 
 231   _gc_timer = new (ResourceObj::C_HEAP, mtGC) STWGCTimer();
 232 }
 233 
 234 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
 235                                                 bool clear_space,
 236                                                 bool mangle_space) {
 237   uintx alignment =
 238     GenCollectedHeap::heap()->collector_policy()->space_alignment();
 239 
 240   // If the spaces are being cleared (only done at heap initialization
 241   // currently), the survivor spaces need not be empty.
 242   // Otherwise, no care is taken for used areas in the survivor spaces
 243   // so check.
 244   assert(clear_space || (to()->is_empty() && from()->is_empty()),
 245     "Initialization of the survivor spaces assumes these are empty");
 246 
 247   // Compute sizes
 248   uintx size = _virtual_space.committed_size();
 249   uintx survivor_size = compute_survivor_size(size, alignment);
 250   uintx eden_size = size - (2*survivor_size);
 251   assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 252 
 253   if (eden_size < minimum_eden_size) {
 254     // May happen due to 64Kb rounding, if so adjust eden size back up
 255     minimum_eden_size = align_size_up(minimum_eden_size, alignment);
 256     uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
 257     uintx unaligned_survivor_size =
 258       align_size_down(maximum_survivor_size, alignment);
 259     survivor_size = MAX2(unaligned_survivor_size, alignment);
 260     eden_size = size - (2*survivor_size);
 261     assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 262     assert(eden_size >= minimum_eden_size, "just checking");
 263   }
 264 
 265   char *eden_start = _virtual_space.low();
 266   char *from_start = eden_start + eden_size;
 267   char *to_start   = from_start + survivor_size;
 268   char *to_end     = to_start   + survivor_size;
 269 
 270   assert(to_end == _virtual_space.high(), "just checking");
 271   assert(Space::is_aligned((HeapWord*)eden_start), "checking alignment");
 272   assert(Space::is_aligned((HeapWord*)from_start), "checking alignment");
 273   assert(Space::is_aligned((HeapWord*)to_start),   "checking alignment");
 274 
 275   MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
 276   MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
 277   MemRegion toMR  ((HeapWord*)to_start, (HeapWord*)to_end);
 278 
 279   // A minimum eden size implies that there is a part of eden that
 280   // is being used and that affects the initialization of any
 281   // newly formed eden.
 282   bool live_in_eden = minimum_eden_size > 0;
 283 
 284   // If not clearing the spaces, do some checking to verify that
 285   // the space are already mangled.
 286   if (!clear_space) {
 287     // Must check mangling before the spaces are reshaped.  Otherwise,
 288     // the bottom or end of one space may have moved into another
 289     // a failure of the check may not correctly indicate which space
 290     // is not properly mangled.
 291     if (ZapUnusedHeapArea) {
 292       HeapWord* limit = (HeapWord*) _virtual_space.high();
 293       eden()->check_mangled_unused_area(limit);
 294       from()->check_mangled_unused_area(limit);
 295         to()->check_mangled_unused_area(limit);
 296     }
 297   }
 298 
 299   // Reset the spaces for their new regions.
 300   eden()->initialize(edenMR,
 301                      clear_space && !live_in_eden,
 302                      SpaceDecorator::Mangle);
 303   // If clear_space and live_in_eden, we will not have cleared any
 304   // portion of eden above its top. This can cause newly
 305   // expanded space not to be mangled if using ZapUnusedHeapArea.
 306   // We explicitly do such mangling here.
 307   if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) {
 308     eden()->mangle_unused_area();
 309   }
 310   from()->initialize(fromMR, clear_space, mangle_space);
 311   to()->initialize(toMR, clear_space, mangle_space);
 312 
 313   // Set next compaction spaces.
 314   eden()->set_next_compaction_space(from());
 315   // The to-space is normally empty before a compaction so need
 316   // not be considered.  The exception is during promotion
 317   // failure handling when to-space can contain live objects.
 318   from()->set_next_compaction_space(NULL);
 319 }
 320 
 321 void DefNewGeneration::swap_spaces() {
 322   ContiguousSpace* s = from();
 323   _from_space        = to();
 324   _to_space          = s;
 325   eden()->set_next_compaction_space(from());
 326   // The to-space is normally empty before a compaction so need
 327   // not be considered.  The exception is during promotion
 328   // failure handling when to-space can contain live objects.
 329   from()->set_next_compaction_space(NULL);
 330 
 331   if (UsePerfData) {
 332     CSpaceCounters* c = _from_counters;
 333     _from_counters = _to_counters;
 334     _to_counters = c;
 335   }
 336 }
 337 
 338 bool DefNewGeneration::expand(size_t bytes) {
 339   MutexLocker x(ExpandHeap_lock);
 340   HeapWord* prev_high = (HeapWord*) _virtual_space.high();
 341   bool success = _virtual_space.expand_by(bytes);
 342   if (success && ZapUnusedHeapArea) {
 343     // Mangle newly committed space immediately because it
 344     // can be done here more simply that after the new
 345     // spaces have been computed.
 346     HeapWord* new_high = (HeapWord*) _virtual_space.high();
 347     MemRegion mangle_region(prev_high, new_high);
 348     SpaceMangler::mangle_region(mangle_region);
 349   }
 350 
 351   // Do not attempt an expand-to-the reserve size.  The
 352   // request should properly observe the maximum size of
 353   // the generation so an expand-to-reserve should be
 354   // unnecessary.  Also a second call to expand-to-reserve
 355   // value potentially can cause an undue expansion.
 356   // For example if the first expand fail for unknown reasons,
 357   // but the second succeeds and expands the heap to its maximum
 358   // value.
 359   if (GC_locker::is_active()) {
 360     if (PrintGC && Verbose) {
 361       gclog_or_tty->print_cr("Garbage collection disabled, "
 362         "expanded heap instead");
 363     }
 364   }
 365 
 366   return success;
 367 }
 368 
 369 
 370 void DefNewGeneration::compute_new_size() {
 371   // This is called after a gc that includes the following generation
 372   // (which is required to exist.)  So from-space will normally be empty.
 373   // Note that we check both spaces, since if scavenge failed they revert roles.
 374   // If not we bail out (otherwise we would have to relocate the objects)
 375   if (!from()->is_empty() || !to()->is_empty()) {
 376     return;
 377   }
 378 
 379   int next_level = level() + 1;
 380   GenCollectedHeap* gch = GenCollectedHeap::heap();
 381   assert(next_level == 1, "DefNewGeneration cannot be an oldest gen");
 382 
 383   Generation* old_gen = gch->old_gen();
 384   size_t old_size = old_gen->capacity();
 385   size_t new_size_before = _virtual_space.committed_size();
 386   size_t min_new_size = spec()->init_size();
 387   size_t max_new_size = reserved().byte_size();
 388   assert(min_new_size <= new_size_before &&
 389          new_size_before <= max_new_size,
 390          "just checking");
 391   // All space sizes must be multiples of Generation::GenGrain.
 392   size_t alignment = Generation::GenGrain;
 393 
 394   // Compute desired new generation size based on NewRatio and
 395   // NewSizeThreadIncrease
 396   size_t desired_new_size = old_size/NewRatio;
 397   int threads_count = Threads::number_of_non_daemon_threads();
 398   size_t thread_increase_size = threads_count * NewSizeThreadIncrease;
 399   desired_new_size = align_size_up(desired_new_size + thread_increase_size, alignment);
 400 
 401   // Adjust new generation size
 402   desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
 403   assert(desired_new_size <= max_new_size, "just checking");
 404 
 405   bool changed = false;
 406   if (desired_new_size > new_size_before) {
 407     size_t change = desired_new_size - new_size_before;
 408     assert(change % alignment == 0, "just checking");
 409     if (expand(change)) {
 410        changed = true;
 411     }
 412     // If the heap failed to expand to the desired size,
 413     // "changed" will be false.  If the expansion failed
 414     // (and at this point it was expected to succeed),
 415     // ignore the failure (leaving "changed" as false).
 416   }
 417   if (desired_new_size < new_size_before && eden()->is_empty()) {
 418     // bail out of shrinking if objects in eden
 419     size_t change = new_size_before - desired_new_size;
 420     assert(change % alignment == 0, "just checking");
 421     _virtual_space.shrink_by(change);
 422     changed = true;
 423   }
 424   if (changed) {
 425     // The spaces have already been mangled at this point but
 426     // may not have been cleared (set top = bottom) and should be.
 427     // Mangling was done when the heap was being expanded.
 428     compute_space_boundaries(eden()->used(),
 429                              SpaceDecorator::Clear,
 430                              SpaceDecorator::DontMangle);
 431     MemRegion cmr((HeapWord*)_virtual_space.low(),
 432                   (HeapWord*)_virtual_space.high());
 433     Universe::heap()->barrier_set()->resize_covered_region(cmr);
 434     if (Verbose && PrintGC) {
 435       size_t new_size_after  = _virtual_space.committed_size();
 436       size_t eden_size_after = eden()->capacity();
 437       size_t survivor_size_after = from()->capacity();
 438       gclog_or_tty->print("New generation size " SIZE_FORMAT "K->"
 439         SIZE_FORMAT "K [eden="
 440         SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
 441         new_size_before/K, new_size_after/K,
 442         eden_size_after/K, survivor_size_after/K);
 443       if (WizardMode) {
 444         gclog_or_tty->print("[allowed " SIZE_FORMAT "K extra for %d threads]",
 445           thread_increase_size/K, threads_count);
 446       }
 447       gclog_or_tty->cr();
 448     }
 449   }
 450 }
 451 
 452 void DefNewGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
 453   assert(false, "NYI -- are you sure you want to call this?");
 454 }
 455 
 456 
 457 size_t DefNewGeneration::capacity() const {
 458   return eden()->capacity()
 459        + from()->capacity();  // to() is only used during scavenge
 460 }
 461 
 462 
 463 size_t DefNewGeneration::used() const {
 464   return eden()->used()
 465        + from()->used();      // to() is only used during scavenge
 466 }
 467 
 468 
 469 size_t DefNewGeneration::free() const {
 470   return eden()->free()
 471        + from()->free();      // to() is only used during scavenge
 472 }
 473 
 474 size_t DefNewGeneration::max_capacity() const {
 475   const size_t alignment = GenCollectedHeap::heap()->collector_policy()->space_alignment();
 476   const size_t reserved_bytes = reserved().byte_size();
 477   return reserved_bytes - compute_survivor_size(reserved_bytes, alignment);
 478 }
 479 
 480 size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
 481   return eden()->free();
 482 }
 483 
 484 size_t DefNewGeneration::capacity_before_gc() const {
 485   return eden()->capacity();
 486 }
 487 
 488 size_t DefNewGeneration::contiguous_available() const {
 489   return eden()->free();
 490 }
 491 
 492 
 493 HeapWord** DefNewGeneration::top_addr() const { return eden()->top_addr(); }
 494 HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
 495 
 496 void DefNewGeneration::object_iterate(ObjectClosure* blk) {
 497   eden()->object_iterate(blk);
 498   from()->object_iterate(blk);
 499 }
 500 
 501 
 502 void DefNewGeneration::space_iterate(SpaceClosure* blk,
 503                                      bool usedOnly) {
 504   blk->do_space(eden());
 505   blk->do_space(from());
 506   blk->do_space(to());
 507 }
 508 
 509 // The last collection bailed out, we are running out of heap space,
 510 // so we try to allocate the from-space, too.
 511 HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
 512   HeapWord* result = NULL;
 513   if (Verbose && PrintGCDetails) {
 514     gclog_or_tty->print("DefNewGeneration::allocate_from_space(" SIZE_FORMAT "):"
 515                         "  will_fail: %s"
 516                         "  heap_lock: %s"
 517                         "  free: " SIZE_FORMAT,
 518                         size,
 519                         GenCollectedHeap::heap()->incremental_collection_will_fail(false /* don't consult_young */) ?
 520                           "true" : "false",
 521                         Heap_lock->is_locked() ? "locked" : "unlocked",
 522                         from()->free());
 523   }
 524   if (should_allocate_from_space() || GC_locker::is_active_and_needs_gc()) {
 525     if (Heap_lock->owned_by_self() ||
 526         (SafepointSynchronize::is_at_safepoint() &&
 527          Thread::current()->is_VM_thread())) {
 528       // If the Heap_lock is not locked by this thread, this will be called
 529       // again later with the Heap_lock held.
 530       result = from()->allocate(size);
 531     } else if (PrintGC && Verbose) {
 532       gclog_or_tty->print_cr("  Heap_lock is not owned by self");
 533     }
 534   } else if (PrintGC && Verbose) {
 535     gclog_or_tty->print_cr("  should_allocate_from_space: NOT");
 536   }
 537   if (PrintGC && Verbose) {
 538     gclog_or_tty->print_cr("  returns %s", result == NULL ? "NULL" : "object");
 539   }
 540   return result;
 541 }
 542 
 543 HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
 544                                                 bool   is_tlab,
 545                                                 bool   parallel) {
 546   // We don't attempt to expand the young generation (but perhaps we should.)
 547   return allocate(size, is_tlab);
 548 }
 549 
 550 void DefNewGeneration::adjust_desired_tenuring_threshold() {
 551   // Set the desired survivor size to half the real survivor space
 552   _tenuring_threshold =
 553     age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
 554 }
 555 
 556 void DefNewGeneration::collect(bool   full,
 557                                bool   clear_all_soft_refs,
 558                                size_t size,
 559                                bool   is_tlab) {
 560   assert(full || size > 0, "otherwise we don't want to collect");
 561 
 562   GenCollectedHeap* gch = GenCollectedHeap::heap();
 563 
 564   _gc_timer->register_gc_start();
 565   DefNewTracer gc_tracer;
 566   gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
 567 
 568   _old_gen = gch->old_gen();
 569 
 570   // If the next generation is too full to accommodate promotion
 571   // from this generation, pass on collection; let the next generation
 572   // do it.
 573   if (!collection_attempt_is_safe()) {
 574     if (Verbose && PrintGCDetails) {
 575       gclog_or_tty->print(" :: Collection attempt not safe :: ");
 576     }
 577     gch->set_incremental_collection_failed(); // Slight lie: we did not even attempt one
 578     return;
 579   }
 580   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
 581 
 582   init_assuming_no_promotion_failure();
 583 
 584   GCTraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, NULL, gc_tracer.gc_id());
 585   // Capture heap used before collection (for printing).
 586   size_t gch_prev_used = gch->used();
 587 
 588   gch->trace_heap_before_gc(&gc_tracer);
 589 
 590   // These can be shared for all code paths
 591   IsAliveClosure is_alive(this);
 592   ScanWeakRefClosure scan_weak_ref(this);
 593 
 594   age_table()->clear();
 595   to()->clear(SpaceDecorator::Mangle);
 596 
 597   gch->rem_set()->prepare_for_younger_refs_iterate(false);
 598 
 599   assert(gch->no_allocs_since_save_marks(0),
 600          "save marks have not been newly set.");
 601 
 602   // Not very pretty.
 603   CollectorPolicy* cp = gch->collector_policy();
 604 
 605   FastScanClosure fsc_with_no_gc_barrier(this, false);
 606   FastScanClosure fsc_with_gc_barrier(this, true);
 607 
 608   KlassScanClosure klass_scan_closure(&fsc_with_no_gc_barrier,
 609                                       gch->rem_set()->klass_rem_set());
 610   CLDToKlassAndOopClosure cld_scan_closure(&klass_scan_closure,
 611                                            &fsc_with_no_gc_barrier,
 612                                            false);
 613 
 614   set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
 615   FastEvacuateFollowersClosure evacuate_followers(gch, _level, this,
 616                                                   &fsc_with_no_gc_barrier,
 617                                                   &fsc_with_gc_barrier);
 618 
 619   assert(gch->no_allocs_since_save_marks(0),
 620          "save marks have not been newly set.");
 621 
 622   gch->gen_process_roots(_level,
 623                          true,  // Process younger gens, if any,
 624                                 // as strong roots.
 625                          true,  // activate StrongRootsScope
 626                          GenCollectedHeap::SO_ScavengeCodeCache,
 627                          GenCollectedHeap::StrongAndWeakRoots,
 628                          &fsc_with_no_gc_barrier,
 629                          &fsc_with_gc_barrier,
 630                          &cld_scan_closure);
 631 
 632   // "evacuate followers".
 633   evacuate_followers.do_void();
 634 
 635   FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
 636   ReferenceProcessor* rp = ref_processor();
 637   rp->setup_policy(clear_all_soft_refs);
 638   const ReferenceProcessorStats& stats =
 639   rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
 640                                     NULL, _gc_timer, gc_tracer.gc_id());
 641   gc_tracer.report_gc_reference_stats(stats);
 642 
 643   if (!_promotion_failed) {
 644     // Swap the survivor spaces.
 645     eden()->clear(SpaceDecorator::Mangle);
 646     from()->clear(SpaceDecorator::Mangle);
 647     if (ZapUnusedHeapArea) {
 648       // This is now done here because of the piece-meal mangling which
 649       // can check for valid mangling at intermediate points in the
 650       // collection(s).  When a minor collection fails to collect
 651       // sufficient space resizing of the young generation can occur
 652       // an redistribute the spaces in the young generation.  Mangle
 653       // here so that unzapped regions don't get distributed to
 654       // other spaces.
 655       to()->mangle_unused_area();
 656     }
 657     swap_spaces();
 658 
 659     assert(to()->is_empty(), "to space should be empty now");
 660 
 661     adjust_desired_tenuring_threshold();
 662 
 663     // A successful scavenge should restart the GC time limit count which is
 664     // for full GC's.
 665     AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
 666     size_policy->reset_gc_overhead_limit_count();
 667     assert(!gch->incremental_collection_failed(), "Should be clear");
 668   } else {
 669     assert(_promo_failure_scan_stack.is_empty(), "post condition");
 670     _promo_failure_scan_stack.clear(true); // Clear cached segments.
 671 
 672     remove_forwarding_pointers();
 673     if (PrintGCDetails) {
 674       gclog_or_tty->print(" (promotion failed) ");
 675     }
 676     // Add to-space to the list of space to compact
 677     // when a promotion failure has occurred.  In that
 678     // case there can be live objects in to-space
 679     // as a result of a partial evacuation of eden
 680     // and from-space.
 681     swap_spaces();   // For uniformity wrt ParNewGeneration.
 682     from()->set_next_compaction_space(to());
 683     gch->set_incremental_collection_failed();
 684 
 685     // Inform the next generation that a promotion failure occurred.
 686     _old_gen->promotion_failure_occurred();
 687     gc_tracer.report_promotion_failed(_promotion_failed_info);
 688 
 689     // Reset the PromotionFailureALot counters.
 690     NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
 691   }
 692   if (PrintGC && !PrintGCDetails) {
 693     gch->print_heap_change(gch_prev_used);
 694   }
 695   // set new iteration safe limit for the survivor spaces
 696   from()->set_concurrent_iteration_safe_limit(from()->top());
 697   to()->set_concurrent_iteration_safe_limit(to()->top());
 698 
 699   // We need to use a monotonically non-decreasing time in ms
 700   // or we will see time-warp warnings and os::javaTimeMillis()
 701   // does not guarantee monotonicity.
 702   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 703   update_time_of_last_gc(now);
 704 
 705   gch->trace_heap_after_gc(&gc_tracer);
 706   gc_tracer.report_tenuring_threshold(tenuring_threshold());
 707 
 708   _gc_timer->register_gc_end();
 709 
 710   gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
 711 }
 712 
 713 class RemoveForwardPointerClosure: public ObjectClosure {
 714 public:
 715   void do_object(oop obj) {
 716     obj->init_mark();
 717   }
 718 };
 719 
 720 void DefNewGeneration::init_assuming_no_promotion_failure() {
 721   _promotion_failed = false;
 722   _promotion_failed_info.reset();
 723   from()->set_next_compaction_space(NULL);
 724 }
 725 
 726 void DefNewGeneration::remove_forwarding_pointers() {
 727   RemoveForwardPointerClosure rspc;
 728   eden()->object_iterate(&rspc);
 729   from()->object_iterate(&rspc);
 730 
 731   // Now restore saved marks, if any.
 732   assert(_objs_with_preserved_marks.size() == _preserved_marks_of_objs.size(),
 733          "should be the same");
 734   while (!_objs_with_preserved_marks.is_empty()) {
 735     oop obj   = _objs_with_preserved_marks.pop();
 736     markOop m = _preserved_marks_of_objs.pop();
 737     obj->set_mark(m);
 738   }
 739   _objs_with_preserved_marks.clear(true);
 740   _preserved_marks_of_objs.clear(true);
 741 }
 742 
 743 void DefNewGeneration::preserve_mark(oop obj, markOop m) {
 744   assert(_promotion_failed && m->must_be_preserved_for_promotion_failure(obj),
 745          "Oversaving!");
 746   _objs_with_preserved_marks.push(obj);
 747   _preserved_marks_of_objs.push(m);
 748 }
 749 
 750 void DefNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
 751   if (m->must_be_preserved_for_promotion_failure(obj)) {
 752     preserve_mark(obj, m);
 753   }
 754 }
 755 
 756 void DefNewGeneration::handle_promotion_failure(oop old) {
 757   if (PrintPromotionFailure && !_promotion_failed) {
 758     gclog_or_tty->print(" (promotion failure size = %d) ",
 759                         old->size());
 760   }
 761   _promotion_failed = true;
 762   _promotion_failed_info.register_copy_failure(old->size());
 763   preserve_mark_if_necessary(old, old->mark());
 764   // forward to self
 765   old->forward_to(old);
 766 
 767   _promo_failure_scan_stack.push(old);
 768 
 769   if (!_promo_failure_drain_in_progress) {
 770     // prevent recursion in copy_to_survivor_space()
 771     _promo_failure_drain_in_progress = true;
 772     drain_promo_failure_scan_stack();
 773     _promo_failure_drain_in_progress = false;
 774   }
 775 }
 776 
 777 oop DefNewGeneration::copy_to_survivor_space(oop old) {
 778   assert(is_in_reserved(old) && !old->is_forwarded(),
 779          "shouldn't be scavenging this oop");
 780   size_t s = old->size();
 781   oop obj = NULL;
 782 
 783   // Try allocating obj in to-space (unless too old)
 784   if (old->age() < tenuring_threshold()) {
 785     obj = (oop) to()->allocate_aligned(s);
 786   }
 787 
 788   // Otherwise try allocating obj tenured
 789   if (obj == NULL) {
 790     obj = _old_gen->promote(old, s);
 791     if (obj == NULL) {
 792       handle_promotion_failure(old);
 793       return old;
 794     }
 795   } else {
 796     // Prefetch beyond obj
 797     const intx interval = PrefetchCopyIntervalInBytes;
 798     Prefetch::write(obj, interval);
 799 
 800     // Copy obj
 801     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
 802 
 803     // Increment age if obj still in new generation
 804     obj->incr_age();
 805     age_table()->add(obj, s);
 806   }
 807 
 808   // Done, insert forward pointer to obj in this header
 809   old->forward_to(obj);
 810 
 811   return obj;
 812 }
 813 
 814 void DefNewGeneration::drain_promo_failure_scan_stack() {
 815   while (!_promo_failure_scan_stack.is_empty()) {
 816      oop obj = _promo_failure_scan_stack.pop();
 817      obj->oop_iterate(_promo_failure_scan_stack_closure);
 818   }
 819 }
 820 
 821 void DefNewGeneration::save_marks() {
 822   eden()->set_saved_mark();
 823   to()->set_saved_mark();
 824   from()->set_saved_mark();
 825 }
 826 
 827 
 828 void DefNewGeneration::reset_saved_marks() {
 829   eden()->reset_saved_mark();
 830   to()->reset_saved_mark();
 831   from()->reset_saved_mark();
 832 }
 833 
 834 
 835 bool DefNewGeneration::no_allocs_since_save_marks() {
 836   assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
 837   assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
 838   return to()->saved_mark_at_top();
 839 }
 840 
 841 #define DefNew_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
 842                                                                 \
 843 void DefNewGeneration::                                         \
 844 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
 845   cl->set_generation(this);                                     \
 846   eden()->oop_since_save_marks_iterate##nv_suffix(cl);          \
 847   to()->oop_since_save_marks_iterate##nv_suffix(cl);            \
 848   from()->oop_since_save_marks_iterate##nv_suffix(cl);          \
 849   cl->reset_generation();                                       \
 850   save_marks();                                                 \
 851 }
 852 
 853 ALL_SINCE_SAVE_MARKS_CLOSURES(DefNew_SINCE_SAVE_MARKS_DEFN)
 854 
 855 #undef DefNew_SINCE_SAVE_MARKS_DEFN
 856 
 857 void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
 858                                          size_t max_alloc_words) {
 859   if (requestor == this || _promotion_failed) return;
 860   assert(requestor->level() > level(), "DefNewGeneration must be youngest");
 861 
 862   /* $$$ Assert this?  "trace" is a "MarkSweep" function so that's not appropriate.
 863   if (to_space->top() > to_space->bottom()) {
 864     trace("to_space not empty when contribute_scratch called");
 865   }
 866   */
 867 
 868   ContiguousSpace* to_space = to();
 869   assert(to_space->end() >= to_space->top(), "pointers out of order");
 870   size_t free_words = pointer_delta(to_space->end(), to_space->top());
 871   if (free_words >= MinFreeScratchWords) {
 872     ScratchBlock* sb = (ScratchBlock*)to_space->top();
 873     sb->num_words = free_words;
 874     sb->next = list;
 875     list = sb;
 876   }
 877 }
 878 
 879 void DefNewGeneration::reset_scratch() {
 880   // If contributing scratch in to_space, mangle all of
 881   // to_space if ZapUnusedHeapArea.  This is needed because
 882   // top is not maintained while using to-space as scratch.
 883   if (ZapUnusedHeapArea) {
 884     to()->mangle_unused_area_complete();
 885   }
 886 }
 887 
 888 bool DefNewGeneration::collection_attempt_is_safe() {
 889   if (!to()->is_empty()) {
 890     if (Verbose && PrintGCDetails) {
 891       gclog_or_tty->print(" :: to is not empty :: ");
 892     }
 893     return false;
 894   }
 895   if (_old_gen == NULL) {
 896     GenCollectedHeap* gch = GenCollectedHeap::heap();
 897     _old_gen = gch->old_gen();
 898   }
 899   return _old_gen->promotion_attempt_is_safe(used());
 900 }
 901 
 902 void DefNewGeneration::gc_epilogue(bool full) {
 903   DEBUG_ONLY(static bool seen_incremental_collection_failed = false;)
 904 
 905   assert(!GC_locker::is_active(), "We should not be executing here");
 906   // Check if the heap is approaching full after a collection has
 907   // been done.  Generally the young generation is empty at
 908   // a minimum at the end of a collection.  If it is not, then
 909   // the heap is approaching full.
 910   GenCollectedHeap* gch = GenCollectedHeap::heap();
 911   if (full) {
 912     DEBUG_ONLY(seen_incremental_collection_failed = false;)
 913     if (!collection_attempt_is_safe() && !_eden_space->is_empty()) {
 914       if (Verbose && PrintGCDetails) {
 915         gclog_or_tty->print("DefNewEpilogue: cause(%s), full, not safe, set_failed, set_alloc_from, clear_seen",
 916                             GCCause::to_string(gch->gc_cause()));
 917       }
 918       gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state
 919       set_should_allocate_from_space(); // we seem to be running out of space
 920     } else {
 921       if (Verbose && PrintGCDetails) {
 922         gclog_or_tty->print("DefNewEpilogue: cause(%s), full, safe, clear_failed, clear_alloc_from, clear_seen",
 923                             GCCause::to_string(gch->gc_cause()));
 924       }
 925       gch->clear_incremental_collection_failed(); // We just did a full collection
 926       clear_should_allocate_from_space(); // if set
 927     }
 928   } else {
 929 #ifdef ASSERT
 930     // It is possible that incremental_collection_failed() == true
 931     // here, because an attempted scavenge did not succeed. The policy
 932     // is normally expected to cause a full collection which should
 933     // clear that condition, so we should not be here twice in a row
 934     // with incremental_collection_failed() == true without having done
 935     // a full collection in between.
 936     if (!seen_incremental_collection_failed &&
 937         gch->incremental_collection_failed()) {
 938       if (Verbose && PrintGCDetails) {
 939         gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, not_seen_failed, failed, set_seen_failed",
 940                             GCCause::to_string(gch->gc_cause()));
 941       }
 942       seen_incremental_collection_failed = true;
 943     } else if (seen_incremental_collection_failed) {
 944       if (Verbose && PrintGCDetails) {
 945         gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, seen_failed, will_clear_seen_failed",
 946                             GCCause::to_string(gch->gc_cause()));
 947       }
 948       assert(gch->gc_cause() == GCCause::_scavenge_alot ||
 949              (gch->gc_cause() == GCCause::_java_lang_system_gc && UseConcMarkSweepGC && ExplicitGCInvokesConcurrent) ||
 950              !gch->incremental_collection_failed(),
 951              "Twice in a row");
 952       seen_incremental_collection_failed = false;
 953     }
 954 #endif // ASSERT
 955   }
 956 
 957   if (ZapUnusedHeapArea) {
 958     eden()->check_mangled_unused_area_complete();
 959     from()->check_mangled_unused_area_complete();
 960     to()->check_mangled_unused_area_complete();
 961   }
 962 
 963   if (!CleanChunkPoolAsync) {
 964     Chunk::clean_chunk_pool();
 965   }
 966 
 967   // update the generation and space performance counters
 968   update_counters();
 969   gch->collector_policy()->counters()->update_counters();
 970 }
 971 
 972 void DefNewGeneration::record_spaces_top() {
 973   assert(ZapUnusedHeapArea, "Not mangling unused space");
 974   eden()->set_top_for_allocations();
 975   to()->set_top_for_allocations();
 976   from()->set_top_for_allocations();
 977 }
 978 
 979 void DefNewGeneration::ref_processor_init() {
 980   Generation::ref_processor_init();
 981 }
 982 
 983 
 984 void DefNewGeneration::update_counters() {
 985   if (UsePerfData) {
 986     _eden_counters->update_all();
 987     _from_counters->update_all();
 988     _to_counters->update_all();
 989     _gen_counters->update_all();
 990   }
 991 }
 992 
 993 void DefNewGeneration::verify() {
 994   eden()->verify();
 995   from()->verify();
 996     to()->verify();
 997 }
 998 
 999 void DefNewGeneration::print_on(outputStream* st) const {
1000   Generation::print_on(st);
1001   st->print("  eden");
1002   eden()->print_on(st);
1003   st->print("  from");
1004   from()->print_on(st);
1005   st->print("  to  ");
1006   to()->print_on(st);
1007 }
1008 
1009 
1010 const char* DefNewGeneration::name() const {
1011   return "def new generation";
1012 }
1013 
1014 // Moved from inline file as they are not called inline
1015 CompactibleSpace* DefNewGeneration::first_compaction_space() const {
1016   return eden();
1017 }
1018 
1019 HeapWord* DefNewGeneration::allocate(size_t word_size, bool is_tlab) {
1020   // This is the slow-path allocation for the DefNewGeneration.
1021   // Most allocations are fast-path in compiled code.
1022   // We try to allocate from the eden.  If that works, we are happy.
1023   // Note that since DefNewGeneration supports lock-free allocation, we
1024   // have to use it here, as well.
1025   HeapWord* result = eden()->par_allocate(word_size);
1026   if (result != NULL) {
1027     if (CMSEdenChunksRecordAlways && _old_gen != NULL) {
1028       _old_gen->sample_eden_chunk();
1029     }
1030   } else {
1031     // If the eden is full and the last collection bailed out, we are running
1032     // out of heap space, and we try to allocate the from-space, too.
1033     // allocate_from_space can't be inlined because that would introduce a
1034     // circular dependency at compile time.
1035     result = allocate_from_space(word_size);
1036   }
1037   return result;
1038 }
1039 
1040 HeapWord* DefNewGeneration::par_allocate(size_t word_size,
1041                                          bool is_tlab) {
1042   HeapWord* res = eden()->par_allocate(word_size);
1043   if (CMSEdenChunksRecordAlways && _old_gen != NULL) {
1044     _old_gen->sample_eden_chunk();
1045   }
1046   return res;
1047 }
1048 
1049 size_t DefNewGeneration::tlab_capacity() const {
1050   return eden()->capacity();
1051 }
1052 
1053 size_t DefNewGeneration::tlab_used() const {
1054   return eden()->used();
1055 }
1056 
1057 size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
1058   return unsafe_max_alloc_nogc();
1059 }