1 /*
   2  * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
  26 #define SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
  27 
  28 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  29 #include "memory/collectorPolicy.hpp"
  30 #include "memory/generation.hpp"
  31 #include "memory/sharedHeap.hpp"
  32 
  33 class SubTasksDone;
  34 
  35 // A "GenCollectedHeap" is a SharedHeap that uses generational
  36 // collection.  It has two generations, young and old.
  37 class GenCollectedHeap : public SharedHeap {
  38   friend class GenCollectorPolicy;
  39   friend class Generation;
  40   friend class DefNewGeneration;
  41   friend class TenuredGeneration;
  42   friend class ConcurrentMarkSweepGeneration;
  43   friend class CMSCollector;
  44   friend class GenMarkSweep;
  45   friend class VM_GenCollectForAllocation;
  46   friend class VM_GenCollectFull;
  47   friend class VM_GenCollectFullConcurrent;
  48   friend class VM_GC_HeapInspection;
  49   friend class VM_HeapDumper;
  50   friend class HeapInspection;
  51   friend class GCCauseSetter;
  52   friend class VMStructs;
  53 public:
  54   friend class VM_PopulateDumpSharedSpace;
  55 
  56  protected:
  57   // Fields:
  58   static GenCollectedHeap* _gch;
  59 
  60  private:
  61   Generation* _young_gen;
  62   Generation* _old_gen;
  63 
  64   // The singleton Gen Remembered Set.
  65   GenRemSet* _rem_set;
  66 
  67   // The generational collector policy.
  68   GenCollectorPolicy* _gen_policy;
  69 
  70   // Indicates that the most recent previous incremental collection failed.
  71   // The flag is cleared when an action is taken that might clear the
  72   // condition that caused that incremental collection to fail.
  73   bool _incremental_collection_failed;
  74 
  75   // In support of ExplicitGCInvokesConcurrent functionality
  76   unsigned int _full_collections_completed;
  77 
  78   // Data structure for claiming the (potentially) parallel tasks in
  79   // (gen-specific) roots processing.
  80   SubTasksDone* _process_strong_tasks;
  81 
  82   // Collects the given generation.
  83   void collect_generation(Generation* gen, bool full, size_t size, bool is_tlab,
  84                           bool run_verification, bool clear_soft_refs,
  85                           bool restore_marks_for_biased_locking);
  86 
  87   // In block contents verification, the number of header words to skip
  88   NOT_PRODUCT(static size_t _skip_header_HeapWords;)
  89 
  90 protected:
  91   // Helper functions for allocation
  92   HeapWord* attempt_allocation(size_t size,
  93                                bool   is_tlab,
  94                                bool   first_only);
  95 
  96   // Helper function for two callbacks below.
  97   // Considers collection of the first max_level+1 generations.
  98   void do_collection(bool   full,
  99                      bool   clear_all_soft_refs,
 100                      size_t size,
 101                      bool   is_tlab,
 102                      int    max_level);
 103 
 104   // Callback from VM_GenCollectForAllocation operation.
 105   // This function does everything necessary/possible to satisfy an
 106   // allocation request that failed in the youngest generation that should
 107   // have handled it (including collection, expansion, etc.)
 108   HeapWord* satisfy_failed_allocation(size_t size, bool is_tlab);
 109 
 110   // Callback from VM_GenCollectFull operation.
 111   // Perform a full collection of the first max_level+1 generations.
 112   virtual void do_full_collection(bool clear_all_soft_refs);
 113   void do_full_collection(bool clear_all_soft_refs, int max_level);
 114 
 115   // Does the "cause" of GC indicate that
 116   // we absolutely __must__ clear soft refs?
 117   bool must_clear_all_soft_refs();
 118 
 119 public:
 120   GenCollectedHeap(GenCollectorPolicy *policy);
 121 
 122   GCStats* gc_stats(int level) const;
 123 
 124   // Returns JNI_OK on success
 125   virtual jint initialize();
 126 
 127   // Reserve aligned space for the heap as needed by the contained generations.
 128   char* allocate(size_t alignment, ReservedSpace* heap_rs);
 129 
 130   // Does operations required after initialization has been done.
 131   void post_initialize();
 132 
 133   // Initialize ("weak") refs processing support
 134   virtual void ref_processing_init();
 135 
 136   virtual CollectedHeap::Name kind() const {
 137     return CollectedHeap::GenCollectedHeap;
 138   }
 139 
 140   Generation* young_gen() const { return _young_gen; }
 141   Generation* old_gen()   const { return _old_gen; }
 142 
 143   // The generational collector policy.
 144   GenCollectorPolicy* gen_policy() const { return _gen_policy; }
 145 
 146   virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) gen_policy(); }
 147 
 148   // Adaptive size policy
 149   virtual AdaptiveSizePolicy* size_policy() {
 150     return gen_policy()->size_policy();
 151   }
 152 
 153   // Return the (conservative) maximum heap alignment
 154   static size_t conservative_max_heap_alignment() {
 155     return Generation::GenGrain;
 156   }
 157 
 158   size_t capacity() const;
 159   size_t used() const;
 160 
 161   // Save the "used_region" for generations level and lower.
 162   void save_used_regions(int level);
 163 
 164   size_t max_capacity() const;
 165 
 166   HeapWord* mem_allocate(size_t size,
 167                          bool*  gc_overhead_limit_was_exceeded);
 168 
 169   // We may support a shared contiguous allocation area, if the youngest
 170   // generation does.
 171   bool supports_inline_contig_alloc() const;
 172   HeapWord** top_addr() const;
 173   HeapWord** end_addr() const;
 174 
 175   // Does this heap support heap inspection? (+PrintClassHistogram)
 176   virtual bool supports_heap_inspection() const { return true; }
 177 
 178   // Perform a full collection of the heap; intended for use in implementing
 179   // "System.gc". This implies as full a collection as the CollectedHeap
 180   // supports. Caller does not hold the Heap_lock on entry.
 181   void collect(GCCause::Cause cause);
 182 
 183   // The same as above but assume that the caller holds the Heap_lock.
 184   void collect_locked(GCCause::Cause cause);
 185 
 186   // Perform a full collection of the first max_level+1 generations.
 187   // Mostly used for testing purposes. Caller does not hold the Heap_lock on entry.
 188   void collect(GCCause::Cause cause, int max_level);
 189 
 190   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 191   // The methods is_in(), is_in_closed_subset() and is_in_youngest() may
 192   // be expensive to compute in general, so, to prevent
 193   // their inadvertent use in product jvm's, we restrict their use to
 194   // assertion checking or verification only.
 195   bool is_in(const void* p) const;
 196 
 197   // override
 198   bool is_in_closed_subset(const void* p) const {
 199     if (UseConcMarkSweepGC) {
 200       return is_in_reserved(p);
 201     } else {
 202       return is_in(p);
 203     }
 204   }
 205 
 206   // Returns true if the reference is to an object in the reserved space
 207   // for the young generation.
 208   // Assumes the the young gen address range is less than that of the old gen.
 209   bool is_in_young(oop p);
 210 
 211 #ifdef ASSERT
 212   virtual bool is_in_partial_collection(const void* p);
 213 #endif
 214 
 215   virtual bool is_scavengable(const void* addr) {
 216     return is_in_young((oop)addr);
 217   }
 218 
 219   // Iteration functions.
 220   void oop_iterate(ExtendedOopClosure* cl);
 221   void object_iterate(ObjectClosure* cl);
 222   void safe_object_iterate(ObjectClosure* cl);
 223   Space* space_containing(const void* addr) const;
 224 
 225   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 226   // each address in the (reserved) heap is a member of exactly
 227   // one block.  The defining characteristic of a block is that it is
 228   // possible to find its size, and thus to progress forward to the next
 229   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 230   // represent Java objects, or they might be free blocks in a
 231   // free-list-based heap (or subheap), as long as the two kinds are
 232   // distinguishable and the size of each is determinable.
 233 
 234   // Returns the address of the start of the "block" that contains the
 235   // address "addr".  We say "blocks" instead of "object" since some heaps
 236   // may not pack objects densely; a chunk may either be an object or a
 237   // non-object.
 238   virtual HeapWord* block_start(const void* addr) const;
 239 
 240   // Requires "addr" to be the start of a chunk, and returns its size.
 241   // "addr + size" is required to be the start of a new chunk, or the end
 242   // of the active area of the heap. Assumes (and verifies in non-product
 243   // builds) that addr is in the allocated part of the heap and is
 244   // the start of a chunk.
 245   virtual size_t block_size(const HeapWord* addr) const;
 246 
 247   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 248   // the block is an object. Assumes (and verifies in non-product
 249   // builds) that addr is in the allocated part of the heap and is
 250   // the start of a chunk.
 251   virtual bool block_is_obj(const HeapWord* addr) const;
 252 
 253   // Section on TLAB's.
 254   virtual bool supports_tlab_allocation() const;
 255   virtual size_t tlab_capacity(Thread* thr) const;
 256   virtual size_t tlab_used(Thread* thr) const;
 257   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
 258   virtual HeapWord* allocate_new_tlab(size_t size);
 259 
 260   // Can a compiler initialize a new object without store barriers?
 261   // This permission only extends from the creation of a new object
 262   // via a TLAB up to the first subsequent safepoint.
 263   virtual bool can_elide_tlab_store_barriers() const {
 264     return true;
 265   }
 266 
 267   virtual bool card_mark_must_follow_store() const {
 268     return UseConcMarkSweepGC;
 269   }
 270 
 271   // We don't need barriers for stores to objects in the
 272   // young gen and, a fortiori, for initializing stores to
 273   // objects therein. This applies to DefNew+Tenured and ParNew+CMS
 274   // only and may need to be re-examined in case other
 275   // kinds of collectors are implemented in the future.
 276   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
 277     // We wanted to assert that:-
 278     // assert(UseSerialGC || UseConcMarkSweepGC,
 279     //       "Check can_elide_initializing_store_barrier() for this collector");
 280     // but unfortunately the flag UseSerialGC need not necessarily always
 281     // be set when DefNew+Tenured are being used.
 282     return is_in_young(new_obj);
 283   }
 284 
 285   // The "requestor" generation is performing some garbage collection
 286   // action for which it would be useful to have scratch space.  The
 287   // requestor promises to allocate no more than "max_alloc_words" in any
 288   // older generation (via promotion say.)   Any blocks of space that can
 289   // be provided are returned as a list of ScratchBlocks, sorted by
 290   // decreasing size.
 291   ScratchBlock* gather_scratch(Generation* requestor, size_t max_alloc_words);
 292   // Allow each generation to reset any scratch space that it has
 293   // contributed as it needs.
 294   void release_scratch();
 295 
 296   // Ensure parsability: override
 297   virtual void ensure_parsability(bool retire_tlabs);
 298 
 299   // Time in ms since the longest time a collector ran in
 300   // in any generation.
 301   virtual jlong millis_since_last_gc();
 302 
 303   // Total number of full collections completed.
 304   unsigned int total_full_collections_completed() {
 305     assert(_full_collections_completed <= _total_full_collections,
 306            "Can't complete more collections than were started");
 307     return _full_collections_completed;
 308   }
 309 
 310   // Update above counter, as appropriate, at the end of a stop-world GC cycle
 311   unsigned int update_full_collections_completed();
 312   // Update above counter, as appropriate, at the end of a concurrent GC cycle
 313   unsigned int update_full_collections_completed(unsigned int count);
 314 
 315   // Update "time of last gc" for all generations to "now".
 316   void update_time_of_last_gc(jlong now) {
 317     _young_gen->update_time_of_last_gc(now);
 318     _old_gen->update_time_of_last_gc(now);
 319   }
 320 
 321   // Update the gc statistics for each generation.
 322   // "level" is the level of the latest collection.
 323   void update_gc_stats(int current_level, bool full) {
 324     _young_gen->update_gc_stats(current_level, full);
 325     _old_gen->update_gc_stats(current_level, full);
 326   }
 327 
 328   // Override.
 329   bool no_gc_in_progress() { return !is_gc_active(); }
 330 
 331   // Override.
 332   void prepare_for_verify();
 333 
 334   // Override.
 335   void verify(bool silent, VerifyOption option);
 336 
 337   // Override.
 338   virtual void print_on(outputStream* st) const;
 339   virtual void print_gc_threads_on(outputStream* st) const;
 340   virtual void gc_threads_do(ThreadClosure* tc) const;
 341   virtual void print_tracing_info() const;
 342   virtual void print_on_error(outputStream* st) const;
 343 
 344   // PrintGC, PrintGCDetails support
 345   void print_heap_change(size_t prev_used) const;
 346 
 347   // The functions below are helper functions that a subclass of
 348   // "CollectedHeap" can use in the implementation of its virtual
 349   // functions.
 350 
 351   class GenClosure : public StackObj {
 352    public:
 353     virtual void do_generation(Generation* gen) = 0;
 354   };
 355 
 356   // Apply "cl.do_generation" to all generations in the heap
 357   // If "old_to_young" determines the order.
 358   void generation_iterate(GenClosure* cl, bool old_to_young);
 359 
 360   void space_iterate(SpaceClosure* cl);
 361 
 362   // Return "true" if all generations have reached the
 363   // maximal committed limit that they can reach, without a garbage
 364   // collection.
 365   virtual bool is_maximal_no_gc() const;
 366 
 367   // This function returns the "GenRemSet" object that allows us to scan
 368   // generations in a fully generational heap.
 369   GenRemSet* rem_set() { return _rem_set; }
 370 
 371   // Convenience function to be used in situations where the heap type can be
 372   // asserted to be this type.
 373   static GenCollectedHeap* heap();
 374 
 375   void set_par_threads(uint t);
 376   void set_n_termination(uint t);
 377 
 378   // Invoke the "do_oop" method of one of the closures "not_older_gens"
 379   // or "older_gens" on root locations for the generation at
 380   // "level".  (The "older_gens" closure is used for scanning references
 381   // from older generations; "not_older_gens" is used everywhere else.)
 382   // If "younger_gens_as_roots" is false, younger generations are
 383   // not scanned as roots; in this case, the caller must be arranging to
 384   // scan the younger generations itself.  (For example, a generation might
 385   // explicitly mark reachable objects in younger generations, to avoid
 386   // excess storage retention.)
 387   // The "so" argument determines which of the roots
 388   // the closure is applied to:
 389   // "SO_None" does none;
 390   enum ScanningOption {
 391     SO_None                =  0x0,
 392     SO_AllCodeCache        =  0x8,
 393     SO_ScavengeCodeCache   = 0x10
 394   };
 395 
 396  private:
 397   void process_roots(bool activate_scope,
 398                      ScanningOption so,
 399                      OopClosure* strong_roots,
 400                      OopClosure* weak_roots,
 401                      CLDClosure* strong_cld_closure,
 402                      CLDClosure* weak_cld_closure,
 403                      CodeBlobClosure* code_roots);
 404 
 405   void gen_process_roots(int level,
 406                          bool younger_gens_as_roots,
 407                          bool activate_scope,
 408                          ScanningOption so,
 409                          OopsInGenClosure* not_older_gens,
 410                          OopsInGenClosure* weak_roots,
 411                          OopsInGenClosure* older_gens,
 412                          CLDClosure* cld_closure,
 413                          CLDClosure* weak_cld_closure,
 414                          CodeBlobClosure* code_closure);
 415 
 416  public:
 417   static const bool StrongAndWeakRoots = false;
 418   static const bool StrongRootsOnly    = true;
 419 
 420   void gen_process_roots(int level,
 421                          bool younger_gens_as_roots,
 422                          bool activate_scope,
 423                          ScanningOption so,
 424                          bool only_strong_roots,
 425                          OopsInGenClosure* not_older_gens,
 426                          OopsInGenClosure* older_gens,
 427                          CLDClosure* cld_closure);
 428 
 429   // Apply "root_closure" to all the weak roots of the system.
 430   // These include JNI weak roots, string table,
 431   // and referents of reachable weak refs.
 432   void gen_process_weak_roots(OopClosure* root_closure);
 433 
 434   // Set the saved marks of generations, if that makes sense.
 435   // In particular, if any generation might iterate over the oops
 436   // in other generations, it should call this method.
 437   void save_marks();
 438 
 439   // Apply "cur->do_oop" or "older->do_oop" to all the oops in objects
 440   // allocated since the last call to save_marks in generations at or above
 441   // "level".  The "cur" closure is
 442   // applied to references in the generation at "level", and the "older"
 443   // closure to older generations.
 444 #define GCH_SINCE_SAVE_MARKS_ITERATE_DECL(OopClosureType, nv_suffix)    \
 445   void oop_since_save_marks_iterate(int level,                          \
 446                                     OopClosureType* cur,                \
 447                                     OopClosureType* older);
 448 
 449   ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DECL)
 450 
 451 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DECL
 452 
 453   // Returns "true" iff no allocations have occurred in any generation at
 454   // "level" or above since the last
 455   // call to "save_marks".
 456   bool no_allocs_since_save_marks(int level);
 457 
 458   // Returns true if an incremental collection is likely to fail.
 459   // We optionally consult the young gen, if asked to do so;
 460   // otherwise we base our answer on whether the previous incremental
 461   // collection attempt failed with no corrective action as of yet.
 462   bool incremental_collection_will_fail(bool consult_young) {
 463     // Assumes a 2-generation system; the first disjunct remembers if an
 464     // incremental collection failed, even when we thought (second disjunct)
 465     // that it would not.
 466     assert(heap()->collector_policy()->is_generation_policy(),
 467            "the following definition may not be suitable for an n(>2)-generation system");
 468     return incremental_collection_failed() ||
 469            (consult_young && !_young_gen->collection_attempt_is_safe());
 470   }
 471 
 472   // If a generation bails out of an incremental collection,
 473   // it sets this flag.
 474   bool incremental_collection_failed() const {
 475     return _incremental_collection_failed;
 476   }
 477   void set_incremental_collection_failed() {
 478     _incremental_collection_failed = true;
 479   }
 480   void clear_incremental_collection_failed() {
 481     _incremental_collection_failed = false;
 482   }
 483 
 484   // Promotion of obj into gen failed.  Try to promote obj to higher
 485   // gens in ascending order; return the new location of obj if successful.
 486   // Otherwise, try expand-and-allocate for obj in both the young and old
 487   // generation; return the new location of obj if successful.  Otherwise, return NULL.
 488   oop handle_failed_promotion(Generation* old_gen,
 489                               oop obj,
 490                               size_t obj_size);
 491 
 492 private:
 493   // Accessor for memory state verification support
 494   NOT_PRODUCT(
 495     static size_t skip_header_HeapWords() { return _skip_header_HeapWords; }
 496   )
 497 
 498   // Override
 499   void check_for_non_bad_heap_word_value(HeapWord* addr,
 500     size_t size) PRODUCT_RETURN;
 501 
 502   // For use by mark-sweep.  As implemented, mark-sweep-compact is global
 503   // in an essential way: compaction is performed across generations, by
 504   // iterating over spaces.
 505   void prepare_for_compaction();
 506 
 507   // Perform a full collection of the first max_level+1 generations.
 508   // This is the low level interface used by the public versions of
 509   // collect() and collect_locked(). Caller holds the Heap_lock on entry.
 510   void collect_locked(GCCause::Cause cause, int max_level);
 511 
 512   // Returns success or failure.
 513   bool create_cms_collector();
 514 
 515   // In support of ExplicitGCInvokesConcurrent functionality
 516   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 517   void collect_mostly_concurrent(GCCause::Cause cause);
 518 
 519   // Save the tops of the spaces in all generations
 520   void record_gen_tops_before_GC() PRODUCT_RETURN;
 521 
 522 protected:
 523   virtual void gc_prologue(bool full);
 524   virtual void gc_epilogue(bool full);
 525 };
 526 
 527 #endif // SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP