1 /*
   2  * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc_implementation/shared/collectorCounters.hpp"
  32 #include "gc_implementation/shared/gcTrace.hpp"
  33 #include "gc_implementation/shared/gcTraceTime.hpp"
  34 #include "gc_implementation/shared/vmGCOperations.hpp"
  35 #include "gc_interface/collectedHeap.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "memory/gcLocker.inline.hpp"
  38 #include "memory/genCollectedHeap.hpp"
  39 #include "memory/genOopClosures.inline.hpp"
  40 #include "memory/generationSpec.hpp"
  41 #include "memory/resourceArea.hpp"
  42 #include "memory/strongRootsScope.hpp"
  43 #include "memory/space.hpp"
  44 #include "oops/oop.inline.hpp"
  45 #include "runtime/biasedLocking.hpp"
  46 #include "runtime/fprofiler.hpp"
  47 #include "runtime/handles.hpp"
  48 #include "runtime/handles.inline.hpp"
  49 #include "runtime/java.hpp"
  50 #include "runtime/vmThread.hpp"
  51 #include "services/management.hpp"
  52 #include "services/memoryService.hpp"
  53 #include "utilities/macros.hpp"
  54 #include "utilities/stack.inline.hpp"
  55 #include "utilities/vmError.hpp"
  56 #include "utilities/workgroup.hpp"
  57 #if INCLUDE_ALL_GCS
  58 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  59 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  60 #endif // INCLUDE_ALL_GCS
  61 
  62 GenCollectedHeap* GenCollectedHeap::_gch;
  63 NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)
  64 
  65 // The set of potentially parallel tasks in root scanning.
  66 enum GCH_strong_roots_tasks {
  67   GCH_PS_Universe_oops_do,
  68   GCH_PS_JNIHandles_oops_do,
  69   GCH_PS_ObjectSynchronizer_oops_do,
  70   GCH_PS_FlatProfiler_oops_do,
  71   GCH_PS_Management_oops_do,
  72   GCH_PS_SystemDictionary_oops_do,
  73   GCH_PS_ClassLoaderDataGraph_oops_do,
  74   GCH_PS_jvmti_oops_do,
  75   GCH_PS_CodeCache_oops_do,
  76   GCH_PS_younger_gens,
  77   // Leave this one last.
  78   GCH_PS_NumElements
  79 };
  80 
  81 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
  82   CollectedHeap(),
  83   _rem_set(NULL),
  84   _gen_policy(policy),
  85   _process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
  86   _full_collections_completed(0)
  87 {
  88   assert(policy != NULL, "Sanity check");
  89   if (UseConcMarkSweepGC) {
  90     _workers = new FlexibleWorkGang("GC Thread", ParallelGCThreads,
  91                             /* are_GC_task_threads */true,
  92                             /* are_ConcurrentGC_threads */false);
  93     _workers->initialize_workers();
  94   } else {
  95     // Serial GC does not use workers.
  96     _workers = NULL;
  97   }
  98 }
  99 
 100 jint GenCollectedHeap::initialize() {
 101   CollectedHeap::pre_initialize();
 102 
 103   // While there are no constraints in the GC code that HeapWordSize
 104   // be any particular value, there are multiple other areas in the
 105   // system which believe this to be true (e.g. oop->object_size in some
 106   // cases incorrectly returns the size in wordSize units rather than
 107   // HeapWordSize).
 108   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
 109 
 110   // Allocate space for the heap.
 111 
 112   char* heap_address;
 113   ReservedSpace heap_rs;
 114 
 115   size_t heap_alignment = collector_policy()->heap_alignment();
 116 
 117   heap_address = allocate(heap_alignment, &heap_rs);
 118 
 119   if (!heap_rs.is_reserved()) {
 120     vm_shutdown_during_initialization(
 121       "Could not reserve enough space for object heap");
 122     return JNI_ENOMEM;
 123   }
 124 
 125   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
 126 
 127   _rem_set = collector_policy()->create_rem_set(reserved_region());
 128   set_barrier_set(rem_set()->bs());
 129 
 130   _gch = this;
 131 
 132   ReservedSpace young_rs = heap_rs.first_part(gen_policy()->young_gen_spec()->max_size(), false, false);
 133   _young_gen = gen_policy()->young_gen_spec()->init(young_rs, rem_set());
 134   heap_rs = heap_rs.last_part(gen_policy()->young_gen_spec()->max_size());
 135 
 136   ReservedSpace old_rs = heap_rs.first_part(gen_policy()->old_gen_spec()->max_size(), false, false);
 137   _old_gen = gen_policy()->old_gen_spec()->init(old_rs, rem_set());
 138   clear_incremental_collection_failed();
 139 
 140 #if INCLUDE_ALL_GCS
 141   // If we are running CMS, create the collector responsible
 142   // for collecting the CMS generations.
 143   if (collector_policy()->is_concurrent_mark_sweep_policy()) {
 144     bool success = create_cms_collector();
 145     if (!success) return JNI_ENOMEM;
 146   }
 147 #endif // INCLUDE_ALL_GCS
 148 
 149   return JNI_OK;
 150 }
 151 
 152 char* GenCollectedHeap::allocate(size_t alignment,
 153                                  ReservedSpace* heap_rs){
 154   // Now figure out the total size.
 155   const size_t pageSize = UseLargePages ? os::large_page_size() : os::vm_page_size();
 156   assert(alignment % pageSize == 0, "Must be");
 157 
 158   GenerationSpec* young_spec = gen_policy()->young_gen_spec();
 159   GenerationSpec* old_spec = gen_policy()->old_gen_spec();
 160 
 161   // Check for overflow.
 162   size_t total_reserved = young_spec->max_size() + old_spec->max_size();
 163   if (total_reserved < young_spec->max_size()) {
 164     vm_exit_during_initialization("The size of the object heap + VM data exceeds "
 165                                   "the maximum representable size");
 166   }
 167   assert(total_reserved % alignment == 0,
 168          err_msg("Gen size; total_reserved=" SIZE_FORMAT ", alignment="
 169                  SIZE_FORMAT, total_reserved, alignment));
 170 
 171   *heap_rs = Universe::reserve_heap(total_reserved, alignment);
 172   return heap_rs->base();
 173 }
 174 
 175 void GenCollectedHeap::post_initialize() {
 176   CollectedHeap::post_initialize();
 177   ref_processing_init();
 178   GenCollectorPolicy *policy = (GenCollectorPolicy *)collector_policy();
 179   guarantee(policy->is_generation_policy(), "Illegal policy type");
 180   assert((_young_gen->kind() == Generation::DefNew) ||
 181          (_young_gen->kind() == Generation::ParNew),
 182     "Wrong youngest generation type");
 183   DefNewGeneration* def_new_gen = (DefNewGeneration*)_young_gen;
 184 
 185   assert(_old_gen->kind() == Generation::ConcurrentMarkSweep ||
 186          _old_gen->kind() == Generation::MarkSweepCompact,
 187     "Wrong generation kind");
 188 
 189   policy->initialize_size_policy(def_new_gen->eden()->capacity(),
 190                                  _old_gen->capacity(),
 191                                  def_new_gen->from()->capacity());
 192   policy->initialize_gc_policy_counters();
 193 }
 194 
 195 void GenCollectedHeap::ref_processing_init() {
 196   _young_gen->ref_processor_init();
 197   _old_gen->ref_processor_init();
 198 }
 199 
 200 size_t GenCollectedHeap::capacity() const {
 201   return _young_gen->capacity() + _old_gen->capacity();
 202 }
 203 
 204 size_t GenCollectedHeap::used() const {
 205   return _young_gen->used() + _old_gen->used();
 206 }
 207 
 208 void GenCollectedHeap::save_used_regions() {
 209   _old_gen->save_used_region();
 210   _young_gen->save_used_region();
 211 }
 212 
 213 size_t GenCollectedHeap::max_capacity() const {
 214   return _young_gen->max_capacity() + _old_gen->max_capacity();
 215 }
 216 
 217 // Update the _full_collections_completed counter
 218 // at the end of a stop-world full GC.
 219 unsigned int GenCollectedHeap::update_full_collections_completed() {
 220   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 221   assert(_full_collections_completed <= _total_full_collections,
 222          "Can't complete more collections than were started");
 223   _full_collections_completed = _total_full_collections;
 224   ml.notify_all();
 225   return _full_collections_completed;
 226 }
 227 
 228 // Update the _full_collections_completed counter, as appropriate,
 229 // at the end of a concurrent GC cycle. Note the conditional update
 230 // below to allow this method to be called by a concurrent collector
 231 // without synchronizing in any manner with the VM thread (which
 232 // may already have initiated a STW full collection "concurrently").
 233 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
 234   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 235   assert((_full_collections_completed <= _total_full_collections) &&
 236          (count <= _total_full_collections),
 237          "Can't complete more collections than were started");
 238   if (count > _full_collections_completed) {
 239     _full_collections_completed = count;
 240     ml.notify_all();
 241   }
 242   return _full_collections_completed;
 243 }
 244 
 245 
 246 #ifndef PRODUCT
 247 // Override of memory state checking method in CollectedHeap:
 248 // Some collectors (CMS for example) can't have badHeapWordVal written
 249 // in the first two words of an object. (For instance , in the case of
 250 // CMS these words hold state used to synchronize between certain
 251 // (concurrent) GC steps and direct allocating mutators.)
 252 // The skip_header_HeapWords() method below, allows us to skip
 253 // over the requisite number of HeapWord's. Note that (for
 254 // generational collectors) this means that those many words are
 255 // skipped in each object, irrespective of the generation in which
 256 // that object lives. The resultant loss of precision seems to be
 257 // harmless and the pain of avoiding that imprecision appears somewhat
 258 // higher than we are prepared to pay for such rudimentary debugging
 259 // support.
 260 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
 261                                                          size_t size) {
 262   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 263     // We are asked to check a size in HeapWords,
 264     // but the memory is mangled in juint words.
 265     juint* start = (juint*) (addr + skip_header_HeapWords());
 266     juint* end   = (juint*) (addr + size);
 267     for (juint* slot = start; slot < end; slot += 1) {
 268       assert(*slot == badHeapWordVal,
 269              "Found non badHeapWordValue in pre-allocation check");
 270     }
 271   }
 272 }
 273 #endif
 274 
 275 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 276                                                bool is_tlab,
 277                                                bool first_only) {
 278   HeapWord* res = NULL;
 279 
 280   if (_young_gen->should_allocate(size, is_tlab)) {
 281     res = _young_gen->allocate(size, is_tlab);
 282     if (res != NULL || first_only) {
 283       return res;
 284     }
 285   }
 286 
 287   if (_old_gen->should_allocate(size, is_tlab)) {
 288     res = _old_gen->allocate(size, is_tlab);
 289   }
 290 
 291   return res;
 292 }
 293 
 294 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 295                                          bool* gc_overhead_limit_was_exceeded) {
 296   return collector_policy()->mem_allocate_work(size,
 297                                                false /* is_tlab */,
 298                                                gc_overhead_limit_was_exceeded);
 299 }
 300 
 301 bool GenCollectedHeap::must_clear_all_soft_refs() {
 302   return _gc_cause == GCCause::_last_ditch_collection;
 303 }
 304 
 305 bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
 306   return UseConcMarkSweepGC &&
 307          ((cause == GCCause::_gc_locker && GCLockerInvokesConcurrent) ||
 308           (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
 309 }
 310 
 311 void GenCollectedHeap::collect_generation(Generation* gen, bool full, size_t size,
 312                                           bool is_tlab, bool run_verification, bool clear_soft_refs,
 313                                           bool restore_marks_for_biased_locking) {
 314   // Timer for individual generations. Last argument is false: no CR
 315   // FIXME: We should try to start the timing earlier to cover more of the GC pause
 316   // The PrintGCDetails logging starts before we have incremented the GC id. We will do that later
 317   // so we can assume here that the next GC id is what we want.
 318   GCTraceTime t1(gen->short_name(), PrintGCDetails, false, NULL, GCId::peek());
 319   TraceCollectorStats tcs(gen->counters());
 320   TraceMemoryManagerStats tmms(gen->kind(),gc_cause());
 321 
 322   size_t prev_used = gen->used();
 323   gen->stat_record()->invocations++;
 324   gen->stat_record()->accumulated_time.start();
 325 
 326   // Must be done anew before each collection because
 327   // a previous collection will do mangling and will
 328   // change top of some spaces.
 329   record_gen_tops_before_GC();
 330 
 331   if (PrintGC && Verbose) {
 332     // I didn't want to change the logging when removing the level concept,
 333     // but I guess this logging could say young/old or something instead of 0/1.
 334     uint level;
 335     if (gen == GenCollectedHeap::heap()->young_gen()) {
 336       level = 0;
 337     } else {
 338       level = 1;
 339     }
 340     gclog_or_tty->print("level=%u invoke=%d size=" SIZE_FORMAT,
 341                         level,
 342                         gen->stat_record()->invocations,
 343                         size * HeapWordSize);
 344   }
 345 
 346   if (run_verification && VerifyBeforeGC) {
 347     HandleMark hm;  // Discard invalid handles created during verification
 348     Universe::verify(" VerifyBeforeGC:");
 349   }
 350   COMPILER2_PRESENT(DerivedPointerTable::clear());
 351 
 352   if (restore_marks_for_biased_locking) {
 353     // We perform this mark word preservation work lazily
 354     // because it's only at this point that we know whether we
 355     // absolutely have to do it; we want to avoid doing it for
 356     // scavenge-only collections where it's unnecessary
 357     BiasedLocking::preserve_marks();
 358   }
 359 
 360   // Do collection work
 361   {
 362     // Note on ref discovery: For what appear to be historical reasons,
 363     // GCH enables and disabled (by enqueing) refs discovery.
 364     // In the future this should be moved into the generation's
 365     // collect method so that ref discovery and enqueueing concerns
 366     // are local to a generation. The collect method could return
 367     // an appropriate indication in the case that notification on
 368     // the ref lock was needed. This will make the treatment of
 369     // weak refs more uniform (and indeed remove such concerns
 370     // from GCH). XXX
 371 
 372     HandleMark hm;  // Discard invalid handles created during gc
 373     save_marks();   // save marks for all gens
 374     // We want to discover references, but not process them yet.
 375     // This mode is disabled in process_discovered_references if the
 376     // generation does some collection work, or in
 377     // enqueue_discovered_references if the generation returns
 378     // without doing any work.
 379     ReferenceProcessor* rp = gen->ref_processor();
 380     // If the discovery of ("weak") refs in this generation is
 381     // atomic wrt other collectors in this configuration, we
 382     // are guaranteed to have empty discovered ref lists.
 383     if (rp->discovery_is_atomic()) {
 384       rp->enable_discovery();
 385       rp->setup_policy(clear_soft_refs);
 386     } else {
 387       // collect() below will enable discovery as appropriate
 388     }
 389     gen->collect(full, clear_soft_refs, size, is_tlab);
 390     if (!rp->enqueuing_is_done()) {
 391       rp->enqueue_discovered_references();
 392     } else {
 393       rp->set_enqueuing_is_done(false);
 394     }
 395     rp->verify_no_references_recorded();
 396   }
 397 
 398   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 399 
 400   gen->stat_record()->accumulated_time.stop();
 401 
 402   update_gc_stats(gen, full);
 403 
 404   if (run_verification && VerifyAfterGC) {
 405     HandleMark hm;  // Discard invalid handles created during verification
 406     Universe::verify(" VerifyAfterGC:");
 407   }
 408 
 409   if (PrintGCDetails) {
 410     gclog_or_tty->print(":");
 411     gen->print_heap_change(prev_used);
 412   }
 413 }
 414 
 415 void GenCollectedHeap::do_collection(bool             full,
 416                                      bool             clear_all_soft_refs,
 417                                      size_t           size,
 418                                      bool             is_tlab,
 419                                      Generation::Type max_generation) {
 420   ResourceMark rm;
 421   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 422 
 423   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 424   assert(my_thread->is_VM_thread() ||
 425          my_thread->is_ConcurrentGC_thread(),
 426          "incorrect thread type capability");
 427   assert(Heap_lock->is_locked(),
 428          "the requesting thread should have the Heap_lock");
 429   guarantee(!is_gc_active(), "collection is not reentrant");
 430 
 431   if (GC_locker::check_active_before_gc()) {
 432     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 433   }
 434 
 435   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 436                           collector_policy()->should_clear_all_soft_refs();
 437 
 438   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
 439 
 440   const size_t metadata_prev_used = MetaspaceAux::used_bytes();
 441 
 442   print_heap_before_gc();
 443 
 444   {
 445     FlagSetting fl(_is_gc_active, true);
 446 
 447     bool complete = full && (max_generation == Generation::Old);
 448     const char* gc_cause_prefix = complete ? "Full GC" : "GC";
 449     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
 450     // The PrintGCDetails logging starts before we have incremented the GC id. We will do that later
 451     // so we can assume here that the next GC id is what we want.
 452     GCTraceTime t(GCCauseString(gc_cause_prefix, gc_cause()), PrintGCDetails, false, NULL, GCId::peek());
 453 
 454     gc_prologue(complete);
 455     increment_total_collections(complete);
 456 
 457     size_t gch_prev_used = used();
 458     bool run_verification = total_collections() >= VerifyGCStartAt;
 459 
 460     bool prepared_for_verification = false;
 461     bool collected_old = false;
 462     bool old_collects_young = complete &&
 463                               _old_gen->full_collects_younger_generations();
 464     if (!old_collects_young &&
 465         _young_gen->should_collect(full, size, is_tlab)) {
 466       if (run_verification && VerifyGCLevel <= 0 && VerifyBeforeGC) {
 467         prepare_for_verify();
 468         prepared_for_verification = true;
 469       }
 470 
 471       assert(!_young_gen->performs_in_place_marking(), "No young generation do in place marking");
 472       collect_generation(_young_gen,
 473                          full,
 474                          size,
 475                          is_tlab,
 476                          run_verification && VerifyGCLevel <= 0,
 477                          do_clear_all_soft_refs,
 478                          false);
 479 
 480       if (size > 0 && (!is_tlab || _young_gen->supports_tlab_allocation()) &&
 481           size * HeapWordSize <= _young_gen->unsafe_max_alloc_nogc()) {
 482         // Allocation request was met by young GC.
 483         size = 0;
 484       }
 485     }
 486 
 487     bool must_restore_marks_for_biased_locking = false;
 488 
 489     if (max_generation == Generation::Old && _old_gen->should_collect(full, size, is_tlab)) {
 490       if (!complete) {
 491         // The full_collections increment was missed above.
 492         increment_total_full_collections();
 493       }
 494 
 495       pre_full_gc_dump(NULL);    // do any pre full gc dumps
 496 
 497       if (!prepared_for_verification && run_verification &&
 498           VerifyGCLevel <= 1 && VerifyBeforeGC) {
 499         prepare_for_verify();
 500       }
 501 
 502       assert(_old_gen->performs_in_place_marking(), "All old generations do in place marking");
 503       collect_generation(_old_gen,
 504                          full,
 505                          size,
 506                          is_tlab,
 507                          run_verification && VerifyGCLevel <= 1,
 508                          do_clear_all_soft_refs,
 509                          true);
 510 
 511       must_restore_marks_for_biased_locking = true;
 512       collected_old = true;
 513     }
 514 
 515     // Update "complete" boolean wrt what actually transpired --
 516     // for instance, a promotion failure could have led to
 517     // a whole heap collection.
 518     complete = complete || collected_old;
 519 
 520     if (complete) { // We did a "major" collection
 521       // FIXME: See comment at pre_full_gc_dump call
 522       post_full_gc_dump(NULL);   // do any post full gc dumps
 523     }
 524 
 525     if (PrintGCDetails) {
 526       print_heap_change(gch_prev_used);
 527 
 528       // Print metaspace info for full GC with PrintGCDetails flag.
 529       if (complete) {
 530         MetaspaceAux::print_metaspace_change(metadata_prev_used);
 531       }
 532     }
 533 
 534     // Adjust generation sizes.
 535     if (collected_old) {
 536       _old_gen->compute_new_size();
 537     }
 538     _young_gen->compute_new_size();
 539 
 540     if (complete) {
 541       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 542       ClassLoaderDataGraph::purge();
 543       MetaspaceAux::verify_metrics();
 544       // Resize the metaspace capacity after full collections
 545       MetaspaceGC::compute_new_size();
 546       update_full_collections_completed();
 547     }
 548 
 549     // Track memory usage and detect low memory after GC finishes
 550     MemoryService::track_memory_usage();
 551 
 552     gc_epilogue(complete);
 553 
 554     if (must_restore_marks_for_biased_locking) {
 555       BiasedLocking::restore_marks();
 556     }
 557   }
 558 
 559   print_heap_after_gc();
 560 
 561 #ifdef TRACESPINNING
 562   ParallelTaskTerminator::print_termination_counts();
 563 #endif
 564 }
 565 
 566 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 567   return collector_policy()->satisfy_failed_allocation(size, is_tlab);
 568 }
 569 
 570 void GenCollectedHeap::set_par_threads(uint t) {
 571   assert(t == 0 || !UseSerialGC, "Cannot have parallel threads");
 572   CollectedHeap::set_par_threads(t);
 573   set_n_termination(t);
 574 }
 575 
 576 void GenCollectedHeap::set_n_termination(uint t) {
 577   _process_strong_tasks->set_n_threads(t);
 578 }
 579 
 580 #ifdef ASSERT
 581 class AssertNonScavengableClosure: public OopClosure {
 582 public:
 583   virtual void do_oop(oop* p) {
 584     assert(!GenCollectedHeap::heap()->is_in_partial_collection(*p),
 585       "Referent should not be scavengable.");  }
 586   virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); }
 587 };
 588 static AssertNonScavengableClosure assert_is_non_scavengable_closure;
 589 #endif
 590 
 591 void GenCollectedHeap::process_roots(bool activate_scope,
 592                                      ScanningOption so,
 593                                      OopClosure* strong_roots,
 594                                      OopClosure* weak_roots,
 595                                      CLDClosure* strong_cld_closure,
 596                                      CLDClosure* weak_cld_closure,
 597                                      CodeBlobClosure* code_roots) {
 598   StrongRootsScope srs(activate_scope);
 599 
 600   // General roots.
 601   assert(Threads::thread_claim_parity() != 0, "must have called prologue code");
 602   assert(code_roots != NULL, "code root closure should always be set");
 603   // _n_termination for _process_strong_tasks should be set up stream
 604   // in a method not running in a GC worker.  Otherwise the GC worker
 605   // could be trying to change the termination condition while the task
 606   // is executing in another GC worker.
 607 
 608   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ClassLoaderDataGraph_oops_do)) {
 609     ClassLoaderDataGraph::roots_cld_do(strong_cld_closure, weak_cld_closure);
 610   }
 611 
 612   // Some CLDs contained in the thread frames should be considered strong.
 613   // Don't process them if they will be processed during the ClassLoaderDataGraph phase.
 614   CLDClosure* roots_from_clds_p = (strong_cld_closure != weak_cld_closure) ? strong_cld_closure : NULL;
 615   // Only process code roots from thread stacks if we aren't visiting the entire CodeCache anyway
 616   CodeBlobClosure* roots_from_code_p = (so & SO_AllCodeCache) ? NULL : code_roots;
 617 
 618   bool is_par = n_par_threads() > 0;
 619   Threads::possibly_parallel_oops_do(is_par, strong_roots, roots_from_clds_p, roots_from_code_p);
 620 
 621   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Universe_oops_do)) {
 622     Universe::oops_do(strong_roots);
 623   }
 624   // Global (strong) JNI handles
 625   if (!_process_strong_tasks->is_task_claimed(GCH_PS_JNIHandles_oops_do)) {
 626     JNIHandles::oops_do(strong_roots);
 627   }
 628 
 629   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ObjectSynchronizer_oops_do)) {
 630     ObjectSynchronizer::oops_do(strong_roots);
 631   }
 632   if (!_process_strong_tasks->is_task_claimed(GCH_PS_FlatProfiler_oops_do)) {
 633     FlatProfiler::oops_do(strong_roots);
 634   }
 635   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Management_oops_do)) {
 636     Management::oops_do(strong_roots);
 637   }
 638   if (!_process_strong_tasks->is_task_claimed(GCH_PS_jvmti_oops_do)) {
 639     JvmtiExport::oops_do(strong_roots);
 640   }
 641 
 642   if (!_process_strong_tasks->is_task_claimed(GCH_PS_SystemDictionary_oops_do)) {
 643     SystemDictionary::roots_oops_do(strong_roots, weak_roots);
 644   }
 645 
 646   // All threads execute the following. A specific chunk of buckets
 647   // from the StringTable are the individual tasks.
 648   if (weak_roots != NULL) {
 649     if (CollectedHeap::use_parallel_gc_threads()) {
 650       StringTable::possibly_parallel_oops_do(weak_roots);
 651     } else {
 652       StringTable::oops_do(weak_roots);
 653     }
 654   }
 655 
 656   if (!_process_strong_tasks->is_task_claimed(GCH_PS_CodeCache_oops_do)) {
 657     if (so & SO_ScavengeCodeCache) {
 658       assert(code_roots != NULL, "must supply closure for code cache");
 659 
 660       // We only visit parts of the CodeCache when scavenging.
 661       CodeCache::scavenge_root_nmethods_do(code_roots);
 662     }
 663     if (so & SO_AllCodeCache) {
 664       assert(code_roots != NULL, "must supply closure for code cache");
 665 
 666       // CMSCollector uses this to do intermediate-strength collections.
 667       // We scan the entire code cache, since CodeCache::do_unloading is not called.
 668       CodeCache::blobs_do(code_roots);
 669     }
 670     // Verify that the code cache contents are not subject to
 671     // movement by a scavenging collection.
 672     DEBUG_ONLY(CodeBlobToOopClosure assert_code_is_non_scavengable(&assert_is_non_scavengable_closure, !CodeBlobToOopClosure::FixRelocations));
 673     DEBUG_ONLY(CodeCache::asserted_non_scavengable_nmethods_do(&assert_code_is_non_scavengable));
 674   }
 675 
 676 }
 677 
 678 void GenCollectedHeap::gen_process_roots(Generation::Type type,
 679                                          bool younger_gens_as_roots,
 680                                          bool activate_scope,
 681                                          ScanningOption so,
 682                                          bool only_strong_roots,
 683                                          OopsInGenClosure* not_older_gens,
 684                                          OopsInGenClosure* older_gens,
 685                                          CLDClosure* cld_closure) {
 686   const bool is_adjust_phase = !only_strong_roots && !younger_gens_as_roots;
 687 
 688   bool is_moving_collection = false;
 689   if (type == Generation::Young || is_adjust_phase) {
 690     // young collections are always moving
 691     is_moving_collection = true;
 692   }
 693 
 694   MarkingCodeBlobClosure mark_code_closure(not_older_gens, is_moving_collection);
 695   OopsInGenClosure* weak_roots = only_strong_roots ? NULL : not_older_gens;
 696   CLDClosure* weak_cld_closure = only_strong_roots ? NULL : cld_closure;
 697 
 698   process_roots(activate_scope, so,
 699                 not_older_gens, weak_roots,
 700                 cld_closure, weak_cld_closure,
 701                 &mark_code_closure);
 702 
 703   if (younger_gens_as_roots) {
 704     if (!_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
 705       if (type == Generation::Old) {
 706         not_older_gens->set_generation(_young_gen);
 707         _young_gen->oop_iterate(not_older_gens);
 708       }
 709       not_older_gens->reset_generation();
 710     }
 711   }
 712   // When collection is parallel, all threads get to cooperate to do
 713   // old generation scanning.
 714   if (type == Generation::Young) {
 715     older_gens->set_generation(_old_gen);
 716     rem_set()->younger_refs_iterate(_old_gen, older_gens);
 717     older_gens->reset_generation();
 718   }
 719 
 720   _process_strong_tasks->all_tasks_completed();
 721 }
 722 
 723 
 724 class AlwaysTrueClosure: public BoolObjectClosure {
 725 public:
 726   bool do_object_b(oop p) { return true; }
 727 };
 728 static AlwaysTrueClosure always_true;
 729 
 730 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
 731   JNIHandles::weak_oops_do(&always_true, root_closure);
 732   _young_gen->ref_processor()->weak_oops_do(root_closure);
 733   _old_gen->ref_processor()->weak_oops_do(root_closure);
 734 }
 735 
 736 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
 737 void GenCollectedHeap::                                                 \
 738 oop_since_save_marks_iterate(Generation::Type gen,                      \
 739                              OopClosureType* cur,                       \
 740                              OopClosureType* older) {                   \
 741   if (gen == Generation::Young) {                                       \
 742     _young_gen->oop_since_save_marks_iterate##nv_suffix(cur);           \
 743     _old_gen->oop_since_save_marks_iterate##nv_suffix(older);           \
 744   } else {                                                              \
 745     _old_gen->oop_since_save_marks_iterate##nv_suffix(cur);             \
 746   }                                                                     \
 747 }
 748 
 749 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
 750 
 751 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
 752 
 753 bool GenCollectedHeap::no_allocs_since_save_marks(bool include_young) {
 754   if (include_young && !_young_gen->no_allocs_since_save_marks()) {
 755     return false;
 756   }
 757   return _old_gen->no_allocs_since_save_marks();
 758 }
 759 
 760 bool GenCollectedHeap::supports_inline_contig_alloc() const {
 761   return _young_gen->supports_inline_contig_alloc();
 762 }
 763 
 764 HeapWord** GenCollectedHeap::top_addr() const {
 765   return _young_gen->top_addr();
 766 }
 767 
 768 HeapWord** GenCollectedHeap::end_addr() const {
 769   return _young_gen->end_addr();
 770 }
 771 
 772 // public collection interfaces
 773 
 774 void GenCollectedHeap::collect(GCCause::Cause cause) {
 775   if (should_do_concurrent_full_gc(cause)) {
 776 #if INCLUDE_ALL_GCS
 777     // mostly concurrent full collection
 778     collect_mostly_concurrent(cause);
 779 #else  // INCLUDE_ALL_GCS
 780     ShouldNotReachHere();
 781 #endif // INCLUDE_ALL_GCS
 782   } else if (cause == GCCause::_wb_young_gc) {
 783     // minor collection for WhiteBox API
 784     collect(cause, Generation::Young);
 785   } else {
 786 #ifdef ASSERT
 787   if (cause == GCCause::_scavenge_alot) {
 788     // minor collection only
 789     collect(cause, Generation::Young);
 790   } else {
 791     // Stop-the-world full collection
 792     collect(cause, Generation::Old);
 793   }
 794 #else
 795     // Stop-the-world full collection
 796     collect(cause, Generation::Old);
 797 #endif
 798   }
 799 }
 800 
 801 void GenCollectedHeap::collect(GCCause::Cause cause, Generation::Type max_generation) {
 802   // The caller doesn't have the Heap_lock
 803   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 804   MutexLocker ml(Heap_lock);
 805   collect_locked(cause, max_generation);
 806 }
 807 
 808 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
 809   // The caller has the Heap_lock
 810   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
 811   collect_locked(cause, Generation::Old);
 812 }
 813 
 814 // this is the private collection interface
 815 // The Heap_lock is expected to be held on entry.
 816 
 817 void GenCollectedHeap::collect_locked(GCCause::Cause cause, Generation::Type max_generation) {
 818   // Read the GC count while holding the Heap_lock
 819   unsigned int gc_count_before      = total_collections();
 820   unsigned int full_gc_count_before = total_full_collections();
 821   {
 822     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
 823     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 824                          cause, max_generation);
 825     VMThread::execute(&op);
 826   }
 827 }
 828 
 829 #if INCLUDE_ALL_GCS
 830 bool GenCollectedHeap::create_cms_collector() {
 831 
 832   assert(_old_gen->kind() == Generation::ConcurrentMarkSweep,
 833          "Unexpected generation kinds");
 834   // Skip two header words in the block content verification
 835   NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();)
 836   CMSCollector* collector = new CMSCollector(
 837     (ConcurrentMarkSweepGeneration*)_old_gen,
 838     _rem_set->as_CardTableRS(),
 839     (ConcurrentMarkSweepPolicy*) collector_policy());
 840 
 841   if (collector == NULL || !collector->completed_initialization()) {
 842     if (collector) {
 843       delete collector;  // Be nice in embedded situation
 844     }
 845     vm_shutdown_during_initialization("Could not create CMS collector");
 846     return false;
 847   }
 848   return true;  // success
 849 }
 850 
 851 void GenCollectedHeap::collect_mostly_concurrent(GCCause::Cause cause) {
 852   assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");
 853 
 854   MutexLocker ml(Heap_lock);
 855   // Read the GC counts while holding the Heap_lock
 856   unsigned int full_gc_count_before = total_full_collections();
 857   unsigned int gc_count_before      = total_collections();
 858   {
 859     MutexUnlocker mu(Heap_lock);
 860     VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
 861     VMThread::execute(&op);
 862   }
 863 }
 864 #endif // INCLUDE_ALL_GCS
 865 
 866 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 867    do_full_collection(clear_all_soft_refs, Generation::Old);
 868 }
 869 
 870 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
 871                                           Generation::Type last_generation) {
 872   Generation::Type local_last_generation;
 873   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
 874       gc_cause() == GCCause::_gc_locker) {
 875     local_last_generation = Generation::Young;
 876   } else {
 877     local_last_generation = last_generation;
 878   }
 879 
 880   do_collection(true                  /* full */,
 881                 clear_all_soft_refs   /* clear_all_soft_refs */,
 882                 0                     /* size */,
 883                 false                 /* is_tlab */,
 884                 local_last_generation /* last_generation */);
 885   // Hack XXX FIX ME !!!
 886   // A scavenge may not have been attempted, or may have
 887   // been attempted and failed, because the old gen was too full
 888   if (local_last_generation == Generation::Young && gc_cause() == GCCause::_gc_locker &&
 889       incremental_collection_will_fail(false /* don't consult_young */)) {
 890     if (PrintGCDetails) {
 891       gclog_or_tty->print_cr("GC locker: Trying a full collection "
 892                              "because scavenge failed");
 893     }
 894     // This time allow the old gen to be collected as well
 895     do_collection(true                 /* full */,
 896                   clear_all_soft_refs  /* clear_all_soft_refs */,
 897                   0                    /* size */,
 898                   false                /* is_tlab */,
 899                   Generation::Old      /* last_generation */);
 900   }
 901 }
 902 
 903 bool GenCollectedHeap::is_in_young(oop p) {
 904   bool result = ((HeapWord*)p) < _old_gen->reserved().start();
 905   assert(result == _young_gen->is_in_reserved(p),
 906          err_msg("incorrect test - result=%d, p=" INTPTR_FORMAT, result, p2i((void*)p)));
 907   return result;
 908 }
 909 
 910 // Returns "TRUE" iff "p" points into the committed areas of the heap.
 911 bool GenCollectedHeap::is_in(const void* p) const {
 912   return _young_gen->is_in(p) || _old_gen->is_in(p);
 913 }
 914 
 915 #ifdef ASSERT
 916 // Don't implement this by using is_in_young().  This method is used
 917 // in some cases to check that is_in_young() is correct.
 918 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
 919   assert(is_in_reserved(p) || p == NULL,
 920     "Does not work if address is non-null and outside of the heap");
 921   return p < _young_gen->reserved().end() && p != NULL;
 922 }
 923 #endif
 924 
 925 void GenCollectedHeap::oop_iterate_no_header(OopClosure* cl) {
 926   NoHeaderExtendedOopClosure no_header_cl(cl);
 927   oop_iterate(&no_header_cl);
 928 }
 929 
 930 void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
 931   _young_gen->oop_iterate(cl);
 932   _old_gen->oop_iterate(cl);
 933 }
 934 
 935 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
 936   _young_gen->object_iterate(cl);
 937   _old_gen->object_iterate(cl);
 938 }
 939 
 940 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
 941   _young_gen->safe_object_iterate(cl);
 942   _old_gen->safe_object_iterate(cl);
 943 }
 944 
 945 Space* GenCollectedHeap::space_containing(const void* addr) const {
 946   Space* res = _young_gen->space_containing(addr);
 947   if (res != NULL) {
 948     return res;
 949   }
 950   res = _old_gen->space_containing(addr);
 951   assert(res != NULL, "Could not find containing space");
 952   return res;
 953 }
 954 
 955 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
 956   assert(is_in_reserved(addr), "block_start of address outside of heap");
 957   if (_young_gen->is_in_reserved(addr)) {
 958     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
 959     return _young_gen->block_start(addr);
 960   }
 961 
 962   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 963   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
 964   return _old_gen->block_start(addr);
 965 }
 966 
 967 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
 968   assert(is_in_reserved(addr), "block_size of address outside of heap");
 969   if (_young_gen->is_in_reserved(addr)) {
 970     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
 971     return _young_gen->block_size(addr);
 972   }
 973 
 974   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 975   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
 976   return _old_gen->block_size(addr);
 977 }
 978 
 979 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
 980   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
 981   assert(block_start(addr) == addr, "addr must be a block start");
 982   if (_young_gen->is_in_reserved(addr)) {
 983     return _young_gen->block_is_obj(addr);
 984   }
 985 
 986   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 987   return _old_gen->block_is_obj(addr);
 988 }
 989 
 990 bool GenCollectedHeap::supports_tlab_allocation() const {
 991   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 992   return _young_gen->supports_tlab_allocation();
 993 }
 994 
 995 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
 996   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 997   if (_young_gen->supports_tlab_allocation()) {
 998     return _young_gen->tlab_capacity();
 999   }
1000   return 0;
1001 }
1002 
1003 size_t GenCollectedHeap::tlab_used(Thread* thr) const {
1004   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1005   if (_young_gen->supports_tlab_allocation()) {
1006     return _young_gen->tlab_used();
1007   }
1008   return 0;
1009 }
1010 
1011 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
1012   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1013   if (_young_gen->supports_tlab_allocation()) {
1014     return _young_gen->unsafe_max_tlab_alloc();
1015   }
1016   return 0;
1017 }
1018 
1019 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
1020   bool gc_overhead_limit_was_exceeded;
1021   return collector_policy()->mem_allocate_work(size /* size */,
1022                                                true /* is_tlab */,
1023                                                &gc_overhead_limit_was_exceeded);
1024 }
1025 
1026 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
1027 // from the list headed by "*prev_ptr".
1028 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
1029   bool first = true;
1030   size_t min_size = 0;   // "first" makes this conceptually infinite.
1031   ScratchBlock **smallest_ptr, *smallest;
1032   ScratchBlock  *cur = *prev_ptr;
1033   while (cur) {
1034     assert(*prev_ptr == cur, "just checking");
1035     if (first || cur->num_words < min_size) {
1036       smallest_ptr = prev_ptr;
1037       smallest     = cur;
1038       min_size     = smallest->num_words;
1039       first        = false;
1040     }
1041     prev_ptr = &cur->next;
1042     cur     =  cur->next;
1043   }
1044   smallest      = *smallest_ptr;
1045   *smallest_ptr = smallest->next;
1046   return smallest;
1047 }
1048 
1049 // Sort the scratch block list headed by res into decreasing size order,
1050 // and set "res" to the result.
1051 static void sort_scratch_list(ScratchBlock*& list) {
1052   ScratchBlock* sorted = NULL;
1053   ScratchBlock* unsorted = list;
1054   while (unsorted) {
1055     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
1056     smallest->next  = sorted;
1057     sorted          = smallest;
1058   }
1059   list = sorted;
1060 }
1061 
1062 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
1063                                                size_t max_alloc_words) {
1064   ScratchBlock* res = NULL;
1065   _young_gen->contribute_scratch(res, requestor, max_alloc_words);
1066   _old_gen->contribute_scratch(res, requestor, max_alloc_words);
1067   sort_scratch_list(res);
1068   return res;
1069 }
1070 
1071 void GenCollectedHeap::release_scratch() {
1072   _young_gen->reset_scratch();
1073   _old_gen->reset_scratch();
1074 }
1075 
1076 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
1077   void do_generation(Generation* gen) {
1078     gen->prepare_for_verify();
1079   }
1080 };
1081 
1082 void GenCollectedHeap::prepare_for_verify() {
1083   ensure_parsability(false);        // no need to retire TLABs
1084   GenPrepareForVerifyClosure blk;
1085   generation_iterate(&blk, false);
1086 }
1087 
1088 void GenCollectedHeap::generation_iterate(GenClosure* cl,
1089                                           bool old_to_young) {
1090   if (old_to_young) {
1091     cl->do_generation(_old_gen);
1092     cl->do_generation(_young_gen);
1093   } else {
1094     cl->do_generation(_young_gen);
1095     cl->do_generation(_old_gen);
1096   }
1097 }
1098 
1099 bool GenCollectedHeap::is_maximal_no_gc() const {
1100   return _young_gen->is_maximal_no_gc() && _old_gen->is_maximal_no_gc();
1101 }
1102 
1103 void GenCollectedHeap::save_marks() {
1104   _young_gen->save_marks();
1105   _old_gen->save_marks();
1106 }
1107 
1108 GenCollectedHeap* GenCollectedHeap::heap() {
1109   assert(_gch != NULL, "Uninitialized access to GenCollectedHeap::heap()");
1110   assert(_gch->kind() == CollectedHeap::GenCollectedHeap, "not a generational heap");
1111   return _gch;
1112 }
1113 
1114 void GenCollectedHeap::prepare_for_compaction() {
1115   // Start by compacting into same gen.
1116   CompactPoint cp(_old_gen);
1117   _old_gen->prepare_for_compaction(&cp);
1118   _young_gen->prepare_for_compaction(&cp);
1119 }
1120 
1121 GCStats* GenCollectedHeap::gc_stats(Generation* gen) const {
1122   return gen->gc_stats();
1123 }
1124 
1125 void GenCollectedHeap::verify(bool silent, VerifyOption option /* ignored */) {
1126   if (!silent) {
1127     gclog_or_tty->print("%s", _old_gen->name());
1128     gclog_or_tty->print(" ");
1129   }
1130   _old_gen->verify();
1131 
1132   if (!silent) {
1133     gclog_or_tty->print("%s", _young_gen->name());
1134     gclog_or_tty->print(" ");
1135   }
1136   _young_gen->verify();
1137 
1138   if (!silent) {
1139     gclog_or_tty->print("remset ");
1140   }
1141   rem_set()->verify();
1142 }
1143 
1144 void GenCollectedHeap::print_on(outputStream* st) const {
1145   _young_gen->print_on(st);
1146   _old_gen->print_on(st);
1147   MetaspaceAux::print_on(st);
1148 }
1149 
1150 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1151   if (workers() != NULL) {
1152     workers()->threads_do(tc);
1153   }
1154 #if INCLUDE_ALL_GCS
1155   if (UseConcMarkSweepGC) {
1156     ConcurrentMarkSweepThread::threads_do(tc);
1157   }
1158 #endif // INCLUDE_ALL_GCS
1159 }
1160 
1161 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
1162 #if INCLUDE_ALL_GCS
1163   if (UseConcMarkSweepGC) {
1164     workers()->print_worker_threads_on(st);
1165     ConcurrentMarkSweepThread::print_all_on(st);
1166   }
1167 #endif // INCLUDE_ALL_GCS
1168 }
1169 
1170 void GenCollectedHeap::print_on_error(outputStream* st) const {
1171   this->CollectedHeap::print_on_error(st);
1172 
1173 #if INCLUDE_ALL_GCS
1174   if (UseConcMarkSweepGC) {
1175     st->cr();
1176     CMSCollector::print_on_error(st);
1177   }
1178 #endif // INCLUDE_ALL_GCS
1179 }
1180 
1181 void GenCollectedHeap::print_tracing_info() const {
1182   if (TraceYoungGenTime) {
1183     _young_gen->print_summary_info();
1184   }
1185   if (TraceOldGenTime) {
1186     _old_gen->print_summary_info();
1187   }
1188 }
1189 
1190 void GenCollectedHeap::print_heap_change(size_t prev_used) const {
1191   if (PrintGCDetails && Verbose) {
1192     gclog_or_tty->print(" "  SIZE_FORMAT
1193                         "->" SIZE_FORMAT
1194                         "("  SIZE_FORMAT ")",
1195                         prev_used, used(), capacity());
1196   } else {
1197     gclog_or_tty->print(" "  SIZE_FORMAT "K"
1198                         "->" SIZE_FORMAT "K"
1199                         "("  SIZE_FORMAT "K)",
1200                         prev_used / K, used() / K, capacity() / K);
1201   }
1202 }
1203 
1204 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1205  private:
1206   bool _full;
1207  public:
1208   void do_generation(Generation* gen) {
1209     gen->gc_prologue(_full);
1210   }
1211   GenGCPrologueClosure(bool full) : _full(full) {};
1212 };
1213 
1214 void GenCollectedHeap::gc_prologue(bool full) {
1215   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1216 
1217   always_do_update_barrier = false;
1218   // Fill TLAB's and such
1219   CollectedHeap::accumulate_statistics_all_tlabs();
1220   ensure_parsability(true);   // retire TLABs
1221 
1222   // Walk generations
1223   GenGCPrologueClosure blk(full);
1224   generation_iterate(&blk, false);  // not old-to-young.
1225 };
1226 
1227 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1228  private:
1229   bool _full;
1230  public:
1231   void do_generation(Generation* gen) {
1232     gen->gc_epilogue(_full);
1233   }
1234   GenGCEpilogueClosure(bool full) : _full(full) {};
1235 };
1236 
1237 void GenCollectedHeap::gc_epilogue(bool full) {
1238 #ifdef COMPILER2
1239   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1240   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1241   guarantee(actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1242 #endif /* COMPILER2 */
1243 
1244   resize_all_tlabs();
1245 
1246   GenGCEpilogueClosure blk(full);
1247   generation_iterate(&blk, false);  // not old-to-young.
1248 
1249   if (!CleanChunkPoolAsync) {
1250     Chunk::clean_chunk_pool();
1251   }
1252 
1253   MetaspaceCounters::update_performance_counters();
1254   CompressedClassSpaceCounters::update_performance_counters();
1255 
1256   always_do_update_barrier = UseConcMarkSweepGC;
1257 };
1258 
1259 #ifndef PRODUCT
1260 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1261  private:
1262  public:
1263   void do_generation(Generation* gen) {
1264     gen->record_spaces_top();
1265   }
1266 };
1267 
1268 void GenCollectedHeap::record_gen_tops_before_GC() {
1269   if (ZapUnusedHeapArea) {
1270     GenGCSaveTopsBeforeGCClosure blk;
1271     generation_iterate(&blk, false);  // not old-to-young.
1272   }
1273 }
1274 #endif  // not PRODUCT
1275 
1276 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1277  public:
1278   void do_generation(Generation* gen) {
1279     gen->ensure_parsability();
1280   }
1281 };
1282 
1283 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1284   CollectedHeap::ensure_parsability(retire_tlabs);
1285   GenEnsureParsabilityClosure ep_cl;
1286   generation_iterate(&ep_cl, false);
1287 }
1288 
1289 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
1290                                               oop obj,
1291                                               size_t obj_size) {
1292   guarantee(old_gen == _old_gen, "We only get here with an old generation");
1293   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1294   HeapWord* result = NULL;
1295 
1296   result = old_gen->expand_and_allocate(obj_size, false);
1297 
1298   if (result != NULL) {
1299     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
1300   }
1301   return oop(result);
1302 }
1303 
1304 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1305   jlong _time;   // in ms
1306   jlong _now;    // in ms
1307 
1308  public:
1309   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1310 
1311   jlong time() { return _time; }
1312 
1313   void do_generation(Generation* gen) {
1314     _time = MIN2(_time, gen->time_of_last_gc(_now));
1315   }
1316 };
1317 
1318 jlong GenCollectedHeap::millis_since_last_gc() {
1319   // We need a monotonically non-decreasing time in ms but
1320   // os::javaTimeMillis() does not guarantee monotonicity.
1321   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1322   GenTimeOfLastGCClosure tolgc_cl(now);
1323   // iterate over generations getting the oldest
1324   // time that a generation was collected
1325   generation_iterate(&tolgc_cl, false);
1326 
1327   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
1328   // provided the underlying platform provides such a time source
1329   // (and it is bug free). So we still have to guard against getting
1330   // back a time later than 'now'.
1331   jlong retVal = now - tolgc_cl.time();
1332   if (retVal < 0) {
1333     NOT_PRODUCT(warning("time warp: " JLONG_FORMAT, retVal);)
1334     return 0;
1335   }
1336   return retVal;
1337 }