1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  31 #include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp"
  32 #include "gc_implementation/concurrentMarkSweep/cmsOopClosures.inline.hpp"
  33 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
  34 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp"
  35 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  36 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  37 #include "gc_implementation/parNew/parNewGeneration.hpp"
  38 #include "gc_implementation/shared/collectorCounters.hpp"
  39 #include "gc_implementation/shared/gcTimer.hpp"
  40 #include "gc_implementation/shared/gcTrace.hpp"
  41 #include "gc_implementation/shared/gcTraceTime.hpp"
  42 #include "gc_implementation/shared/isGCActiveMark.hpp"
  43 #include "gc_interface/collectedHeap.inline.hpp"
  44 #include "memory/allocation.hpp"
  45 #include "memory/cardGeneration.inline.hpp"
  46 #include "memory/cardTableRS.hpp"
  47 #include "memory/collectorPolicy.hpp"
  48 #include "memory/gcLocker.inline.hpp"
  49 #include "memory/genCollectedHeap.hpp"
  50 #include "memory/genMarkSweep.hpp"
  51 #include "memory/genOopClosures.inline.hpp"
  52 #include "memory/iterator.inline.hpp"
  53 #include "memory/padded.hpp"
  54 #include "memory/referencePolicy.hpp"
  55 #include "memory/resourceArea.hpp"
  56 #include "memory/strongRootsScope.hpp"
  57 #include "memory/tenuredGeneration.hpp"
  58 #include "oops/oop.inline.hpp"
  59 #include "prims/jvmtiExport.hpp"
  60 #include "runtime/atomic.inline.hpp"
  61 #include "runtime/globals_extension.hpp"
  62 #include "runtime/handles.inline.hpp"
  63 #include "runtime/java.hpp"
  64 #include "runtime/orderAccess.inline.hpp"
  65 #include "runtime/vmThread.hpp"
  66 #include "services/memoryService.hpp"
  67 #include "services/runtimeService.hpp"
  68 #include "utilities/stack.inline.hpp"
  69 #include "utilities/taskqueue.inline.hpp"
  70 
  71 // statics
  72 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  73 bool CMSCollector::_full_gc_requested = false;
  74 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  75 
  76 //////////////////////////////////////////////////////////////////
  77 // In support of CMS/VM thread synchronization
  78 //////////////////////////////////////////////////////////////////
  79 // We split use of the CGC_lock into 2 "levels".
  80 // The low-level locking is of the usual CGC_lock monitor. We introduce
  81 // a higher level "token" (hereafter "CMS token") built on top of the
  82 // low level monitor (hereafter "CGC lock").
  83 // The token-passing protocol gives priority to the VM thread. The
  84 // CMS-lock doesn't provide any fairness guarantees, but clients
  85 // should ensure that it is only held for very short, bounded
  86 // durations.
  87 //
  88 // When either of the CMS thread or the VM thread is involved in
  89 // collection operations during which it does not want the other
  90 // thread to interfere, it obtains the CMS token.
  91 //
  92 // If either thread tries to get the token while the other has
  93 // it, that thread waits. However, if the VM thread and CMS thread
  94 // both want the token, then the VM thread gets priority while the
  95 // CMS thread waits. This ensures, for instance, that the "concurrent"
  96 // phases of the CMS thread's work do not block out the VM thread
  97 // for long periods of time as the CMS thread continues to hog
  98 // the token. (See bug 4616232).
  99 //
 100 // The baton-passing functions are, however, controlled by the
 101 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
 102 // and here the low-level CMS lock, not the high level token,
 103 // ensures mutual exclusion.
 104 //
 105 // Two important conditions that we have to satisfy:
 106 // 1. if a thread does a low-level wait on the CMS lock, then it
 107 //    relinquishes the CMS token if it were holding that token
 108 //    when it acquired the low-level CMS lock.
 109 // 2. any low-level notifications on the low-level lock
 110 //    should only be sent when a thread has relinquished the token.
 111 //
 112 // In the absence of either property, we'd have potential deadlock.
 113 //
 114 // We protect each of the CMS (concurrent and sequential) phases
 115 // with the CMS _token_, not the CMS _lock_.
 116 //
 117 // The only code protected by CMS lock is the token acquisition code
 118 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 119 // baton-passing code.
 120 //
 121 // Unfortunately, i couldn't come up with a good abstraction to factor and
 122 // hide the naked CGC_lock manipulation in the baton-passing code
 123 // further below. That's something we should try to do. Also, the proof
 124 // of correctness of this 2-level locking scheme is far from obvious,
 125 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 126 // that there may be a theoretical possibility of delay/starvation in the
 127 // low-level lock/wait/notify scheme used for the baton-passing because of
 128 // potential interference with the priority scheme embodied in the
 129 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 130 // invocation further below and marked with "XXX 20011219YSR".
 131 // Indeed, as we note elsewhere, this may become yet more slippery
 132 // in the presence of multiple CMS and/or multiple VM threads. XXX
 133 
 134 class CMSTokenSync: public StackObj {
 135  private:
 136   bool _is_cms_thread;
 137  public:
 138   CMSTokenSync(bool is_cms_thread):
 139     _is_cms_thread(is_cms_thread) {
 140     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 141            "Incorrect argument to constructor");
 142     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 143   }
 144 
 145   ~CMSTokenSync() {
 146     assert(_is_cms_thread ?
 147              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 148              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 149           "Incorrect state");
 150     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 151   }
 152 };
 153 
 154 // Convenience class that does a CMSTokenSync, and then acquires
 155 // upto three locks.
 156 class CMSTokenSyncWithLocks: public CMSTokenSync {
 157  private:
 158   // Note: locks are acquired in textual declaration order
 159   // and released in the opposite order
 160   MutexLockerEx _locker1, _locker2, _locker3;
 161  public:
 162   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 163                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 164     CMSTokenSync(is_cms_thread),
 165     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 166     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 167     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 168   { }
 169 };
 170 
 171 
 172 //////////////////////////////////////////////////////////////////
 173 //  Concurrent Mark-Sweep Generation /////////////////////////////
 174 //////////////////////////////////////////////////////////////////
 175 
 176 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 177 
 178 // This struct contains per-thread things necessary to support parallel
 179 // young-gen collection.
 180 class CMSParGCThreadState: public CHeapObj<mtGC> {
 181  public:
 182   CFLS_LAB lab;
 183   PromotionInfo promo;
 184 
 185   // Constructor.
 186   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 187     promo.setSpace(cfls);
 188   }
 189 };
 190 
 191 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 192      ReservedSpace rs, size_t initial_byte_size,
 193      CardTableRS* ct, bool use_adaptive_freelists,
 194      FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
 195   CardGeneration(rs, initial_byte_size, ct),
 196   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 197   _did_compact(false)
 198 {
 199   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 200   HeapWord* end    = (HeapWord*) _virtual_space.high();
 201 
 202   _direct_allocated_words = 0;
 203   NOT_PRODUCT(
 204     _numObjectsPromoted = 0;
 205     _numWordsPromoted = 0;
 206     _numObjectsAllocated = 0;
 207     _numWordsAllocated = 0;
 208   )
 209 
 210   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
 211                                            use_adaptive_freelists,
 212                                            dictionaryChoice);
 213   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 214   _cmsSpace->_gen = this;
 215 
 216   _gc_stats = new CMSGCStats();
 217 
 218   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 219   // offsets match. The ability to tell free chunks from objects
 220   // depends on this property.
 221   debug_only(
 222     FreeChunk* junk = NULL;
 223     assert(UseCompressedClassPointers ||
 224            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 225            "Offset of FreeChunk::_prev within FreeChunk must match"
 226            "  that of OopDesc::_klass within OopDesc");
 227   )
 228 
 229   _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadState*, ParallelGCThreads, mtGC);
 230   for (uint i = 0; i < ParallelGCThreads; i++) {
 231     _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 232   }
 233 
 234   _incremental_collection_failed = false;
 235   // The "dilatation_factor" is the expansion that can occur on
 236   // account of the fact that the minimum object size in the CMS
 237   // generation may be larger than that in, say, a contiguous young
 238   //  generation.
 239   // Ideally, in the calculation below, we'd compute the dilatation
 240   // factor as: MinChunkSize/(promoting_gen's min object size)
 241   // Since we do not have such a general query interface for the
 242   // promoting generation, we'll instead just use the minimum
 243   // object size (which today is a header's worth of space);
 244   // note that all arithmetic is in units of HeapWords.
 245   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 246   assert(_dilatation_factor >= 1.0, "from previous assert");
 247 }
 248 
 249 
 250 // The field "_initiating_occupancy" represents the occupancy percentage
 251 // at which we trigger a new collection cycle.  Unless explicitly specified
 252 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 253 // is calculated by:
 254 //
 255 //   Let "f" be MinHeapFreeRatio in
 256 //
 257 //    _initiating_occupancy = 100-f +
 258 //                           f * (CMSTriggerRatio/100)
 259 //   where CMSTriggerRatio is the argument "tr" below.
 260 //
 261 // That is, if we assume the heap is at its desired maximum occupancy at the
 262 // end of a collection, we let CMSTriggerRatio of the (purported) free
 263 // space be allocated before initiating a new collection cycle.
 264 //
 265 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 266   assert(io <= 100 && tr <= 100, "Check the arguments");
 267   if (io >= 0) {
 268     _initiating_occupancy = (double)io / 100.0;
 269   } else {
 270     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 271                              (double)(tr * MinHeapFreeRatio) / 100.0)
 272                             / 100.0;
 273   }
 274 }
 275 
 276 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 277   assert(collector() != NULL, "no collector");
 278   collector()->ref_processor_init();
 279 }
 280 
 281 void CMSCollector::ref_processor_init() {
 282   if (_ref_processor == NULL) {
 283     // Allocate and initialize a reference processor
 284     _ref_processor =
 285       new ReferenceProcessor(_span,                               // span
 286                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 287                              (int) ParallelGCThreads,             // mt processing degree
 288                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 289                              (int) MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 290                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 291                              &_is_alive_closure);                 // closure for liveness info
 292     // Initialize the _ref_processor field of CMSGen
 293     _cmsGen->set_ref_processor(_ref_processor);
 294 
 295   }
 296 }
 297 
 298 AdaptiveSizePolicy* CMSCollector::size_policy() {
 299   GenCollectedHeap* gch = GenCollectedHeap::heap();
 300   return gch->gen_policy()->size_policy();
 301 }
 302 
 303 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 304 
 305   const char* gen_name = "old";
 306   GenCollectorPolicy* gcp = (GenCollectorPolicy*) GenCollectedHeap::heap()->collector_policy();
 307 
 308   // Generation Counters - generation 1, 1 subspace
 309   _gen_counters = new GenerationCounters(gen_name, 1, 1,
 310       gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
 311 
 312   _space_counters = new GSpaceCounters(gen_name, 0,
 313                                        _virtual_space.reserved_size(),
 314                                        this, _gen_counters);
 315 }
 316 
 317 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 318   _cms_gen(cms_gen)
 319 {
 320   assert(alpha <= 100, "bad value");
 321   _saved_alpha = alpha;
 322 
 323   // Initialize the alphas to the bootstrap value of 100.
 324   _gc0_alpha = _cms_alpha = 100;
 325 
 326   _cms_begin_time.update();
 327   _cms_end_time.update();
 328 
 329   _gc0_duration = 0.0;
 330   _gc0_period = 0.0;
 331   _gc0_promoted = 0;
 332 
 333   _cms_duration = 0.0;
 334   _cms_period = 0.0;
 335   _cms_allocated = 0;
 336 
 337   _cms_used_at_gc0_begin = 0;
 338   _cms_used_at_gc0_end = 0;
 339   _allow_duty_cycle_reduction = false;
 340   _valid_bits = 0;
 341 }
 342 
 343 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 344   // TBD: CR 6909490
 345   return 1.0;
 346 }
 347 
 348 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 349 }
 350 
 351 // If promotion failure handling is on use
 352 // the padded average size of the promotion for each
 353 // young generation collection.
 354 double CMSStats::time_until_cms_gen_full() const {
 355   size_t cms_free = _cms_gen->cmsSpace()->free();
 356   GenCollectedHeap* gch = GenCollectedHeap::heap();
 357   size_t expected_promotion = MIN2(gch->young_gen()->capacity(),
 358                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 359   if (cms_free > expected_promotion) {
 360     // Start a cms collection if there isn't enough space to promote
 361     // for the next minor collection.  Use the padded average as
 362     // a safety factor.
 363     cms_free -= expected_promotion;
 364 
 365     // Adjust by the safety factor.
 366     double cms_free_dbl = (double)cms_free;
 367     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0;
 368     // Apply a further correction factor which tries to adjust
 369     // for recent occurance of concurrent mode failures.
 370     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 371     cms_free_dbl = cms_free_dbl * cms_adjustment;
 372 
 373     if (PrintGCDetails && Verbose) {
 374       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
 375         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 376         cms_free, expected_promotion);
 377       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
 378         cms_free_dbl, cms_consumption_rate() + 1.0);
 379     }
 380     // Add 1 in case the consumption rate goes to zero.
 381     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 382   }
 383   return 0.0;
 384 }
 385 
 386 // Compare the duration of the cms collection to the
 387 // time remaining before the cms generation is empty.
 388 // Note that the time from the start of the cms collection
 389 // to the start of the cms sweep (less than the total
 390 // duration of the cms collection) can be used.  This
 391 // has been tried and some applications experienced
 392 // promotion failures early in execution.  This was
 393 // possibly because the averages were not accurate
 394 // enough at the beginning.
 395 double CMSStats::time_until_cms_start() const {
 396   // We add "gc0_period" to the "work" calculation
 397   // below because this query is done (mostly) at the
 398   // end of a scavenge, so we need to conservatively
 399   // account for that much possible delay
 400   // in the query so as to avoid concurrent mode failures
 401   // due to starting the collection just a wee bit too
 402   // late.
 403   double work = cms_duration() + gc0_period();
 404   double deadline = time_until_cms_gen_full();
 405   // If a concurrent mode failure occurred recently, we want to be
 406   // more conservative and halve our expected time_until_cms_gen_full()
 407   if (work > deadline) {
 408     if (Verbose && PrintGCDetails) {
 409       gclog_or_tty->print(
 410         " CMSCollector: collect because of anticipated promotion "
 411         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
 412         gc0_period(), time_until_cms_gen_full());
 413     }
 414     return 0.0;
 415   }
 416   return work - deadline;
 417 }
 418 
 419 #ifndef PRODUCT
 420 void CMSStats::print_on(outputStream *st) const {
 421   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 422   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 423                gc0_duration(), gc0_period(), gc0_promoted());
 424   st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 425             cms_duration(), cms_period(), cms_allocated());
 426   st->print(",cms_since_beg=%g,cms_since_end=%g",
 427             cms_time_since_begin(), cms_time_since_end());
 428   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 429             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 430 
 431   if (valid()) {
 432     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 433               promotion_rate(), cms_allocation_rate());
 434     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 435               cms_consumption_rate(), time_until_cms_gen_full());
 436   }
 437   st->print(" ");
 438 }
 439 #endif // #ifndef PRODUCT
 440 
 441 CMSCollector::CollectorState CMSCollector::_collectorState =
 442                              CMSCollector::Idling;
 443 bool CMSCollector::_foregroundGCIsActive = false;
 444 bool CMSCollector::_foregroundGCShouldWait = false;
 445 
 446 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 447                            CardTableRS*                   ct,
 448                            ConcurrentMarkSweepPolicy*     cp):
 449   _cmsGen(cmsGen),
 450   _ct(ct),
 451   _ref_processor(NULL),    // will be set later
 452   _conc_workers(NULL),     // may be set later
 453   _abort_preclean(false),
 454   _start_sampling(false),
 455   _between_prologue_and_epilogue(false),
 456   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 457   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 458                  -1 /* lock-free */, "No_lock" /* dummy */),
 459   _modUnionClosurePar(&_modUnionTable),
 460   // Adjust my span to cover old (cms) gen
 461   _span(cmsGen->reserved()),
 462   // Construct the is_alive_closure with _span & markBitMap
 463   _is_alive_closure(_span, &_markBitMap),
 464   _restart_addr(NULL),
 465   _overflow_list(NULL),
 466   _stats(cmsGen),
 467   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
 468                              //verify that this lock should be acquired with safepoint check.
 469                              Monitor::_safepoint_check_sometimes)),
 470   _eden_chunk_array(NULL),     // may be set in ctor body
 471   _eden_chunk_capacity(0),     // -- ditto --
 472   _eden_chunk_index(0),        // -- ditto --
 473   _survivor_plab_array(NULL),  // -- ditto --
 474   _survivor_chunk_array(NULL), // -- ditto --
 475   _survivor_chunk_capacity(0), // -- ditto --
 476   _survivor_chunk_index(0),    // -- ditto --
 477   _ser_pmc_preclean_ovflw(0),
 478   _ser_kac_preclean_ovflw(0),
 479   _ser_pmc_remark_ovflw(0),
 480   _par_pmc_remark_ovflw(0),
 481   _ser_kac_ovflw(0),
 482   _par_kac_ovflw(0),
 483 #ifndef PRODUCT
 484   _num_par_pushes(0),
 485 #endif
 486   _collection_count_start(0),
 487   _verifying(false),
 488   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 489   _completed_initialization(false),
 490   _collector_policy(cp),
 491   _should_unload_classes(CMSClassUnloadingEnabled),
 492   _concurrent_cycles_since_last_unload(0),
 493   _roots_scanning_options(GenCollectedHeap::SO_None),
 494   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 495   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 496   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 497   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 498   _cms_start_registered(false)
 499 {
 500   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 501     ExplicitGCInvokesConcurrent = true;
 502   }
 503   // Now expand the span and allocate the collection support structures
 504   // (MUT, marking bit map etc.) to cover both generations subject to
 505   // collection.
 506 
 507   // For use by dirty card to oop closures.
 508   _cmsGen->cmsSpace()->set_collector(this);
 509 
 510   // Allocate MUT and marking bit map
 511   {
 512     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 513     if (!_markBitMap.allocate(_span)) {
 514       warning("Failed to allocate CMS Bit Map");
 515       return;
 516     }
 517     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 518   }
 519   {
 520     _modUnionTable.allocate(_span);
 521     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 522   }
 523 
 524   if (!_markStack.allocate(MarkStackSize)) {
 525     warning("Failed to allocate CMS Marking Stack");
 526     return;
 527   }
 528 
 529   // Support for multi-threaded concurrent phases
 530   if (CMSConcurrentMTEnabled) {
 531     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 532       // just for now
 533       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4);
 534     }
 535     if (ConcGCThreads > 1) {
 536       _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
 537                                  ConcGCThreads, true);
 538       if (_conc_workers == NULL) {
 539         warning("GC/CMS: _conc_workers allocation failure: "
 540               "forcing -CMSConcurrentMTEnabled");
 541         CMSConcurrentMTEnabled = false;
 542       } else {
 543         _conc_workers->initialize_workers();
 544       }
 545     } else {
 546       CMSConcurrentMTEnabled = false;
 547     }
 548   }
 549   if (!CMSConcurrentMTEnabled) {
 550     ConcGCThreads = 0;
 551   } else {
 552     // Turn off CMSCleanOnEnter optimization temporarily for
 553     // the MT case where it's not fixed yet; see 6178663.
 554     CMSCleanOnEnter = false;
 555   }
 556   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 557          "Inconsistency");
 558 
 559   // Parallel task queues; these are shared for the
 560   // concurrent and stop-world phases of CMS, but
 561   // are not shared with parallel scavenge (ParNew).
 562   {
 563     uint i;
 564     uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads);
 565 
 566     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 567          || ParallelRefProcEnabled)
 568         && num_queues > 0) {
 569       _task_queues = new OopTaskQueueSet(num_queues);
 570       if (_task_queues == NULL) {
 571         warning("task_queues allocation failure.");
 572         return;
 573       }
 574       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 575       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 576       for (i = 0; i < num_queues; i++) {
 577         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 578         if (q == NULL) {
 579           warning("work_queue allocation failure.");
 580           return;
 581         }
 582         _task_queues->register_queue(i, q);
 583       }
 584       for (i = 0; i < num_queues; i++) {
 585         _task_queues->queue(i)->initialize();
 586         _hash_seed[i] = 17;  // copied from ParNew
 587       }
 588     }
 589   }
 590 
 591   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 592 
 593   // Clip CMSBootstrapOccupancy between 0 and 100.
 594   _bootstrap_occupancy = ((double)CMSBootstrapOccupancy)/(double)100;
 595 
 596   // Now tell CMS generations the identity of their collector
 597   ConcurrentMarkSweepGeneration::set_collector(this);
 598 
 599   // Create & start a CMS thread for this CMS collector
 600   _cmsThread = ConcurrentMarkSweepThread::start(this);
 601   assert(cmsThread() != NULL, "CMS Thread should have been created");
 602   assert(cmsThread()->collector() == this,
 603          "CMS Thread should refer to this gen");
 604   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 605 
 606   // Support for parallelizing young gen rescan
 607   GenCollectedHeap* gch = GenCollectedHeap::heap();
 608   assert(gch->young_gen()->kind() == Generation::ParNew, "CMS can only be used with ParNew");
 609   _young_gen = (ParNewGeneration*)gch->young_gen();
 610   if (gch->supports_inline_contig_alloc()) {
 611     _top_addr = gch->top_addr();
 612     _end_addr = gch->end_addr();
 613     assert(_young_gen != NULL, "no _young_gen");
 614     _eden_chunk_index = 0;
 615     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
 616     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 617   }
 618 
 619   // Support for parallelizing survivor space rescan
 620   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 621     const size_t max_plab_samples =
 622       ((DefNewGeneration*)_young_gen)->max_survivor_size() / plab_sample_minimum_size();
 623 
 624     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 625     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples, mtGC);
 626     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 627     _survivor_chunk_capacity = 2*max_plab_samples;
 628     for (uint i = 0; i < ParallelGCThreads; i++) {
 629       HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 630       ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples);
 631       assert(cur->end() == 0, "Should be 0");
 632       assert(cur->array() == vec, "Should be vec");
 633       assert(cur->capacity() == max_plab_samples, "Error");
 634     }
 635   }
 636 
 637   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 638   _gc_counters = new CollectorCounters("CMS", 1);
 639   _completed_initialization = true;
 640   _inter_sweep_timer.start();  // start of time
 641 }
 642 
 643 size_t CMSCollector::plab_sample_minimum_size() {
 644   // The default value of MinTLABSize is 2k, but there is
 645   // no way to get the default value if the flag has been overridden.
 646   return MAX2(ThreadLocalAllocBuffer::min_size() * HeapWordSize, 2 * K);
 647 }
 648 
 649 const char* ConcurrentMarkSweepGeneration::name() const {
 650   return "concurrent mark-sweep generation";
 651 }
 652 void ConcurrentMarkSweepGeneration::update_counters() {
 653   if (UsePerfData) {
 654     _space_counters->update_all();
 655     _gen_counters->update_all();
 656   }
 657 }
 658 
 659 // this is an optimized version of update_counters(). it takes the
 660 // used value as a parameter rather than computing it.
 661 //
 662 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 663   if (UsePerfData) {
 664     _space_counters->update_used(used);
 665     _space_counters->update_capacity();
 666     _gen_counters->update_all();
 667   }
 668 }
 669 
 670 void ConcurrentMarkSweepGeneration::print() const {
 671   Generation::print();
 672   cmsSpace()->print();
 673 }
 674 
 675 #ifndef PRODUCT
 676 void ConcurrentMarkSweepGeneration::print_statistics() {
 677   cmsSpace()->printFLCensus(0);
 678 }
 679 #endif
 680 
 681 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
 682   GenCollectedHeap* gch = GenCollectedHeap::heap();
 683   if (PrintGCDetails) {
 684     // I didn't want to change the logging when removing the level concept,
 685     // but I guess this logging could say "old" or something instead of "1".
 686     assert(this == gch->old_gen(),
 687            "The CMS generation should be the old generation");
 688     uint level = 1;
 689     if (Verbose) {
 690       gclog_or_tty->print("[%u %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
 691         level, short_name(), s, used(), capacity());
 692     } else {
 693       gclog_or_tty->print("[%u %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
 694         level, short_name(), s, used() / K, capacity() / K);
 695     }
 696   }
 697   if (Verbose) {
 698     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
 699               gch->used(), gch->capacity());
 700   } else {
 701     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
 702               gch->used() / K, gch->capacity() / K);
 703   }
 704 }
 705 
 706 size_t
 707 ConcurrentMarkSweepGeneration::contiguous_available() const {
 708   // dld proposes an improvement in precision here. If the committed
 709   // part of the space ends in a free block we should add that to
 710   // uncommitted size in the calculation below. Will make this
 711   // change later, staying with the approximation below for the
 712   // time being. -- ysr.
 713   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 714 }
 715 
 716 size_t
 717 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 718   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 719 }
 720 
 721 size_t ConcurrentMarkSweepGeneration::max_available() const {
 722   return free() + _virtual_space.uncommitted_size();
 723 }
 724 
 725 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 726   size_t available = max_available();
 727   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 728   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 729   if (Verbose && PrintGCDetails) {
 730     gclog_or_tty->print_cr(
 731       "CMS: promo attempt is%s safe: available("SIZE_FORMAT") %s av_promo("SIZE_FORMAT"),"
 732       "max_promo("SIZE_FORMAT")",
 733       res? "":" not", available, res? ">=":"<",
 734       av_promo, max_promotion_in_bytes);
 735   }
 736   return res;
 737 }
 738 
 739 // At a promotion failure dump information on block layout in heap
 740 // (cms old generation).
 741 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 742   if (CMSDumpAtPromotionFailure) {
 743     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
 744   }
 745 }
 746 
 747 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 748   // Clear the promotion information.  These pointers can be adjusted
 749   // along with all the other pointers into the heap but
 750   // compaction is expected to be a rare event with
 751   // a heap using cms so don't do it without seeing the need.
 752   for (uint i = 0; i < ParallelGCThreads; i++) {
 753     _par_gc_thread_states[i]->promo.reset();
 754   }
 755 }
 756 
 757 void ConcurrentMarkSweepGeneration::compute_new_size() {
 758   assert_locked_or_safepoint(Heap_lock);
 759 
 760   // If incremental collection failed, we just want to expand
 761   // to the limit.
 762   if (incremental_collection_failed()) {
 763     clear_incremental_collection_failed();
 764     grow_to_reserved();
 765     return;
 766   }
 767 
 768   // The heap has been compacted but not reset yet.
 769   // Any metric such as free() or used() will be incorrect.
 770 
 771   CardGeneration::compute_new_size();
 772 
 773   // Reset again after a possible resizing
 774   if (did_compact()) {
 775     cmsSpace()->reset_after_compaction();
 776   }
 777 }
 778 
 779 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 780   assert_locked_or_safepoint(Heap_lock);
 781 
 782   // If incremental collection failed, we just want to expand
 783   // to the limit.
 784   if (incremental_collection_failed()) {
 785     clear_incremental_collection_failed();
 786     grow_to_reserved();
 787     return;
 788   }
 789 
 790   double free_percentage = ((double) free()) / capacity();
 791   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 792   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 793 
 794   // compute expansion delta needed for reaching desired free percentage
 795   if (free_percentage < desired_free_percentage) {
 796     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 797     assert(desired_capacity >= capacity(), "invalid expansion size");
 798     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 799     if (PrintGCDetails && Verbose) {
 800       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 801       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
 802       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
 803       gclog_or_tty->print_cr("  Desired free fraction %f", desired_free_percentage);
 804       gclog_or_tty->print_cr("  Maximum free fraction %f", maximum_free_percentage);
 805       gclog_or_tty->print_cr("  Capacity "SIZE_FORMAT, capacity() / 1000);
 806       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT, desired_capacity / 1000);
 807       GenCollectedHeap* gch = GenCollectedHeap::heap();
 808       assert(this == gch->_old_gen, "The CMS generation should always be the old generation");
 809       size_t young_size = gch->_young_gen->capacity();
 810       gclog_or_tty->print_cr("  Young gen size "SIZE_FORMAT, young_size / 1000);
 811       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT, unsafe_max_alloc_nogc() / 1000);
 812       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT, contiguous_available() / 1000);
 813       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)", expand_bytes);
 814     }
 815     // safe if expansion fails
 816     expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 817     if (PrintGCDetails && Verbose) {
 818       gclog_or_tty->print_cr("  Expanded free fraction %f",
 819         ((double) free()) / capacity());
 820     }
 821   } else {
 822     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 823     assert(desired_capacity <= capacity(), "invalid expansion size");
 824     size_t shrink_bytes = capacity() - desired_capacity;
 825     // Don't shrink unless the delta is greater than the minimum shrink we want
 826     if (shrink_bytes >= MinHeapDeltaBytes) {
 827       shrink_free_list_by(shrink_bytes);
 828     }
 829   }
 830 }
 831 
 832 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 833   return cmsSpace()->freelistLock();
 834 }
 835 
 836 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
 837                                                   bool   tlab) {
 838   CMSSynchronousYieldRequest yr;
 839   MutexLockerEx x(freelistLock(),
 840                   Mutex::_no_safepoint_check_flag);
 841   return have_lock_and_allocate(size, tlab);
 842 }
 843 
 844 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
 845                                                   bool   tlab /* ignored */) {
 846   assert_lock_strong(freelistLock());
 847   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
 848   HeapWord* res = cmsSpace()->allocate(adjustedSize);
 849   // Allocate the object live (grey) if the background collector has
 850   // started marking. This is necessary because the marker may
 851   // have passed this address and consequently this object will
 852   // not otherwise be greyed and would be incorrectly swept up.
 853   // Note that if this object contains references, the writing
 854   // of those references will dirty the card containing this object
 855   // allowing the object to be blackened (and its references scanned)
 856   // either during a preclean phase or at the final checkpoint.
 857   if (res != NULL) {
 858     // We may block here with an uninitialized object with
 859     // its mark-bit or P-bits not yet set. Such objects need
 860     // to be safely navigable by block_start().
 861     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
 862     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
 863     collector()->direct_allocated(res, adjustedSize);
 864     _direct_allocated_words += adjustedSize;
 865     // allocation counters
 866     NOT_PRODUCT(
 867       _numObjectsAllocated++;
 868       _numWordsAllocated += (int)adjustedSize;
 869     )
 870   }
 871   return res;
 872 }
 873 
 874 // In the case of direct allocation by mutators in a generation that
 875 // is being concurrently collected, the object must be allocated
 876 // live (grey) if the background collector has started marking.
 877 // This is necessary because the marker may
 878 // have passed this address and consequently this object will
 879 // not otherwise be greyed and would be incorrectly swept up.
 880 // Note that if this object contains references, the writing
 881 // of those references will dirty the card containing this object
 882 // allowing the object to be blackened (and its references scanned)
 883 // either during a preclean phase or at the final checkpoint.
 884 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
 885   assert(_markBitMap.covers(start, size), "Out of bounds");
 886   if (_collectorState >= Marking) {
 887     MutexLockerEx y(_markBitMap.lock(),
 888                     Mutex::_no_safepoint_check_flag);
 889     // [see comments preceding SweepClosure::do_blk() below for details]
 890     //
 891     // Can the P-bits be deleted now?  JJJ
 892     //
 893     // 1. need to mark the object as live so it isn't collected
 894     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
 895     // 3. need to mark the end of the object so marking, precleaning or sweeping
 896     //    can skip over uninitialized or unparsable objects. An allocated
 897     //    object is considered uninitialized for our purposes as long as
 898     //    its klass word is NULL.  All old gen objects are parsable
 899     //    as soon as they are initialized.)
 900     _markBitMap.mark(start);          // object is live
 901     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
 902     _markBitMap.mark(start + size - 1);
 903                                       // mark end of object
 904   }
 905   // check that oop looks uninitialized
 906   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
 907 }
 908 
 909 void CMSCollector::promoted(bool par, HeapWord* start,
 910                             bool is_obj_array, size_t obj_size) {
 911   assert(_markBitMap.covers(start), "Out of bounds");
 912   // See comment in direct_allocated() about when objects should
 913   // be allocated live.
 914   if (_collectorState >= Marking) {
 915     // we already hold the marking bit map lock, taken in
 916     // the prologue
 917     if (par) {
 918       _markBitMap.par_mark(start);
 919     } else {
 920       _markBitMap.mark(start);
 921     }
 922     // We don't need to mark the object as uninitialized (as
 923     // in direct_allocated above) because this is being done with the
 924     // world stopped and the object will be initialized by the
 925     // time the marking, precleaning or sweeping get to look at it.
 926     // But see the code for copying objects into the CMS generation,
 927     // where we need to ensure that concurrent readers of the
 928     // block offset table are able to safely navigate a block that
 929     // is in flux from being free to being allocated (and in
 930     // transition while being copied into) and subsequently
 931     // becoming a bona-fide object when the copy/promotion is complete.
 932     assert(SafepointSynchronize::is_at_safepoint(),
 933            "expect promotion only at safepoints");
 934 
 935     if (_collectorState < Sweeping) {
 936       // Mark the appropriate cards in the modUnionTable, so that
 937       // this object gets scanned before the sweep. If this is
 938       // not done, CMS generation references in the object might
 939       // not get marked.
 940       // For the case of arrays, which are otherwise precisely
 941       // marked, we need to dirty the entire array, not just its head.
 942       if (is_obj_array) {
 943         // The [par_]mark_range() method expects mr.end() below to
 944         // be aligned to the granularity of a bit's representation
 945         // in the heap. In the case of the MUT below, that's a
 946         // card size.
 947         MemRegion mr(start,
 948                      (HeapWord*)round_to((intptr_t)(start + obj_size),
 949                         CardTableModRefBS::card_size /* bytes */));
 950         if (par) {
 951           _modUnionTable.par_mark_range(mr);
 952         } else {
 953           _modUnionTable.mark_range(mr);
 954         }
 955       } else {  // not an obj array; we can just mark the head
 956         if (par) {
 957           _modUnionTable.par_mark(start);
 958         } else {
 959           _modUnionTable.mark(start);
 960         }
 961       }
 962     }
 963   }
 964 }
 965 
 966 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
 967   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
 968   // allocate, copy and if necessary update promoinfo --
 969   // delegate to underlying space.
 970   assert_lock_strong(freelistLock());
 971 
 972 #ifndef PRODUCT
 973   if (GenCollectedHeap::heap()->promotion_should_fail()) {
 974     return NULL;
 975   }
 976 #endif  // #ifndef PRODUCT
 977 
 978   oop res = _cmsSpace->promote(obj, obj_size);
 979   if (res == NULL) {
 980     // expand and retry
 981     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
 982     expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
 983     // Since this is the old generation, we don't try to promote
 984     // into a more senior generation.
 985     res = _cmsSpace->promote(obj, obj_size);
 986   }
 987   if (res != NULL) {
 988     // See comment in allocate() about when objects should
 989     // be allocated live.
 990     assert(obj->is_oop(), "Will dereference klass pointer below");
 991     collector()->promoted(false,           // Not parallel
 992                           (HeapWord*)res, obj->is_objArray(), obj_size);
 993     // promotion counters
 994     NOT_PRODUCT(
 995       _numObjectsPromoted++;
 996       _numWordsPromoted +=
 997         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
 998     )
 999   }
1000   return res;
1001 }
1002 
1003 
1004 // IMPORTANT: Notes on object size recognition in CMS.
1005 // ---------------------------------------------------
1006 // A block of storage in the CMS generation is always in
1007 // one of three states. A free block (FREE), an allocated
1008 // object (OBJECT) whose size() method reports the correct size,
1009 // and an intermediate state (TRANSIENT) in which its size cannot
1010 // be accurately determined.
1011 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
1012 // -----------------------------------------------------
1013 // FREE:      klass_word & 1 == 1; mark_word holds block size
1014 //
1015 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
1016 //            obj->size() computes correct size
1017 //
1018 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1019 //
1020 // STATE IDENTIFICATION: (64 bit+COOPS)
1021 // ------------------------------------
1022 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
1023 //
1024 // OBJECT:    klass_word installed; klass_word != 0;
1025 //            obj->size() computes correct size
1026 //
1027 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1028 //
1029 //
1030 // STATE TRANSITION DIAGRAM
1031 //
1032 //        mut / parnew                     mut  /  parnew
1033 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1034 //  ^                                                                   |
1035 //  |------------------------ DEAD <------------------------------------|
1036 //         sweep                            mut
1037 //
1038 // While a block is in TRANSIENT state its size cannot be determined
1039 // so readers will either need to come back later or stall until
1040 // the size can be determined. Note that for the case of direct
1041 // allocation, P-bits, when available, may be used to determine the
1042 // size of an object that may not yet have been initialized.
1043 
1044 // Things to support parallel young-gen collection.
1045 oop
1046 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1047                                            oop old, markOop m,
1048                                            size_t word_sz) {
1049 #ifndef PRODUCT
1050   if (GenCollectedHeap::heap()->promotion_should_fail()) {
1051     return NULL;
1052   }
1053 #endif  // #ifndef PRODUCT
1054 
1055   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1056   PromotionInfo* promoInfo = &ps->promo;
1057   // if we are tracking promotions, then first ensure space for
1058   // promotion (including spooling space for saving header if necessary).
1059   // then allocate and copy, then track promoted info if needed.
1060   // When tracking (see PromotionInfo::track()), the mark word may
1061   // be displaced and in this case restoration of the mark word
1062   // occurs in the (oop_since_save_marks_)iterate phase.
1063   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1064     // Out of space for allocating spooling buffers;
1065     // try expanding and allocating spooling buffers.
1066     if (!expand_and_ensure_spooling_space(promoInfo)) {
1067       return NULL;
1068     }
1069   }
1070   assert(promoInfo->has_spooling_space(), "Control point invariant");
1071   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1072   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1073   if (obj_ptr == NULL) {
1074      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1075      if (obj_ptr == NULL) {
1076        return NULL;
1077      }
1078   }
1079   oop obj = oop(obj_ptr);
1080   OrderAccess::storestore();
1081   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1082   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1083   // IMPORTANT: See note on object initialization for CMS above.
1084   // Otherwise, copy the object.  Here we must be careful to insert the
1085   // klass pointer last, since this marks the block as an allocated object.
1086   // Except with compressed oops it's the mark word.
1087   HeapWord* old_ptr = (HeapWord*)old;
1088   // Restore the mark word copied above.
1089   obj->set_mark(m);
1090   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1091   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1092   OrderAccess::storestore();
1093 
1094   if (UseCompressedClassPointers) {
1095     // Copy gap missed by (aligned) header size calculation below
1096     obj->set_klass_gap(old->klass_gap());
1097   }
1098   if (word_sz > (size_t)oopDesc::header_size()) {
1099     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1100                                  obj_ptr + oopDesc::header_size(),
1101                                  word_sz - oopDesc::header_size());
1102   }
1103 
1104   // Now we can track the promoted object, if necessary.  We take care
1105   // to delay the transition from uninitialized to full object
1106   // (i.e., insertion of klass pointer) until after, so that it
1107   // atomically becomes a promoted object.
1108   if (promoInfo->tracking()) {
1109     promoInfo->track((PromotedObject*)obj, old->klass());
1110   }
1111   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1112   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1113   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1114 
1115   // Finally, install the klass pointer (this should be volatile).
1116   OrderAccess::storestore();
1117   obj->set_klass(old->klass());
1118   // We should now be able to calculate the right size for this object
1119   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1120 
1121   collector()->promoted(true,          // parallel
1122                         obj_ptr, old->is_objArray(), word_sz);
1123 
1124   NOT_PRODUCT(
1125     Atomic::inc_ptr(&_numObjectsPromoted);
1126     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1127   )
1128 
1129   return obj;
1130 }
1131 
1132 void
1133 ConcurrentMarkSweepGeneration::
1134 par_promote_alloc_done(int thread_num) {
1135   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1136   ps->lab.retire(thread_num);
1137 }
1138 
1139 void
1140 ConcurrentMarkSweepGeneration::
1141 par_oop_since_save_marks_iterate_done(int thread_num) {
1142   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1143   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1144   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1145 }
1146 
1147 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1148                                                    size_t size,
1149                                                    bool   tlab)
1150 {
1151   // We allow a STW collection only if a full
1152   // collection was requested.
1153   return full || should_allocate(size, tlab); // FIX ME !!!
1154   // This and promotion failure handling are connected at the
1155   // hip and should be fixed by untying them.
1156 }
1157 
1158 bool CMSCollector::shouldConcurrentCollect() {
1159   if (_full_gc_requested) {
1160     if (Verbose && PrintGCDetails) {
1161       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
1162                              " gc request (or gc_locker)");
1163     }
1164     return true;
1165   }
1166 
1167   FreelistLocker x(this);
1168   // ------------------------------------------------------------------
1169   // Print out lots of information which affects the initiation of
1170   // a collection.
1171   if (PrintCMSInitiationStatistics && stats().valid()) {
1172     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
1173     gclog_or_tty->stamp();
1174     gclog_or_tty->cr();
1175     stats().print_on(gclog_or_tty);
1176     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
1177       stats().time_until_cms_gen_full());
1178     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
1179     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
1180                            _cmsGen->contiguous_available());
1181     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
1182     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
1183     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
1184     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1185     gclog_or_tty->print_cr("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1186     gclog_or_tty->print_cr("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1187     gclog_or_tty->print_cr("metadata initialized %d",
1188       MetaspaceGC::should_concurrent_collect());
1189   }
1190   // ------------------------------------------------------------------
1191 
1192   // If the estimated time to complete a cms collection (cms_duration())
1193   // is less than the estimated time remaining until the cms generation
1194   // is full, start a collection.
1195   if (!UseCMSInitiatingOccupancyOnly) {
1196     if (stats().valid()) {
1197       if (stats().time_until_cms_start() == 0.0) {
1198         return true;
1199       }
1200     } else {
1201       // We want to conservatively collect somewhat early in order
1202       // to try and "bootstrap" our CMS/promotion statistics;
1203       // this branch will not fire after the first successful CMS
1204       // collection because the stats should then be valid.
1205       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1206         if (Verbose && PrintGCDetails) {
1207           gclog_or_tty->print_cr(
1208             " CMSCollector: collect for bootstrapping statistics:"
1209             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
1210             _bootstrap_occupancy);
1211         }
1212         return true;
1213       }
1214     }
1215   }
1216 
1217   // Otherwise, we start a collection cycle if
1218   // old gen want a collection cycle started. Each may use
1219   // an appropriate criterion for making this decision.
1220   // XXX We need to make sure that the gen expansion
1221   // criterion dovetails well with this. XXX NEED TO FIX THIS
1222   if (_cmsGen->should_concurrent_collect()) {
1223     if (Verbose && PrintGCDetails) {
1224       gclog_or_tty->print_cr("CMS old gen initiated");
1225     }
1226     return true;
1227   }
1228 
1229   // We start a collection if we believe an incremental collection may fail;
1230   // this is not likely to be productive in practice because it's probably too
1231   // late anyway.
1232   GenCollectedHeap* gch = GenCollectedHeap::heap();
1233   assert(gch->collector_policy()->is_generation_policy(),
1234          "You may want to check the correctness of the following");
1235   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1236     if (Verbose && PrintGCDetails) {
1237       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
1238     }
1239     return true;
1240   }
1241 
1242   if (MetaspaceGC::should_concurrent_collect()) {
1243     if (Verbose && PrintGCDetails) {
1244       gclog_or_tty->print("CMSCollector: collect for metadata allocation ");
1245     }
1246     return true;
1247   }
1248 
1249   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1250   if (CMSTriggerInterval >= 0) {
1251     if (CMSTriggerInterval == 0) {
1252       // Trigger always
1253       return true;
1254     }
1255 
1256     // Check the CMS time since begin (we do not check the stats validity
1257     // as we want to be able to trigger the first CMS cycle as well)
1258     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1259       if (Verbose && PrintGCDetails) {
1260         if (stats().valid()) {
1261           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1262                                  stats().cms_time_since_begin());
1263         } else {
1264           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (first collection)");
1265         }
1266       }
1267       return true;
1268     }
1269   }
1270 
1271   return false;
1272 }
1273 
1274 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1275 
1276 // Clear _expansion_cause fields of constituent generations
1277 void CMSCollector::clear_expansion_cause() {
1278   _cmsGen->clear_expansion_cause();
1279 }
1280 
1281 // We should be conservative in starting a collection cycle.  To
1282 // start too eagerly runs the risk of collecting too often in the
1283 // extreme.  To collect too rarely falls back on full collections,
1284 // which works, even if not optimum in terms of concurrent work.
1285 // As a work around for too eagerly collecting, use the flag
1286 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1287 // giving the user an easily understandable way of controlling the
1288 // collections.
1289 // We want to start a new collection cycle if any of the following
1290 // conditions hold:
1291 // . our current occupancy exceeds the configured initiating occupancy
1292 //   for this generation, or
1293 // . we recently needed to expand this space and have not, since that
1294 //   expansion, done a collection of this generation, or
1295 // . the underlying space believes that it may be a good idea to initiate
1296 //   a concurrent collection (this may be based on criteria such as the
1297 //   following: the space uses linear allocation and linear allocation is
1298 //   going to fail, or there is believed to be excessive fragmentation in
1299 //   the generation, etc... or ...
1300 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1301 //   the case of the old generation; see CR 6543076):
1302 //   we may be approaching a point at which allocation requests may fail because
1303 //   we will be out of sufficient free space given allocation rate estimates.]
1304 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1305 
1306   assert_lock_strong(freelistLock());
1307   if (occupancy() > initiating_occupancy()) {
1308     if (PrintGCDetails && Verbose) {
1309       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
1310         short_name(), occupancy(), initiating_occupancy());
1311     }
1312     return true;
1313   }
1314   if (UseCMSInitiatingOccupancyOnly) {
1315     return false;
1316   }
1317   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1318     if (PrintGCDetails && Verbose) {
1319       gclog_or_tty->print(" %s: collect because expanded for allocation ",
1320         short_name());
1321     }
1322     return true;
1323   }
1324   if (_cmsSpace->should_concurrent_collect()) {
1325     if (PrintGCDetails && Verbose) {
1326       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
1327         short_name());
1328     }
1329     return true;
1330   }
1331   return false;
1332 }
1333 
1334 void ConcurrentMarkSweepGeneration::collect(bool   full,
1335                                             bool   clear_all_soft_refs,
1336                                             size_t size,
1337                                             bool   tlab)
1338 {
1339   collector()->collect(full, clear_all_soft_refs, size, tlab);
1340 }
1341 
1342 void CMSCollector::collect(bool   full,
1343                            bool   clear_all_soft_refs,
1344                            size_t size,
1345                            bool   tlab)
1346 {
1347   // The following "if" branch is present for defensive reasons.
1348   // In the current uses of this interface, it can be replaced with:
1349   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1350   // But I am not placing that assert here to allow future
1351   // generality in invoking this interface.
1352   if (GC_locker::is_active()) {
1353     // A consistency test for GC_locker
1354     assert(GC_locker::needs_gc(), "Should have been set already");
1355     // Skip this foreground collection, instead
1356     // expanding the heap if necessary.
1357     // Need the free list locks for the call to free() in compute_new_size()
1358     compute_new_size();
1359     return;
1360   }
1361   acquire_control_and_collect(full, clear_all_soft_refs);
1362 }
1363 
1364 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1365   GenCollectedHeap* gch = GenCollectedHeap::heap();
1366   unsigned int gc_count = gch->total_full_collections();
1367   if (gc_count == full_gc_count) {
1368     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1369     _full_gc_requested = true;
1370     _full_gc_cause = cause;
1371     CGC_lock->notify();   // nudge CMS thread
1372   } else {
1373     assert(gc_count > full_gc_count, "Error: causal loop");
1374   }
1375 }
1376 
1377 bool CMSCollector::is_external_interruption() {
1378   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1379   return GCCause::is_user_requested_gc(cause) ||
1380          GCCause::is_serviceability_requested_gc(cause);
1381 }
1382 
1383 void CMSCollector::report_concurrent_mode_interruption() {
1384   if (is_external_interruption()) {
1385     if (PrintGCDetails) {
1386       gclog_or_tty->print(" (concurrent mode interrupted)");
1387     }
1388   } else {
1389     if (PrintGCDetails) {
1390       gclog_or_tty->print(" (concurrent mode failure)");
1391     }
1392     _gc_tracer_cm->report_concurrent_mode_failure();
1393   }
1394 }
1395 
1396 
1397 // The foreground and background collectors need to coordinate in order
1398 // to make sure that they do not mutually interfere with CMS collections.
1399 // When a background collection is active,
1400 // the foreground collector may need to take over (preempt) and
1401 // synchronously complete an ongoing collection. Depending on the
1402 // frequency of the background collections and the heap usage
1403 // of the application, this preemption can be seldom or frequent.
1404 // There are only certain
1405 // points in the background collection that the "collection-baton"
1406 // can be passed to the foreground collector.
1407 //
1408 // The foreground collector will wait for the baton before
1409 // starting any part of the collection.  The foreground collector
1410 // will only wait at one location.
1411 //
1412 // The background collector will yield the baton before starting a new
1413 // phase of the collection (e.g., before initial marking, marking from roots,
1414 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1415 // of the loop which switches the phases. The background collector does some
1416 // of the phases (initial mark, final re-mark) with the world stopped.
1417 // Because of locking involved in stopping the world,
1418 // the foreground collector should not block waiting for the background
1419 // collector when it is doing a stop-the-world phase.  The background
1420 // collector will yield the baton at an additional point just before
1421 // it enters a stop-the-world phase.  Once the world is stopped, the
1422 // background collector checks the phase of the collection.  If the
1423 // phase has not changed, it proceeds with the collection.  If the
1424 // phase has changed, it skips that phase of the collection.  See
1425 // the comments on the use of the Heap_lock in collect_in_background().
1426 //
1427 // Variable used in baton passing.
1428 //   _foregroundGCIsActive - Set to true by the foreground collector when
1429 //      it wants the baton.  The foreground clears it when it has finished
1430 //      the collection.
1431 //   _foregroundGCShouldWait - Set to true by the background collector
1432 //        when it is running.  The foreground collector waits while
1433 //      _foregroundGCShouldWait is true.
1434 //  CGC_lock - monitor used to protect access to the above variables
1435 //      and to notify the foreground and background collectors.
1436 //  _collectorState - current state of the CMS collection.
1437 //
1438 // The foreground collector
1439 //   acquires the CGC_lock
1440 //   sets _foregroundGCIsActive
1441 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1442 //     various locks acquired in preparation for the collection
1443 //     are released so as not to block the background collector
1444 //     that is in the midst of a collection
1445 //   proceeds with the collection
1446 //   clears _foregroundGCIsActive
1447 //   returns
1448 //
1449 // The background collector in a loop iterating on the phases of the
1450 //      collection
1451 //   acquires the CGC_lock
1452 //   sets _foregroundGCShouldWait
1453 //   if _foregroundGCIsActive is set
1454 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1455 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1456 //     and exits the loop.
1457 //   otherwise
1458 //     proceed with that phase of the collection
1459 //     if the phase is a stop-the-world phase,
1460 //       yield the baton once more just before enqueueing
1461 //       the stop-world CMS operation (executed by the VM thread).
1462 //   returns after all phases of the collection are done
1463 //
1464 
1465 void CMSCollector::acquire_control_and_collect(bool full,
1466         bool clear_all_soft_refs) {
1467   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1468   assert(!Thread::current()->is_ConcurrentGC_thread(),
1469          "shouldn't try to acquire control from self!");
1470 
1471   // Start the protocol for acquiring control of the
1472   // collection from the background collector (aka CMS thread).
1473   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1474          "VM thread should have CMS token");
1475   // Remember the possibly interrupted state of an ongoing
1476   // concurrent collection
1477   CollectorState first_state = _collectorState;
1478 
1479   // Signal to a possibly ongoing concurrent collection that
1480   // we want to do a foreground collection.
1481   _foregroundGCIsActive = true;
1482 
1483   // release locks and wait for a notify from the background collector
1484   // releasing the locks in only necessary for phases which
1485   // do yields to improve the granularity of the collection.
1486   assert_lock_strong(bitMapLock());
1487   // We need to lock the Free list lock for the space that we are
1488   // currently collecting.
1489   assert(haveFreelistLocks(), "Must be holding free list locks");
1490   bitMapLock()->unlock();
1491   releaseFreelistLocks();
1492   {
1493     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1494     if (_foregroundGCShouldWait) {
1495       // We are going to be waiting for action for the CMS thread;
1496       // it had better not be gone (for instance at shutdown)!
1497       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1498              "CMS thread must be running");
1499       // Wait here until the background collector gives us the go-ahead
1500       ConcurrentMarkSweepThread::clear_CMS_flag(
1501         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1502       // Get a possibly blocked CMS thread going:
1503       //   Note that we set _foregroundGCIsActive true above,
1504       //   without protection of the CGC_lock.
1505       CGC_lock->notify();
1506       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1507              "Possible deadlock");
1508       while (_foregroundGCShouldWait) {
1509         // wait for notification
1510         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1511         // Possibility of delay/starvation here, since CMS token does
1512         // not know to give priority to VM thread? Actually, i think
1513         // there wouldn't be any delay/starvation, but the proof of
1514         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1515       }
1516       ConcurrentMarkSweepThread::set_CMS_flag(
1517         ConcurrentMarkSweepThread::CMS_vm_has_token);
1518     }
1519   }
1520   // The CMS_token is already held.  Get back the other locks.
1521   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1522          "VM thread should have CMS token");
1523   getFreelistLocks();
1524   bitMapLock()->lock_without_safepoint_check();
1525   if (TraceCMSState) {
1526     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
1527       INTPTR_FORMAT " with first state %d", p2i(Thread::current()), first_state);
1528     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
1529   }
1530 
1531   // Inform cms gen if this was due to partial collection failing.
1532   // The CMS gen may use this fact to determine its expansion policy.
1533   GenCollectedHeap* gch = GenCollectedHeap::heap();
1534   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1535     assert(!_cmsGen->incremental_collection_failed(),
1536            "Should have been noticed, reacted to and cleared");
1537     _cmsGen->set_incremental_collection_failed();
1538   }
1539 
1540   if (first_state > Idling) {
1541     report_concurrent_mode_interruption();
1542   }
1543 
1544   set_did_compact(true);
1545 
1546   // If the collection is being acquired from the background
1547   // collector, there may be references on the discovered
1548   // references lists.  Abandon those references, since some
1549   // of them may have become unreachable after concurrent
1550   // discovery; the STW compacting collector will redo discovery
1551   // more precisely, without being subject to floating garbage.
1552   // Leaving otherwise unreachable references in the discovered
1553   // lists would require special handling.
1554   ref_processor()->disable_discovery();
1555   ref_processor()->abandon_partial_discovery();
1556   ref_processor()->verify_no_references_recorded();
1557 
1558   if (first_state > Idling) {
1559     save_heap_summary();
1560   }
1561 
1562   do_compaction_work(clear_all_soft_refs);
1563 
1564   // Has the GC time limit been exceeded?
1565   size_t max_eden_size = _young_gen->max_capacity() -
1566                          _young_gen->to()->capacity() -
1567                          _young_gen->from()->capacity();
1568   GCCause::Cause gc_cause = gch->gc_cause();
1569   size_policy()->check_gc_overhead_limit(_young_gen->used(),
1570                                          _young_gen->eden()->used(),
1571                                          _cmsGen->max_capacity(),
1572                                          max_eden_size,
1573                                          full,
1574                                          gc_cause,
1575                                          gch->collector_policy());
1576 
1577   // Reset the expansion cause, now that we just completed
1578   // a collection cycle.
1579   clear_expansion_cause();
1580   _foregroundGCIsActive = false;
1581   return;
1582 }
1583 
1584 // Resize the tenured generation
1585 // after obtaining the free list locks for the
1586 // two generations.
1587 void CMSCollector::compute_new_size() {
1588   assert_locked_or_safepoint(Heap_lock);
1589   FreelistLocker z(this);
1590   MetaspaceGC::compute_new_size();
1591   _cmsGen->compute_new_size_free_list();
1592 }
1593 
1594 // A work method used by the foreground collector to do
1595 // a mark-sweep-compact.
1596 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1597   GenCollectedHeap* gch = GenCollectedHeap::heap();
1598 
1599   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1600   gc_timer->register_gc_start();
1601 
1602   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1603   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
1604 
1605   GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL, gc_tracer->gc_id());
1606 
1607   // Temporarily widen the span of the weak reference processing to
1608   // the entire heap.
1609   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
1610   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1611   // Temporarily, clear the "is_alive_non_header" field of the
1612   // reference processor.
1613   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1614   // Temporarily make reference _processing_ single threaded (non-MT).
1615   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1616   // Temporarily make refs discovery atomic
1617   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1618   // Temporarily make reference _discovery_ single threaded (non-MT)
1619   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1620 
1621   ref_processor()->set_enqueuing_is_done(false);
1622   ref_processor()->enable_discovery();
1623   ref_processor()->setup_policy(clear_all_soft_refs);
1624   // If an asynchronous collection finishes, the _modUnionTable is
1625   // all clear.  If we are assuming the collection from an asynchronous
1626   // collection, clear the _modUnionTable.
1627   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1628     "_modUnionTable should be clear if the baton was not passed");
1629   _modUnionTable.clear_all();
1630   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
1631     "mod union for klasses should be clear if the baton was passed");
1632   _ct->klass_rem_set()->clear_mod_union();
1633 
1634   // We must adjust the allocation statistics being maintained
1635   // in the free list space. We do so by reading and clearing
1636   // the sweep timer and updating the block flux rate estimates below.
1637   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1638   if (_inter_sweep_timer.is_active()) {
1639     _inter_sweep_timer.stop();
1640     // Note that we do not use this sample to update the _inter_sweep_estimate.
1641     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1642                                             _inter_sweep_estimate.padded_average(),
1643                                             _intra_sweep_estimate.padded_average());
1644   }
1645 
1646   GenMarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
1647   #ifdef ASSERT
1648     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1649     size_t free_size = cms_space->free();
1650     assert(free_size ==
1651            pointer_delta(cms_space->end(), cms_space->compaction_top())
1652            * HeapWordSize,
1653       "All the free space should be compacted into one chunk at top");
1654     assert(cms_space->dictionary()->total_chunk_size(
1655                                       debug_only(cms_space->freelistLock())) == 0 ||
1656            cms_space->totalSizeInIndexedFreeLists() == 0,
1657       "All the free space should be in a single chunk");
1658     size_t num = cms_space->totalCount();
1659     assert((free_size == 0 && num == 0) ||
1660            (free_size > 0  && (num == 1 || num == 2)),
1661          "There should be at most 2 free chunks after compaction");
1662   #endif // ASSERT
1663   _collectorState = Resetting;
1664   assert(_restart_addr == NULL,
1665          "Should have been NULL'd before baton was passed");
1666   reset(false /* == !concurrent */);
1667   _cmsGen->reset_after_compaction();
1668   _concurrent_cycles_since_last_unload = 0;
1669 
1670   // Clear any data recorded in the PLAB chunk arrays.
1671   if (_survivor_plab_array != NULL) {
1672     reset_survivor_plab_arrays();
1673   }
1674 
1675   // Adjust the per-size allocation stats for the next epoch.
1676   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1677   // Restart the "inter sweep timer" for the next epoch.
1678   _inter_sweep_timer.reset();
1679   _inter_sweep_timer.start();
1680 
1681   gc_timer->register_gc_end();
1682 
1683   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1684 
1685   // For a mark-sweep-compact, compute_new_size() will be called
1686   // in the heap's do_collection() method.
1687 }
1688 
1689 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1690   ContiguousSpace* eden_space = _young_gen->eden();
1691   ContiguousSpace* from_space = _young_gen->from();
1692   ContiguousSpace* to_space   = _young_gen->to();
1693   // Eden
1694   if (_eden_chunk_array != NULL) {
1695     gclog_or_tty->print_cr("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1696                            p2i(eden_space->bottom()), p2i(eden_space->top()),
1697                            p2i(eden_space->end()), eden_space->capacity());
1698     gclog_or_tty->print_cr("_eden_chunk_index=" SIZE_FORMAT ", "
1699                            "_eden_chunk_capacity=" SIZE_FORMAT,
1700                            _eden_chunk_index, _eden_chunk_capacity);
1701     for (size_t i = 0; i < _eden_chunk_index; i++) {
1702       gclog_or_tty->print_cr("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
1703                              i, p2i(_eden_chunk_array[i]));
1704     }
1705   }
1706   // Survivor
1707   if (_survivor_chunk_array != NULL) {
1708     gclog_or_tty->print_cr("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1709                            p2i(from_space->bottom()), p2i(from_space->top()),
1710                            p2i(from_space->end()), from_space->capacity());
1711     gclog_or_tty->print_cr("_survivor_chunk_index=" SIZE_FORMAT ", "
1712                            "_survivor_chunk_capacity=" SIZE_FORMAT,
1713                            _survivor_chunk_index, _survivor_chunk_capacity);
1714     for (size_t i = 0; i < _survivor_chunk_index; i++) {
1715       gclog_or_tty->print_cr("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
1716                              i, p2i(_survivor_chunk_array[i]));
1717     }
1718   }
1719 }
1720 
1721 void CMSCollector::getFreelistLocks() const {
1722   // Get locks for all free lists in all generations that this
1723   // collector is responsible for
1724   _cmsGen->freelistLock()->lock_without_safepoint_check();
1725 }
1726 
1727 void CMSCollector::releaseFreelistLocks() const {
1728   // Release locks for all free lists in all generations that this
1729   // collector is responsible for
1730   _cmsGen->freelistLock()->unlock();
1731 }
1732 
1733 bool CMSCollector::haveFreelistLocks() const {
1734   // Check locks for all free lists in all generations that this
1735   // collector is responsible for
1736   assert_lock_strong(_cmsGen->freelistLock());
1737   PRODUCT_ONLY(ShouldNotReachHere());
1738   return true;
1739 }
1740 
1741 // A utility class that is used by the CMS collector to
1742 // temporarily "release" the foreground collector from its
1743 // usual obligation to wait for the background collector to
1744 // complete an ongoing phase before proceeding.
1745 class ReleaseForegroundGC: public StackObj {
1746  private:
1747   CMSCollector* _c;
1748  public:
1749   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1750     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1751     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1752     // allow a potentially blocked foreground collector to proceed
1753     _c->_foregroundGCShouldWait = false;
1754     if (_c->_foregroundGCIsActive) {
1755       CGC_lock->notify();
1756     }
1757     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1758            "Possible deadlock");
1759   }
1760 
1761   ~ReleaseForegroundGC() {
1762     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1763     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1764     _c->_foregroundGCShouldWait = true;
1765   }
1766 };
1767 
1768 void CMSCollector::collect_in_background(GCCause::Cause cause) {
1769   assert(Thread::current()->is_ConcurrentGC_thread(),
1770     "A CMS asynchronous collection is only allowed on a CMS thread.");
1771 
1772   GenCollectedHeap* gch = GenCollectedHeap::heap();
1773   {
1774     bool safepoint_check = Mutex::_no_safepoint_check_flag;
1775     MutexLockerEx hl(Heap_lock, safepoint_check);
1776     FreelistLocker fll(this);
1777     MutexLockerEx x(CGC_lock, safepoint_check);
1778     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
1779       // The foreground collector is active or we're
1780       // not using asynchronous collections.  Skip this
1781       // background collection.
1782       assert(!_foregroundGCShouldWait, "Should be clear");
1783       return;
1784     } else {
1785       assert(_collectorState == Idling, "Should be idling before start.");
1786       _collectorState = InitialMarking;
1787       register_gc_start(cause);
1788       // Reset the expansion cause, now that we are about to begin
1789       // a new cycle.
1790       clear_expansion_cause();
1791 
1792       // Clear the MetaspaceGC flag since a concurrent collection
1793       // is starting but also clear it after the collection.
1794       MetaspaceGC::set_should_concurrent_collect(false);
1795     }
1796     // Decide if we want to enable class unloading as part of the
1797     // ensuing concurrent GC cycle.
1798     update_should_unload_classes();
1799     _full_gc_requested = false;           // acks all outstanding full gc requests
1800     _full_gc_cause = GCCause::_no_gc;
1801     // Signal that we are about to start a collection
1802     gch->increment_total_full_collections();  // ... starting a collection cycle
1803     _collection_count_start = gch->total_full_collections();
1804   }
1805 
1806   // Used for PrintGC
1807   size_t prev_used;
1808   if (PrintGC && Verbose) {
1809     prev_used = _cmsGen->used();
1810   }
1811 
1812   // The change of the collection state is normally done at this level;
1813   // the exceptions are phases that are executed while the world is
1814   // stopped.  For those phases the change of state is done while the
1815   // world is stopped.  For baton passing purposes this allows the
1816   // background collector to finish the phase and change state atomically.
1817   // The foreground collector cannot wait on a phase that is done
1818   // while the world is stopped because the foreground collector already
1819   // has the world stopped and would deadlock.
1820   while (_collectorState != Idling) {
1821     if (TraceCMSState) {
1822       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
1823         p2i(Thread::current()), _collectorState);
1824     }
1825     // The foreground collector
1826     //   holds the Heap_lock throughout its collection.
1827     //   holds the CMS token (but not the lock)
1828     //     except while it is waiting for the background collector to yield.
1829     //
1830     // The foreground collector should be blocked (not for long)
1831     //   if the background collector is about to start a phase
1832     //   executed with world stopped.  If the background
1833     //   collector has already started such a phase, the
1834     //   foreground collector is blocked waiting for the
1835     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
1836     //   are executed in the VM thread.
1837     //
1838     // The locking order is
1839     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
1840     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
1841     //   CMS token  (claimed in
1842     //                stop_world_and_do() -->
1843     //                  safepoint_synchronize() -->
1844     //                    CMSThread::synchronize())
1845 
1846     {
1847       // Check if the FG collector wants us to yield.
1848       CMSTokenSync x(true); // is cms thread
1849       if (waitForForegroundGC()) {
1850         // We yielded to a foreground GC, nothing more to be
1851         // done this round.
1852         assert(_foregroundGCShouldWait == false, "We set it to false in "
1853                "waitForForegroundGC()");
1854         if (TraceCMSState) {
1855           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
1856             " exiting collection CMS state %d",
1857             p2i(Thread::current()), _collectorState);
1858         }
1859         return;
1860       } else {
1861         // The background collector can run but check to see if the
1862         // foreground collector has done a collection while the
1863         // background collector was waiting to get the CGC_lock
1864         // above.  If yes, break so that _foregroundGCShouldWait
1865         // is cleared before returning.
1866         if (_collectorState == Idling) {
1867           break;
1868         }
1869       }
1870     }
1871 
1872     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
1873       "should be waiting");
1874 
1875     switch (_collectorState) {
1876       case InitialMarking:
1877         {
1878           ReleaseForegroundGC x(this);
1879           stats().record_cms_begin();
1880           VM_CMS_Initial_Mark initial_mark_op(this);
1881           VMThread::execute(&initial_mark_op);
1882         }
1883         // The collector state may be any legal state at this point
1884         // since the background collector may have yielded to the
1885         // foreground collector.
1886         break;
1887       case Marking:
1888         // initial marking in checkpointRootsInitialWork has been completed
1889         if (markFromRoots()) { // we were successful
1890           assert(_collectorState == Precleaning, "Collector state should "
1891             "have changed");
1892         } else {
1893           assert(_foregroundGCIsActive, "Internal state inconsistency");
1894         }
1895         break;
1896       case Precleaning:
1897         // marking from roots in markFromRoots has been completed
1898         preclean();
1899         assert(_collectorState == AbortablePreclean ||
1900                _collectorState == FinalMarking,
1901                "Collector state should have changed");
1902         break;
1903       case AbortablePreclean:
1904         abortable_preclean();
1905         assert(_collectorState == FinalMarking, "Collector state should "
1906           "have changed");
1907         break;
1908       case FinalMarking:
1909         {
1910           ReleaseForegroundGC x(this);
1911 
1912           VM_CMS_Final_Remark final_remark_op(this);
1913           VMThread::execute(&final_remark_op);
1914         }
1915         assert(_foregroundGCShouldWait, "block post-condition");
1916         break;
1917       case Sweeping:
1918         // final marking in checkpointRootsFinal has been completed
1919         sweep();
1920         assert(_collectorState == Resizing, "Collector state change "
1921           "to Resizing must be done under the free_list_lock");
1922 
1923       case Resizing: {
1924         // Sweeping has been completed...
1925         // At this point the background collection has completed.
1926         // Don't move the call to compute_new_size() down
1927         // into code that might be executed if the background
1928         // collection was preempted.
1929         {
1930           ReleaseForegroundGC x(this);   // unblock FG collection
1931           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
1932           CMSTokenSync        z(true);   // not strictly needed.
1933           if (_collectorState == Resizing) {
1934             compute_new_size();
1935             save_heap_summary();
1936             _collectorState = Resetting;
1937           } else {
1938             assert(_collectorState == Idling, "The state should only change"
1939                    " because the foreground collector has finished the collection");
1940           }
1941         }
1942         break;
1943       }
1944       case Resetting:
1945         // CMS heap resizing has been completed
1946         reset(true);
1947         assert(_collectorState == Idling, "Collector state should "
1948           "have changed");
1949 
1950         MetaspaceGC::set_should_concurrent_collect(false);
1951 
1952         stats().record_cms_end();
1953         // Don't move the concurrent_phases_end() and compute_new_size()
1954         // calls to here because a preempted background collection
1955         // has it's state set to "Resetting".
1956         break;
1957       case Idling:
1958       default:
1959         ShouldNotReachHere();
1960         break;
1961     }
1962     if (TraceCMSState) {
1963       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
1964         p2i(Thread::current()), _collectorState);
1965     }
1966     assert(_foregroundGCShouldWait, "block post-condition");
1967   }
1968 
1969   // Should this be in gc_epilogue?
1970   collector_policy()->counters()->update_counters();
1971 
1972   {
1973     // Clear _foregroundGCShouldWait and, in the event that the
1974     // foreground collector is waiting, notify it, before
1975     // returning.
1976     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1977     _foregroundGCShouldWait = false;
1978     if (_foregroundGCIsActive) {
1979       CGC_lock->notify();
1980     }
1981     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1982            "Possible deadlock");
1983   }
1984   if (TraceCMSState) {
1985     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
1986       " exiting collection CMS state %d",
1987       p2i(Thread::current()), _collectorState);
1988   }
1989   if (PrintGC && Verbose) {
1990     _cmsGen->print_heap_change(prev_used);
1991   }
1992 }
1993 
1994 void CMSCollector::register_gc_start(GCCause::Cause cause) {
1995   _cms_start_registered = true;
1996   _gc_timer_cm->register_gc_start();
1997   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
1998 }
1999 
2000 void CMSCollector::register_gc_end() {
2001   if (_cms_start_registered) {
2002     report_heap_summary(GCWhen::AfterGC);
2003 
2004     _gc_timer_cm->register_gc_end();
2005     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2006     _cms_start_registered = false;
2007   }
2008 }
2009 
2010 void CMSCollector::save_heap_summary() {
2011   GenCollectedHeap* gch = GenCollectedHeap::heap();
2012   _last_heap_summary = gch->create_heap_summary();
2013   _last_metaspace_summary = gch->create_metaspace_summary();
2014 }
2015 
2016 void CMSCollector::report_heap_summary(GCWhen::Type when) {
2017   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
2018   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
2019 }
2020 
2021 bool CMSCollector::waitForForegroundGC() {
2022   bool res = false;
2023   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2024          "CMS thread should have CMS token");
2025   // Block the foreground collector until the
2026   // background collectors decides whether to
2027   // yield.
2028   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2029   _foregroundGCShouldWait = true;
2030   if (_foregroundGCIsActive) {
2031     // The background collector yields to the
2032     // foreground collector and returns a value
2033     // indicating that it has yielded.  The foreground
2034     // collector can proceed.
2035     res = true;
2036     _foregroundGCShouldWait = false;
2037     ConcurrentMarkSweepThread::clear_CMS_flag(
2038       ConcurrentMarkSweepThread::CMS_cms_has_token);
2039     ConcurrentMarkSweepThread::set_CMS_flag(
2040       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2041     // Get a possibly blocked foreground thread going
2042     CGC_lock->notify();
2043     if (TraceCMSState) {
2044       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
2045         p2i(Thread::current()), _collectorState);
2046     }
2047     while (_foregroundGCIsActive) {
2048       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
2049     }
2050     ConcurrentMarkSweepThread::set_CMS_flag(
2051       ConcurrentMarkSweepThread::CMS_cms_has_token);
2052     ConcurrentMarkSweepThread::clear_CMS_flag(
2053       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2054   }
2055   if (TraceCMSState) {
2056     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
2057       p2i(Thread::current()), _collectorState);
2058   }
2059   return res;
2060 }
2061 
2062 // Because of the need to lock the free lists and other structures in
2063 // the collector, common to all the generations that the collector is
2064 // collecting, we need the gc_prologues of individual CMS generations
2065 // delegate to their collector. It may have been simpler had the
2066 // current infrastructure allowed one to call a prologue on a
2067 // collector. In the absence of that we have the generation's
2068 // prologue delegate to the collector, which delegates back
2069 // some "local" work to a worker method in the individual generations
2070 // that it's responsible for collecting, while itself doing any
2071 // work common to all generations it's responsible for. A similar
2072 // comment applies to the  gc_epilogue()'s.
2073 // The role of the variable _between_prologue_and_epilogue is to
2074 // enforce the invocation protocol.
2075 void CMSCollector::gc_prologue(bool full) {
2076   // Call gc_prologue_work() for the CMSGen
2077   // we are responsible for.
2078 
2079   // The following locking discipline assumes that we are only called
2080   // when the world is stopped.
2081   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2082 
2083   // The CMSCollector prologue must call the gc_prologues for the
2084   // "generations" that it's responsible
2085   // for.
2086 
2087   assert(   Thread::current()->is_VM_thread()
2088          || (   CMSScavengeBeforeRemark
2089              && Thread::current()->is_ConcurrentGC_thread()),
2090          "Incorrect thread type for prologue execution");
2091 
2092   if (_between_prologue_and_epilogue) {
2093     // We have already been invoked; this is a gc_prologue delegation
2094     // from yet another CMS generation that we are responsible for, just
2095     // ignore it since all relevant work has already been done.
2096     return;
2097   }
2098 
2099   // set a bit saying prologue has been called; cleared in epilogue
2100   _between_prologue_and_epilogue = true;
2101   // Claim locks for common data structures, then call gc_prologue_work()
2102   // for each CMSGen.
2103 
2104   getFreelistLocks();   // gets free list locks on constituent spaces
2105   bitMapLock()->lock_without_safepoint_check();
2106 
2107   // Should call gc_prologue_work() for all cms gens we are responsible for
2108   bool duringMarking =    _collectorState >= Marking
2109                          && _collectorState < Sweeping;
2110 
2111   // The young collections clear the modified oops state, which tells if
2112   // there are any modified oops in the class. The remark phase also needs
2113   // that information. Tell the young collection to save the union of all
2114   // modified klasses.
2115   if (duringMarking) {
2116     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2117   }
2118 
2119   bool registerClosure = duringMarking;
2120 
2121   _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar);
2122 
2123   if (!full) {
2124     stats().record_gc0_begin();
2125   }
2126 }
2127 
2128 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2129 
2130   _capacity_at_prologue = capacity();
2131   _used_at_prologue = used();
2132 
2133   // Delegate to CMScollector which knows how to coordinate between
2134   // this and any other CMS generations that it is responsible for
2135   // collecting.
2136   collector()->gc_prologue(full);
2137 }
2138 
2139 // This is a "private" interface for use by this generation's CMSCollector.
2140 // Not to be called directly by any other entity (for instance,
2141 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2142 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2143   bool registerClosure, ModUnionClosure* modUnionClosure) {
2144   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2145   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2146     "Should be NULL");
2147   if (registerClosure) {
2148     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2149   }
2150   cmsSpace()->gc_prologue();
2151   // Clear stat counters
2152   NOT_PRODUCT(
2153     assert(_numObjectsPromoted == 0, "check");
2154     assert(_numWordsPromoted   == 0, "check");
2155     if (Verbose && PrintGC) {
2156       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
2157                           SIZE_FORMAT" bytes concurrently",
2158       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2159     }
2160     _numObjectsAllocated = 0;
2161     _numWordsAllocated   = 0;
2162   )
2163 }
2164 
2165 void CMSCollector::gc_epilogue(bool full) {
2166   // The following locking discipline assumes that we are only called
2167   // when the world is stopped.
2168   assert(SafepointSynchronize::is_at_safepoint(),
2169          "world is stopped assumption");
2170 
2171   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2172   // if linear allocation blocks need to be appropriately marked to allow the
2173   // the blocks to be parsable. We also check here whether we need to nudge the
2174   // CMS collector thread to start a new cycle (if it's not already active).
2175   assert(   Thread::current()->is_VM_thread()
2176          || (   CMSScavengeBeforeRemark
2177              && Thread::current()->is_ConcurrentGC_thread()),
2178          "Incorrect thread type for epilogue execution");
2179 
2180   if (!_between_prologue_and_epilogue) {
2181     // We have already been invoked; this is a gc_epilogue delegation
2182     // from yet another CMS generation that we are responsible for, just
2183     // ignore it since all relevant work has already been done.
2184     return;
2185   }
2186   assert(haveFreelistLocks(), "must have freelist locks");
2187   assert_lock_strong(bitMapLock());
2188 
2189   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2190 
2191   _cmsGen->gc_epilogue_work(full);
2192 
2193   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2194     // in case sampling was not already enabled, enable it
2195     _start_sampling = true;
2196   }
2197   // reset _eden_chunk_array so sampling starts afresh
2198   _eden_chunk_index = 0;
2199 
2200   size_t cms_used   = _cmsGen->cmsSpace()->used();
2201 
2202   // update performance counters - this uses a special version of
2203   // update_counters() that allows the utilization to be passed as a
2204   // parameter, avoiding multiple calls to used().
2205   //
2206   _cmsGen->update_counters(cms_used);
2207 
2208   bitMapLock()->unlock();
2209   releaseFreelistLocks();
2210 
2211   if (!CleanChunkPoolAsync) {
2212     Chunk::clean_chunk_pool();
2213   }
2214 
2215   set_did_compact(false);
2216   _between_prologue_and_epilogue = false;  // ready for next cycle
2217 }
2218 
2219 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2220   collector()->gc_epilogue(full);
2221 
2222   // Also reset promotion tracking in par gc thread states.
2223   for (uint i = 0; i < ParallelGCThreads; i++) {
2224     _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2225   }
2226 }
2227 
2228 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2229   assert(!incremental_collection_failed(), "Should have been cleared");
2230   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2231   cmsSpace()->gc_epilogue();
2232     // Print stat counters
2233   NOT_PRODUCT(
2234     assert(_numObjectsAllocated == 0, "check");
2235     assert(_numWordsAllocated == 0, "check");
2236     if (Verbose && PrintGC) {
2237       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
2238                           SIZE_FORMAT" bytes",
2239                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2240     }
2241     _numObjectsPromoted = 0;
2242     _numWordsPromoted   = 0;
2243   )
2244 
2245   if (PrintGC && Verbose) {
2246     // Call down the chain in contiguous_available needs the freelistLock
2247     // so print this out before releasing the freeListLock.
2248     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
2249                         contiguous_available());
2250   }
2251 }
2252 
2253 #ifndef PRODUCT
2254 bool CMSCollector::have_cms_token() {
2255   Thread* thr = Thread::current();
2256   if (thr->is_VM_thread()) {
2257     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2258   } else if (thr->is_ConcurrentGC_thread()) {
2259     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2260   } else if (thr->is_GC_task_thread()) {
2261     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2262            ParGCRareEvent_lock->owned_by_self();
2263   }
2264   return false;
2265 }
2266 #endif
2267 
2268 // Check reachability of the given heap address in CMS generation,
2269 // treating all other generations as roots.
2270 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2271   // We could "guarantee" below, rather than assert, but I'll
2272   // leave these as "asserts" so that an adventurous debugger
2273   // could try this in the product build provided some subset of
2274   // the conditions were met, provided they were interested in the
2275   // results and knew that the computation below wouldn't interfere
2276   // with other concurrent computations mutating the structures
2277   // being read or written.
2278   assert(SafepointSynchronize::is_at_safepoint(),
2279          "Else mutations in object graph will make answer suspect");
2280   assert(have_cms_token(), "Should hold cms token");
2281   assert(haveFreelistLocks(), "must hold free list locks");
2282   assert_lock_strong(bitMapLock());
2283 
2284   // Clear the marking bit map array before starting, but, just
2285   // for kicks, first report if the given address is already marked
2286   gclog_or_tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr),
2287                 _markBitMap.isMarked(addr) ? "" : " not");
2288 
2289   if (verify_after_remark()) {
2290     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2291     bool result = verification_mark_bm()->isMarked(addr);
2292     gclog_or_tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr),
2293                            result ? "IS" : "is NOT");
2294     return result;
2295   } else {
2296     gclog_or_tty->print_cr("Could not compute result");
2297     return false;
2298   }
2299 }
2300 
2301 
2302 void
2303 CMSCollector::print_on_error(outputStream* st) {
2304   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2305   if (collector != NULL) {
2306     CMSBitMap* bitmap = &collector->_markBitMap;
2307     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap));
2308     bitmap->print_on_error(st, " Bits: ");
2309 
2310     st->cr();
2311 
2312     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2313     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap));
2314     mut_bitmap->print_on_error(st, " Bits: ");
2315   }
2316 }
2317 
2318 ////////////////////////////////////////////////////////
2319 // CMS Verification Support
2320 ////////////////////////////////////////////////////////
2321 // Following the remark phase, the following invariant
2322 // should hold -- each object in the CMS heap which is
2323 // marked in markBitMap() should be marked in the verification_mark_bm().
2324 
2325 class VerifyMarkedClosure: public BitMapClosure {
2326   CMSBitMap* _marks;
2327   bool       _failed;
2328 
2329  public:
2330   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2331 
2332   bool do_bit(size_t offset) {
2333     HeapWord* addr = _marks->offsetToHeapWord(offset);
2334     if (!_marks->isMarked(addr)) {
2335       oop(addr)->print_on(gclog_or_tty);
2336       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", p2i(addr));
2337       _failed = true;
2338     }
2339     return true;
2340   }
2341 
2342   bool failed() { return _failed; }
2343 };
2344 
2345 bool CMSCollector::verify_after_remark(bool silent) {
2346   if (!silent) gclog_or_tty->print(" [Verifying CMS Marking... ");
2347   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2348   static bool init = false;
2349 
2350   assert(SafepointSynchronize::is_at_safepoint(),
2351          "Else mutations in object graph will make answer suspect");
2352   assert(have_cms_token(),
2353          "Else there may be mutual interference in use of "
2354          " verification data structures");
2355   assert(_collectorState > Marking && _collectorState <= Sweeping,
2356          "Else marking info checked here may be obsolete");
2357   assert(haveFreelistLocks(), "must hold free list locks");
2358   assert_lock_strong(bitMapLock());
2359 
2360 
2361   // Allocate marking bit map if not already allocated
2362   if (!init) { // first time
2363     if (!verification_mark_bm()->allocate(_span)) {
2364       return false;
2365     }
2366     init = true;
2367   }
2368 
2369   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2370 
2371   // Turn off refs discovery -- so we will be tracing through refs.
2372   // This is as intended, because by this time
2373   // GC must already have cleared any refs that need to be cleared,
2374   // and traced those that need to be marked; moreover,
2375   // the marking done here is not going to interfere in any
2376   // way with the marking information used by GC.
2377   NoRefDiscovery no_discovery(ref_processor());
2378 
2379   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2380 
2381   // Clear any marks from a previous round
2382   verification_mark_bm()->clear_all();
2383   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2384   verify_work_stacks_empty();
2385 
2386   GenCollectedHeap* gch = GenCollectedHeap::heap();
2387   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2388   // Update the saved marks which may affect the root scans.
2389   gch->save_marks();
2390 
2391   if (CMSRemarkVerifyVariant == 1) {
2392     // In this first variant of verification, we complete
2393     // all marking, then check if the new marks-vector is
2394     // a subset of the CMS marks-vector.
2395     verify_after_remark_work_1();
2396   } else if (CMSRemarkVerifyVariant == 2) {
2397     // In this second variant of verification, we flag an error
2398     // (i.e. an object reachable in the new marks-vector not reachable
2399     // in the CMS marks-vector) immediately, also indicating the
2400     // identify of an object (A) that references the unmarked object (B) --
2401     // presumably, a mutation to A failed to be picked up by preclean/remark?
2402     verify_after_remark_work_2();
2403   } else {
2404     warning("Unrecognized value " UINTX_FORMAT " for CMSRemarkVerifyVariant",
2405             CMSRemarkVerifyVariant);
2406   }
2407   if (!silent) gclog_or_tty->print(" done] ");
2408   return true;
2409 }
2410 
2411 void CMSCollector::verify_after_remark_work_1() {
2412   ResourceMark rm;
2413   HandleMark  hm;
2414   GenCollectedHeap* gch = GenCollectedHeap::heap();
2415 
2416   // Get a clear set of claim bits for the roots processing to work with.
2417   ClassLoaderDataGraph::clear_claimed_marks();
2418 
2419   // Mark from roots one level into CMS
2420   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2421   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2422 
2423   gch->gen_process_roots(Generation::Old,
2424                          true,   // younger gens are roots
2425                          true,   // activate StrongRootsScope
2426                          GenCollectedHeap::ScanningOption(roots_scanning_options()),
2427                          should_unload_classes(),
2428                          &notOlder,
2429                          NULL,
2430                          NULL);  // SSS: Provide correct closure
2431 
2432   // Now mark from the roots
2433   MarkFromRootsClosure markFromRootsClosure(this, _span,
2434     verification_mark_bm(), verification_mark_stack(),
2435     false /* don't yield */, true /* verifying */);
2436   assert(_restart_addr == NULL, "Expected pre-condition");
2437   verification_mark_bm()->iterate(&markFromRootsClosure);
2438   while (_restart_addr != NULL) {
2439     // Deal with stack overflow: by restarting at the indicated
2440     // address.
2441     HeapWord* ra = _restart_addr;
2442     markFromRootsClosure.reset(ra);
2443     _restart_addr = NULL;
2444     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2445   }
2446   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2447   verify_work_stacks_empty();
2448 
2449   // Marking completed -- now verify that each bit marked in
2450   // verification_mark_bm() is also marked in markBitMap(); flag all
2451   // errors by printing corresponding objects.
2452   VerifyMarkedClosure vcl(markBitMap());
2453   verification_mark_bm()->iterate(&vcl);
2454   if (vcl.failed()) {
2455     gclog_or_tty->print("Verification failed");
2456     gch->print_on(gclog_or_tty);
2457     fatal("CMS: failed marking verification after remark");
2458   }
2459 }
2460 
2461 class VerifyKlassOopsKlassClosure : public KlassClosure {
2462   class VerifyKlassOopsClosure : public OopClosure {
2463     CMSBitMap* _bitmap;
2464    public:
2465     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2466     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2467     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2468   } _oop_closure;
2469  public:
2470   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2471   void do_klass(Klass* k) {
2472     k->oops_do(&_oop_closure);
2473   }
2474 };
2475 
2476 void CMSCollector::verify_after_remark_work_2() {
2477   ResourceMark rm;
2478   HandleMark  hm;
2479   GenCollectedHeap* gch = GenCollectedHeap::heap();
2480 
2481   // Get a clear set of claim bits for the roots processing to work with.
2482   ClassLoaderDataGraph::clear_claimed_marks();
2483 
2484   // Mark from roots one level into CMS
2485   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2486                                      markBitMap());
2487   CLDToOopClosure cld_closure(&notOlder, true);
2488 
2489   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2490 
2491   gch->gen_process_roots(Generation::Old,
2492                          true,   // younger gens are roots
2493                          true,   // activate StrongRootsScope
2494                          GenCollectedHeap::ScanningOption(roots_scanning_options()),
2495                          should_unload_classes(),
2496                          &notOlder,
2497                          NULL,
2498                          &cld_closure);
2499 
2500   // Now mark from the roots
2501   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2502     verification_mark_bm(), markBitMap(), verification_mark_stack());
2503   assert(_restart_addr == NULL, "Expected pre-condition");
2504   verification_mark_bm()->iterate(&markFromRootsClosure);
2505   while (_restart_addr != NULL) {
2506     // Deal with stack overflow: by restarting at the indicated
2507     // address.
2508     HeapWord* ra = _restart_addr;
2509     markFromRootsClosure.reset(ra);
2510     _restart_addr = NULL;
2511     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2512   }
2513   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2514   verify_work_stacks_empty();
2515 
2516   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
2517   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
2518 
2519   // Marking completed -- now verify that each bit marked in
2520   // verification_mark_bm() is also marked in markBitMap(); flag all
2521   // errors by printing corresponding objects.
2522   VerifyMarkedClosure vcl(markBitMap());
2523   verification_mark_bm()->iterate(&vcl);
2524   assert(!vcl.failed(), "Else verification above should not have succeeded");
2525 }
2526 
2527 void ConcurrentMarkSweepGeneration::save_marks() {
2528   // delegate to CMS space
2529   cmsSpace()->save_marks();
2530   for (uint i = 0; i < ParallelGCThreads; i++) {
2531     _par_gc_thread_states[i]->promo.startTrackingPromotions();
2532   }
2533 }
2534 
2535 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2536   return cmsSpace()->no_allocs_since_save_marks();
2537 }
2538 
2539 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
2540                                                                 \
2541 void ConcurrentMarkSweepGeneration::                            \
2542 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
2543   cl->set_generation(this);                                     \
2544   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
2545   cl->reset_generation();                                       \
2546   save_marks();                                                 \
2547 }
2548 
2549 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
2550 
2551 void
2552 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
2553   if (freelistLock()->owned_by_self()) {
2554     Generation::oop_iterate(cl);
2555   } else {
2556     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2557     Generation::oop_iterate(cl);
2558   }
2559 }
2560 
2561 void
2562 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2563   if (freelistLock()->owned_by_self()) {
2564     Generation::object_iterate(cl);
2565   } else {
2566     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2567     Generation::object_iterate(cl);
2568   }
2569 }
2570 
2571 void
2572 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2573   if (freelistLock()->owned_by_self()) {
2574     Generation::safe_object_iterate(cl);
2575   } else {
2576     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2577     Generation::safe_object_iterate(cl);
2578   }
2579 }
2580 
2581 void
2582 ConcurrentMarkSweepGeneration::post_compact() {
2583 }
2584 
2585 void
2586 ConcurrentMarkSweepGeneration::prepare_for_verify() {
2587   // Fix the linear allocation blocks to look like free blocks.
2588 
2589   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2590   // are not called when the heap is verified during universe initialization and
2591   // at vm shutdown.
2592   if (freelistLock()->owned_by_self()) {
2593     cmsSpace()->prepare_for_verify();
2594   } else {
2595     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2596     cmsSpace()->prepare_for_verify();
2597   }
2598 }
2599 
2600 void
2601 ConcurrentMarkSweepGeneration::verify() {
2602   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2603   // are not called when the heap is verified during universe initialization and
2604   // at vm shutdown.
2605   if (freelistLock()->owned_by_self()) {
2606     cmsSpace()->verify();
2607   } else {
2608     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2609     cmsSpace()->verify();
2610   }
2611 }
2612 
2613 void CMSCollector::verify() {
2614   _cmsGen->verify();
2615 }
2616 
2617 #ifndef PRODUCT
2618 bool CMSCollector::overflow_list_is_empty() const {
2619   assert(_num_par_pushes >= 0, "Inconsistency");
2620   if (_overflow_list == NULL) {
2621     assert(_num_par_pushes == 0, "Inconsistency");
2622   }
2623   return _overflow_list == NULL;
2624 }
2625 
2626 // The methods verify_work_stacks_empty() and verify_overflow_empty()
2627 // merely consolidate assertion checks that appear to occur together frequently.
2628 void CMSCollector::verify_work_stacks_empty() const {
2629   assert(_markStack.isEmpty(), "Marking stack should be empty");
2630   assert(overflow_list_is_empty(), "Overflow list should be empty");
2631 }
2632 
2633 void CMSCollector::verify_overflow_empty() const {
2634   assert(overflow_list_is_empty(), "Overflow list should be empty");
2635   assert(no_preserved_marks(), "No preserved marks");
2636 }
2637 #endif // PRODUCT
2638 
2639 // Decide if we want to enable class unloading as part of the
2640 // ensuing concurrent GC cycle. We will collect and
2641 // unload classes if it's the case that:
2642 // (1) an explicit gc request has been made and the flag
2643 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
2644 // (2) (a) class unloading is enabled at the command line, and
2645 //     (b) old gen is getting really full
2646 // NOTE: Provided there is no change in the state of the heap between
2647 // calls to this method, it should have idempotent results. Moreover,
2648 // its results should be monotonically increasing (i.e. going from 0 to 1,
2649 // but not 1 to 0) between successive calls between which the heap was
2650 // not collected. For the implementation below, it must thus rely on
2651 // the property that concurrent_cycles_since_last_unload()
2652 // will not decrease unless a collection cycle happened and that
2653 // _cmsGen->is_too_full() are
2654 // themselves also monotonic in that sense. See check_monotonicity()
2655 // below.
2656 void CMSCollector::update_should_unload_classes() {
2657   _should_unload_classes = false;
2658   // Condition 1 above
2659   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
2660     _should_unload_classes = true;
2661   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
2662     // Disjuncts 2.b.(i,ii,iii) above
2663     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
2664                               CMSClassUnloadingMaxInterval)
2665                            || _cmsGen->is_too_full();
2666   }
2667 }
2668 
2669 bool ConcurrentMarkSweepGeneration::is_too_full() const {
2670   bool res = should_concurrent_collect();
2671   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
2672   return res;
2673 }
2674 
2675 void CMSCollector::setup_cms_unloading_and_verification_state() {
2676   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
2677                              || VerifyBeforeExit;
2678   const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
2679 
2680   // We set the proper root for this CMS cycle here.
2681   if (should_unload_classes()) {   // Should unload classes this cycle
2682     remove_root_scanning_option(rso);  // Shrink the root set appropriately
2683     set_verifying(should_verify);    // Set verification state for this cycle
2684     return;                            // Nothing else needs to be done at this time
2685   }
2686 
2687   // Not unloading classes this cycle
2688   assert(!should_unload_classes(), "Inconsistency!");
2689 
2690   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
2691     // Include symbols, strings and code cache elements to prevent their resurrection.
2692     add_root_scanning_option(rso);
2693     set_verifying(true);
2694   } else if (verifying() && !should_verify) {
2695     // We were verifying, but some verification flags got disabled.
2696     set_verifying(false);
2697     // Exclude symbols, strings and code cache elements from root scanning to
2698     // reduce IM and RM pauses.
2699     remove_root_scanning_option(rso);
2700   }
2701 }
2702 
2703 
2704 #ifndef PRODUCT
2705 HeapWord* CMSCollector::block_start(const void* p) const {
2706   const HeapWord* addr = (HeapWord*)p;
2707   if (_span.contains(p)) {
2708     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
2709       return _cmsGen->cmsSpace()->block_start(p);
2710     }
2711   }
2712   return NULL;
2713 }
2714 #endif
2715 
2716 HeapWord*
2717 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
2718                                                    bool   tlab,
2719                                                    bool   parallel) {
2720   CMSSynchronousYieldRequest yr;
2721   assert(!tlab, "Can't deal with TLAB allocation");
2722   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2723   expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
2724   if (GCExpandToAllocateDelayMillis > 0) {
2725     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2726   }
2727   return have_lock_and_allocate(word_size, tlab);
2728 }
2729 
2730 void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
2731     size_t bytes,
2732     size_t expand_bytes,
2733     CMSExpansionCause::Cause cause)
2734 {
2735 
2736   bool success = expand(bytes, expand_bytes);
2737 
2738   // remember why we expanded; this information is used
2739   // by shouldConcurrentCollect() when making decisions on whether to start
2740   // a new CMS cycle.
2741   if (success) {
2742     set_expansion_cause(cause);
2743     if (PrintGCDetails && Verbose) {
2744       gclog_or_tty->print_cr("Expanded CMS gen for %s",
2745         CMSExpansionCause::to_string(cause));
2746     }
2747   }
2748 }
2749 
2750 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
2751   HeapWord* res = NULL;
2752   MutexLocker x(ParGCRareEvent_lock);
2753   while (true) {
2754     // Expansion by some other thread might make alloc OK now:
2755     res = ps->lab.alloc(word_sz);
2756     if (res != NULL) return res;
2757     // If there's not enough expansion space available, give up.
2758     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
2759       return NULL;
2760     }
2761     // Otherwise, we try expansion.
2762     expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
2763     // Now go around the loop and try alloc again;
2764     // A competing par_promote might beat us to the expansion space,
2765     // so we may go around the loop again if promotion fails again.
2766     if (GCExpandToAllocateDelayMillis > 0) {
2767       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2768     }
2769   }
2770 }
2771 
2772 
2773 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
2774   PromotionInfo* promo) {
2775   MutexLocker x(ParGCRareEvent_lock);
2776   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
2777   while (true) {
2778     // Expansion by some other thread might make alloc OK now:
2779     if (promo->ensure_spooling_space()) {
2780       assert(promo->has_spooling_space(),
2781              "Post-condition of successful ensure_spooling_space()");
2782       return true;
2783     }
2784     // If there's not enough expansion space available, give up.
2785     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
2786       return false;
2787     }
2788     // Otherwise, we try expansion.
2789     expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
2790     // Now go around the loop and try alloc again;
2791     // A competing allocation might beat us to the expansion space,
2792     // so we may go around the loop again if allocation fails again.
2793     if (GCExpandToAllocateDelayMillis > 0) {
2794       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2795     }
2796   }
2797 }
2798 
2799 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
2800   // Only shrink if a compaction was done so that all the free space
2801   // in the generation is in a contiguous block at the end.
2802   if (did_compact()) {
2803     CardGeneration::shrink(bytes);
2804   }
2805 }
2806 
2807 void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
2808   assert_locked_or_safepoint(Heap_lock);
2809 }
2810 
2811 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
2812   assert_locked_or_safepoint(Heap_lock);
2813   assert_lock_strong(freelistLock());
2814   if (PrintGCDetails && Verbose) {
2815     warning("Shrinking of CMS not yet implemented");
2816   }
2817   return;
2818 }
2819 
2820 
2821 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
2822 // phases.
2823 class CMSPhaseAccounting: public StackObj {
2824  public:
2825   CMSPhaseAccounting(CMSCollector *collector,
2826                      const char *phase,
2827                      const GCId gc_id,
2828                      bool print_cr = true);
2829   ~CMSPhaseAccounting();
2830 
2831  private:
2832   CMSCollector *_collector;
2833   const char *_phase;
2834   elapsedTimer _wallclock;
2835   bool _print_cr;
2836   const GCId _gc_id;
2837 
2838  public:
2839   // Not MT-safe; so do not pass around these StackObj's
2840   // where they may be accessed by other threads.
2841   jlong wallclock_millis() {
2842     assert(_wallclock.is_active(), "Wall clock should not stop");
2843     _wallclock.stop();  // to record time
2844     jlong ret = _wallclock.milliseconds();
2845     _wallclock.start(); // restart
2846     return ret;
2847   }
2848 };
2849 
2850 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
2851                                        const char *phase,
2852                                        const GCId gc_id,
2853                                        bool print_cr) :
2854   _collector(collector), _phase(phase), _print_cr(print_cr), _gc_id(gc_id) {
2855 
2856   if (PrintCMSStatistics != 0) {
2857     _collector->resetYields();
2858   }
2859   if (PrintGCDetails) {
2860     gclog_or_tty->gclog_stamp(_gc_id);
2861     gclog_or_tty->print_cr("[%s-concurrent-%s-start]",
2862       _collector->cmsGen()->short_name(), _phase);
2863   }
2864   _collector->resetTimer();
2865   _wallclock.start();
2866   _collector->startTimer();
2867 }
2868 
2869 CMSPhaseAccounting::~CMSPhaseAccounting() {
2870   assert(_wallclock.is_active(), "Wall clock should not have stopped");
2871   _collector->stopTimer();
2872   _wallclock.stop();
2873   if (PrintGCDetails) {
2874     gclog_or_tty->gclog_stamp(_gc_id);
2875     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
2876                  _collector->cmsGen()->short_name(),
2877                  _phase, _collector->timerValue(), _wallclock.seconds());
2878     if (_print_cr) {
2879       gclog_or_tty->cr();
2880     }
2881     if (PrintCMSStatistics != 0) {
2882       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
2883                     _collector->yields());
2884     }
2885   }
2886 }
2887 
2888 // CMS work
2889 
2890 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
2891 class CMSParMarkTask : public AbstractGangTask {
2892  protected:
2893   CMSCollector*     _collector;
2894   uint              _n_workers;
2895   CMSParMarkTask(const char* name, CMSCollector* collector, uint n_workers) :
2896       AbstractGangTask(name),
2897       _collector(collector),
2898       _n_workers(n_workers) {}
2899   // Work method in support of parallel rescan ... of young gen spaces
2900   void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl,
2901                              ContiguousSpace* space,
2902                              HeapWord** chunk_array, size_t chunk_top);
2903   void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl);
2904 };
2905 
2906 // Parallel initial mark task
2907 class CMSParInitialMarkTask: public CMSParMarkTask {
2908  public:
2909   CMSParInitialMarkTask(CMSCollector* collector, uint n_workers) :
2910       CMSParMarkTask("Scan roots and young gen for initial mark in parallel",
2911                      collector, n_workers) {}
2912   void work(uint worker_id);
2913 };
2914 
2915 // Checkpoint the roots into this generation from outside
2916 // this generation. [Note this initial checkpoint need only
2917 // be approximate -- we'll do a catch up phase subsequently.]
2918 void CMSCollector::checkpointRootsInitial() {
2919   assert(_collectorState == InitialMarking, "Wrong collector state");
2920   check_correct_thread_executing();
2921   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
2922 
2923   save_heap_summary();
2924   report_heap_summary(GCWhen::BeforeGC);
2925 
2926   ReferenceProcessor* rp = ref_processor();
2927   assert(_restart_addr == NULL, "Control point invariant");
2928   {
2929     // acquire locks for subsequent manipulations
2930     MutexLockerEx x(bitMapLock(),
2931                     Mutex::_no_safepoint_check_flag);
2932     checkpointRootsInitialWork();
2933     // enable ("weak") refs discovery
2934     rp->enable_discovery();
2935     _collectorState = Marking;
2936   }
2937 }
2938 
2939 void CMSCollector::checkpointRootsInitialWork() {
2940   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
2941   assert(_collectorState == InitialMarking, "just checking");
2942 
2943   // If there has not been a GC[n-1] since last GC[n] cycle completed,
2944   // precede our marking with a collection of all
2945   // younger generations to keep floating garbage to a minimum.
2946   // XXX: we won't do this for now -- it's an optimization to be done later.
2947 
2948   // already have locks
2949   assert_lock_strong(bitMapLock());
2950   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
2951 
2952   // Setup the verification and class unloading state for this
2953   // CMS collection cycle.
2954   setup_cms_unloading_and_verification_state();
2955 
2956   NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork",
2957     PrintGCDetails && Verbose, true, _gc_timer_cm, _gc_tracer_cm->gc_id());)
2958 
2959   // Reset all the PLAB chunk arrays if necessary.
2960   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
2961     reset_survivor_plab_arrays();
2962   }
2963 
2964   ResourceMark rm;
2965   HandleMark  hm;
2966 
2967   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
2968   GenCollectedHeap* gch = GenCollectedHeap::heap();
2969 
2970   verify_work_stacks_empty();
2971   verify_overflow_empty();
2972 
2973   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2974   // Update the saved marks which may affect the root scans.
2975   gch->save_marks();
2976 
2977   // weak reference processing has not started yet.
2978   ref_processor()->set_enqueuing_is_done(false);
2979 
2980   // Need to remember all newly created CLDs,
2981   // so that we can guarantee that the remark finds them.
2982   ClassLoaderDataGraph::remember_new_clds(true);
2983 
2984   // Whenever a CLD is found, it will be claimed before proceeding to mark
2985   // the klasses. The claimed marks need to be cleared before marking starts.
2986   ClassLoaderDataGraph::clear_claimed_marks();
2987 
2988   if (CMSPrintEdenSurvivorChunks) {
2989     print_eden_and_survivor_chunk_arrays();
2990   }
2991 
2992   {
2993     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2994     if (CMSParallelInitialMarkEnabled) {
2995       // The parallel version.
2996       FlexibleWorkGang* workers = gch->workers();
2997       assert(workers != NULL, "Need parallel worker threads.");
2998       uint n_workers = workers->active_workers();
2999       CMSParInitialMarkTask tsk(this, n_workers);
3000       gch->set_par_threads(n_workers);
3001       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
3002       if (n_workers > 1) {
3003         StrongRootsScope srs;
3004         workers->run_task(&tsk);
3005       } else {
3006         StrongRootsScope srs;
3007         tsk.work(0);
3008       }
3009       gch->set_par_threads(0);
3010     } else {
3011       // The serial version.
3012       CLDToOopClosure cld_closure(&notOlder, true);
3013       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3014       gch->gen_process_roots(Generation::Old,
3015                              true,   // younger gens are roots
3016                              true,   // activate StrongRootsScope
3017                              GenCollectedHeap::ScanningOption(roots_scanning_options()),
3018                              should_unload_classes(),
3019                              &notOlder,
3020                              NULL,
3021                              &cld_closure);
3022     }
3023   }
3024 
3025   // Clear mod-union table; it will be dirtied in the prologue of
3026   // CMS generation per each younger generation collection.
3027 
3028   assert(_modUnionTable.isAllClear(),
3029        "Was cleared in most recent final checkpoint phase"
3030        " or no bits are set in the gc_prologue before the start of the next "
3031        "subsequent marking phase.");
3032 
3033   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
3034 
3035   // Save the end of the used_region of the constituent generations
3036   // to be used to limit the extent of sweep in each generation.
3037   save_sweep_limits();
3038   verify_overflow_empty();
3039 }
3040 
3041 bool CMSCollector::markFromRoots() {
3042   // we might be tempted to assert that:
3043   // assert(!SafepointSynchronize::is_at_safepoint(),
3044   //        "inconsistent argument?");
3045   // However that wouldn't be right, because it's possible that
3046   // a safepoint is indeed in progress as a younger generation
3047   // stop-the-world GC happens even as we mark in this generation.
3048   assert(_collectorState == Marking, "inconsistent state?");
3049   check_correct_thread_executing();
3050   verify_overflow_empty();
3051 
3052   // Weak ref discovery note: We may be discovering weak
3053   // refs in this generation concurrent (but interleaved) with
3054   // weak ref discovery by a younger generation collector.
3055 
3056   CMSTokenSyncWithLocks ts(true, bitMapLock());
3057   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3058   CMSPhaseAccounting pa(this, "mark", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3059   bool res = markFromRootsWork();
3060   if (res) {
3061     _collectorState = Precleaning;
3062   } else { // We failed and a foreground collection wants to take over
3063     assert(_foregroundGCIsActive, "internal state inconsistency");
3064     assert(_restart_addr == NULL,  "foreground will restart from scratch");
3065     if (PrintGCDetails) {
3066       gclog_or_tty->print_cr("bailing out to foreground collection");
3067     }
3068   }
3069   verify_overflow_empty();
3070   return res;
3071 }
3072 
3073 bool CMSCollector::markFromRootsWork() {
3074   // iterate over marked bits in bit map, doing a full scan and mark
3075   // from these roots using the following algorithm:
3076   // . if oop is to the right of the current scan pointer,
3077   //   mark corresponding bit (we'll process it later)
3078   // . else (oop is to left of current scan pointer)
3079   //   push oop on marking stack
3080   // . drain the marking stack
3081 
3082   // Note that when we do a marking step we need to hold the
3083   // bit map lock -- recall that direct allocation (by mutators)
3084   // and promotion (by younger generation collectors) is also
3085   // marking the bit map. [the so-called allocate live policy.]
3086   // Because the implementation of bit map marking is not
3087   // robust wrt simultaneous marking of bits in the same word,
3088   // we need to make sure that there is no such interference
3089   // between concurrent such updates.
3090 
3091   // already have locks
3092   assert_lock_strong(bitMapLock());
3093 
3094   verify_work_stacks_empty();
3095   verify_overflow_empty();
3096   bool result = false;
3097   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
3098     result = do_marking_mt();
3099   } else {
3100     result = do_marking_st();
3101   }
3102   return result;
3103 }
3104 
3105 // Forward decl
3106 class CMSConcMarkingTask;
3107 
3108 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
3109   CMSCollector*       _collector;
3110   CMSConcMarkingTask* _task;
3111  public:
3112   virtual void yield();
3113 
3114   // "n_threads" is the number of threads to be terminated.
3115   // "queue_set" is a set of work queues of other threads.
3116   // "collector" is the CMS collector associated with this task terminator.
3117   // "yield" indicates whether we need the gang as a whole to yield.
3118   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3119     ParallelTaskTerminator(n_threads, queue_set),
3120     _collector(collector) { }
3121 
3122   void set_task(CMSConcMarkingTask* task) {
3123     _task = task;
3124   }
3125 };
3126 
3127 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3128   CMSConcMarkingTask* _task;
3129  public:
3130   bool should_exit_termination();
3131   void set_task(CMSConcMarkingTask* task) {
3132     _task = task;
3133   }
3134 };
3135 
3136 // MT Concurrent Marking Task
3137 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3138   CMSCollector* _collector;
3139   uint          _n_workers;       // requested/desired # workers
3140   bool          _result;
3141   CompactibleFreeListSpace*  _cms_space;
3142   char          _pad_front[64];   // padding to ...
3143   HeapWord*     _global_finger;   // ... avoid sharing cache line
3144   char          _pad_back[64];
3145   HeapWord*     _restart_addr;
3146 
3147   //  Exposed here for yielding support
3148   Mutex* const _bit_map_lock;
3149 
3150   // The per thread work queues, available here for stealing
3151   OopTaskQueueSet*  _task_queues;
3152 
3153   // Termination (and yielding) support
3154   CMSConcMarkingTerminator _term;
3155   CMSConcMarkingTerminatorTerminator _term_term;
3156 
3157  public:
3158   CMSConcMarkingTask(CMSCollector* collector,
3159                  CompactibleFreeListSpace* cms_space,
3160                  YieldingFlexibleWorkGang* workers,
3161                  OopTaskQueueSet* task_queues):
3162     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3163     _collector(collector),
3164     _cms_space(cms_space),
3165     _n_workers(0), _result(true),
3166     _task_queues(task_queues),
3167     _term(_n_workers, task_queues, _collector),
3168     _bit_map_lock(collector->bitMapLock())
3169   {
3170     _requested_size = _n_workers;
3171     _term.set_task(this);
3172     _term_term.set_task(this);
3173     _restart_addr = _global_finger = _cms_space->bottom();
3174   }
3175 
3176 
3177   OopTaskQueueSet* task_queues()  { return _task_queues; }
3178 
3179   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3180 
3181   HeapWord** global_finger_addr() { return &_global_finger; }
3182 
3183   CMSConcMarkingTerminator* terminator() { return &_term; }
3184 
3185   virtual void set_for_termination(uint active_workers) {
3186     terminator()->reset_for_reuse(active_workers);
3187   }
3188 
3189   void work(uint worker_id);
3190   bool should_yield() {
3191     return    ConcurrentMarkSweepThread::should_yield()
3192            && !_collector->foregroundGCIsActive();
3193   }
3194 
3195   virtual void coordinator_yield();  // stuff done by coordinator
3196   bool result() { return _result; }
3197 
3198   void reset(HeapWord* ra) {
3199     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3200     _restart_addr = _global_finger = ra;
3201     _term.reset_for_reuse();
3202   }
3203 
3204   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3205                                            OopTaskQueue* work_q);
3206 
3207  private:
3208   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3209   void do_work_steal(int i);
3210   void bump_global_finger(HeapWord* f);
3211 };
3212 
3213 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3214   assert(_task != NULL, "Error");
3215   return _task->yielding();
3216   // Note that we do not need the disjunct || _task->should_yield() above
3217   // because we want terminating threads to yield only if the task
3218   // is already in the midst of yielding, which happens only after at least one
3219   // thread has yielded.
3220 }
3221 
3222 void CMSConcMarkingTerminator::yield() {
3223   if (_task->should_yield()) {
3224     _task->yield();
3225   } else {
3226     ParallelTaskTerminator::yield();
3227   }
3228 }
3229 
3230 ////////////////////////////////////////////////////////////////
3231 // Concurrent Marking Algorithm Sketch
3232 ////////////////////////////////////////////////////////////////
3233 // Until all tasks exhausted (both spaces):
3234 // -- claim next available chunk
3235 // -- bump global finger via CAS
3236 // -- find first object that starts in this chunk
3237 //    and start scanning bitmap from that position
3238 // -- scan marked objects for oops
3239 // -- CAS-mark target, and if successful:
3240 //    . if target oop is above global finger (volatile read)
3241 //      nothing to do
3242 //    . if target oop is in chunk and above local finger
3243 //        then nothing to do
3244 //    . else push on work-queue
3245 // -- Deal with possible overflow issues:
3246 //    . local work-queue overflow causes stuff to be pushed on
3247 //      global (common) overflow queue
3248 //    . always first empty local work queue
3249 //    . then get a batch of oops from global work queue if any
3250 //    . then do work stealing
3251 // -- When all tasks claimed (both spaces)
3252 //    and local work queue empty,
3253 //    then in a loop do:
3254 //    . check global overflow stack; steal a batch of oops and trace
3255 //    . try to steal from other threads oif GOS is empty
3256 //    . if neither is available, offer termination
3257 // -- Terminate and return result
3258 //
3259 void CMSConcMarkingTask::work(uint worker_id) {
3260   elapsedTimer _timer;
3261   ResourceMark rm;
3262   HandleMark hm;
3263 
3264   DEBUG_ONLY(_collector->verify_overflow_empty();)
3265 
3266   // Before we begin work, our work queue should be empty
3267   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3268   // Scan the bitmap covering _cms_space, tracing through grey objects.
3269   _timer.start();
3270   do_scan_and_mark(worker_id, _cms_space);
3271   _timer.stop();
3272   if (PrintCMSStatistics != 0) {
3273     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
3274       worker_id, _timer.seconds());
3275       // XXX: need xxx/xxx type of notation, two timers
3276   }
3277 
3278   // ... do work stealing
3279   _timer.reset();
3280   _timer.start();
3281   do_work_steal(worker_id);
3282   _timer.stop();
3283   if (PrintCMSStatistics != 0) {
3284     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
3285       worker_id, _timer.seconds());
3286       // XXX: need xxx/xxx type of notation, two timers
3287   }
3288   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3289   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3290   // Note that under the current task protocol, the
3291   // following assertion is true even of the spaces
3292   // expanded since the completion of the concurrent
3293   // marking. XXX This will likely change under a strict
3294   // ABORT semantics.
3295   // After perm removal the comparison was changed to
3296   // greater than or equal to from strictly greater than.
3297   // Before perm removal the highest address sweep would
3298   // have been at the end of perm gen but now is at the
3299   // end of the tenured gen.
3300   assert(_global_finger >=  _cms_space->end(),
3301          "All tasks have been completed");
3302   DEBUG_ONLY(_collector->verify_overflow_empty();)
3303 }
3304 
3305 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3306   HeapWord* read = _global_finger;
3307   HeapWord* cur  = read;
3308   while (f > read) {
3309     cur = read;
3310     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3311     if (cur == read) {
3312       // our cas succeeded
3313       assert(_global_finger >= f, "protocol consistency");
3314       break;
3315     }
3316   }
3317 }
3318 
3319 // This is really inefficient, and should be redone by
3320 // using (not yet available) block-read and -write interfaces to the
3321 // stack and the work_queue. XXX FIX ME !!!
3322 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3323                                                       OopTaskQueue* work_q) {
3324   // Fast lock-free check
3325   if (ovflw_stk->length() == 0) {
3326     return false;
3327   }
3328   assert(work_q->size() == 0, "Shouldn't steal");
3329   MutexLockerEx ml(ovflw_stk->par_lock(),
3330                    Mutex::_no_safepoint_check_flag);
3331   // Grab up to 1/4 the size of the work queue
3332   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3333                     (size_t)ParGCDesiredObjsFromOverflowList);
3334   num = MIN2(num, ovflw_stk->length());
3335   for (int i = (int) num; i > 0; i--) {
3336     oop cur = ovflw_stk->pop();
3337     assert(cur != NULL, "Counted wrong?");
3338     work_q->push(cur);
3339   }
3340   return num > 0;
3341 }
3342 
3343 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3344   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3345   int n_tasks = pst->n_tasks();
3346   // We allow that there may be no tasks to do here because
3347   // we are restarting after a stack overflow.
3348   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3349   uint nth_task = 0;
3350 
3351   HeapWord* aligned_start = sp->bottom();
3352   if (sp->used_region().contains(_restart_addr)) {
3353     // Align down to a card boundary for the start of 0th task
3354     // for this space.
3355     aligned_start =
3356       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3357                                  CardTableModRefBS::card_size);
3358   }
3359 
3360   size_t chunk_size = sp->marking_task_size();
3361   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3362     // Having claimed the nth task in this space,
3363     // compute the chunk that it corresponds to:
3364     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3365                                aligned_start + (nth_task+1)*chunk_size);
3366     // Try and bump the global finger via a CAS;
3367     // note that we need to do the global finger bump
3368     // _before_ taking the intersection below, because
3369     // the task corresponding to that region will be
3370     // deemed done even if the used_region() expands
3371     // because of allocation -- as it almost certainly will
3372     // during start-up while the threads yield in the
3373     // closure below.
3374     HeapWord* finger = span.end();
3375     bump_global_finger(finger);   // atomically
3376     // There are null tasks here corresponding to chunks
3377     // beyond the "top" address of the space.
3378     span = span.intersection(sp->used_region());
3379     if (!span.is_empty()) {  // Non-null task
3380       HeapWord* prev_obj;
3381       assert(!span.contains(_restart_addr) || nth_task == 0,
3382              "Inconsistency");
3383       if (nth_task == 0) {
3384         // For the 0th task, we'll not need to compute a block_start.
3385         if (span.contains(_restart_addr)) {
3386           // In the case of a restart because of stack overflow,
3387           // we might additionally skip a chunk prefix.
3388           prev_obj = _restart_addr;
3389         } else {
3390           prev_obj = span.start();
3391         }
3392       } else {
3393         // We want to skip the first object because
3394         // the protocol is to scan any object in its entirety
3395         // that _starts_ in this span; a fortiori, any
3396         // object starting in an earlier span is scanned
3397         // as part of an earlier claimed task.
3398         // Below we use the "careful" version of block_start
3399         // so we do not try to navigate uninitialized objects.
3400         prev_obj = sp->block_start_careful(span.start());
3401         // Below we use a variant of block_size that uses the
3402         // Printezis bits to avoid waiting for allocated
3403         // objects to become initialized/parsable.
3404         while (prev_obj < span.start()) {
3405           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3406           if (sz > 0) {
3407             prev_obj += sz;
3408           } else {
3409             // In this case we may end up doing a bit of redundant
3410             // scanning, but that appears unavoidable, short of
3411             // locking the free list locks; see bug 6324141.
3412             break;
3413           }
3414         }
3415       }
3416       if (prev_obj < span.end()) {
3417         MemRegion my_span = MemRegion(prev_obj, span.end());
3418         // Do the marking work within a non-empty span --
3419         // the last argument to the constructor indicates whether the
3420         // iteration should be incremental with periodic yields.
3421         Par_MarkFromRootsClosure cl(this, _collector, my_span,
3422                                     &_collector->_markBitMap,
3423                                     work_queue(i),
3424                                     &_collector->_markStack);
3425         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3426       } // else nothing to do for this task
3427     }   // else nothing to do for this task
3428   }
3429   // We'd be tempted to assert here that since there are no
3430   // more tasks left to claim in this space, the global_finger
3431   // must exceed space->top() and a fortiori space->end(). However,
3432   // that would not quite be correct because the bumping of
3433   // global_finger occurs strictly after the claiming of a task,
3434   // so by the time we reach here the global finger may not yet
3435   // have been bumped up by the thread that claimed the last
3436   // task.
3437   pst->all_tasks_completed();
3438 }
3439 
3440 class Par_ConcMarkingClosure: public MetadataAwareOopClosure {
3441  private:
3442   CMSCollector* _collector;
3443   CMSConcMarkingTask* _task;
3444   MemRegion     _span;
3445   CMSBitMap*    _bit_map;
3446   CMSMarkStack* _overflow_stack;
3447   OopTaskQueue* _work_queue;
3448  protected:
3449   DO_OOP_WORK_DEFN
3450  public:
3451   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3452                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3453     MetadataAwareOopClosure(collector->ref_processor()),
3454     _collector(collector),
3455     _task(task),
3456     _span(collector->_span),
3457     _work_queue(work_queue),
3458     _bit_map(bit_map),
3459     _overflow_stack(overflow_stack)
3460   { }
3461   virtual void do_oop(oop* p);
3462   virtual void do_oop(narrowOop* p);
3463 
3464   void trim_queue(size_t max);
3465   void handle_stack_overflow(HeapWord* lost);
3466   void do_yield_check() {
3467     if (_task->should_yield()) {
3468       _task->yield();
3469     }
3470   }
3471 };
3472 
3473 // Grey object scanning during work stealing phase --
3474 // the salient assumption here is that any references
3475 // that are in these stolen objects being scanned must
3476 // already have been initialized (else they would not have
3477 // been published), so we do not need to check for
3478 // uninitialized objects before pushing here.
3479 void Par_ConcMarkingClosure::do_oop(oop obj) {
3480   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
3481   HeapWord* addr = (HeapWord*)obj;
3482   // Check if oop points into the CMS generation
3483   // and is not marked
3484   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3485     // a white object ...
3486     // If we manage to "claim" the object, by being the
3487     // first thread to mark it, then we push it on our
3488     // marking stack
3489     if (_bit_map->par_mark(addr)) {     // ... now grey
3490       // push on work queue (grey set)
3491       bool simulate_overflow = false;
3492       NOT_PRODUCT(
3493         if (CMSMarkStackOverflowALot &&
3494             _collector->simulate_overflow()) {
3495           // simulate a stack overflow
3496           simulate_overflow = true;
3497         }
3498       )
3499       if (simulate_overflow ||
3500           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3501         // stack overflow
3502         if (PrintCMSStatistics != 0) {
3503           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
3504                                  SIZE_FORMAT, _overflow_stack->capacity());
3505         }
3506         // We cannot assert that the overflow stack is full because
3507         // it may have been emptied since.
3508         assert(simulate_overflow ||
3509                _work_queue->size() == _work_queue->max_elems(),
3510               "Else push should have succeeded");
3511         handle_stack_overflow(addr);
3512       }
3513     } // Else, some other thread got there first
3514     do_yield_check();
3515   }
3516 }
3517 
3518 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
3519 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
3520 
3521 void Par_ConcMarkingClosure::trim_queue(size_t max) {
3522   while (_work_queue->size() > max) {
3523     oop new_oop;
3524     if (_work_queue->pop_local(new_oop)) {
3525       assert(new_oop->is_oop(), "Should be an oop");
3526       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3527       assert(_span.contains((HeapWord*)new_oop), "Not in span");
3528       new_oop->oop_iterate(this);  // do_oop() above
3529       do_yield_check();
3530     }
3531   }
3532 }
3533 
3534 // Upon stack overflow, we discard (part of) the stack,
3535 // remembering the least address amongst those discarded
3536 // in CMSCollector's _restart_address.
3537 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
3538   // We need to do this under a mutex to prevent other
3539   // workers from interfering with the work done below.
3540   MutexLockerEx ml(_overflow_stack->par_lock(),
3541                    Mutex::_no_safepoint_check_flag);
3542   // Remember the least grey address discarded
3543   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
3544   _collector->lower_restart_addr(ra);
3545   _overflow_stack->reset();  // discard stack contents
3546   _overflow_stack->expand(); // expand the stack if possible
3547 }
3548 
3549 
3550 void CMSConcMarkingTask::do_work_steal(int i) {
3551   OopTaskQueue* work_q = work_queue(i);
3552   oop obj_to_scan;
3553   CMSBitMap* bm = &(_collector->_markBitMap);
3554   CMSMarkStack* ovflw = &(_collector->_markStack);
3555   int* seed = _collector->hash_seed(i);
3556   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
3557   while (true) {
3558     cl.trim_queue(0);
3559     assert(work_q->size() == 0, "Should have been emptied above");
3560     if (get_work_from_overflow_stack(ovflw, work_q)) {
3561       // Can't assert below because the work obtained from the
3562       // overflow stack may already have been stolen from us.
3563       // assert(work_q->size() > 0, "Work from overflow stack");
3564       continue;
3565     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
3566       assert(obj_to_scan->is_oop(), "Should be an oop");
3567       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
3568       obj_to_scan->oop_iterate(&cl);
3569     } else if (terminator()->offer_termination(&_term_term)) {
3570       assert(work_q->size() == 0, "Impossible!");
3571       break;
3572     } else if (yielding() || should_yield()) {
3573       yield();
3574     }
3575   }
3576 }
3577 
3578 // This is run by the CMS (coordinator) thread.
3579 void CMSConcMarkingTask::coordinator_yield() {
3580   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3581          "CMS thread should hold CMS token");
3582   // First give up the locks, then yield, then re-lock
3583   // We should probably use a constructor/destructor idiom to
3584   // do this unlock/lock or modify the MutexUnlocker class to
3585   // serve our purpose. XXX
3586   assert_lock_strong(_bit_map_lock);
3587   _bit_map_lock->unlock();
3588   ConcurrentMarkSweepThread::desynchronize(true);
3589   _collector->stopTimer();
3590   if (PrintCMSStatistics != 0) {
3591     _collector->incrementYields();
3592   }
3593 
3594   // It is possible for whichever thread initiated the yield request
3595   // not to get a chance to wake up and take the bitmap lock between
3596   // this thread releasing it and reacquiring it. So, while the
3597   // should_yield() flag is on, let's sleep for a bit to give the
3598   // other thread a chance to wake up. The limit imposed on the number
3599   // of iterations is defensive, to avoid any unforseen circumstances
3600   // putting us into an infinite loop. Since it's always been this
3601   // (coordinator_yield()) method that was observed to cause the
3602   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
3603   // which is by default non-zero. For the other seven methods that
3604   // also perform the yield operation, as are using a different
3605   // parameter (CMSYieldSleepCount) which is by default zero. This way we
3606   // can enable the sleeping for those methods too, if necessary.
3607   // See 6442774.
3608   //
3609   // We really need to reconsider the synchronization between the GC
3610   // thread and the yield-requesting threads in the future and we
3611   // should really use wait/notify, which is the recommended
3612   // way of doing this type of interaction. Additionally, we should
3613   // consolidate the eight methods that do the yield operation and they
3614   // are almost identical into one for better maintainability and
3615   // readability. See 6445193.
3616   //
3617   // Tony 2006.06.29
3618   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
3619                    ConcurrentMarkSweepThread::should_yield() &&
3620                    !CMSCollector::foregroundGCIsActive(); ++i) {
3621     os::sleep(Thread::current(), 1, false);
3622   }
3623 
3624   ConcurrentMarkSweepThread::synchronize(true);
3625   _bit_map_lock->lock_without_safepoint_check();
3626   _collector->startTimer();
3627 }
3628 
3629 bool CMSCollector::do_marking_mt() {
3630   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
3631   uint num_workers = AdaptiveSizePolicy::calc_active_conc_workers(conc_workers()->total_workers(),
3632                                                                   conc_workers()->active_workers(),
3633                                                                   Threads::number_of_non_daemon_threads());
3634   conc_workers()->set_active_workers(num_workers);
3635 
3636   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
3637 
3638   CMSConcMarkingTask tsk(this,
3639                          cms_space,
3640                          conc_workers(),
3641                          task_queues());
3642 
3643   // Since the actual number of workers we get may be different
3644   // from the number we requested above, do we need to do anything different
3645   // below? In particular, may be we need to subclass the SequantialSubTasksDone
3646   // class?? XXX
3647   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
3648 
3649   // Refs discovery is already non-atomic.
3650   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
3651   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
3652   conc_workers()->start_task(&tsk);
3653   while (tsk.yielded()) {
3654     tsk.coordinator_yield();
3655     conc_workers()->continue_task(&tsk);
3656   }
3657   // If the task was aborted, _restart_addr will be non-NULL
3658   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
3659   while (_restart_addr != NULL) {
3660     // XXX For now we do not make use of ABORTED state and have not
3661     // yet implemented the right abort semantics (even in the original
3662     // single-threaded CMS case). That needs some more investigation
3663     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
3664     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
3665     // If _restart_addr is non-NULL, a marking stack overflow
3666     // occurred; we need to do a fresh marking iteration from the
3667     // indicated restart address.
3668     if (_foregroundGCIsActive) {
3669       // We may be running into repeated stack overflows, having
3670       // reached the limit of the stack size, while making very
3671       // slow forward progress. It may be best to bail out and
3672       // let the foreground collector do its job.
3673       // Clear _restart_addr, so that foreground GC
3674       // works from scratch. This avoids the headache of
3675       // a "rescan" which would otherwise be needed because
3676       // of the dirty mod union table & card table.
3677       _restart_addr = NULL;
3678       return false;
3679     }
3680     // Adjust the task to restart from _restart_addr
3681     tsk.reset(_restart_addr);
3682     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
3683                   _restart_addr);
3684     _restart_addr = NULL;
3685     // Get the workers going again
3686     conc_workers()->start_task(&tsk);
3687     while (tsk.yielded()) {
3688       tsk.coordinator_yield();
3689       conc_workers()->continue_task(&tsk);
3690     }
3691   }
3692   assert(tsk.completed(), "Inconsistency");
3693   assert(tsk.result() == true, "Inconsistency");
3694   return true;
3695 }
3696 
3697 bool CMSCollector::do_marking_st() {
3698   ResourceMark rm;
3699   HandleMark   hm;
3700 
3701   // Temporarily make refs discovery single threaded (non-MT)
3702   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
3703   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
3704     &_markStack, CMSYield);
3705   // the last argument to iterate indicates whether the iteration
3706   // should be incremental with periodic yields.
3707   _markBitMap.iterate(&markFromRootsClosure);
3708   // If _restart_addr is non-NULL, a marking stack overflow
3709   // occurred; we need to do a fresh iteration from the
3710   // indicated restart address.
3711   while (_restart_addr != NULL) {
3712     if (_foregroundGCIsActive) {
3713       // We may be running into repeated stack overflows, having
3714       // reached the limit of the stack size, while making very
3715       // slow forward progress. It may be best to bail out and
3716       // let the foreground collector do its job.
3717       // Clear _restart_addr, so that foreground GC
3718       // works from scratch. This avoids the headache of
3719       // a "rescan" which would otherwise be needed because
3720       // of the dirty mod union table & card table.
3721       _restart_addr = NULL;
3722       return false;  // indicating failure to complete marking
3723     }
3724     // Deal with stack overflow:
3725     // we restart marking from _restart_addr
3726     HeapWord* ra = _restart_addr;
3727     markFromRootsClosure.reset(ra);
3728     _restart_addr = NULL;
3729     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
3730   }
3731   return true;
3732 }
3733 
3734 void CMSCollector::preclean() {
3735   check_correct_thread_executing();
3736   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
3737   verify_work_stacks_empty();
3738   verify_overflow_empty();
3739   _abort_preclean = false;
3740   if (CMSPrecleaningEnabled) {
3741     if (!CMSEdenChunksRecordAlways) {
3742       _eden_chunk_index = 0;
3743     }
3744     size_t used = get_eden_used();
3745     size_t capacity = get_eden_capacity();
3746     // Don't start sampling unless we will get sufficiently
3747     // many samples.
3748     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
3749                 * CMSScheduleRemarkEdenPenetration)) {
3750       _start_sampling = true;
3751     } else {
3752       _start_sampling = false;
3753     }
3754     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3755     CMSPhaseAccounting pa(this, "preclean", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3756     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
3757   }
3758   CMSTokenSync x(true); // is cms thread
3759   if (CMSPrecleaningEnabled) {
3760     sample_eden();
3761     _collectorState = AbortablePreclean;
3762   } else {
3763     _collectorState = FinalMarking;
3764   }
3765   verify_work_stacks_empty();
3766   verify_overflow_empty();
3767 }
3768 
3769 // Try and schedule the remark such that young gen
3770 // occupancy is CMSScheduleRemarkEdenPenetration %.
3771 void CMSCollector::abortable_preclean() {
3772   check_correct_thread_executing();
3773   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
3774   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
3775 
3776   // If Eden's current occupancy is below this threshold,
3777   // immediately schedule the remark; else preclean
3778   // past the next scavenge in an effort to
3779   // schedule the pause as described above. By choosing
3780   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
3781   // we will never do an actual abortable preclean cycle.
3782   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
3783     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3784     CMSPhaseAccounting pa(this, "abortable-preclean", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3785     // We need more smarts in the abortable preclean
3786     // loop below to deal with cases where allocation
3787     // in young gen is very very slow, and our precleaning
3788     // is running a losing race against a horde of
3789     // mutators intent on flooding us with CMS updates
3790     // (dirty cards).
3791     // One, admittedly dumb, strategy is to give up
3792     // after a certain number of abortable precleaning loops
3793     // or after a certain maximum time. We want to make
3794     // this smarter in the next iteration.
3795     // XXX FIX ME!!! YSR
3796     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
3797     while (!(should_abort_preclean() ||
3798              ConcurrentMarkSweepThread::should_terminate())) {
3799       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
3800       cumworkdone += workdone;
3801       loops++;
3802       // Voluntarily terminate abortable preclean phase if we have
3803       // been at it for too long.
3804       if ((CMSMaxAbortablePrecleanLoops != 0) &&
3805           loops >= CMSMaxAbortablePrecleanLoops) {
3806         if (PrintGCDetails) {
3807           gclog_or_tty->print(" CMS: abort preclean due to loops ");
3808         }
3809         break;
3810       }
3811       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
3812         if (PrintGCDetails) {
3813           gclog_or_tty->print(" CMS: abort preclean due to time ");
3814         }
3815         break;
3816       }
3817       // If we are doing little work each iteration, we should
3818       // take a short break.
3819       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
3820         // Sleep for some time, waiting for work to accumulate
3821         stopTimer();
3822         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
3823         startTimer();
3824         waited++;
3825       }
3826     }
3827     if (PrintCMSStatistics > 0) {
3828       gclog_or_tty->print(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
3829                           loops, waited, cumworkdone);
3830     }
3831   }
3832   CMSTokenSync x(true); // is cms thread
3833   if (_collectorState != Idling) {
3834     assert(_collectorState == AbortablePreclean,
3835            "Spontaneous state transition?");
3836     _collectorState = FinalMarking;
3837   } // Else, a foreground collection completed this CMS cycle.
3838   return;
3839 }
3840 
3841 // Respond to an Eden sampling opportunity
3842 void CMSCollector::sample_eden() {
3843   // Make sure a young gc cannot sneak in between our
3844   // reading and recording of a sample.
3845   assert(Thread::current()->is_ConcurrentGC_thread(),
3846          "Only the cms thread may collect Eden samples");
3847   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3848          "Should collect samples while holding CMS token");
3849   if (!_start_sampling) {
3850     return;
3851   }
3852   // When CMSEdenChunksRecordAlways is true, the eden chunk array
3853   // is populated by the young generation.
3854   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
3855     if (_eden_chunk_index < _eden_chunk_capacity) {
3856       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
3857       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
3858              "Unexpected state of Eden");
3859       // We'd like to check that what we just sampled is an oop-start address;
3860       // however, we cannot do that here since the object may not yet have been
3861       // initialized. So we'll instead do the check when we _use_ this sample
3862       // later.
3863       if (_eden_chunk_index == 0 ||
3864           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
3865                          _eden_chunk_array[_eden_chunk_index-1])
3866            >= CMSSamplingGrain)) {
3867         _eden_chunk_index++;  // commit sample
3868       }
3869     }
3870   }
3871   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
3872     size_t used = get_eden_used();
3873     size_t capacity = get_eden_capacity();
3874     assert(used <= capacity, "Unexpected state of Eden");
3875     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
3876       _abort_preclean = true;
3877     }
3878   }
3879 }
3880 
3881 
3882 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
3883   assert(_collectorState == Precleaning ||
3884          _collectorState == AbortablePreclean, "incorrect state");
3885   ResourceMark rm;
3886   HandleMark   hm;
3887 
3888   // Precleaning is currently not MT but the reference processor
3889   // may be set for MT.  Disable it temporarily here.
3890   ReferenceProcessor* rp = ref_processor();
3891   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
3892 
3893   // Do one pass of scrubbing the discovered reference lists
3894   // to remove any reference objects with strongly-reachable
3895   // referents.
3896   if (clean_refs) {
3897     CMSPrecleanRefsYieldClosure yield_cl(this);
3898     assert(rp->span().equals(_span), "Spans should be equal");
3899     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
3900                                    &_markStack, true /* preclean */);
3901     CMSDrainMarkingStackClosure complete_trace(this,
3902                                    _span, &_markBitMap, &_markStack,
3903                                    &keep_alive, true /* preclean */);
3904 
3905     // We don't want this step to interfere with a young
3906     // collection because we don't want to take CPU
3907     // or memory bandwidth away from the young GC threads
3908     // (which may be as many as there are CPUs).
3909     // Note that we don't need to protect ourselves from
3910     // interference with mutators because they can't
3911     // manipulate the discovered reference lists nor affect
3912     // the computed reachability of the referents, the
3913     // only properties manipulated by the precleaning
3914     // of these reference lists.
3915     stopTimer();
3916     CMSTokenSyncWithLocks x(true /* is cms thread */,
3917                             bitMapLock());
3918     startTimer();
3919     sample_eden();
3920 
3921     // The following will yield to allow foreground
3922     // collection to proceed promptly. XXX YSR:
3923     // The code in this method may need further
3924     // tweaking for better performance and some restructuring
3925     // for cleaner interfaces.
3926     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
3927     rp->preclean_discovered_references(
3928           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
3929           gc_timer, _gc_tracer_cm->gc_id());
3930   }
3931 
3932   if (clean_survivor) {  // preclean the active survivor space(s)
3933     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
3934                              &_markBitMap, &_modUnionTable,
3935                              &_markStack, true /* precleaning phase */);
3936     stopTimer();
3937     CMSTokenSyncWithLocks ts(true /* is cms thread */,
3938                              bitMapLock());
3939     startTimer();
3940     unsigned int before_count =
3941       GenCollectedHeap::heap()->total_collections();
3942     SurvivorSpacePrecleanClosure
3943       sss_cl(this, _span, &_markBitMap, &_markStack,
3944              &pam_cl, before_count, CMSYield);
3945     _young_gen->from()->object_iterate_careful(&sss_cl);
3946     _young_gen->to()->object_iterate_careful(&sss_cl);
3947   }
3948   MarkRefsIntoAndScanClosure
3949     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
3950              &_markStack, this, CMSYield,
3951              true /* precleaning phase */);
3952   // CAUTION: The following closure has persistent state that may need to
3953   // be reset upon a decrease in the sequence of addresses it
3954   // processes.
3955   ScanMarkedObjectsAgainCarefullyClosure
3956     smoac_cl(this, _span,
3957       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
3958 
3959   // Preclean dirty cards in ModUnionTable and CardTable using
3960   // appropriate convergence criterion;
3961   // repeat CMSPrecleanIter times unless we find that
3962   // we are losing.
3963   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
3964   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
3965          "Bad convergence multiplier");
3966   assert(CMSPrecleanThreshold >= 100,
3967          "Unreasonably low CMSPrecleanThreshold");
3968 
3969   size_t numIter, cumNumCards, lastNumCards, curNumCards;
3970   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
3971        numIter < CMSPrecleanIter;
3972        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
3973     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
3974     if (Verbose && PrintGCDetails) {
3975       gclog_or_tty->print(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
3976     }
3977     // Either there are very few dirty cards, so re-mark
3978     // pause will be small anyway, or our pre-cleaning isn't
3979     // that much faster than the rate at which cards are being
3980     // dirtied, so we might as well stop and re-mark since
3981     // precleaning won't improve our re-mark time by much.
3982     if (curNumCards <= CMSPrecleanThreshold ||
3983         (numIter > 0 &&
3984          (curNumCards * CMSPrecleanDenominator >
3985          lastNumCards * CMSPrecleanNumerator))) {
3986       numIter++;
3987       cumNumCards += curNumCards;
3988       break;
3989     }
3990   }
3991 
3992   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
3993 
3994   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
3995   cumNumCards += curNumCards;
3996   if (PrintGCDetails && PrintCMSStatistics != 0) {
3997     gclog_or_tty->print_cr(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
3998                   curNumCards, cumNumCards, numIter);
3999   }
4000   return cumNumCards;   // as a measure of useful work done
4001 }
4002 
4003 // PRECLEANING NOTES:
4004 // Precleaning involves:
4005 // . reading the bits of the modUnionTable and clearing the set bits.
4006 // . For the cards corresponding to the set bits, we scan the
4007 //   objects on those cards. This means we need the free_list_lock
4008 //   so that we can safely iterate over the CMS space when scanning
4009 //   for oops.
4010 // . When we scan the objects, we'll be both reading and setting
4011 //   marks in the marking bit map, so we'll need the marking bit map.
4012 // . For protecting _collector_state transitions, we take the CGC_lock.
4013 //   Note that any races in the reading of of card table entries by the
4014 //   CMS thread on the one hand and the clearing of those entries by the
4015 //   VM thread or the setting of those entries by the mutator threads on the
4016 //   other are quite benign. However, for efficiency it makes sense to keep
4017 //   the VM thread from racing with the CMS thread while the latter is
4018 //   dirty card info to the modUnionTable. We therefore also use the
4019 //   CGC_lock to protect the reading of the card table and the mod union
4020 //   table by the CM thread.
4021 // . We run concurrently with mutator updates, so scanning
4022 //   needs to be done carefully  -- we should not try to scan
4023 //   potentially uninitialized objects.
4024 //
4025 // Locking strategy: While holding the CGC_lock, we scan over and
4026 // reset a maximal dirty range of the mod union / card tables, then lock
4027 // the free_list_lock and bitmap lock to do a full marking, then
4028 // release these locks; and repeat the cycle. This allows for a
4029 // certain amount of fairness in the sharing of these locks between
4030 // the CMS collector on the one hand, and the VM thread and the
4031 // mutators on the other.
4032 
4033 // NOTE: preclean_mod_union_table() and preclean_card_table()
4034 // further below are largely identical; if you need to modify
4035 // one of these methods, please check the other method too.
4036 
4037 size_t CMSCollector::preclean_mod_union_table(
4038   ConcurrentMarkSweepGeneration* gen,
4039   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4040   verify_work_stacks_empty();
4041   verify_overflow_empty();
4042 
4043   // strategy: starting with the first card, accumulate contiguous
4044   // ranges of dirty cards; clear these cards, then scan the region
4045   // covered by these cards.
4046 
4047   // Since all of the MUT is committed ahead, we can just use
4048   // that, in case the generations expand while we are precleaning.
4049   // It might also be fine to just use the committed part of the
4050   // generation, but we might potentially miss cards when the
4051   // generation is rapidly expanding while we are in the midst
4052   // of precleaning.
4053   HeapWord* startAddr = gen->reserved().start();
4054   HeapWord* endAddr   = gen->reserved().end();
4055 
4056   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4057 
4058   size_t numDirtyCards, cumNumDirtyCards;
4059   HeapWord *nextAddr, *lastAddr;
4060   for (cumNumDirtyCards = numDirtyCards = 0,
4061        nextAddr = lastAddr = startAddr;
4062        nextAddr < endAddr;
4063        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4064 
4065     ResourceMark rm;
4066     HandleMark   hm;
4067 
4068     MemRegion dirtyRegion;
4069     {
4070       stopTimer();
4071       // Potential yield point
4072       CMSTokenSync ts(true);
4073       startTimer();
4074       sample_eden();
4075       // Get dirty region starting at nextOffset (inclusive),
4076       // simultaneously clearing it.
4077       dirtyRegion =
4078         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
4079       assert(dirtyRegion.start() >= nextAddr,
4080              "returned region inconsistent?");
4081     }
4082     // Remember where the next search should begin.
4083     // The returned region (if non-empty) is a right open interval,
4084     // so lastOffset is obtained from the right end of that
4085     // interval.
4086     lastAddr = dirtyRegion.end();
4087     // Should do something more transparent and less hacky XXX
4088     numDirtyCards =
4089       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4090 
4091     // We'll scan the cards in the dirty region (with periodic
4092     // yields for foreground GC as needed).
4093     if (!dirtyRegion.is_empty()) {
4094       assert(numDirtyCards > 0, "consistency check");
4095       HeapWord* stop_point = NULL;
4096       stopTimer();
4097       // Potential yield point
4098       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
4099                                bitMapLock());
4100       startTimer();
4101       {
4102         verify_work_stacks_empty();
4103         verify_overflow_empty();
4104         sample_eden();
4105         stop_point =
4106           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4107       }
4108       if (stop_point != NULL) {
4109         // The careful iteration stopped early either because it found an
4110         // uninitialized object, or because we were in the midst of an
4111         // "abortable preclean", which should now be aborted. Redirty
4112         // the bits corresponding to the partially-scanned or unscanned
4113         // cards. We'll either restart at the next block boundary or
4114         // abort the preclean.
4115         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4116                "Should only be AbortablePreclean.");
4117         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4118         if (should_abort_preclean()) {
4119           break; // out of preclean loop
4120         } else {
4121           // Compute the next address at which preclean should pick up;
4122           // might need bitMapLock in order to read P-bits.
4123           lastAddr = next_card_start_after_block(stop_point);
4124         }
4125       }
4126     } else {
4127       assert(lastAddr == endAddr, "consistency check");
4128       assert(numDirtyCards == 0, "consistency check");
4129       break;
4130     }
4131   }
4132   verify_work_stacks_empty();
4133   verify_overflow_empty();
4134   return cumNumDirtyCards;
4135 }
4136 
4137 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4138 // below are largely identical; if you need to modify
4139 // one of these methods, please check the other method too.
4140 
4141 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
4142   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4143   // strategy: it's similar to precleamModUnionTable above, in that
4144   // we accumulate contiguous ranges of dirty cards, mark these cards
4145   // precleaned, then scan the region covered by these cards.
4146   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
4147   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
4148 
4149   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4150 
4151   size_t numDirtyCards, cumNumDirtyCards;
4152   HeapWord *lastAddr, *nextAddr;
4153 
4154   for (cumNumDirtyCards = numDirtyCards = 0,
4155        nextAddr = lastAddr = startAddr;
4156        nextAddr < endAddr;
4157        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4158 
4159     ResourceMark rm;
4160     HandleMark   hm;
4161 
4162     MemRegion dirtyRegion;
4163     {
4164       // See comments in "Precleaning notes" above on why we
4165       // do this locking. XXX Could the locking overheads be
4166       // too high when dirty cards are sparse? [I don't think so.]
4167       stopTimer();
4168       CMSTokenSync x(true); // is cms thread
4169       startTimer();
4170       sample_eden();
4171       // Get and clear dirty region from card table
4172       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4173                                     MemRegion(nextAddr, endAddr),
4174                                     true,
4175                                     CardTableModRefBS::precleaned_card_val());
4176 
4177       assert(dirtyRegion.start() >= nextAddr,
4178              "returned region inconsistent?");
4179     }
4180     lastAddr = dirtyRegion.end();
4181     numDirtyCards =
4182       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4183 
4184     if (!dirtyRegion.is_empty()) {
4185       stopTimer();
4186       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
4187       startTimer();
4188       sample_eden();
4189       verify_work_stacks_empty();
4190       verify_overflow_empty();
4191       HeapWord* stop_point =
4192         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4193       if (stop_point != NULL) {
4194         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4195                "Should only be AbortablePreclean.");
4196         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4197         if (should_abort_preclean()) {
4198           break; // out of preclean loop
4199         } else {
4200           // Compute the next address at which preclean should pick up.
4201           lastAddr = next_card_start_after_block(stop_point);
4202         }
4203       }
4204     } else {
4205       break;
4206     }
4207   }
4208   verify_work_stacks_empty();
4209   verify_overflow_empty();
4210   return cumNumDirtyCards;
4211 }
4212 
4213 class PrecleanKlassClosure : public KlassClosure {
4214   KlassToOopClosure _cm_klass_closure;
4215  public:
4216   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4217   void do_klass(Klass* k) {
4218     if (k->has_accumulated_modified_oops()) {
4219       k->clear_accumulated_modified_oops();
4220 
4221       _cm_klass_closure.do_klass(k);
4222     }
4223   }
4224 };
4225 
4226 // The freelist lock is needed to prevent asserts, is it really needed?
4227 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4228 
4229   cl->set_freelistLock(freelistLock);
4230 
4231   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4232 
4233   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4234   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4235   PrecleanKlassClosure preclean_klass_closure(cl);
4236   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4237 
4238   verify_work_stacks_empty();
4239   verify_overflow_empty();
4240 }
4241 
4242 void CMSCollector::checkpointRootsFinal() {
4243   assert(_collectorState == FinalMarking, "incorrect state transition?");
4244   check_correct_thread_executing();
4245   // world is stopped at this checkpoint
4246   assert(SafepointSynchronize::is_at_safepoint(),
4247          "world should be stopped");
4248   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4249 
4250   verify_work_stacks_empty();
4251   verify_overflow_empty();
4252 
4253   if (PrintGCDetails) {
4254     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
4255                         _young_gen->used() / K,
4256                         _young_gen->capacity() / K);
4257   }
4258   {
4259     if (CMSScavengeBeforeRemark) {
4260       GenCollectedHeap* gch = GenCollectedHeap::heap();
4261       // Temporarily set flag to false, GCH->do_collection will
4262       // expect it to be false and set to true
4263       FlagSetting fl(gch->_is_gc_active, false);
4264       NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark",
4265         PrintGCDetails && Verbose, true, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4266       gch->do_collection(true,             // full (i.e. force, see below)
4267                          false,            // !clear_all_soft_refs
4268                          0,                // size
4269                          false,            // is_tlab
4270                          Generation::Young // type
4271         );
4272     }
4273     FreelistLocker x(this);
4274     MutexLockerEx y(bitMapLock(),
4275                     Mutex::_no_safepoint_check_flag);
4276     checkpointRootsFinalWork();
4277   }
4278   verify_work_stacks_empty();
4279   verify_overflow_empty();
4280 }
4281 
4282 void CMSCollector::checkpointRootsFinalWork() {
4283   NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4284 
4285   assert(haveFreelistLocks(), "must have free list locks");
4286   assert_lock_strong(bitMapLock());
4287 
4288   ResourceMark rm;
4289   HandleMark   hm;
4290 
4291   GenCollectedHeap* gch = GenCollectedHeap::heap();
4292 
4293   if (should_unload_classes()) {
4294     CodeCache::gc_prologue();
4295   }
4296   assert(haveFreelistLocks(), "must have free list locks");
4297   assert_lock_strong(bitMapLock());
4298 
4299   // We might assume that we need not fill TLAB's when
4300   // CMSScavengeBeforeRemark is set, because we may have just done
4301   // a scavenge which would have filled all TLAB's -- and besides
4302   // Eden would be empty. This however may not always be the case --
4303   // for instance although we asked for a scavenge, it may not have
4304   // happened because of a JNI critical section. We probably need
4305   // a policy for deciding whether we can in that case wait until
4306   // the critical section releases and then do the remark following
4307   // the scavenge, and skip it here. In the absence of that policy,
4308   // or of an indication of whether the scavenge did indeed occur,
4309   // we cannot rely on TLAB's having been filled and must do
4310   // so here just in case a scavenge did not happen.
4311   gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4312   // Update the saved marks which may affect the root scans.
4313   gch->save_marks();
4314 
4315   if (CMSPrintEdenSurvivorChunks) {
4316     print_eden_and_survivor_chunk_arrays();
4317   }
4318 
4319   {
4320     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
4321 
4322     // Note on the role of the mod union table:
4323     // Since the marker in "markFromRoots" marks concurrently with
4324     // mutators, it is possible for some reachable objects not to have been
4325     // scanned. For instance, an only reference to an object A was
4326     // placed in object B after the marker scanned B. Unless B is rescanned,
4327     // A would be collected. Such updates to references in marked objects
4328     // are detected via the mod union table which is the set of all cards
4329     // dirtied since the first checkpoint in this GC cycle and prior to
4330     // the most recent young generation GC, minus those cleaned up by the
4331     // concurrent precleaning.
4332     if (CMSParallelRemarkEnabled) {
4333       GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
4334       do_remark_parallel();
4335     } else {
4336       GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
4337                   _gc_timer_cm, _gc_tracer_cm->gc_id());
4338       do_remark_non_parallel();
4339     }
4340   }
4341   verify_work_stacks_empty();
4342   verify_overflow_empty();
4343 
4344   {
4345     NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4346     refProcessingWork();
4347   }
4348   verify_work_stacks_empty();
4349   verify_overflow_empty();
4350 
4351   if (should_unload_classes()) {
4352     CodeCache::gc_epilogue();
4353   }
4354   JvmtiExport::gc_epilogue();
4355 
4356   // If we encountered any (marking stack / work queue) overflow
4357   // events during the current CMS cycle, take appropriate
4358   // remedial measures, where possible, so as to try and avoid
4359   // recurrence of that condition.
4360   assert(_markStack.isEmpty(), "No grey objects");
4361   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4362                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4363   if (ser_ovflw > 0) {
4364     if (PrintCMSStatistics != 0) {
4365       gclog_or_tty->print_cr("Marking stack overflow (benign) "
4366         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT
4367         ", kac_preclean="SIZE_FORMAT")",
4368         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
4369         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4370     }
4371     _markStack.expand();
4372     _ser_pmc_remark_ovflw = 0;
4373     _ser_pmc_preclean_ovflw = 0;
4374     _ser_kac_preclean_ovflw = 0;
4375     _ser_kac_ovflw = 0;
4376   }
4377   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4378     if (PrintCMSStatistics != 0) {
4379       gclog_or_tty->print_cr("Work queue overflow (benign) "
4380         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
4381         _par_pmc_remark_ovflw, _par_kac_ovflw);
4382     }
4383     _par_pmc_remark_ovflw = 0;
4384     _par_kac_ovflw = 0;
4385   }
4386   if (PrintCMSStatistics != 0) {
4387      if (_markStack._hit_limit > 0) {
4388        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
4389                               _markStack._hit_limit);
4390      }
4391      if (_markStack._failed_double > 0) {
4392        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
4393                               " current capacity "SIZE_FORMAT,
4394                               _markStack._failed_double,
4395                               _markStack.capacity());
4396      }
4397   }
4398   _markStack._hit_limit = 0;
4399   _markStack._failed_double = 0;
4400 
4401   if ((VerifyAfterGC || VerifyDuringGC) &&
4402       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4403     verify_after_remark();
4404   }
4405 
4406   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4407 
4408   // Change under the freelistLocks.
4409   _collectorState = Sweeping;
4410   // Call isAllClear() under bitMapLock
4411   assert(_modUnionTable.isAllClear(),
4412       "Should be clear by end of the final marking");
4413   assert(_ct->klass_rem_set()->mod_union_is_clear(),
4414       "Should be clear by end of the final marking");
4415 }
4416 
4417 void CMSParInitialMarkTask::work(uint worker_id) {
4418   elapsedTimer _timer;
4419   ResourceMark rm;
4420   HandleMark   hm;
4421 
4422   // ---------- scan from roots --------------
4423   _timer.start();
4424   GenCollectedHeap* gch = GenCollectedHeap::heap();
4425   Par_MarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4426 
4427   // ---------- young gen roots --------------
4428   {
4429     work_on_young_gen_roots(worker_id, &par_mri_cl);
4430     _timer.stop();
4431     if (PrintCMSStatistics != 0) {
4432       gclog_or_tty->print_cr(
4433         "Finished young gen initial mark scan work in %dth thread: %3.3f sec",
4434         worker_id, _timer.seconds());
4435     }
4436   }
4437 
4438   // ---------- remaining roots --------------
4439   _timer.reset();
4440   _timer.start();
4441 
4442   CLDToOopClosure cld_closure(&par_mri_cl, true);
4443 
4444   gch->gen_process_roots(Generation::Old,
4445                          false,     // yg was scanned above
4446                          false,     // this is parallel code
4447                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4448                          _collector->should_unload_classes(),
4449                          &par_mri_cl,
4450                          NULL,
4451                          &cld_closure);
4452   assert(_collector->should_unload_classes()
4453          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4454          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4455   _timer.stop();
4456   if (PrintCMSStatistics != 0) {
4457     gclog_or_tty->print_cr(
4458       "Finished remaining root initial mark scan work in %dth thread: %3.3f sec",
4459       worker_id, _timer.seconds());
4460   }
4461 }
4462 
4463 // Parallel remark task
4464 class CMSParRemarkTask: public CMSParMarkTask {
4465   CompactibleFreeListSpace* _cms_space;
4466 
4467   // The per-thread work queues, available here for stealing.
4468   OopTaskQueueSet*       _task_queues;
4469   ParallelTaskTerminator _term;
4470 
4471  public:
4472   // A value of 0 passed to n_workers will cause the number of
4473   // workers to be taken from the active workers in the work gang.
4474   CMSParRemarkTask(CMSCollector* collector,
4475                    CompactibleFreeListSpace* cms_space,
4476                    uint n_workers, FlexibleWorkGang* workers,
4477                    OopTaskQueueSet* task_queues):
4478     CMSParMarkTask("Rescan roots and grey objects in parallel",
4479                    collector, n_workers),
4480     _cms_space(cms_space),
4481     _task_queues(task_queues),
4482     _term(n_workers, task_queues) { }
4483 
4484   OopTaskQueueSet* task_queues() { return _task_queues; }
4485 
4486   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4487 
4488   ParallelTaskTerminator* terminator() { return &_term; }
4489   uint n_workers() { return _n_workers; }
4490 
4491   void work(uint worker_id);
4492 
4493  private:
4494   // ... of  dirty cards in old space
4495   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4496                                   Par_MarkRefsIntoAndScanClosure* cl);
4497 
4498   // ... work stealing for the above
4499   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
4500 };
4501 
4502 class RemarkKlassClosure : public KlassClosure {
4503   KlassToOopClosure _cm_klass_closure;
4504  public:
4505   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4506   void do_klass(Klass* k) {
4507     // Check if we have modified any oops in the Klass during the concurrent marking.
4508     if (k->has_accumulated_modified_oops()) {
4509       k->clear_accumulated_modified_oops();
4510 
4511       // We could have transfered the current modified marks to the accumulated marks,
4512       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
4513     } else if (k->has_modified_oops()) {
4514       // Don't clear anything, this info is needed by the next young collection.
4515     } else {
4516       // No modified oops in the Klass.
4517       return;
4518     }
4519 
4520     // The klass has modified fields, need to scan the klass.
4521     _cm_klass_closure.do_klass(k);
4522   }
4523 };
4524 
4525 void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) {
4526   ParNewGeneration* young_gen = _collector->_young_gen;
4527   ContiguousSpace* eden_space = young_gen->eden();
4528   ContiguousSpace* from_space = young_gen->from();
4529   ContiguousSpace* to_space   = young_gen->to();
4530 
4531   HeapWord** eca = _collector->_eden_chunk_array;
4532   size_t     ect = _collector->_eden_chunk_index;
4533   HeapWord** sca = _collector->_survivor_chunk_array;
4534   size_t     sct = _collector->_survivor_chunk_index;
4535 
4536   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
4537   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
4538 
4539   do_young_space_rescan(worker_id, cl, to_space, NULL, 0);
4540   do_young_space_rescan(worker_id, cl, from_space, sca, sct);
4541   do_young_space_rescan(worker_id, cl, eden_space, eca, ect);
4542 }
4543 
4544 // work_queue(i) is passed to the closure
4545 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
4546 // also is passed to do_dirty_card_rescan_tasks() and to
4547 // do_work_steal() to select the i-th task_queue.
4548 
4549 void CMSParRemarkTask::work(uint worker_id) {
4550   elapsedTimer _timer;
4551   ResourceMark rm;
4552   HandleMark   hm;
4553 
4554   // ---------- rescan from roots --------------
4555   _timer.start();
4556   GenCollectedHeap* gch = GenCollectedHeap::heap();
4557   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
4558     _collector->_span, _collector->ref_processor(),
4559     &(_collector->_markBitMap),
4560     work_queue(worker_id));
4561 
4562   // Rescan young gen roots first since these are likely
4563   // coarsely partitioned and may, on that account, constitute
4564   // the critical path; thus, it's best to start off that
4565   // work first.
4566   // ---------- young gen roots --------------
4567   {
4568     work_on_young_gen_roots(worker_id, &par_mrias_cl);
4569     _timer.stop();
4570     if (PrintCMSStatistics != 0) {
4571       gclog_or_tty->print_cr(
4572         "Finished young gen rescan work in %dth thread: %3.3f sec",
4573         worker_id, _timer.seconds());
4574     }
4575   }
4576 
4577   // ---------- remaining roots --------------
4578   _timer.reset();
4579   _timer.start();
4580   gch->gen_process_roots(Generation::Old,
4581                          false,     // yg was scanned above
4582                          false,     // this is parallel code
4583                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4584                          _collector->should_unload_classes(),
4585                          &par_mrias_cl,
4586                          NULL,
4587                          NULL);     // The dirty klasses will be handled below
4588 
4589   assert(_collector->should_unload_classes()
4590          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4591          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4592   _timer.stop();
4593   if (PrintCMSStatistics != 0) {
4594     gclog_or_tty->print_cr(
4595       "Finished remaining root rescan work in %dth thread: %3.3f sec",
4596       worker_id, _timer.seconds());
4597   }
4598 
4599   // ---------- unhandled CLD scanning ----------
4600   if (worker_id == 0) { // Single threaded at the moment.
4601     _timer.reset();
4602     _timer.start();
4603 
4604     // Scan all new class loader data objects and new dependencies that were
4605     // introduced during concurrent marking.
4606     ResourceMark rm;
4607     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4608     for (int i = 0; i < array->length(); i++) {
4609       par_mrias_cl.do_class_loader_data(array->at(i));
4610     }
4611 
4612     // We don't need to keep track of new CLDs anymore.
4613     ClassLoaderDataGraph::remember_new_clds(false);
4614 
4615     _timer.stop();
4616     if (PrintCMSStatistics != 0) {
4617       gclog_or_tty->print_cr(
4618           "Finished unhandled CLD scanning work in %dth thread: %3.3f sec",
4619           worker_id, _timer.seconds());
4620     }
4621   }
4622 
4623   // ---------- dirty klass scanning ----------
4624   if (worker_id == 0) { // Single threaded at the moment.
4625     _timer.reset();
4626     _timer.start();
4627 
4628     // Scan all classes that was dirtied during the concurrent marking phase.
4629     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
4630     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4631 
4632     _timer.stop();
4633     if (PrintCMSStatistics != 0) {
4634       gclog_or_tty->print_cr(
4635           "Finished dirty klass scanning work in %dth thread: %3.3f sec",
4636           worker_id, _timer.seconds());
4637     }
4638   }
4639 
4640   // We might have added oops to ClassLoaderData::_handles during the
4641   // concurrent marking phase. These oops point to newly allocated objects
4642   // that are guaranteed to be kept alive. Either by the direct allocation
4643   // code, or when the young collector processes the roots. Hence,
4644   // we don't have to revisit the _handles block during the remark phase.
4645 
4646   // ---------- rescan dirty cards ------------
4647   _timer.reset();
4648   _timer.start();
4649 
4650   // Do the rescan tasks for each of the two spaces
4651   // (cms_space) in turn.
4652   // "worker_id" is passed to select the task_queue for "worker_id"
4653   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
4654   _timer.stop();
4655   if (PrintCMSStatistics != 0) {
4656     gclog_or_tty->print_cr(
4657       "Finished dirty card rescan work in %dth thread: %3.3f sec",
4658       worker_id, _timer.seconds());
4659   }
4660 
4661   // ---------- steal work from other threads ...
4662   // ---------- ... and drain overflow list.
4663   _timer.reset();
4664   _timer.start();
4665   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
4666   _timer.stop();
4667   if (PrintCMSStatistics != 0) {
4668     gclog_or_tty->print_cr(
4669       "Finished work stealing in %dth thread: %3.3f sec",
4670       worker_id, _timer.seconds());
4671   }
4672 }
4673 
4674 // Note that parameter "i" is not used.
4675 void
4676 CMSParMarkTask::do_young_space_rescan(uint worker_id,
4677   OopsInGenClosure* cl, ContiguousSpace* space,
4678   HeapWord** chunk_array, size_t chunk_top) {
4679   // Until all tasks completed:
4680   // . claim an unclaimed task
4681   // . compute region boundaries corresponding to task claimed
4682   //   using chunk_array
4683   // . par_oop_iterate(cl) over that region
4684 
4685   ResourceMark rm;
4686   HandleMark   hm;
4687 
4688   SequentialSubTasksDone* pst = space->par_seq_tasks();
4689 
4690   uint nth_task = 0;
4691   uint n_tasks  = pst->n_tasks();
4692 
4693   if (n_tasks > 0) {
4694     assert(pst->valid(), "Uninitialized use?");
4695     HeapWord *start, *end;
4696     while (!pst->is_task_claimed(/* reference */ nth_task)) {
4697       // We claimed task # nth_task; compute its boundaries.
4698       if (chunk_top == 0) {  // no samples were taken
4699         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
4700         start = space->bottom();
4701         end   = space->top();
4702       } else if (nth_task == 0) {
4703         start = space->bottom();
4704         end   = chunk_array[nth_task];
4705       } else if (nth_task < (uint)chunk_top) {
4706         assert(nth_task >= 1, "Control point invariant");
4707         start = chunk_array[nth_task - 1];
4708         end   = chunk_array[nth_task];
4709       } else {
4710         assert(nth_task == (uint)chunk_top, "Control point invariant");
4711         start = chunk_array[chunk_top - 1];
4712         end   = space->top();
4713       }
4714       MemRegion mr(start, end);
4715       // Verify that mr is in space
4716       assert(mr.is_empty() || space->used_region().contains(mr),
4717              "Should be in space");
4718       // Verify that "start" is an object boundary
4719       assert(mr.is_empty() || oop(mr.start())->is_oop(),
4720              "Should be an oop");
4721       space->par_oop_iterate(mr, cl);
4722     }
4723     pst->all_tasks_completed();
4724   }
4725 }
4726 
4727 void
4728 CMSParRemarkTask::do_dirty_card_rescan_tasks(
4729   CompactibleFreeListSpace* sp, int i,
4730   Par_MarkRefsIntoAndScanClosure* cl) {
4731   // Until all tasks completed:
4732   // . claim an unclaimed task
4733   // . compute region boundaries corresponding to task claimed
4734   // . transfer dirty bits ct->mut for that region
4735   // . apply rescanclosure to dirty mut bits for that region
4736 
4737   ResourceMark rm;
4738   HandleMark   hm;
4739 
4740   OopTaskQueue* work_q = work_queue(i);
4741   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
4742   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
4743   // CAUTION: This closure has state that persists across calls to
4744   // the work method dirty_range_iterate_clear() in that it has
4745   // embedded in it a (subtype of) UpwardsObjectClosure. The
4746   // use of that state in the embedded UpwardsObjectClosure instance
4747   // assumes that the cards are always iterated (even if in parallel
4748   // by several threads) in monotonically increasing order per each
4749   // thread. This is true of the implementation below which picks
4750   // card ranges (chunks) in monotonically increasing order globally
4751   // and, a-fortiori, in monotonically increasing order per thread
4752   // (the latter order being a subsequence of the former).
4753   // If the work code below is ever reorganized into a more chaotic
4754   // work-partitioning form than the current "sequential tasks"
4755   // paradigm, the use of that persistent state will have to be
4756   // revisited and modified appropriately. See also related
4757   // bug 4756801 work on which should examine this code to make
4758   // sure that the changes there do not run counter to the
4759   // assumptions made here and necessary for correctness and
4760   // efficiency. Note also that this code might yield inefficient
4761   // behavior in the case of very large objects that span one or
4762   // more work chunks. Such objects would potentially be scanned
4763   // several times redundantly. Work on 4756801 should try and
4764   // address that performance anomaly if at all possible. XXX
4765   MemRegion  full_span  = _collector->_span;
4766   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
4767   MarkFromDirtyCardsClosure
4768     greyRescanClosure(_collector, full_span, // entire span of interest
4769                       sp, bm, work_q, cl);
4770 
4771   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4772   assert(pst->valid(), "Uninitialized use?");
4773   uint nth_task = 0;
4774   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
4775   MemRegion span = sp->used_region();
4776   HeapWord* start_addr = span.start();
4777   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
4778                                            alignment);
4779   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
4780   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
4781          start_addr, "Check alignment");
4782   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
4783          chunk_size, "Check alignment");
4784 
4785   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4786     // Having claimed the nth_task, compute corresponding mem-region,
4787     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
4788     // The alignment restriction ensures that we do not need any
4789     // synchronization with other gang-workers while setting or
4790     // clearing bits in thus chunk of the MUT.
4791     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
4792                                     start_addr + (nth_task+1)*chunk_size);
4793     // The last chunk's end might be way beyond end of the
4794     // used region. In that case pull back appropriately.
4795     if (this_span.end() > end_addr) {
4796       this_span.set_end(end_addr);
4797       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
4798     }
4799     // Iterate over the dirty cards covering this chunk, marking them
4800     // precleaned, and setting the corresponding bits in the mod union
4801     // table. Since we have been careful to partition at Card and MUT-word
4802     // boundaries no synchronization is needed between parallel threads.
4803     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
4804                                                  &modUnionClosure);
4805 
4806     // Having transferred these marks into the modUnionTable,
4807     // rescan the marked objects on the dirty cards in the modUnionTable.
4808     // Even if this is at a synchronous collection, the initial marking
4809     // may have been done during an asynchronous collection so there
4810     // may be dirty bits in the mod-union table.
4811     _collector->_modUnionTable.dirty_range_iterate_clear(
4812                   this_span, &greyRescanClosure);
4813     _collector->_modUnionTable.verifyNoOneBitsInRange(
4814                                  this_span.start(),
4815                                  this_span.end());
4816   }
4817   pst->all_tasks_completed();  // declare that i am done
4818 }
4819 
4820 // . see if we can share work_queues with ParNew? XXX
4821 void
4822 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
4823                                 int* seed) {
4824   OopTaskQueue* work_q = work_queue(i);
4825   NOT_PRODUCT(int num_steals = 0;)
4826   oop obj_to_scan;
4827   CMSBitMap* bm = &(_collector->_markBitMap);
4828 
4829   while (true) {
4830     // Completely finish any left over work from (an) earlier round(s)
4831     cl->trim_queue(0);
4832     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4833                                          (size_t)ParGCDesiredObjsFromOverflowList);
4834     // Now check if there's any work in the overflow list
4835     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
4836     // only affects the number of attempts made to get work from the
4837     // overflow list and does not affect the number of workers.  Just
4838     // pass ParallelGCThreads so this behavior is unchanged.
4839     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
4840                                                 work_q,
4841                                                 ParallelGCThreads)) {
4842       // found something in global overflow list;
4843       // not yet ready to go stealing work from others.
4844       // We'd like to assert(work_q->size() != 0, ...)
4845       // because we just took work from the overflow list,
4846       // but of course we can't since all of that could have
4847       // been already stolen from us.
4848       // "He giveth and He taketh away."
4849       continue;
4850     }
4851     // Verify that we have no work before we resort to stealing
4852     assert(work_q->size() == 0, "Have work, shouldn't steal");
4853     // Try to steal from other queues that have work
4854     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4855       NOT_PRODUCT(num_steals++;)
4856       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
4857       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
4858       // Do scanning work
4859       obj_to_scan->oop_iterate(cl);
4860       // Loop around, finish this work, and try to steal some more
4861     } else if (terminator()->offer_termination()) {
4862         break;  // nirvana from the infinite cycle
4863     }
4864   }
4865   NOT_PRODUCT(
4866     if (PrintCMSStatistics != 0) {
4867       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
4868     }
4869   )
4870   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
4871          "Else our work is not yet done");
4872 }
4873 
4874 // Record object boundaries in _eden_chunk_array by sampling the eden
4875 // top in the slow-path eden object allocation code path and record
4876 // the boundaries, if CMSEdenChunksRecordAlways is true. If
4877 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
4878 // sampling in sample_eden() that activates during the part of the
4879 // preclean phase.
4880 void CMSCollector::sample_eden_chunk() {
4881   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
4882     if (_eden_chunk_lock->try_lock()) {
4883       // Record a sample. This is the critical section. The contents
4884       // of the _eden_chunk_array have to be non-decreasing in the
4885       // address order.
4886       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
4887       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4888              "Unexpected state of Eden");
4889       if (_eden_chunk_index == 0 ||
4890           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
4891            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4892                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
4893         _eden_chunk_index++;  // commit sample
4894       }
4895       _eden_chunk_lock->unlock();
4896     }
4897   }
4898 }
4899 
4900 // Return a thread-local PLAB recording array, as appropriate.
4901 void* CMSCollector::get_data_recorder(int thr_num) {
4902   if (_survivor_plab_array != NULL &&
4903       (CMSPLABRecordAlways ||
4904        (_collectorState > Marking && _collectorState < FinalMarking))) {
4905     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
4906     ChunkArray* ca = &_survivor_plab_array[thr_num];
4907     ca->reset();   // clear it so that fresh data is recorded
4908     return (void*) ca;
4909   } else {
4910     return NULL;
4911   }
4912 }
4913 
4914 // Reset all the thread-local PLAB recording arrays
4915 void CMSCollector::reset_survivor_plab_arrays() {
4916   for (uint i = 0; i < ParallelGCThreads; i++) {
4917     _survivor_plab_array[i].reset();
4918   }
4919 }
4920 
4921 // Merge the per-thread plab arrays into the global survivor chunk
4922 // array which will provide the partitioning of the survivor space
4923 // for CMS initial scan and rescan.
4924 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
4925                                               int no_of_gc_threads) {
4926   assert(_survivor_plab_array  != NULL, "Error");
4927   assert(_survivor_chunk_array != NULL, "Error");
4928   assert(_collectorState == FinalMarking ||
4929          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
4930   for (int j = 0; j < no_of_gc_threads; j++) {
4931     _cursor[j] = 0;
4932   }
4933   HeapWord* top = surv->top();
4934   size_t i;
4935   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
4936     HeapWord* min_val = top;          // Higher than any PLAB address
4937     uint      min_tid = 0;            // position of min_val this round
4938     for (int j = 0; j < no_of_gc_threads; j++) {
4939       ChunkArray* cur_sca = &_survivor_plab_array[j];
4940       if (_cursor[j] == cur_sca->end()) {
4941         continue;
4942       }
4943       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
4944       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
4945       assert(surv->used_region().contains(cur_val), "Out of bounds value");
4946       if (cur_val < min_val) {
4947         min_tid = j;
4948         min_val = cur_val;
4949       } else {
4950         assert(cur_val < top, "All recorded addresses should be less");
4951       }
4952     }
4953     // At this point min_val and min_tid are respectively
4954     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
4955     // and the thread (j) that witnesses that address.
4956     // We record this address in the _survivor_chunk_array[i]
4957     // and increment _cursor[min_tid] prior to the next round i.
4958     if (min_val == top) {
4959       break;
4960     }
4961     _survivor_chunk_array[i] = min_val;
4962     _cursor[min_tid]++;
4963   }
4964   // We are all done; record the size of the _survivor_chunk_array
4965   _survivor_chunk_index = i; // exclusive: [0, i)
4966   if (PrintCMSStatistics > 0) {
4967     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
4968   }
4969   // Verify that we used up all the recorded entries
4970   #ifdef ASSERT
4971     size_t total = 0;
4972     for (int j = 0; j < no_of_gc_threads; j++) {
4973       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
4974       total += _cursor[j];
4975     }
4976     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
4977     // Check that the merged array is in sorted order
4978     if (total > 0) {
4979       for (size_t i = 0; i < total - 1; i++) {
4980         if (PrintCMSStatistics > 0) {
4981           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
4982                               i, p2i(_survivor_chunk_array[i]));
4983         }
4984         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
4985                "Not sorted");
4986       }
4987     }
4988   #endif // ASSERT
4989 }
4990 
4991 // Set up the space's par_seq_tasks structure for work claiming
4992 // for parallel initial scan and rescan of young gen.
4993 // See ParRescanTask where this is currently used.
4994 void
4995 CMSCollector::
4996 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
4997   assert(n_threads > 0, "Unexpected n_threads argument");
4998 
4999   // Eden space
5000   if (!_young_gen->eden()->is_empty()) {
5001     SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
5002     assert(!pst->valid(), "Clobbering existing data?");
5003     // Each valid entry in [0, _eden_chunk_index) represents a task.
5004     size_t n_tasks = _eden_chunk_index + 1;
5005     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
5006     // Sets the condition for completion of the subtask (how many threads
5007     // need to finish in order to be done).
5008     pst->set_n_threads(n_threads);
5009     pst->set_n_tasks((int)n_tasks);
5010   }
5011 
5012   // Merge the survivor plab arrays into _survivor_chunk_array
5013   if (_survivor_plab_array != NULL) {
5014     merge_survivor_plab_arrays(_young_gen->from(), n_threads);
5015   } else {
5016     assert(_survivor_chunk_index == 0, "Error");
5017   }
5018 
5019   // To space
5020   {
5021     SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
5022     assert(!pst->valid(), "Clobbering existing data?");
5023     // Sets the condition for completion of the subtask (how many threads
5024     // need to finish in order to be done).
5025     pst->set_n_threads(n_threads);
5026     pst->set_n_tasks(1);
5027     assert(pst->valid(), "Error");
5028   }
5029 
5030   // From space
5031   {
5032     SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
5033     assert(!pst->valid(), "Clobbering existing data?");
5034     size_t n_tasks = _survivor_chunk_index + 1;
5035     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
5036     // Sets the condition for completion of the subtask (how many threads
5037     // need to finish in order to be done).
5038     pst->set_n_threads(n_threads);
5039     pst->set_n_tasks((int)n_tasks);
5040     assert(pst->valid(), "Error");
5041   }
5042 }
5043 
5044 // Parallel version of remark
5045 void CMSCollector::do_remark_parallel() {
5046   GenCollectedHeap* gch = GenCollectedHeap::heap();
5047   FlexibleWorkGang* workers = gch->workers();
5048   assert(workers != NULL, "Need parallel worker threads.");
5049   // Choose to use the number of GC workers most recently set
5050   // into "active_workers".  If active_workers is not set, set it
5051   // to ParallelGCThreads.
5052   uint n_workers = workers->active_workers();
5053   if (n_workers == 0) {
5054     assert(n_workers > 0, "Should have been set during scavenge");
5055     n_workers = ParallelGCThreads;
5056     workers->set_active_workers(n_workers);
5057   }
5058   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
5059 
5060   CMSParRemarkTask tsk(this,
5061     cms_space,
5062     n_workers, workers, task_queues());
5063 
5064   // Set up for parallel process_roots work.
5065   gch->set_par_threads(n_workers);
5066   // We won't be iterating over the cards in the card table updating
5067   // the younger_gen cards, so we shouldn't call the following else
5068   // the verification code as well as subsequent younger_refs_iterate
5069   // code would get confused. XXX
5070   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
5071 
5072   // The young gen rescan work will not be done as part of
5073   // process_roots (which currently doesn't know how to
5074   // parallelize such a scan), but rather will be broken up into
5075   // a set of parallel tasks (via the sampling that the [abortable]
5076   // preclean phase did of eden, plus the [two] tasks of
5077   // scanning the [two] survivor spaces. Further fine-grain
5078   // parallelization of the scanning of the survivor spaces
5079   // themselves, and of precleaning of the younger gen itself
5080   // is deferred to the future.
5081   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
5082 
5083   // The dirty card rescan work is broken up into a "sequence"
5084   // of parallel tasks (per constituent space) that are dynamically
5085   // claimed by the parallel threads.
5086   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
5087 
5088   // It turns out that even when we're using 1 thread, doing the work in a
5089   // separate thread causes wide variance in run times.  We can't help this
5090   // in the multi-threaded case, but we special-case n=1 here to get
5091   // repeatable measurements of the 1-thread overhead of the parallel code.
5092   if (n_workers > 1) {
5093     // Make refs discovery MT-safe, if it isn't already: it may not
5094     // necessarily be so, since it's possible that we are doing
5095     // ST marking.
5096     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
5097     StrongRootsScope srs;
5098     workers->run_task(&tsk);
5099   } else {
5100     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5101     StrongRootsScope srs;
5102     tsk.work(0);
5103   }
5104 
5105   gch->set_par_threads(0);  // 0 ==> non-parallel.
5106   // restore, single-threaded for now, any preserved marks
5107   // as a result of work_q overflow
5108   restore_preserved_marks_if_any();
5109 }
5110 
5111 // Non-parallel version of remark
5112 void CMSCollector::do_remark_non_parallel() {
5113   ResourceMark rm;
5114   HandleMark   hm;
5115   GenCollectedHeap* gch = GenCollectedHeap::heap();
5116   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5117 
5118   MarkRefsIntoAndScanClosure
5119     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
5120              &_markStack, this,
5121              false /* should_yield */, false /* not precleaning */);
5122   MarkFromDirtyCardsClosure
5123     markFromDirtyCardsClosure(this, _span,
5124                               NULL,  // space is set further below
5125                               &_markBitMap, &_markStack, &mrias_cl);
5126   {
5127     GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5128     // Iterate over the dirty cards, setting the corresponding bits in the
5129     // mod union table.
5130     {
5131       ModUnionClosure modUnionClosure(&_modUnionTable);
5132       _ct->ct_bs()->dirty_card_iterate(
5133                       _cmsGen->used_region(),
5134                       &modUnionClosure);
5135     }
5136     // Having transferred these marks into the modUnionTable, we just need
5137     // to rescan the marked objects on the dirty cards in the modUnionTable.
5138     // The initial marking may have been done during an asynchronous
5139     // collection so there may be dirty bits in the mod-union table.
5140     const int alignment =
5141       CardTableModRefBS::card_size * BitsPerWord;
5142     {
5143       // ... First handle dirty cards in CMS gen
5144       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
5145       MemRegion ur = _cmsGen->used_region();
5146       HeapWord* lb = ur.start();
5147       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5148       MemRegion cms_span(lb, ub);
5149       _modUnionTable.dirty_range_iterate_clear(cms_span,
5150                                                &markFromDirtyCardsClosure);
5151       verify_work_stacks_empty();
5152       if (PrintCMSStatistics != 0) {
5153         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
5154           markFromDirtyCardsClosure.num_dirty_cards());
5155       }
5156     }
5157   }
5158   if (VerifyDuringGC &&
5159       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5160     HandleMark hm;  // Discard invalid handles created during verification
5161     Universe::verify();
5162   }
5163   {
5164     GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5165 
5166     verify_work_stacks_empty();
5167 
5168     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5169     StrongRootsScope srs;
5170 
5171     gch->gen_process_roots(Generation::Old,
5172                            true,  // younger gens as roots
5173                            false, // use the local StrongRootsScope
5174                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
5175                            should_unload_classes(),
5176                            &mrias_cl,
5177                            NULL,
5178                            NULL); // The dirty klasses will be handled below
5179 
5180     assert(should_unload_classes()
5181            || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
5182            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5183   }
5184 
5185   {
5186     GCTraceTime t("visit unhandled CLDs", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5187 
5188     verify_work_stacks_empty();
5189 
5190     // Scan all class loader data objects that might have been introduced
5191     // during concurrent marking.
5192     ResourceMark rm;
5193     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5194     for (int i = 0; i < array->length(); i++) {
5195       mrias_cl.do_class_loader_data(array->at(i));
5196     }
5197 
5198     // We don't need to keep track of new CLDs anymore.
5199     ClassLoaderDataGraph::remember_new_clds(false);
5200 
5201     verify_work_stacks_empty();
5202   }
5203 
5204   {
5205     GCTraceTime t("dirty klass scan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5206 
5207     verify_work_stacks_empty();
5208 
5209     RemarkKlassClosure remark_klass_closure(&mrias_cl);
5210     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5211 
5212     verify_work_stacks_empty();
5213   }
5214 
5215   // We might have added oops to ClassLoaderData::_handles during the
5216   // concurrent marking phase. These oops point to newly allocated objects
5217   // that are guaranteed to be kept alive. Either by the direct allocation
5218   // code, or when the young collector processes the roots. Hence,
5219   // we don't have to revisit the _handles block during the remark phase.
5220 
5221   verify_work_stacks_empty();
5222   // Restore evacuated mark words, if any, used for overflow list links
5223   if (!CMSOverflowEarlyRestoration) {
5224     restore_preserved_marks_if_any();
5225   }
5226   verify_overflow_empty();
5227 }
5228 
5229 ////////////////////////////////////////////////////////
5230 // Parallel Reference Processing Task Proxy Class
5231 ////////////////////////////////////////////////////////
5232 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5233   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5234   CMSCollector*          _collector;
5235   CMSBitMap*             _mark_bit_map;
5236   const MemRegion        _span;
5237   ProcessTask&           _task;
5238 
5239 public:
5240   CMSRefProcTaskProxy(ProcessTask&     task,
5241                       CMSCollector*    collector,
5242                       const MemRegion& span,
5243                       CMSBitMap*       mark_bit_map,
5244                       AbstractWorkGang* workers,
5245                       OopTaskQueueSet* task_queues):
5246     // XXX Should superclass AGTWOQ also know about AWG since it knows
5247     // about the task_queues used by the AWG? Then it could initialize
5248     // the terminator() object. See 6984287. The set_for_termination()
5249     // below is a temporary band-aid for the regression in 6984287.
5250     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5251       task_queues),
5252     _task(task),
5253     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5254   {
5255     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5256            "Inconsistency in _span");
5257     set_for_termination(workers->active_workers());
5258   }
5259 
5260   OopTaskQueueSet* task_queues() { return queues(); }
5261 
5262   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5263 
5264   void do_work_steal(int i,
5265                      CMSParDrainMarkingStackClosure* drain,
5266                      CMSParKeepAliveClosure* keep_alive,
5267                      int* seed);
5268 
5269   virtual void work(uint worker_id);
5270 };
5271 
5272 void CMSRefProcTaskProxy::work(uint worker_id) {
5273   ResourceMark rm;
5274   HandleMark hm;
5275   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5276   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5277                                         _mark_bit_map,
5278                                         work_queue(worker_id));
5279   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5280                                                  _mark_bit_map,
5281                                                  work_queue(worker_id));
5282   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5283   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5284   if (_task.marks_oops_alive()) {
5285     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5286                   _collector->hash_seed(worker_id));
5287   }
5288   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5289   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5290 }
5291 
5292 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5293   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5294   EnqueueTask& _task;
5295 
5296 public:
5297   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5298     : AbstractGangTask("Enqueue reference objects in parallel"),
5299       _task(task)
5300   { }
5301 
5302   virtual void work(uint worker_id)
5303   {
5304     _task.work(worker_id);
5305   }
5306 };
5307 
5308 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5309   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5310    _span(span),
5311    _bit_map(bit_map),
5312    _work_queue(work_queue),
5313    _mark_and_push(collector, span, bit_map, work_queue),
5314    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
5315                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5316 { }
5317 
5318 // . see if we can share work_queues with ParNew? XXX
5319 void CMSRefProcTaskProxy::do_work_steal(int i,
5320   CMSParDrainMarkingStackClosure* drain,
5321   CMSParKeepAliveClosure* keep_alive,
5322   int* seed) {
5323   OopTaskQueue* work_q = work_queue(i);
5324   NOT_PRODUCT(int num_steals = 0;)
5325   oop obj_to_scan;
5326 
5327   while (true) {
5328     // Completely finish any left over work from (an) earlier round(s)
5329     drain->trim_queue(0);
5330     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5331                                          (size_t)ParGCDesiredObjsFromOverflowList);
5332     // Now check if there's any work in the overflow list
5333     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5334     // only affects the number of attempts made to get work from the
5335     // overflow list and does not affect the number of workers.  Just
5336     // pass ParallelGCThreads so this behavior is unchanged.
5337     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5338                                                 work_q,
5339                                                 ParallelGCThreads)) {
5340       // Found something in global overflow list;
5341       // not yet ready to go stealing work from others.
5342       // We'd like to assert(work_q->size() != 0, ...)
5343       // because we just took work from the overflow list,
5344       // but of course we can't, since all of that might have
5345       // been already stolen from us.
5346       continue;
5347     }
5348     // Verify that we have no work before we resort to stealing
5349     assert(work_q->size() == 0, "Have work, shouldn't steal");
5350     // Try to steal from other queues that have work
5351     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5352       NOT_PRODUCT(num_steals++;)
5353       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5354       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5355       // Do scanning work
5356       obj_to_scan->oop_iterate(keep_alive);
5357       // Loop around, finish this work, and try to steal some more
5358     } else if (terminator()->offer_termination()) {
5359       break;  // nirvana from the infinite cycle
5360     }
5361   }
5362   NOT_PRODUCT(
5363     if (PrintCMSStatistics != 0) {
5364       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5365     }
5366   )
5367 }
5368 
5369 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5370 {
5371   GenCollectedHeap* gch = GenCollectedHeap::heap();
5372   FlexibleWorkGang* workers = gch->workers();
5373   assert(workers != NULL, "Need parallel worker threads.");
5374   CMSRefProcTaskProxy rp_task(task, &_collector,
5375                               _collector.ref_processor()->span(),
5376                               _collector.markBitMap(),
5377                               workers, _collector.task_queues());
5378   workers->run_task(&rp_task);
5379 }
5380 
5381 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5382 {
5383 
5384   GenCollectedHeap* gch = GenCollectedHeap::heap();
5385   FlexibleWorkGang* workers = gch->workers();
5386   assert(workers != NULL, "Need parallel worker threads.");
5387   CMSRefEnqueueTaskProxy enq_task(task);
5388   workers->run_task(&enq_task);
5389 }
5390 
5391 void CMSCollector::refProcessingWork() {
5392   ResourceMark rm;
5393   HandleMark   hm;
5394 
5395   ReferenceProcessor* rp = ref_processor();
5396   assert(rp->span().equals(_span), "Spans should be equal");
5397   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5398   // Process weak references.
5399   rp->setup_policy(false);
5400   verify_work_stacks_empty();
5401 
5402   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5403                                           &_markStack, false /* !preclean */);
5404   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5405                                 _span, &_markBitMap, &_markStack,
5406                                 &cmsKeepAliveClosure, false /* !preclean */);
5407   {
5408     GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5409 
5410     ReferenceProcessorStats stats;
5411     if (rp->processing_is_mt()) {
5412       // Set the degree of MT here.  If the discovery is done MT, there
5413       // may have been a different number of threads doing the discovery
5414       // and a different number of discovered lists may have Ref objects.
5415       // That is OK as long as the Reference lists are balanced (see
5416       // balance_all_queues() and balance_queues()).
5417       GenCollectedHeap* gch = GenCollectedHeap::heap();
5418       uint active_workers = ParallelGCThreads;
5419       FlexibleWorkGang* workers = gch->workers();
5420       if (workers != NULL) {
5421         active_workers = workers->active_workers();
5422         // The expectation is that active_workers will have already
5423         // been set to a reasonable value.  If it has not been set,
5424         // investigate.
5425         assert(active_workers > 0, "Should have been set during scavenge");
5426       }
5427       rp->set_active_mt_degree(active_workers);
5428       CMSRefProcTaskExecutor task_executor(*this);
5429       stats = rp->process_discovered_references(&_is_alive_closure,
5430                                         &cmsKeepAliveClosure,
5431                                         &cmsDrainMarkingStackClosure,
5432                                         &task_executor,
5433                                         _gc_timer_cm,
5434                                         _gc_tracer_cm->gc_id());
5435     } else {
5436       stats = rp->process_discovered_references(&_is_alive_closure,
5437                                         &cmsKeepAliveClosure,
5438                                         &cmsDrainMarkingStackClosure,
5439                                         NULL,
5440                                         _gc_timer_cm,
5441                                         _gc_tracer_cm->gc_id());
5442     }
5443     _gc_tracer_cm->report_gc_reference_stats(stats);
5444 
5445   }
5446 
5447   // This is the point where the entire marking should have completed.
5448   verify_work_stacks_empty();
5449 
5450   if (should_unload_classes()) {
5451     {
5452       GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5453 
5454       // Unload classes and purge the SystemDictionary.
5455       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
5456 
5457       // Unload nmethods.
5458       CodeCache::do_unloading(&_is_alive_closure, purged_class);
5459 
5460       // Prune dead klasses from subklass/sibling/implementor lists.
5461       Klass::clean_weak_klass_links(&_is_alive_closure);
5462     }
5463 
5464     {
5465       GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5466       // Clean up unreferenced symbols in symbol table.
5467       SymbolTable::unlink();
5468     }
5469 
5470     {
5471       GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5472       // Delete entries for dead interned strings.
5473       StringTable::unlink(&_is_alive_closure);
5474     }
5475   }
5476 
5477 
5478   // Restore any preserved marks as a result of mark stack or
5479   // work queue overflow
5480   restore_preserved_marks_if_any();  // done single-threaded for now
5481 
5482   rp->set_enqueuing_is_done(true);
5483   if (rp->processing_is_mt()) {
5484     rp->balance_all_queues();
5485     CMSRefProcTaskExecutor task_executor(*this);
5486     rp->enqueue_discovered_references(&task_executor);
5487   } else {
5488     rp->enqueue_discovered_references(NULL);
5489   }
5490   rp->verify_no_references_recorded();
5491   assert(!rp->discovery_enabled(), "should have been disabled");
5492 }
5493 
5494 #ifndef PRODUCT
5495 void CMSCollector::check_correct_thread_executing() {
5496   Thread* t = Thread::current();
5497   // Only the VM thread or the CMS thread should be here.
5498   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5499          "Unexpected thread type");
5500   // If this is the vm thread, the foreground process
5501   // should not be waiting.  Note that _foregroundGCIsActive is
5502   // true while the foreground collector is waiting.
5503   if (_foregroundGCShouldWait) {
5504     // We cannot be the VM thread
5505     assert(t->is_ConcurrentGC_thread(),
5506            "Should be CMS thread");
5507   } else {
5508     // We can be the CMS thread only if we are in a stop-world
5509     // phase of CMS collection.
5510     if (t->is_ConcurrentGC_thread()) {
5511       assert(_collectorState == InitialMarking ||
5512              _collectorState == FinalMarking,
5513              "Should be a stop-world phase");
5514       // The CMS thread should be holding the CMS_token.
5515       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5516              "Potential interference with concurrently "
5517              "executing VM thread");
5518     }
5519   }
5520 }
5521 #endif
5522 
5523 void CMSCollector::sweep() {
5524   assert(_collectorState == Sweeping, "just checking");
5525   check_correct_thread_executing();
5526   verify_work_stacks_empty();
5527   verify_overflow_empty();
5528   increment_sweep_count();
5529   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5530 
5531   _inter_sweep_timer.stop();
5532   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5533 
5534   assert(!_intra_sweep_timer.is_active(), "Should not be active");
5535   _intra_sweep_timer.reset();
5536   _intra_sweep_timer.start();
5537   {
5538     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5539     CMSPhaseAccounting pa(this, "sweep", _gc_tracer_cm->gc_id(), !PrintGCDetails);
5540     // First sweep the old gen
5541     {
5542       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5543                                bitMapLock());
5544       sweepWork(_cmsGen);
5545     }
5546 
5547     // Update Universe::_heap_*_at_gc figures.
5548     // We need all the free list locks to make the abstract state
5549     // transition from Sweeping to Resetting. See detailed note
5550     // further below.
5551     {
5552       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
5553       // Update heap occupancy information which is used as
5554       // input to soft ref clearing policy at the next gc.
5555       Universe::update_heap_info_at_gc();
5556       _collectorState = Resizing;
5557     }
5558   }
5559   verify_work_stacks_empty();
5560   verify_overflow_empty();
5561 
5562   if (should_unload_classes()) {
5563     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
5564     // requires that the virtual spaces are stable and not deleted.
5565     ClassLoaderDataGraph::set_should_purge(true);
5566   }
5567 
5568   _intra_sweep_timer.stop();
5569   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5570 
5571   _inter_sweep_timer.reset();
5572   _inter_sweep_timer.start();
5573 
5574   // We need to use a monotonically non-decreasing time in ms
5575   // or we will see time-warp warnings and os::javaTimeMillis()
5576   // does not guarantee monotonicity.
5577   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
5578   update_time_of_last_gc(now);
5579 
5580   // NOTE on abstract state transitions:
5581   // Mutators allocate-live and/or mark the mod-union table dirty
5582   // based on the state of the collection.  The former is done in
5583   // the interval [Marking, Sweeping] and the latter in the interval
5584   // [Marking, Sweeping).  Thus the transitions into the Marking state
5585   // and out of the Sweeping state must be synchronously visible
5586   // globally to the mutators.
5587   // The transition into the Marking state happens with the world
5588   // stopped so the mutators will globally see it.  Sweeping is
5589   // done asynchronously by the background collector so the transition
5590   // from the Sweeping state to the Resizing state must be done
5591   // under the freelistLock (as is the check for whether to
5592   // allocate-live and whether to dirty the mod-union table).
5593   assert(_collectorState == Resizing, "Change of collector state to"
5594     " Resizing must be done under the freelistLocks (plural)");
5595 
5596   // Now that sweeping has been completed, we clear
5597   // the incremental_collection_failed flag,
5598   // thus inviting a younger gen collection to promote into
5599   // this generation. If such a promotion may still fail,
5600   // the flag will be set again when a young collection is
5601   // attempted.
5602   GenCollectedHeap* gch = GenCollectedHeap::heap();
5603   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
5604   gch->update_full_collections_completed(_collection_count_start);
5605 }
5606 
5607 // FIX ME!!! Looks like this belongs in CFLSpace, with
5608 // CMSGen merely delegating to it.
5609 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5610   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5611   HeapWord*  minAddr        = _cmsSpace->bottom();
5612   HeapWord*  largestAddr    =
5613     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
5614   if (largestAddr == NULL) {
5615     // The dictionary appears to be empty.  In this case
5616     // try to coalesce at the end of the heap.
5617     largestAddr = _cmsSpace->end();
5618   }
5619   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5620   size_t nearLargestOffset =
5621     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5622   if (PrintFLSStatistics != 0) {
5623     gclog_or_tty->print_cr(
5624       "CMS: Large Block: " PTR_FORMAT ";"
5625       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5626       p2i(largestAddr),
5627       p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset));
5628   }
5629   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
5630 }
5631 
5632 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
5633   return addr >= _cmsSpace->nearLargestChunk();
5634 }
5635 
5636 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
5637   return _cmsSpace->find_chunk_at_end();
5638 }
5639 
5640 void ConcurrentMarkSweepGeneration::update_gc_stats(Generation* current_generation,
5641                                                     bool full) {
5642   // If the young generation has been collected, gather any statistics
5643   // that are of interest at this point.
5644   bool current_is_young = (current_generation == GenCollectedHeap::heap()->young_gen());
5645   if (!full && current_is_young) {
5646     // Gather statistics on the young generation collection.
5647     collector()->stats().record_gc0_end(used());
5648   }
5649 }
5650 
5651 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen) {
5652   // We iterate over the space(s) underlying this generation,
5653   // checking the mark bit map to see if the bits corresponding
5654   // to specific blocks are marked or not. Blocks that are
5655   // marked are live and are not swept up. All remaining blocks
5656   // are swept up, with coalescing on-the-fly as we sweep up
5657   // contiguous free and/or garbage blocks:
5658   // We need to ensure that the sweeper synchronizes with allocators
5659   // and stop-the-world collectors. In particular, the following
5660   // locks are used:
5661   // . CMS token: if this is held, a stop the world collection cannot occur
5662   // . freelistLock: if this is held no allocation can occur from this
5663   //                 generation by another thread
5664   // . bitMapLock: if this is held, no other thread can access or update
5665   //
5666 
5667   // Note that we need to hold the freelistLock if we use
5668   // block iterate below; else the iterator might go awry if
5669   // a mutator (or promotion) causes block contents to change
5670   // (for instance if the allocator divvies up a block).
5671   // If we hold the free list lock, for all practical purposes
5672   // young generation GC's can't occur (they'll usually need to
5673   // promote), so we might as well prevent all young generation
5674   // GC's while we do a sweeping step. For the same reason, we might
5675   // as well take the bit map lock for the entire duration
5676 
5677   // check that we hold the requisite locks
5678   assert(have_cms_token(), "Should hold cms token");
5679   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
5680   assert_lock_strong(gen->freelistLock());
5681   assert_lock_strong(bitMapLock());
5682 
5683   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
5684   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
5685   gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
5686                                       _inter_sweep_estimate.padded_average(),
5687                                       _intra_sweep_estimate.padded_average());
5688   gen->setNearLargestChunk();
5689 
5690   {
5691     SweepClosure sweepClosure(this, gen, &_markBitMap, CMSYield);
5692     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
5693     // We need to free-up/coalesce garbage/blocks from a
5694     // co-terminal free run. This is done in the SweepClosure
5695     // destructor; so, do not remove this scope, else the
5696     // end-of-sweep-census below will be off by a little bit.
5697   }
5698   gen->cmsSpace()->sweep_completed();
5699   gen->cmsSpace()->endSweepFLCensus(sweep_count());
5700   if (should_unload_classes()) {                // unloaded classes this cycle,
5701     _concurrent_cycles_since_last_unload = 0;   // ... reset count
5702   } else {                                      // did not unload classes,
5703     _concurrent_cycles_since_last_unload++;     // ... increment count
5704   }
5705 }
5706 
5707 // Reset CMS data structures (for now just the marking bit map)
5708 // preparatory for the next cycle.
5709 void CMSCollector::reset(bool concurrent) {
5710   if (concurrent) {
5711     CMSTokenSyncWithLocks ts(true, bitMapLock());
5712 
5713     // If the state is not "Resetting", the foreground  thread
5714     // has done a collection and the resetting.
5715     if (_collectorState != Resetting) {
5716       assert(_collectorState == Idling, "The state should only change"
5717         " because the foreground collector has finished the collection");
5718       return;
5719     }
5720 
5721     // Clear the mark bitmap (no grey objects to start with)
5722     // for the next cycle.
5723     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5724     CMSPhaseAccounting cmspa(this, "reset", _gc_tracer_cm->gc_id(), !PrintGCDetails);
5725 
5726     HeapWord* curAddr = _markBitMap.startWord();
5727     while (curAddr < _markBitMap.endWord()) {
5728       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
5729       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
5730       _markBitMap.clear_large_range(chunk);
5731       if (ConcurrentMarkSweepThread::should_yield() &&
5732           !foregroundGCIsActive() &&
5733           CMSYield) {
5734         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5735                "CMS thread should hold CMS token");
5736         assert_lock_strong(bitMapLock());
5737         bitMapLock()->unlock();
5738         ConcurrentMarkSweepThread::desynchronize(true);
5739         stopTimer();
5740         if (PrintCMSStatistics != 0) {
5741           incrementYields();
5742         }
5743 
5744         // See the comment in coordinator_yield()
5745         for (unsigned i = 0; i < CMSYieldSleepCount &&
5746                          ConcurrentMarkSweepThread::should_yield() &&
5747                          !CMSCollector::foregroundGCIsActive(); ++i) {
5748           os::sleep(Thread::current(), 1, false);
5749         }
5750 
5751         ConcurrentMarkSweepThread::synchronize(true);
5752         bitMapLock()->lock_without_safepoint_check();
5753         startTimer();
5754       }
5755       curAddr = chunk.end();
5756     }
5757     // A successful mostly concurrent collection has been done.
5758     // Because only the full (i.e., concurrent mode failure) collections
5759     // are being measured for gc overhead limits, clean the "near" flag
5760     // and count.
5761     size_policy()->reset_gc_overhead_limit_count();
5762     _collectorState = Idling;
5763   } else {
5764     // already have the lock
5765     assert(_collectorState == Resetting, "just checking");
5766     assert_lock_strong(bitMapLock());
5767     _markBitMap.clear_all();
5768     _collectorState = Idling;
5769   }
5770 
5771   register_gc_end();
5772 }
5773 
5774 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
5775   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5776   GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL, _gc_tracer_cm->gc_id());
5777   TraceCollectorStats tcs(counters());
5778 
5779   switch (op) {
5780     case CMS_op_checkpointRootsInitial: {
5781       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5782       checkpointRootsInitial();
5783       if (PrintGC) {
5784         _cmsGen->printOccupancy("initial-mark");
5785       }
5786       break;
5787     }
5788     case CMS_op_checkpointRootsFinal: {
5789       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5790       checkpointRootsFinal();
5791       if (PrintGC) {
5792         _cmsGen->printOccupancy("remark");
5793       }
5794       break;
5795     }
5796     default:
5797       fatal("No such CMS_op");
5798   }
5799 }
5800 
5801 #ifndef PRODUCT
5802 size_t const CMSCollector::skip_header_HeapWords() {
5803   return FreeChunk::header_size();
5804 }
5805 
5806 // Try and collect here conditions that should hold when
5807 // CMS thread is exiting. The idea is that the foreground GC
5808 // thread should not be blocked if it wants to terminate
5809 // the CMS thread and yet continue to run the VM for a while
5810 // after that.
5811 void CMSCollector::verify_ok_to_terminate() const {
5812   assert(Thread::current()->is_ConcurrentGC_thread(),
5813          "should be called by CMS thread");
5814   assert(!_foregroundGCShouldWait, "should be false");
5815   // We could check here that all the various low-level locks
5816   // are not held by the CMS thread, but that is overkill; see
5817   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
5818   // is checked.
5819 }
5820 #endif
5821 
5822 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
5823    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
5824           "missing Printezis mark?");
5825   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5826   size_t size = pointer_delta(nextOneAddr + 1, addr);
5827   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5828          "alignment problem");
5829   assert(size >= 3, "Necessary for Printezis marks to work");
5830   return size;
5831 }
5832 
5833 // A variant of the above (block_size_using_printezis_bits()) except
5834 // that we return 0 if the P-bits are not yet set.
5835 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
5836   if (_markBitMap.isMarked(addr + 1)) {
5837     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
5838     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5839     size_t size = pointer_delta(nextOneAddr + 1, addr);
5840     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5841            "alignment problem");
5842     assert(size >= 3, "Necessary for Printezis marks to work");
5843     return size;
5844   }
5845   return 0;
5846 }
5847 
5848 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
5849   size_t sz = 0;
5850   oop p = (oop)addr;
5851   if (p->klass_or_null() != NULL) {
5852     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
5853   } else {
5854     sz = block_size_using_printezis_bits(addr);
5855   }
5856   assert(sz > 0, "size must be nonzero");
5857   HeapWord* next_block = addr + sz;
5858   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
5859                                              CardTableModRefBS::card_size);
5860   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
5861          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
5862          "must be different cards");
5863   return next_card;
5864 }
5865 
5866 
5867 // CMS Bit Map Wrapper /////////////////////////////////////////
5868 
5869 // Construct a CMS bit map infrastructure, but don't create the
5870 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
5871 // further below.
5872 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
5873   _bm(),
5874   _shifter(shifter),
5875   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
5876                                     Monitor::_safepoint_check_sometimes) : NULL)
5877 {
5878   _bmStartWord = 0;
5879   _bmWordSize  = 0;
5880 }
5881 
5882 bool CMSBitMap::allocate(MemRegion mr) {
5883   _bmStartWord = mr.start();
5884   _bmWordSize  = mr.word_size();
5885   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
5886                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
5887   if (!brs.is_reserved()) {
5888     warning("CMS bit map allocation failure");
5889     return false;
5890   }
5891   // For now we'll just commit all of the bit map up front.
5892   // Later on we'll try to be more parsimonious with swap.
5893   if (!_virtual_space.initialize(brs, brs.size())) {
5894     warning("CMS bit map backing store failure");
5895     return false;
5896   }
5897   assert(_virtual_space.committed_size() == brs.size(),
5898          "didn't reserve backing store for all of CMS bit map?");
5899   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
5900   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5901          _bmWordSize, "inconsistency in bit map sizing");
5902   _bm.set_size(_bmWordSize >> _shifter);
5903 
5904   // bm.clear(); // can we rely on getting zero'd memory? verify below
5905   assert(isAllClear(),
5906          "Expected zero'd memory from ReservedSpace constructor");
5907   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
5908          "consistency check");
5909   return true;
5910 }
5911 
5912 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
5913   HeapWord *next_addr, *end_addr, *last_addr;
5914   assert_locked();
5915   assert(covers(mr), "out-of-range error");
5916   // XXX assert that start and end are appropriately aligned
5917   for (next_addr = mr.start(), end_addr = mr.end();
5918        next_addr < end_addr; next_addr = last_addr) {
5919     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
5920     last_addr = dirty_region.end();
5921     if (!dirty_region.is_empty()) {
5922       cl->do_MemRegion(dirty_region);
5923     } else {
5924       assert(last_addr == end_addr, "program logic");
5925       return;
5926     }
5927   }
5928 }
5929 
5930 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
5931   _bm.print_on_error(st, prefix);
5932 }
5933 
5934 #ifndef PRODUCT
5935 void CMSBitMap::assert_locked() const {
5936   CMSLockVerifier::assert_locked(lock());
5937 }
5938 
5939 bool CMSBitMap::covers(MemRegion mr) const {
5940   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
5941   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
5942          "size inconsistency");
5943   return (mr.start() >= _bmStartWord) &&
5944          (mr.end()   <= endWord());
5945 }
5946 
5947 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
5948     return (start >= _bmStartWord && (start + size) <= endWord());
5949 }
5950 
5951 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
5952   // verify that there are no 1 bits in the interval [left, right)
5953   FalseBitMapClosure falseBitMapClosure;
5954   iterate(&falseBitMapClosure, left, right);
5955 }
5956 
5957 void CMSBitMap::region_invariant(MemRegion mr)
5958 {
5959   assert_locked();
5960   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
5961   assert(!mr.is_empty(), "unexpected empty region");
5962   assert(covers(mr), "mr should be covered by bit map");
5963   // convert address range into offset range
5964   size_t start_ofs = heapWordToOffset(mr.start());
5965   // Make sure that end() is appropriately aligned
5966   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
5967                         (1 << (_shifter+LogHeapWordSize))),
5968          "Misaligned mr.end()");
5969   size_t end_ofs   = heapWordToOffset(mr.end());
5970   assert(end_ofs > start_ofs, "Should mark at least one bit");
5971 }
5972 
5973 #endif
5974 
5975 bool CMSMarkStack::allocate(size_t size) {
5976   // allocate a stack of the requisite depth
5977   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5978                    size * sizeof(oop)));
5979   if (!rs.is_reserved()) {
5980     warning("CMSMarkStack allocation failure");
5981     return false;
5982   }
5983   if (!_virtual_space.initialize(rs, rs.size())) {
5984     warning("CMSMarkStack backing store failure");
5985     return false;
5986   }
5987   assert(_virtual_space.committed_size() == rs.size(),
5988          "didn't reserve backing store for all of CMS stack?");
5989   _base = (oop*)(_virtual_space.low());
5990   _index = 0;
5991   _capacity = size;
5992   NOT_PRODUCT(_max_depth = 0);
5993   return true;
5994 }
5995 
5996 // XXX FIX ME !!! In the MT case we come in here holding a
5997 // leaf lock. For printing we need to take a further lock
5998 // which has lower rank. We need to recalibrate the two
5999 // lock-ranks involved in order to be able to print the
6000 // messages below. (Or defer the printing to the caller.
6001 // For now we take the expedient path of just disabling the
6002 // messages for the problematic case.)
6003 void CMSMarkStack::expand() {
6004   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
6005   if (_capacity == MarkStackSizeMax) {
6006     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6007       // We print a warning message only once per CMS cycle.
6008       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
6009     }
6010     return;
6011   }
6012   // Double capacity if possible
6013   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
6014   // Do not give up existing stack until we have managed to
6015   // get the double capacity that we desired.
6016   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6017                    new_capacity * sizeof(oop)));
6018   if (rs.is_reserved()) {
6019     // Release the backing store associated with old stack
6020     _virtual_space.release();
6021     // Reinitialize virtual space for new stack
6022     if (!_virtual_space.initialize(rs, rs.size())) {
6023       fatal("Not enough swap for expanded marking stack");
6024     }
6025     _base = (oop*)(_virtual_space.low());
6026     _index = 0;
6027     _capacity = new_capacity;
6028   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6029     // Failed to double capacity, continue;
6030     // we print a detail message only once per CMS cycle.
6031     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
6032             SIZE_FORMAT"K",
6033             _capacity / K, new_capacity / K);
6034   }
6035 }
6036 
6037 
6038 // Closures
6039 // XXX: there seems to be a lot of code  duplication here;
6040 // should refactor and consolidate common code.
6041 
6042 // This closure is used to mark refs into the CMS generation in
6043 // the CMS bit map. Called at the first checkpoint. This closure
6044 // assumes that we do not need to re-mark dirty cards; if the CMS
6045 // generation on which this is used is not an oldest
6046 // generation then this will lose younger_gen cards!
6047 
6048 MarkRefsIntoClosure::MarkRefsIntoClosure(
6049   MemRegion span, CMSBitMap* bitMap):
6050     _span(span),
6051     _bitMap(bitMap)
6052 {
6053     assert(_ref_processor == NULL, "deliberately left NULL");
6054     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6055 }
6056 
6057 void MarkRefsIntoClosure::do_oop(oop obj) {
6058   // if p points into _span, then mark corresponding bit in _markBitMap
6059   assert(obj->is_oop(), "expected an oop");
6060   HeapWord* addr = (HeapWord*)obj;
6061   if (_span.contains(addr)) {
6062     // this should be made more efficient
6063     _bitMap->mark(addr);
6064   }
6065 }
6066 
6067 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
6068 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
6069 
6070 Par_MarkRefsIntoClosure::Par_MarkRefsIntoClosure(
6071   MemRegion span, CMSBitMap* bitMap):
6072     _span(span),
6073     _bitMap(bitMap)
6074 {
6075     assert(_ref_processor == NULL, "deliberately left NULL");
6076     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6077 }
6078 
6079 void Par_MarkRefsIntoClosure::do_oop(oop obj) {
6080   // if p points into _span, then mark corresponding bit in _markBitMap
6081   assert(obj->is_oop(), "expected an oop");
6082   HeapWord* addr = (HeapWord*)obj;
6083   if (_span.contains(addr)) {
6084     // this should be made more efficient
6085     _bitMap->par_mark(addr);
6086   }
6087 }
6088 
6089 void Par_MarkRefsIntoClosure::do_oop(oop* p)       { Par_MarkRefsIntoClosure::do_oop_work(p); }
6090 void Par_MarkRefsIntoClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoClosure::do_oop_work(p); }
6091 
6092 // A variant of the above, used for CMS marking verification.
6093 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
6094   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
6095     _span(span),
6096     _verification_bm(verification_bm),
6097     _cms_bm(cms_bm)
6098 {
6099     assert(_ref_processor == NULL, "deliberately left NULL");
6100     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
6101 }
6102 
6103 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
6104   // if p points into _span, then mark corresponding bit in _markBitMap
6105   assert(obj->is_oop(), "expected an oop");
6106   HeapWord* addr = (HeapWord*)obj;
6107   if (_span.contains(addr)) {
6108     _verification_bm->mark(addr);
6109     if (!_cms_bm->isMarked(addr)) {
6110       oop(addr)->print();
6111       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
6112       fatal("... aborting");
6113     }
6114   }
6115 }
6116 
6117 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6118 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6119 
6120 //////////////////////////////////////////////////
6121 // MarkRefsIntoAndScanClosure
6122 //////////////////////////////////////////////////
6123 
6124 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
6125                                                        ReferenceProcessor* rp,
6126                                                        CMSBitMap* bit_map,
6127                                                        CMSBitMap* mod_union_table,
6128                                                        CMSMarkStack*  mark_stack,
6129                                                        CMSCollector* collector,
6130                                                        bool should_yield,
6131                                                        bool concurrent_precleaning):
6132   _collector(collector),
6133   _span(span),
6134   _bit_map(bit_map),
6135   _mark_stack(mark_stack),
6136   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
6137                       mark_stack, concurrent_precleaning),
6138   _yield(should_yield),
6139   _concurrent_precleaning(concurrent_precleaning),
6140   _freelistLock(NULL)
6141 {
6142   _ref_processor = rp;
6143   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6144 }
6145 
6146 // This closure is used to mark refs into the CMS generation at the
6147 // second (final) checkpoint, and to scan and transitively follow
6148 // the unmarked oops. It is also used during the concurrent precleaning
6149 // phase while scanning objects on dirty cards in the CMS generation.
6150 // The marks are made in the marking bit map and the marking stack is
6151 // used for keeping the (newly) grey objects during the scan.
6152 // The parallel version (Par_...) appears further below.
6153 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6154   if (obj != NULL) {
6155     assert(obj->is_oop(), "expected an oop");
6156     HeapWord* addr = (HeapWord*)obj;
6157     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6158     assert(_collector->overflow_list_is_empty(),
6159            "overflow list should be empty");
6160     if (_span.contains(addr) &&
6161         !_bit_map->isMarked(addr)) {
6162       // mark bit map (object is now grey)
6163       _bit_map->mark(addr);
6164       // push on marking stack (stack should be empty), and drain the
6165       // stack by applying this closure to the oops in the oops popped
6166       // from the stack (i.e. blacken the grey objects)
6167       bool res = _mark_stack->push(obj);
6168       assert(res, "Should have space to push on empty stack");
6169       do {
6170         oop new_oop = _mark_stack->pop();
6171         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6172         assert(_bit_map->isMarked((HeapWord*)new_oop),
6173                "only grey objects on this stack");
6174         // iterate over the oops in this oop, marking and pushing
6175         // the ones in CMS heap (i.e. in _span).
6176         new_oop->oop_iterate(&_pushAndMarkClosure);
6177         // check if it's time to yield
6178         do_yield_check();
6179       } while (!_mark_stack->isEmpty() ||
6180                (!_concurrent_precleaning && take_from_overflow_list()));
6181         // if marking stack is empty, and we are not doing this
6182         // during precleaning, then check the overflow list
6183     }
6184     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6185     assert(_collector->overflow_list_is_empty(),
6186            "overflow list was drained above");
6187     // We could restore evacuated mark words, if any, used for
6188     // overflow list links here because the overflow list is
6189     // provably empty here. That would reduce the maximum
6190     // size requirements for preserved_{oop,mark}_stack.
6191     // But we'll just postpone it until we are all done
6192     // so we can just stream through.
6193     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
6194       _collector->restore_preserved_marks_if_any();
6195       assert(_collector->no_preserved_marks(), "No preserved marks");
6196     }
6197     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
6198            "All preserved marks should have been restored above");
6199   }
6200 }
6201 
6202 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6203 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6204 
6205 void MarkRefsIntoAndScanClosure::do_yield_work() {
6206   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6207          "CMS thread should hold CMS token");
6208   assert_lock_strong(_freelistLock);
6209   assert_lock_strong(_bit_map->lock());
6210   // relinquish the free_list_lock and bitMaplock()
6211   _bit_map->lock()->unlock();
6212   _freelistLock->unlock();
6213   ConcurrentMarkSweepThread::desynchronize(true);
6214   _collector->stopTimer();
6215   if (PrintCMSStatistics != 0) {
6216     _collector->incrementYields();
6217   }
6218 
6219   // See the comment in coordinator_yield()
6220   for (unsigned i = 0;
6221        i < CMSYieldSleepCount &&
6222        ConcurrentMarkSweepThread::should_yield() &&
6223        !CMSCollector::foregroundGCIsActive();
6224        ++i) {
6225     os::sleep(Thread::current(), 1, false);
6226   }
6227 
6228   ConcurrentMarkSweepThread::synchronize(true);
6229   _freelistLock->lock_without_safepoint_check();
6230   _bit_map->lock()->lock_without_safepoint_check();
6231   _collector->startTimer();
6232 }
6233 
6234 ///////////////////////////////////////////////////////////
6235 // Par_MarkRefsIntoAndScanClosure: a parallel version of
6236 //                                 MarkRefsIntoAndScanClosure
6237 ///////////////////////////////////////////////////////////
6238 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
6239   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6240   CMSBitMap* bit_map, OopTaskQueue* work_queue):
6241   _span(span),
6242   _bit_map(bit_map),
6243   _work_queue(work_queue),
6244   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
6245                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6246   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue)
6247 {
6248   _ref_processor = rp;
6249   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6250 }
6251 
6252 // This closure is used to mark refs into the CMS generation at the
6253 // second (final) checkpoint, and to scan and transitively follow
6254 // the unmarked oops. The marks are made in the marking bit map and
6255 // the work_queue is used for keeping the (newly) grey objects during
6256 // the scan phase whence they are also available for stealing by parallel
6257 // threads. Since the marking bit map is shared, updates are
6258 // synchronized (via CAS).
6259 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6260   if (obj != NULL) {
6261     // Ignore mark word because this could be an already marked oop
6262     // that may be chained at the end of the overflow list.
6263     assert(obj->is_oop(true), "expected an oop");
6264     HeapWord* addr = (HeapWord*)obj;
6265     if (_span.contains(addr) &&
6266         !_bit_map->isMarked(addr)) {
6267       // mark bit map (object will become grey):
6268       // It is possible for several threads to be
6269       // trying to "claim" this object concurrently;
6270       // the unique thread that succeeds in marking the
6271       // object first will do the subsequent push on
6272       // to the work queue (or overflow list).
6273       if (_bit_map->par_mark(addr)) {
6274         // push on work_queue (which may not be empty), and trim the
6275         // queue to an appropriate length by applying this closure to
6276         // the oops in the oops popped from the stack (i.e. blacken the
6277         // grey objects)
6278         bool res = _work_queue->push(obj);
6279         assert(res, "Low water mark should be less than capacity?");
6280         trim_queue(_low_water_mark);
6281       } // Else, another thread claimed the object
6282     }
6283   }
6284 }
6285 
6286 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6287 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6288 
6289 // This closure is used to rescan the marked objects on the dirty cards
6290 // in the mod union table and the card table proper.
6291 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6292   oop p, MemRegion mr) {
6293 
6294   size_t size = 0;
6295   HeapWord* addr = (HeapWord*)p;
6296   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6297   assert(_span.contains(addr), "we are scanning the CMS generation");
6298   // check if it's time to yield
6299   if (do_yield_check()) {
6300     // We yielded for some foreground stop-world work,
6301     // and we have been asked to abort this ongoing preclean cycle.
6302     return 0;
6303   }
6304   if (_bitMap->isMarked(addr)) {
6305     // it's marked; is it potentially uninitialized?
6306     if (p->klass_or_null() != NULL) {
6307         // an initialized object; ignore mark word in verification below
6308         // since we are running concurrent with mutators
6309         assert(p->is_oop(true), "should be an oop");
6310         if (p->is_objArray()) {
6311           // objArrays are precisely marked; restrict scanning
6312           // to dirty cards only.
6313           size = CompactibleFreeListSpace::adjustObjectSize(
6314                    p->oop_iterate(_scanningClosure, mr));
6315         } else {
6316           // A non-array may have been imprecisely marked; we need
6317           // to scan object in its entirety.
6318           size = CompactibleFreeListSpace::adjustObjectSize(
6319                    p->oop_iterate(_scanningClosure));
6320         }
6321         #ifdef ASSERT
6322           size_t direct_size =
6323             CompactibleFreeListSpace::adjustObjectSize(p->size());
6324           assert(size == direct_size, "Inconsistency in size");
6325           assert(size >= 3, "Necessary for Printezis marks to work");
6326           if (!_bitMap->isMarked(addr+1)) {
6327             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
6328           } else {
6329             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
6330             assert(_bitMap->isMarked(addr+size-1),
6331                    "inconsistent Printezis mark");
6332           }
6333         #endif // ASSERT
6334     } else {
6335       // An uninitialized object.
6336       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6337       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6338       size = pointer_delta(nextOneAddr + 1, addr);
6339       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6340              "alignment problem");
6341       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6342       // will dirty the card when the klass pointer is installed in the
6343       // object (signaling the completion of initialization).
6344     }
6345   } else {
6346     // Either a not yet marked object or an uninitialized object
6347     if (p->klass_or_null() == NULL) {
6348       // An uninitialized object, skip to the next card, since
6349       // we may not be able to read its P-bits yet.
6350       assert(size == 0, "Initial value");
6351     } else {
6352       // An object not (yet) reached by marking: we merely need to
6353       // compute its size so as to go look at the next block.
6354       assert(p->is_oop(true), "should be an oop");
6355       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6356     }
6357   }
6358   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6359   return size;
6360 }
6361 
6362 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6363   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6364          "CMS thread should hold CMS token");
6365   assert_lock_strong(_freelistLock);
6366   assert_lock_strong(_bitMap->lock());
6367   // relinquish the free_list_lock and bitMaplock()
6368   _bitMap->lock()->unlock();
6369   _freelistLock->unlock();
6370   ConcurrentMarkSweepThread::desynchronize(true);
6371   _collector->stopTimer();
6372   if (PrintCMSStatistics != 0) {
6373     _collector->incrementYields();
6374   }
6375 
6376   // See the comment in coordinator_yield()
6377   for (unsigned i = 0; i < CMSYieldSleepCount &&
6378                    ConcurrentMarkSweepThread::should_yield() &&
6379                    !CMSCollector::foregroundGCIsActive(); ++i) {
6380     os::sleep(Thread::current(), 1, false);
6381   }
6382 
6383   ConcurrentMarkSweepThread::synchronize(true);
6384   _freelistLock->lock_without_safepoint_check();
6385   _bitMap->lock()->lock_without_safepoint_check();
6386   _collector->startTimer();
6387 }
6388 
6389 
6390 //////////////////////////////////////////////////////////////////
6391 // SurvivorSpacePrecleanClosure
6392 //////////////////////////////////////////////////////////////////
6393 // This (single-threaded) closure is used to preclean the oops in
6394 // the survivor spaces.
6395 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6396 
6397   HeapWord* addr = (HeapWord*)p;
6398   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6399   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6400   assert(p->klass_or_null() != NULL, "object should be initialized");
6401   // an initialized object; ignore mark word in verification below
6402   // since we are running concurrent with mutators
6403   assert(p->is_oop(true), "should be an oop");
6404   // Note that we do not yield while we iterate over
6405   // the interior oops of p, pushing the relevant ones
6406   // on our marking stack.
6407   size_t size = p->oop_iterate(_scanning_closure);
6408   do_yield_check();
6409   // Observe that below, we do not abandon the preclean
6410   // phase as soon as we should; rather we empty the
6411   // marking stack before returning. This is to satisfy
6412   // some existing assertions. In general, it may be a
6413   // good idea to abort immediately and complete the marking
6414   // from the grey objects at a later time.
6415   while (!_mark_stack->isEmpty()) {
6416     oop new_oop = _mark_stack->pop();
6417     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6418     assert(_bit_map->isMarked((HeapWord*)new_oop),
6419            "only grey objects on this stack");
6420     // iterate over the oops in this oop, marking and pushing
6421     // the ones in CMS heap (i.e. in _span).
6422     new_oop->oop_iterate(_scanning_closure);
6423     // check if it's time to yield
6424     do_yield_check();
6425   }
6426   unsigned int after_count =
6427     GenCollectedHeap::heap()->total_collections();
6428   bool abort = (_before_count != after_count) ||
6429                _collector->should_abort_preclean();
6430   return abort ? 0 : size;
6431 }
6432 
6433 void SurvivorSpacePrecleanClosure::do_yield_work() {
6434   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6435          "CMS thread should hold CMS token");
6436   assert_lock_strong(_bit_map->lock());
6437   // Relinquish the bit map lock
6438   _bit_map->lock()->unlock();
6439   ConcurrentMarkSweepThread::desynchronize(true);
6440   _collector->stopTimer();
6441   if (PrintCMSStatistics != 0) {
6442     _collector->incrementYields();
6443   }
6444 
6445   // See the comment in coordinator_yield()
6446   for (unsigned i = 0; i < CMSYieldSleepCount &&
6447                        ConcurrentMarkSweepThread::should_yield() &&
6448                        !CMSCollector::foregroundGCIsActive(); ++i) {
6449     os::sleep(Thread::current(), 1, false);
6450   }
6451 
6452   ConcurrentMarkSweepThread::synchronize(true);
6453   _bit_map->lock()->lock_without_safepoint_check();
6454   _collector->startTimer();
6455 }
6456 
6457 // This closure is used to rescan the marked objects on the dirty cards
6458 // in the mod union table and the card table proper. In the parallel
6459 // case, although the bitMap is shared, we do a single read so the
6460 // isMarked() query is "safe".
6461 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6462   // Ignore mark word because we are running concurrent with mutators
6463   assert(p->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(p)));
6464   HeapWord* addr = (HeapWord*)p;
6465   assert(_span.contains(addr), "we are scanning the CMS generation");
6466   bool is_obj_array = false;
6467   #ifdef ASSERT
6468     if (!_parallel) {
6469       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6470       assert(_collector->overflow_list_is_empty(),
6471              "overflow list should be empty");
6472 
6473     }
6474   #endif // ASSERT
6475   if (_bit_map->isMarked(addr)) {
6476     // Obj arrays are precisely marked, non-arrays are not;
6477     // so we scan objArrays precisely and non-arrays in their
6478     // entirety.
6479     if (p->is_objArray()) {
6480       is_obj_array = true;
6481       if (_parallel) {
6482         p->oop_iterate(_par_scan_closure, mr);
6483       } else {
6484         p->oop_iterate(_scan_closure, mr);
6485       }
6486     } else {
6487       if (_parallel) {
6488         p->oop_iterate(_par_scan_closure);
6489       } else {
6490         p->oop_iterate(_scan_closure);
6491       }
6492     }
6493   }
6494   #ifdef ASSERT
6495     if (!_parallel) {
6496       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6497       assert(_collector->overflow_list_is_empty(),
6498              "overflow list should be empty");
6499 
6500     }
6501   #endif // ASSERT
6502   return is_obj_array;
6503 }
6504 
6505 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6506                         MemRegion span,
6507                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
6508                         bool should_yield, bool verifying):
6509   _collector(collector),
6510   _span(span),
6511   _bitMap(bitMap),
6512   _mut(&collector->_modUnionTable),
6513   _markStack(markStack),
6514   _yield(should_yield),
6515   _skipBits(0)
6516 {
6517   assert(_markStack->isEmpty(), "stack should be empty");
6518   _finger = _bitMap->startWord();
6519   _threshold = _finger;
6520   assert(_collector->_restart_addr == NULL, "Sanity check");
6521   assert(_span.contains(_finger), "Out of bounds _finger?");
6522   DEBUG_ONLY(_verifying = verifying;)
6523 }
6524 
6525 void MarkFromRootsClosure::reset(HeapWord* addr) {
6526   assert(_markStack->isEmpty(), "would cause duplicates on stack");
6527   assert(_span.contains(addr), "Out of bounds _finger?");
6528   _finger = addr;
6529   _threshold = (HeapWord*)round_to(
6530                  (intptr_t)_finger, CardTableModRefBS::card_size);
6531 }
6532 
6533 // Should revisit to see if this should be restructured for
6534 // greater efficiency.
6535 bool MarkFromRootsClosure::do_bit(size_t offset) {
6536   if (_skipBits > 0) {
6537     _skipBits--;
6538     return true;
6539   }
6540   // convert offset into a HeapWord*
6541   HeapWord* addr = _bitMap->startWord() + offset;
6542   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6543          "address out of range");
6544   assert(_bitMap->isMarked(addr), "tautology");
6545   if (_bitMap->isMarked(addr+1)) {
6546     // this is an allocated but not yet initialized object
6547     assert(_skipBits == 0, "tautology");
6548     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6549     oop p = oop(addr);
6550     if (p->klass_or_null() == NULL) {
6551       DEBUG_ONLY(if (!_verifying) {)
6552         // We re-dirty the cards on which this object lies and increase
6553         // the _threshold so that we'll come back to scan this object
6554         // during the preclean or remark phase. (CMSCleanOnEnter)
6555         if (CMSCleanOnEnter) {
6556           size_t sz = _collector->block_size_using_printezis_bits(addr);
6557           HeapWord* end_card_addr   = (HeapWord*)round_to(
6558                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6559           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6560           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6561           // Bump _threshold to end_card_addr; note that
6562           // _threshold cannot possibly exceed end_card_addr, anyhow.
6563           // This prevents future clearing of the card as the scan proceeds
6564           // to the right.
6565           assert(_threshold <= end_card_addr,
6566                  "Because we are just scanning into this object");
6567           if (_threshold < end_card_addr) {
6568             _threshold = end_card_addr;
6569           }
6570           if (p->klass_or_null() != NULL) {
6571             // Redirty the range of cards...
6572             _mut->mark_range(redirty_range);
6573           } // ...else the setting of klass will dirty the card anyway.
6574         }
6575       DEBUG_ONLY(})
6576       return true;
6577     }
6578   }
6579   scanOopsInOop(addr);
6580   return true;
6581 }
6582 
6583 // We take a break if we've been at this for a while,
6584 // so as to avoid monopolizing the locks involved.
6585 void MarkFromRootsClosure::do_yield_work() {
6586   // First give up the locks, then yield, then re-lock
6587   // We should probably use a constructor/destructor idiom to
6588   // do this unlock/lock or modify the MutexUnlocker class to
6589   // serve our purpose. XXX
6590   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6591          "CMS thread should hold CMS token");
6592   assert_lock_strong(_bitMap->lock());
6593   _bitMap->lock()->unlock();
6594   ConcurrentMarkSweepThread::desynchronize(true);
6595   _collector->stopTimer();
6596   if (PrintCMSStatistics != 0) {
6597     _collector->incrementYields();
6598   }
6599 
6600   // See the comment in coordinator_yield()
6601   for (unsigned i = 0; i < CMSYieldSleepCount &&
6602                        ConcurrentMarkSweepThread::should_yield() &&
6603                        !CMSCollector::foregroundGCIsActive(); ++i) {
6604     os::sleep(Thread::current(), 1, false);
6605   }
6606 
6607   ConcurrentMarkSweepThread::synchronize(true);
6608   _bitMap->lock()->lock_without_safepoint_check();
6609   _collector->startTimer();
6610 }
6611 
6612 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
6613   assert(_bitMap->isMarked(ptr), "expected bit to be set");
6614   assert(_markStack->isEmpty(),
6615          "should drain stack to limit stack usage");
6616   // convert ptr to an oop preparatory to scanning
6617   oop obj = oop(ptr);
6618   // Ignore mark word in verification below, since we
6619   // may be running concurrent with mutators.
6620   assert(obj->is_oop(true), "should be an oop");
6621   assert(_finger <= ptr, "_finger runneth ahead");
6622   // advance the finger to right end of this object
6623   _finger = ptr + obj->size();
6624   assert(_finger > ptr, "we just incremented it above");
6625   // On large heaps, it may take us some time to get through
6626   // the marking phase. During
6627   // this time it's possible that a lot of mutations have
6628   // accumulated in the card table and the mod union table --
6629   // these mutation records are redundant until we have
6630   // actually traced into the corresponding card.
6631   // Here, we check whether advancing the finger would make
6632   // us cross into a new card, and if so clear corresponding
6633   // cards in the MUT (preclean them in the card-table in the
6634   // future).
6635 
6636   DEBUG_ONLY(if (!_verifying) {)
6637     // The clean-on-enter optimization is disabled by default,
6638     // until we fix 6178663.
6639     if (CMSCleanOnEnter && (_finger > _threshold)) {
6640       // [_threshold, _finger) represents the interval
6641       // of cards to be cleared  in MUT (or precleaned in card table).
6642       // The set of cards to be cleared is all those that overlap
6643       // with the interval [_threshold, _finger); note that
6644       // _threshold is always kept card-aligned but _finger isn't
6645       // always card-aligned.
6646       HeapWord* old_threshold = _threshold;
6647       assert(old_threshold == (HeapWord*)round_to(
6648               (intptr_t)old_threshold, CardTableModRefBS::card_size),
6649              "_threshold should always be card-aligned");
6650       _threshold = (HeapWord*)round_to(
6651                      (intptr_t)_finger, CardTableModRefBS::card_size);
6652       MemRegion mr(old_threshold, _threshold);
6653       assert(!mr.is_empty(), "Control point invariant");
6654       assert(_span.contains(mr), "Should clear within span");
6655       _mut->clear_range(mr);
6656     }
6657   DEBUG_ONLY(})
6658   // Note: the finger doesn't advance while we drain
6659   // the stack below.
6660   PushOrMarkClosure pushOrMarkClosure(_collector,
6661                                       _span, _bitMap, _markStack,
6662                                       _finger, this);
6663   bool res = _markStack->push(obj);
6664   assert(res, "Empty non-zero size stack should have space for single push");
6665   while (!_markStack->isEmpty()) {
6666     oop new_oop = _markStack->pop();
6667     // Skip verifying header mark word below because we are
6668     // running concurrent with mutators.
6669     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6670     // now scan this oop's oops
6671     new_oop->oop_iterate(&pushOrMarkClosure);
6672     do_yield_check();
6673   }
6674   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
6675 }
6676 
6677 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
6678                        CMSCollector* collector, MemRegion span,
6679                        CMSBitMap* bit_map,
6680                        OopTaskQueue* work_queue,
6681                        CMSMarkStack*  overflow_stack):
6682   _collector(collector),
6683   _whole_span(collector->_span),
6684   _span(span),
6685   _bit_map(bit_map),
6686   _mut(&collector->_modUnionTable),
6687   _work_queue(work_queue),
6688   _overflow_stack(overflow_stack),
6689   _skip_bits(0),
6690   _task(task)
6691 {
6692   assert(_work_queue->size() == 0, "work_queue should be empty");
6693   _finger = span.start();
6694   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
6695   assert(_span.contains(_finger), "Out of bounds _finger?");
6696 }
6697 
6698 // Should revisit to see if this should be restructured for
6699 // greater efficiency.
6700 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
6701   if (_skip_bits > 0) {
6702     _skip_bits--;
6703     return true;
6704   }
6705   // convert offset into a HeapWord*
6706   HeapWord* addr = _bit_map->startWord() + offset;
6707   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
6708          "address out of range");
6709   assert(_bit_map->isMarked(addr), "tautology");
6710   if (_bit_map->isMarked(addr+1)) {
6711     // this is an allocated object that might not yet be initialized
6712     assert(_skip_bits == 0, "tautology");
6713     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
6714     oop p = oop(addr);
6715     if (p->klass_or_null() == NULL) {
6716       // in the case of Clean-on-Enter optimization, redirty card
6717       // and avoid clearing card by increasing  the threshold.
6718       return true;
6719     }
6720   }
6721   scan_oops_in_oop(addr);
6722   return true;
6723 }
6724 
6725 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
6726   assert(_bit_map->isMarked(ptr), "expected bit to be set");
6727   // Should we assert that our work queue is empty or
6728   // below some drain limit?
6729   assert(_work_queue->size() == 0,
6730          "should drain stack to limit stack usage");
6731   // convert ptr to an oop preparatory to scanning
6732   oop obj = oop(ptr);
6733   // Ignore mark word in verification below, since we
6734   // may be running concurrent with mutators.
6735   assert(obj->is_oop(true), "should be an oop");
6736   assert(_finger <= ptr, "_finger runneth ahead");
6737   // advance the finger to right end of this object
6738   _finger = ptr + obj->size();
6739   assert(_finger > ptr, "we just incremented it above");
6740   // On large heaps, it may take us some time to get through
6741   // the marking phase. During
6742   // this time it's possible that a lot of mutations have
6743   // accumulated in the card table and the mod union table --
6744   // these mutation records are redundant until we have
6745   // actually traced into the corresponding card.
6746   // Here, we check whether advancing the finger would make
6747   // us cross into a new card, and if so clear corresponding
6748   // cards in the MUT (preclean them in the card-table in the
6749   // future).
6750 
6751   // The clean-on-enter optimization is disabled by default,
6752   // until we fix 6178663.
6753   if (CMSCleanOnEnter && (_finger > _threshold)) {
6754     // [_threshold, _finger) represents the interval
6755     // of cards to be cleared  in MUT (or precleaned in card table).
6756     // The set of cards to be cleared is all those that overlap
6757     // with the interval [_threshold, _finger); note that
6758     // _threshold is always kept card-aligned but _finger isn't
6759     // always card-aligned.
6760     HeapWord* old_threshold = _threshold;
6761     assert(old_threshold == (HeapWord*)round_to(
6762             (intptr_t)old_threshold, CardTableModRefBS::card_size),
6763            "_threshold should always be card-aligned");
6764     _threshold = (HeapWord*)round_to(
6765                    (intptr_t)_finger, CardTableModRefBS::card_size);
6766     MemRegion mr(old_threshold, _threshold);
6767     assert(!mr.is_empty(), "Control point invariant");
6768     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
6769     _mut->clear_range(mr);
6770   }
6771 
6772   // Note: the local finger doesn't advance while we drain
6773   // the stack below, but the global finger sure can and will.
6774   HeapWord** gfa = _task->global_finger_addr();
6775   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
6776                                       _span, _bit_map,
6777                                       _work_queue,
6778                                       _overflow_stack,
6779                                       _finger,
6780                                       gfa, this);
6781   bool res = _work_queue->push(obj);   // overflow could occur here
6782   assert(res, "Will hold once we use workqueues");
6783   while (true) {
6784     oop new_oop;
6785     if (!_work_queue->pop_local(new_oop)) {
6786       // We emptied our work_queue; check if there's stuff that can
6787       // be gotten from the overflow stack.
6788       if (CMSConcMarkingTask::get_work_from_overflow_stack(
6789             _overflow_stack, _work_queue)) {
6790         do_yield_check();
6791         continue;
6792       } else {  // done
6793         break;
6794       }
6795     }
6796     // Skip verifying header mark word below because we are
6797     // running concurrent with mutators.
6798     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6799     // now scan this oop's oops
6800     new_oop->oop_iterate(&pushOrMarkClosure);
6801     do_yield_check();
6802   }
6803   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
6804 }
6805 
6806 // Yield in response to a request from VM Thread or
6807 // from mutators.
6808 void Par_MarkFromRootsClosure::do_yield_work() {
6809   assert(_task != NULL, "sanity");
6810   _task->yield();
6811 }
6812 
6813 // A variant of the above used for verifying CMS marking work.
6814 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
6815                         MemRegion span,
6816                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6817                         CMSMarkStack*  mark_stack):
6818   _collector(collector),
6819   _span(span),
6820   _verification_bm(verification_bm),
6821   _cms_bm(cms_bm),
6822   _mark_stack(mark_stack),
6823   _pam_verify_closure(collector, span, verification_bm, cms_bm,
6824                       mark_stack)
6825 {
6826   assert(_mark_stack->isEmpty(), "stack should be empty");
6827   _finger = _verification_bm->startWord();
6828   assert(_collector->_restart_addr == NULL, "Sanity check");
6829   assert(_span.contains(_finger), "Out of bounds _finger?");
6830 }
6831 
6832 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
6833   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
6834   assert(_span.contains(addr), "Out of bounds _finger?");
6835   _finger = addr;
6836 }
6837 
6838 // Should revisit to see if this should be restructured for
6839 // greater efficiency.
6840 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
6841   // convert offset into a HeapWord*
6842   HeapWord* addr = _verification_bm->startWord() + offset;
6843   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
6844          "address out of range");
6845   assert(_verification_bm->isMarked(addr), "tautology");
6846   assert(_cms_bm->isMarked(addr), "tautology");
6847 
6848   assert(_mark_stack->isEmpty(),
6849          "should drain stack to limit stack usage");
6850   // convert addr to an oop preparatory to scanning
6851   oop obj = oop(addr);
6852   assert(obj->is_oop(), "should be an oop");
6853   assert(_finger <= addr, "_finger runneth ahead");
6854   // advance the finger to right end of this object
6855   _finger = addr + obj->size();
6856   assert(_finger > addr, "we just incremented it above");
6857   // Note: the finger doesn't advance while we drain
6858   // the stack below.
6859   bool res = _mark_stack->push(obj);
6860   assert(res, "Empty non-zero size stack should have space for single push");
6861   while (!_mark_stack->isEmpty()) {
6862     oop new_oop = _mark_stack->pop();
6863     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
6864     // now scan this oop's oops
6865     new_oop->oop_iterate(&_pam_verify_closure);
6866   }
6867   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
6868   return true;
6869 }
6870 
6871 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
6872   CMSCollector* collector, MemRegion span,
6873   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6874   CMSMarkStack*  mark_stack):
6875   MetadataAwareOopClosure(collector->ref_processor()),
6876   _collector(collector),
6877   _span(span),
6878   _verification_bm(verification_bm),
6879   _cms_bm(cms_bm),
6880   _mark_stack(mark_stack)
6881 { }
6882 
6883 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
6884 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
6885 
6886 // Upon stack overflow, we discard (part of) the stack,
6887 // remembering the least address amongst those discarded
6888 // in CMSCollector's _restart_address.
6889 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
6890   // Remember the least grey address discarded
6891   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
6892   _collector->lower_restart_addr(ra);
6893   _mark_stack->reset();  // discard stack contents
6894   _mark_stack->expand(); // expand the stack if possible
6895 }
6896 
6897 void PushAndMarkVerifyClosure::do_oop(oop obj) {
6898   assert(obj->is_oop_or_null(), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
6899   HeapWord* addr = (HeapWord*)obj;
6900   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
6901     // Oop lies in _span and isn't yet grey or black
6902     _verification_bm->mark(addr);            // now grey
6903     if (!_cms_bm->isMarked(addr)) {
6904       oop(addr)->print();
6905       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
6906                              p2i(addr));
6907       fatal("... aborting");
6908     }
6909 
6910     if (!_mark_stack->push(obj)) { // stack overflow
6911       if (PrintCMSStatistics != 0) {
6912         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
6913                                SIZE_FORMAT, _mark_stack->capacity());
6914       }
6915       assert(_mark_stack->isFull(), "Else push should have succeeded");
6916       handle_stack_overflow(addr);
6917     }
6918     // anything including and to the right of _finger
6919     // will be scanned as we iterate over the remainder of the
6920     // bit map
6921   }
6922 }
6923 
6924 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
6925                      MemRegion span,
6926                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
6927                      HeapWord* finger, MarkFromRootsClosure* parent) :
6928   MetadataAwareOopClosure(collector->ref_processor()),
6929   _collector(collector),
6930   _span(span),
6931   _bitMap(bitMap),
6932   _markStack(markStack),
6933   _finger(finger),
6934   _parent(parent)
6935 { }
6936 
6937 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
6938                      MemRegion span,
6939                      CMSBitMap* bit_map,
6940                      OopTaskQueue* work_queue,
6941                      CMSMarkStack*  overflow_stack,
6942                      HeapWord* finger,
6943                      HeapWord** global_finger_addr,
6944                      Par_MarkFromRootsClosure* parent) :
6945   MetadataAwareOopClosure(collector->ref_processor()),
6946   _collector(collector),
6947   _whole_span(collector->_span),
6948   _span(span),
6949   _bit_map(bit_map),
6950   _work_queue(work_queue),
6951   _overflow_stack(overflow_stack),
6952   _finger(finger),
6953   _global_finger_addr(global_finger_addr),
6954   _parent(parent)
6955 { }
6956 
6957 // Assumes thread-safe access by callers, who are
6958 // responsible for mutual exclusion.
6959 void CMSCollector::lower_restart_addr(HeapWord* low) {
6960   assert(_span.contains(low), "Out of bounds addr");
6961   if (_restart_addr == NULL) {
6962     _restart_addr = low;
6963   } else {
6964     _restart_addr = MIN2(_restart_addr, low);
6965   }
6966 }
6967 
6968 // Upon stack overflow, we discard (part of) the stack,
6969 // remembering the least address amongst those discarded
6970 // in CMSCollector's _restart_address.
6971 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6972   // Remember the least grey address discarded
6973   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
6974   _collector->lower_restart_addr(ra);
6975   _markStack->reset();  // discard stack contents
6976   _markStack->expand(); // expand the stack if possible
6977 }
6978 
6979 // Upon stack overflow, we discard (part of) the stack,
6980 // remembering the least address amongst those discarded
6981 // in CMSCollector's _restart_address.
6982 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6983   // We need to do this under a mutex to prevent other
6984   // workers from interfering with the work done below.
6985   MutexLockerEx ml(_overflow_stack->par_lock(),
6986                    Mutex::_no_safepoint_check_flag);
6987   // Remember the least grey address discarded
6988   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
6989   _collector->lower_restart_addr(ra);
6990   _overflow_stack->reset();  // discard stack contents
6991   _overflow_stack->expand(); // expand the stack if possible
6992 }
6993 
6994 void PushOrMarkClosure::do_oop(oop obj) {
6995   // Ignore mark word because we are running concurrent with mutators.
6996   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
6997   HeapWord* addr = (HeapWord*)obj;
6998   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
6999     // Oop lies in _span and isn't yet grey or black
7000     _bitMap->mark(addr);            // now grey
7001     if (addr < _finger) {
7002       // the bit map iteration has already either passed, or
7003       // sampled, this bit in the bit map; we'll need to
7004       // use the marking stack to scan this oop's oops.
7005       bool simulate_overflow = false;
7006       NOT_PRODUCT(
7007         if (CMSMarkStackOverflowALot &&
7008             _collector->simulate_overflow()) {
7009           // simulate a stack overflow
7010           simulate_overflow = true;
7011         }
7012       )
7013       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
7014         if (PrintCMSStatistics != 0) {
7015           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7016                                  SIZE_FORMAT, _markStack->capacity());
7017         }
7018         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
7019         handle_stack_overflow(addr);
7020       }
7021     }
7022     // anything including and to the right of _finger
7023     // will be scanned as we iterate over the remainder of the
7024     // bit map
7025     do_yield_check();
7026   }
7027 }
7028 
7029 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
7030 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
7031 
7032 void Par_PushOrMarkClosure::do_oop(oop obj) {
7033   // Ignore mark word because we are running concurrent with mutators.
7034   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7035   HeapWord* addr = (HeapWord*)obj;
7036   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
7037     // Oop lies in _span and isn't yet grey or black
7038     // We read the global_finger (volatile read) strictly after marking oop
7039     bool res = _bit_map->par_mark(addr);    // now grey
7040     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
7041     // Should we push this marked oop on our stack?
7042     // -- if someone else marked it, nothing to do
7043     // -- if target oop is above global finger nothing to do
7044     // -- if target oop is in chunk and above local finger
7045     //      then nothing to do
7046     // -- else push on work queue
7047     if (   !res       // someone else marked it, they will deal with it
7048         || (addr >= *gfa)  // will be scanned in a later task
7049         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
7050       return;
7051     }
7052     // the bit map iteration has already either passed, or
7053     // sampled, this bit in the bit map; we'll need to
7054     // use the marking stack to scan this oop's oops.
7055     bool simulate_overflow = false;
7056     NOT_PRODUCT(
7057       if (CMSMarkStackOverflowALot &&
7058           _collector->simulate_overflow()) {
7059         // simulate a stack overflow
7060         simulate_overflow = true;
7061       }
7062     )
7063     if (simulate_overflow ||
7064         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
7065       // stack overflow
7066       if (PrintCMSStatistics != 0) {
7067         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7068                                SIZE_FORMAT, _overflow_stack->capacity());
7069       }
7070       // We cannot assert that the overflow stack is full because
7071       // it may have been emptied since.
7072       assert(simulate_overflow ||
7073              _work_queue->size() == _work_queue->max_elems(),
7074             "Else push should have succeeded");
7075       handle_stack_overflow(addr);
7076     }
7077     do_yield_check();
7078   }
7079 }
7080 
7081 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
7082 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
7083 
7084 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
7085                                        MemRegion span,
7086                                        ReferenceProcessor* rp,
7087                                        CMSBitMap* bit_map,
7088                                        CMSBitMap* mod_union_table,
7089                                        CMSMarkStack*  mark_stack,
7090                                        bool           concurrent_precleaning):
7091   MetadataAwareOopClosure(rp),
7092   _collector(collector),
7093   _span(span),
7094   _bit_map(bit_map),
7095   _mod_union_table(mod_union_table),
7096   _mark_stack(mark_stack),
7097   _concurrent_precleaning(concurrent_precleaning)
7098 {
7099   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7100 }
7101 
7102 // Grey object rescan during pre-cleaning and second checkpoint phases --
7103 // the non-parallel version (the parallel version appears further below.)
7104 void PushAndMarkClosure::do_oop(oop obj) {
7105   // Ignore mark word verification. If during concurrent precleaning,
7106   // the object monitor may be locked. If during the checkpoint
7107   // phases, the object may already have been reached by a  different
7108   // path and may be at the end of the global overflow list (so
7109   // the mark word may be NULL).
7110   assert(obj->is_oop_or_null(true /* ignore mark word */),
7111          err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7112   HeapWord* addr = (HeapWord*)obj;
7113   // Check if oop points into the CMS generation
7114   // and is not marked
7115   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7116     // a white object ...
7117     _bit_map->mark(addr);         // ... now grey
7118     // push on the marking stack (grey set)
7119     bool simulate_overflow = false;
7120     NOT_PRODUCT(
7121       if (CMSMarkStackOverflowALot &&
7122           _collector->simulate_overflow()) {
7123         // simulate a stack overflow
7124         simulate_overflow = true;
7125       }
7126     )
7127     if (simulate_overflow || !_mark_stack->push(obj)) {
7128       if (_concurrent_precleaning) {
7129          // During precleaning we can just dirty the appropriate card(s)
7130          // in the mod union table, thus ensuring that the object remains
7131          // in the grey set  and continue. In the case of object arrays
7132          // we need to dirty all of the cards that the object spans,
7133          // since the rescan of object arrays will be limited to the
7134          // dirty cards.
7135          // Note that no one can be interfering with us in this action
7136          // of dirtying the mod union table, so no locking or atomics
7137          // are required.
7138          if (obj->is_objArray()) {
7139            size_t sz = obj->size();
7140            HeapWord* end_card_addr = (HeapWord*)round_to(
7141                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7142            MemRegion redirty_range = MemRegion(addr, end_card_addr);
7143            assert(!redirty_range.is_empty(), "Arithmetical tautology");
7144            _mod_union_table->mark_range(redirty_range);
7145          } else {
7146            _mod_union_table->mark(addr);
7147          }
7148          _collector->_ser_pmc_preclean_ovflw++;
7149       } else {
7150          // During the remark phase, we need to remember this oop
7151          // in the overflow list.
7152          _collector->push_on_overflow_list(obj);
7153          _collector->_ser_pmc_remark_ovflw++;
7154       }
7155     }
7156   }
7157 }
7158 
7159 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
7160                                                MemRegion span,
7161                                                ReferenceProcessor* rp,
7162                                                CMSBitMap* bit_map,
7163                                                OopTaskQueue* work_queue):
7164   MetadataAwareOopClosure(rp),
7165   _collector(collector),
7166   _span(span),
7167   _bit_map(bit_map),
7168   _work_queue(work_queue)
7169 {
7170   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7171 }
7172 
7173 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
7174 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
7175 
7176 // Grey object rescan during second checkpoint phase --
7177 // the parallel version.
7178 void Par_PushAndMarkClosure::do_oop(oop obj) {
7179   // In the assert below, we ignore the mark word because
7180   // this oop may point to an already visited object that is
7181   // on the overflow stack (in which case the mark word has
7182   // been hijacked for chaining into the overflow stack --
7183   // if this is the last object in the overflow stack then
7184   // its mark word will be NULL). Because this object may
7185   // have been subsequently popped off the global overflow
7186   // stack, and the mark word possibly restored to the prototypical
7187   // value, by the time we get to examined this failing assert in
7188   // the debugger, is_oop_or_null(false) may subsequently start
7189   // to hold.
7190   assert(obj->is_oop_or_null(true),
7191          err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7192   HeapWord* addr = (HeapWord*)obj;
7193   // Check if oop points into the CMS generation
7194   // and is not marked
7195   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7196     // a white object ...
7197     // If we manage to "claim" the object, by being the
7198     // first thread to mark it, then we push it on our
7199     // marking stack
7200     if (_bit_map->par_mark(addr)) {     // ... now grey
7201       // push on work queue (grey set)
7202       bool simulate_overflow = false;
7203       NOT_PRODUCT(
7204         if (CMSMarkStackOverflowALot &&
7205             _collector->par_simulate_overflow()) {
7206           // simulate a stack overflow
7207           simulate_overflow = true;
7208         }
7209       )
7210       if (simulate_overflow || !_work_queue->push(obj)) {
7211         _collector->par_push_on_overflow_list(obj);
7212         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
7213       }
7214     } // Else, some other thread got there first
7215   }
7216 }
7217 
7218 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
7219 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
7220 
7221 void CMSPrecleanRefsYieldClosure::do_yield_work() {
7222   Mutex* bml = _collector->bitMapLock();
7223   assert_lock_strong(bml);
7224   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7225          "CMS thread should hold CMS token");
7226 
7227   bml->unlock();
7228   ConcurrentMarkSweepThread::desynchronize(true);
7229 
7230   _collector->stopTimer();
7231   if (PrintCMSStatistics != 0) {
7232     _collector->incrementYields();
7233   }
7234 
7235   // See the comment in coordinator_yield()
7236   for (unsigned i = 0; i < CMSYieldSleepCount &&
7237                        ConcurrentMarkSweepThread::should_yield() &&
7238                        !CMSCollector::foregroundGCIsActive(); ++i) {
7239     os::sleep(Thread::current(), 1, false);
7240   }
7241 
7242   ConcurrentMarkSweepThread::synchronize(true);
7243   bml->lock();
7244 
7245   _collector->startTimer();
7246 }
7247 
7248 bool CMSPrecleanRefsYieldClosure::should_return() {
7249   if (ConcurrentMarkSweepThread::should_yield()) {
7250     do_yield_work();
7251   }
7252   return _collector->foregroundGCIsActive();
7253 }
7254 
7255 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7256   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7257          "mr should be aligned to start at a card boundary");
7258   // We'd like to assert:
7259   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7260   //        "mr should be a range of cards");
7261   // However, that would be too strong in one case -- the last
7262   // partition ends at _unallocated_block which, in general, can be
7263   // an arbitrary boundary, not necessarily card aligned.
7264   if (PrintCMSStatistics != 0) {
7265     _num_dirty_cards +=
7266          mr.word_size()/CardTableModRefBS::card_size_in_words;
7267   }
7268   _space->object_iterate_mem(mr, &_scan_cl);
7269 }
7270 
7271 SweepClosure::SweepClosure(CMSCollector* collector,
7272                            ConcurrentMarkSweepGeneration* g,
7273                            CMSBitMap* bitMap, bool should_yield) :
7274   _collector(collector),
7275   _g(g),
7276   _sp(g->cmsSpace()),
7277   _limit(_sp->sweep_limit()),
7278   _freelistLock(_sp->freelistLock()),
7279   _bitMap(bitMap),
7280   _yield(should_yield),
7281   _inFreeRange(false),           // No free range at beginning of sweep
7282   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7283   _lastFreeRangeCoalesced(false),
7284   _freeFinger(g->used_region().start())
7285 {
7286   NOT_PRODUCT(
7287     _numObjectsFreed = 0;
7288     _numWordsFreed   = 0;
7289     _numObjectsLive = 0;
7290     _numWordsLive = 0;
7291     _numObjectsAlreadyFree = 0;
7292     _numWordsAlreadyFree = 0;
7293     _last_fc = NULL;
7294 
7295     _sp->initializeIndexedFreeListArrayReturnedBytes();
7296     _sp->dictionary()->initialize_dict_returned_bytes();
7297   )
7298   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7299          "sweep _limit out of bounds");
7300   if (CMSTraceSweeper) {
7301     gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT,
7302                         p2i(_limit));
7303   }
7304 }
7305 
7306 void SweepClosure::print_on(outputStream* st) const {
7307   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7308                 p2i(_sp->bottom()), p2i(_sp->end()));
7309   tty->print_cr("_limit = " PTR_FORMAT, p2i(_limit));
7310   tty->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger));
7311   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));)
7312   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7313                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7314 }
7315 
7316 #ifndef PRODUCT
7317 // Assertion checking only:  no useful work in product mode --
7318 // however, if any of the flags below become product flags,
7319 // you may need to review this code to see if it needs to be
7320 // enabled in product mode.
7321 SweepClosure::~SweepClosure() {
7322   assert_lock_strong(_freelistLock);
7323   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7324          "sweep _limit out of bounds");
7325   if (inFreeRange()) {
7326     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
7327     print();
7328     ShouldNotReachHere();
7329   }
7330   if (Verbose && PrintGC) {
7331     gclog_or_tty->print("Collected "SIZE_FORMAT" objects, " SIZE_FORMAT " bytes",
7332                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7333     gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
7334                            SIZE_FORMAT" bytes  "
7335       "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
7336       _numObjectsLive, _numWordsLive*sizeof(HeapWord),
7337       _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7338     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree)
7339                         * sizeof(HeapWord);
7340     gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
7341 
7342     if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
7343       size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7344       size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7345       size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7346       gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returned_bytes);
7347       gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
7348         indexListReturnedBytes);
7349       gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
7350         dict_returned_bytes);
7351     }
7352   }
7353   if (CMSTraceSweeper) {
7354     gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================",
7355                            p2i(_limit));
7356   }
7357 }
7358 #endif  // PRODUCT
7359 
7360 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7361     bool freeRangeInFreeLists) {
7362   if (CMSTraceSweeper) {
7363     gclog_or_tty->print("---- Start free range at " PTR_FORMAT " with free block (%d)\n",
7364                p2i(freeFinger), freeRangeInFreeLists);
7365   }
7366   assert(!inFreeRange(), "Trampling existing free range");
7367   set_inFreeRange(true);
7368   set_lastFreeRangeCoalesced(false);
7369 
7370   set_freeFinger(freeFinger);
7371   set_freeRangeInFreeLists(freeRangeInFreeLists);
7372   if (CMSTestInFreeList) {
7373     if (freeRangeInFreeLists) {
7374       FreeChunk* fc = (FreeChunk*) freeFinger;
7375       assert(fc->is_free(), "A chunk on the free list should be free.");
7376       assert(fc->size() > 0, "Free range should have a size");
7377       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7378     }
7379   }
7380 }
7381 
7382 // Note that the sweeper runs concurrently with mutators. Thus,
7383 // it is possible for direct allocation in this generation to happen
7384 // in the middle of the sweep. Note that the sweeper also coalesces
7385 // contiguous free blocks. Thus, unless the sweeper and the allocator
7386 // synchronize appropriately freshly allocated blocks may get swept up.
7387 // This is accomplished by the sweeper locking the free lists while
7388 // it is sweeping. Thus blocks that are determined to be free are
7389 // indeed free. There is however one additional complication:
7390 // blocks that have been allocated since the final checkpoint and
7391 // mark, will not have been marked and so would be treated as
7392 // unreachable and swept up. To prevent this, the allocator marks
7393 // the bit map when allocating during the sweep phase. This leads,
7394 // however, to a further complication -- objects may have been allocated
7395 // but not yet initialized -- in the sense that the header isn't yet
7396 // installed. The sweeper can not then determine the size of the block
7397 // in order to skip over it. To deal with this case, we use a technique
7398 // (due to Printezis) to encode such uninitialized block sizes in the
7399 // bit map. Since the bit map uses a bit per every HeapWord, but the
7400 // CMS generation has a minimum object size of 3 HeapWords, it follows
7401 // that "normal marks" won't be adjacent in the bit map (there will
7402 // always be at least two 0 bits between successive 1 bits). We make use
7403 // of these "unused" bits to represent uninitialized blocks -- the bit
7404 // corresponding to the start of the uninitialized object and the next
7405 // bit are both set. Finally, a 1 bit marks the end of the object that
7406 // started with the two consecutive 1 bits to indicate its potentially
7407 // uninitialized state.
7408 
7409 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7410   FreeChunk* fc = (FreeChunk*)addr;
7411   size_t res;
7412 
7413   // Check if we are done sweeping. Below we check "addr >= _limit" rather
7414   // than "addr == _limit" because although _limit was a block boundary when
7415   // we started the sweep, it may no longer be one because heap expansion
7416   // may have caused us to coalesce the block ending at the address _limit
7417   // with a newly expanded chunk (this happens when _limit was set to the
7418   // previous _end of the space), so we may have stepped past _limit:
7419   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7420   if (addr >= _limit) { // we have swept up to or past the limit: finish up
7421     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7422            "sweep _limit out of bounds");
7423     assert(addr < _sp->end(), "addr out of bounds");
7424     // Flush any free range we might be holding as a single
7425     // coalesced chunk to the appropriate free list.
7426     if (inFreeRange()) {
7427       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7428              err_msg("freeFinger() " PTR_FORMAT" is out-of-bounds", p2i(freeFinger())));
7429       flush_cur_free_chunk(freeFinger(),
7430                            pointer_delta(addr, freeFinger()));
7431       if (CMSTraceSweeper) {
7432         gclog_or_tty->print("Sweep: last chunk: ");
7433         gclog_or_tty->print("put_free_blk " PTR_FORMAT " ("SIZE_FORMAT") "
7434                    "[coalesced:%d]\n",
7435                    p2i(freeFinger()), pointer_delta(addr, freeFinger()),
7436                    lastFreeRangeCoalesced() ? 1 : 0);
7437       }
7438     }
7439 
7440     // help the iterator loop finish
7441     return pointer_delta(_sp->end(), addr);
7442   }
7443 
7444   assert(addr < _limit, "sweep invariant");
7445   // check if we should yield
7446   do_yield_check(addr);
7447   if (fc->is_free()) {
7448     // Chunk that is already free
7449     res = fc->size();
7450     do_already_free_chunk(fc);
7451     debug_only(_sp->verifyFreeLists());
7452     // If we flush the chunk at hand in lookahead_and_flush()
7453     // and it's coalesced with a preceding chunk, then the
7454     // process of "mangling" the payload of the coalesced block
7455     // will cause erasure of the size information from the
7456     // (erstwhile) header of all the coalesced blocks but the
7457     // first, so the first disjunct in the assert will not hold
7458     // in that specific case (in which case the second disjunct
7459     // will hold).
7460     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7461            "Otherwise the size info doesn't change at this step");
7462     NOT_PRODUCT(
7463       _numObjectsAlreadyFree++;
7464       _numWordsAlreadyFree += res;
7465     )
7466     NOT_PRODUCT(_last_fc = fc;)
7467   } else if (!_bitMap->isMarked(addr)) {
7468     // Chunk is fresh garbage
7469     res = do_garbage_chunk(fc);
7470     debug_only(_sp->verifyFreeLists());
7471     NOT_PRODUCT(
7472       _numObjectsFreed++;
7473       _numWordsFreed += res;
7474     )
7475   } else {
7476     // Chunk that is alive.
7477     res = do_live_chunk(fc);
7478     debug_only(_sp->verifyFreeLists());
7479     NOT_PRODUCT(
7480         _numObjectsLive++;
7481         _numWordsLive += res;
7482     )
7483   }
7484   return res;
7485 }
7486 
7487 // For the smart allocation, record following
7488 //  split deaths - a free chunk is removed from its free list because
7489 //      it is being split into two or more chunks.
7490 //  split birth - a free chunk is being added to its free list because
7491 //      a larger free chunk has been split and resulted in this free chunk.
7492 //  coal death - a free chunk is being removed from its free list because
7493 //      it is being coalesced into a large free chunk.
7494 //  coal birth - a free chunk is being added to its free list because
7495 //      it was created when two or more free chunks where coalesced into
7496 //      this free chunk.
7497 //
7498 // These statistics are used to determine the desired number of free
7499 // chunks of a given size.  The desired number is chosen to be relative
7500 // to the end of a CMS sweep.  The desired number at the end of a sweep
7501 // is the
7502 //      count-at-end-of-previous-sweep (an amount that was enough)
7503 //              - count-at-beginning-of-current-sweep  (the excess)
7504 //              + split-births  (gains in this size during interval)
7505 //              - split-deaths  (demands on this size during interval)
7506 // where the interval is from the end of one sweep to the end of the
7507 // next.
7508 //
7509 // When sweeping the sweeper maintains an accumulated chunk which is
7510 // the chunk that is made up of chunks that have been coalesced.  That
7511 // will be termed the left-hand chunk.  A new chunk of garbage that
7512 // is being considered for coalescing will be referred to as the
7513 // right-hand chunk.
7514 //
7515 // When making a decision on whether to coalesce a right-hand chunk with
7516 // the current left-hand chunk, the current count vs. the desired count
7517 // of the left-hand chunk is considered.  Also if the right-hand chunk
7518 // is near the large chunk at the end of the heap (see
7519 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7520 // left-hand chunk is coalesced.
7521 //
7522 // When making a decision about whether to split a chunk, the desired count
7523 // vs. the current count of the candidate to be split is also considered.
7524 // If the candidate is underpopulated (currently fewer chunks than desired)
7525 // a chunk of an overpopulated (currently more chunks than desired) size may
7526 // be chosen.  The "hint" associated with a free list, if non-null, points
7527 // to a free list which may be overpopulated.
7528 //
7529 
7530 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
7531   const size_t size = fc->size();
7532   // Chunks that cannot be coalesced are not in the
7533   // free lists.
7534   if (CMSTestInFreeList && !fc->cantCoalesce()) {
7535     assert(_sp->verify_chunk_in_free_list(fc),
7536       "free chunk should be in free lists");
7537   }
7538   // a chunk that is already free, should not have been
7539   // marked in the bit map
7540   HeapWord* const addr = (HeapWord*) fc;
7541   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7542   // Verify that the bit map has no bits marked between
7543   // addr and purported end of this block.
7544   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7545 
7546   // Some chunks cannot be coalesced under any circumstances.
7547   // See the definition of cantCoalesce().
7548   if (!fc->cantCoalesce()) {
7549     // This chunk can potentially be coalesced.
7550     if (_sp->adaptive_freelists()) {
7551       // All the work is done in
7552       do_post_free_or_garbage_chunk(fc, size);
7553     } else {  // Not adaptive free lists
7554       // this is a free chunk that can potentially be coalesced by the sweeper;
7555       if (!inFreeRange()) {
7556         // if the next chunk is a free block that can't be coalesced
7557         // it doesn't make sense to remove this chunk from the free lists
7558         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
7559         assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
7560         if ((HeapWord*)nextChunk < _sp->end() &&     // There is another free chunk to the right ...
7561             nextChunk->is_free()               &&     // ... which is free...
7562             nextChunk->cantCoalesce()) {             // ... but can't be coalesced
7563           // nothing to do
7564         } else {
7565           // Potentially the start of a new free range:
7566           // Don't eagerly remove it from the free lists.
7567           // No need to remove it if it will just be put
7568           // back again.  (Also from a pragmatic point of view
7569           // if it is a free block in a region that is beyond
7570           // any allocated blocks, an assertion will fail)
7571           // Remember the start of a free run.
7572           initialize_free_range(addr, true);
7573           // end - can coalesce with next chunk
7574         }
7575       } else {
7576         // the midst of a free range, we are coalescing
7577         print_free_block_coalesced(fc);
7578         if (CMSTraceSweeper) {
7579           gclog_or_tty->print("  -- pick up free block " PTR_FORMAT " (" SIZE_FORMAT ")\n", p2i(fc), size);
7580         }
7581         // remove it from the free lists
7582         _sp->removeFreeChunkFromFreeLists(fc);
7583         set_lastFreeRangeCoalesced(true);
7584         // If the chunk is being coalesced and the current free range is
7585         // in the free lists, remove the current free range so that it
7586         // will be returned to the free lists in its entirety - all
7587         // the coalesced pieces included.
7588         if (freeRangeInFreeLists()) {
7589           FreeChunk* ffc = (FreeChunk*) freeFinger();
7590           assert(ffc->size() == pointer_delta(addr, freeFinger()),
7591             "Size of free range is inconsistent with chunk size.");
7592           if (CMSTestInFreeList) {
7593             assert(_sp->verify_chunk_in_free_list(ffc),
7594               "free range is not in free lists");
7595           }
7596           _sp->removeFreeChunkFromFreeLists(ffc);
7597           set_freeRangeInFreeLists(false);
7598         }
7599       }
7600     }
7601     // Note that if the chunk is not coalescable (the else arm
7602     // below), we unconditionally flush, without needing to do
7603     // a "lookahead," as we do below.
7604     if (inFreeRange()) lookahead_and_flush(fc, size);
7605   } else {
7606     // Code path common to both original and adaptive free lists.
7607 
7608     // cant coalesce with previous block; this should be treated
7609     // as the end of a free run if any
7610     if (inFreeRange()) {
7611       // we kicked some butt; time to pick up the garbage
7612       assert(freeFinger() < addr, "freeFinger points too high");
7613       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7614     }
7615     // else, nothing to do, just continue
7616   }
7617 }
7618 
7619 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
7620   // This is a chunk of garbage.  It is not in any free list.
7621   // Add it to a free list or let it possibly be coalesced into
7622   // a larger chunk.
7623   HeapWord* const addr = (HeapWord*) fc;
7624   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7625 
7626   if (_sp->adaptive_freelists()) {
7627     // Verify that the bit map has no bits marked between
7628     // addr and purported end of just dead object.
7629     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7630 
7631     do_post_free_or_garbage_chunk(fc, size);
7632   } else {
7633     if (!inFreeRange()) {
7634       // start of a new free range
7635       assert(size > 0, "A free range should have a size");
7636       initialize_free_range(addr, false);
7637     } else {
7638       // this will be swept up when we hit the end of the
7639       // free range
7640       if (CMSTraceSweeper) {
7641         gclog_or_tty->print("  -- pick up garbage " PTR_FORMAT " (" SIZE_FORMAT ")\n", p2i(fc), size);
7642       }
7643       // If the chunk is being coalesced and the current free range is
7644       // in the free lists, remove the current free range so that it
7645       // will be returned to the free lists in its entirety - all
7646       // the coalesced pieces included.
7647       if (freeRangeInFreeLists()) {
7648         FreeChunk* ffc = (FreeChunk*)freeFinger();
7649         assert(ffc->size() == pointer_delta(addr, freeFinger()),
7650           "Size of free range is inconsistent with chunk size.");
7651         if (CMSTestInFreeList) {
7652           assert(_sp->verify_chunk_in_free_list(ffc),
7653             "free range is not in free lists");
7654         }
7655         _sp->removeFreeChunkFromFreeLists(ffc);
7656         set_freeRangeInFreeLists(false);
7657       }
7658       set_lastFreeRangeCoalesced(true);
7659     }
7660     // this will be swept up when we hit the end of the free range
7661 
7662     // Verify that the bit map has no bits marked between
7663     // addr and purported end of just dead object.
7664     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7665   }
7666   assert(_limit >= addr + size,
7667          "A freshly garbage chunk can't possibly straddle over _limit");
7668   if (inFreeRange()) lookahead_and_flush(fc, size);
7669   return size;
7670 }
7671 
7672 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
7673   HeapWord* addr = (HeapWord*) fc;
7674   // The sweeper has just found a live object. Return any accumulated
7675   // left hand chunk to the free lists.
7676   if (inFreeRange()) {
7677     assert(freeFinger() < addr, "freeFinger points too high");
7678     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7679   }
7680 
7681   // This object is live: we'd normally expect this to be
7682   // an oop, and like to assert the following:
7683   // assert(oop(addr)->is_oop(), "live block should be an oop");
7684   // However, as we commented above, this may be an object whose
7685   // header hasn't yet been initialized.
7686   size_t size;
7687   assert(_bitMap->isMarked(addr), "Tautology for this control point");
7688   if (_bitMap->isMarked(addr + 1)) {
7689     // Determine the size from the bit map, rather than trying to
7690     // compute it from the object header.
7691     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7692     size = pointer_delta(nextOneAddr + 1, addr);
7693     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7694            "alignment problem");
7695 
7696 #ifdef ASSERT
7697       if (oop(addr)->klass_or_null() != NULL) {
7698         // Ignore mark word because we are running concurrent with mutators
7699         assert(oop(addr)->is_oop(true), "live block should be an oop");
7700         assert(size ==
7701                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
7702                "P-mark and computed size do not agree");
7703       }
7704 #endif
7705 
7706   } else {
7707     // This should be an initialized object that's alive.
7708     assert(oop(addr)->klass_or_null() != NULL,
7709            "Should be an initialized object");
7710     // Ignore mark word because we are running concurrent with mutators
7711     assert(oop(addr)->is_oop(true), "live block should be an oop");
7712     // Verify that the bit map has no bits marked between
7713     // addr and purported end of this block.
7714     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7715     assert(size >= 3, "Necessary for Printezis marks to work");
7716     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
7717     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
7718   }
7719   return size;
7720 }
7721 
7722 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
7723                                                  size_t chunkSize) {
7724   // do_post_free_or_garbage_chunk() should only be called in the case
7725   // of the adaptive free list allocator.
7726   const bool fcInFreeLists = fc->is_free();
7727   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
7728   assert((HeapWord*)fc <= _limit, "sweep invariant");
7729   if (CMSTestInFreeList && fcInFreeLists) {
7730     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
7731   }
7732 
7733   if (CMSTraceSweeper) {
7734     gclog_or_tty->print_cr("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize);
7735   }
7736 
7737   HeapWord* const fc_addr = (HeapWord*) fc;
7738 
7739   bool coalesce;
7740   const size_t left  = pointer_delta(fc_addr, freeFinger());
7741   const size_t right = chunkSize;
7742   switch (FLSCoalescePolicy) {
7743     // numeric value forms a coalition aggressiveness metric
7744     case 0:  { // never coalesce
7745       coalesce = false;
7746       break;
7747     }
7748     case 1: { // coalesce if left & right chunks on overpopulated lists
7749       coalesce = _sp->coalOverPopulated(left) &&
7750                  _sp->coalOverPopulated(right);
7751       break;
7752     }
7753     case 2: { // coalesce if left chunk on overpopulated list (default)
7754       coalesce = _sp->coalOverPopulated(left);
7755       break;
7756     }
7757     case 3: { // coalesce if left OR right chunk on overpopulated list
7758       coalesce = _sp->coalOverPopulated(left) ||
7759                  _sp->coalOverPopulated(right);
7760       break;
7761     }
7762     case 4: { // always coalesce
7763       coalesce = true;
7764       break;
7765     }
7766     default:
7767      ShouldNotReachHere();
7768   }
7769 
7770   // Should the current free range be coalesced?
7771   // If the chunk is in a free range and either we decided to coalesce above
7772   // or the chunk is near the large block at the end of the heap
7773   // (isNearLargestChunk() returns true), then coalesce this chunk.
7774   const bool doCoalesce = inFreeRange()
7775                           && (coalesce || _g->isNearLargestChunk(fc_addr));
7776   if (doCoalesce) {
7777     // Coalesce the current free range on the left with the new
7778     // chunk on the right.  If either is on a free list,
7779     // it must be removed from the list and stashed in the closure.
7780     if (freeRangeInFreeLists()) {
7781       FreeChunk* const ffc = (FreeChunk*)freeFinger();
7782       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
7783         "Size of free range is inconsistent with chunk size.");
7784       if (CMSTestInFreeList) {
7785         assert(_sp->verify_chunk_in_free_list(ffc),
7786           "Chunk is not in free lists");
7787       }
7788       _sp->coalDeath(ffc->size());
7789       _sp->removeFreeChunkFromFreeLists(ffc);
7790       set_freeRangeInFreeLists(false);
7791     }
7792     if (fcInFreeLists) {
7793       _sp->coalDeath(chunkSize);
7794       assert(fc->size() == chunkSize,
7795         "The chunk has the wrong size or is not in the free lists");
7796       _sp->removeFreeChunkFromFreeLists(fc);
7797     }
7798     set_lastFreeRangeCoalesced(true);
7799     print_free_block_coalesced(fc);
7800   } else {  // not in a free range and/or should not coalesce
7801     // Return the current free range and start a new one.
7802     if (inFreeRange()) {
7803       // In a free range but cannot coalesce with the right hand chunk.
7804       // Put the current free range into the free lists.
7805       flush_cur_free_chunk(freeFinger(),
7806                            pointer_delta(fc_addr, freeFinger()));
7807     }
7808     // Set up for new free range.  Pass along whether the right hand
7809     // chunk is in the free lists.
7810     initialize_free_range((HeapWord*)fc, fcInFreeLists);
7811   }
7812 }
7813 
7814 // Lookahead flush:
7815 // If we are tracking a free range, and this is the last chunk that
7816 // we'll look at because its end crosses past _limit, we'll preemptively
7817 // flush it along with any free range we may be holding on to. Note that
7818 // this can be the case only for an already free or freshly garbage
7819 // chunk. If this block is an object, it can never straddle
7820 // over _limit. The "straddling" occurs when _limit is set at
7821 // the previous end of the space when this cycle started, and
7822 // a subsequent heap expansion caused the previously co-terminal
7823 // free block to be coalesced with the newly expanded portion,
7824 // thus rendering _limit a non-block-boundary making it dangerous
7825 // for the sweeper to step over and examine.
7826 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
7827   assert(inFreeRange(), "Should only be called if currently in a free range.");
7828   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
7829   assert(_sp->used_region().contains(eob - 1),
7830          err_msg("eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
7831                  " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
7832                  " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
7833                  p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size));
7834   if (eob >= _limit) {
7835     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
7836     if (CMSTraceSweeper) {
7837       gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
7838                              "[" PTR_FORMAT "," PTR_FORMAT ") in space "
7839                              "[" PTR_FORMAT "," PTR_FORMAT ")",
7840                              p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end()));
7841     }
7842     // Return the storage we are tracking back into the free lists.
7843     if (CMSTraceSweeper) {
7844       gclog_or_tty->print_cr("Flushing ... ");
7845     }
7846     assert(freeFinger() < eob, "Error");
7847     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
7848   }
7849 }
7850 
7851 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
7852   assert(inFreeRange(), "Should only be called if currently in a free range.");
7853   assert(size > 0,
7854     "A zero sized chunk cannot be added to the free lists.");
7855   if (!freeRangeInFreeLists()) {
7856     if (CMSTestInFreeList) {
7857       FreeChunk* fc = (FreeChunk*) chunk;
7858       fc->set_size(size);
7859       assert(!_sp->verify_chunk_in_free_list(fc),
7860         "chunk should not be in free lists yet");
7861     }
7862     if (CMSTraceSweeper) {
7863       gclog_or_tty->print_cr(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists",
7864                     p2i(chunk), size);
7865     }
7866     // A new free range is going to be starting.  The current
7867     // free range has not been added to the free lists yet or
7868     // was removed so add it back.
7869     // If the current free range was coalesced, then the death
7870     // of the free range was recorded.  Record a birth now.
7871     if (lastFreeRangeCoalesced()) {
7872       _sp->coalBirth(size);
7873     }
7874     _sp->addChunkAndRepairOffsetTable(chunk, size,
7875             lastFreeRangeCoalesced());
7876   } else if (CMSTraceSweeper) {
7877     gclog_or_tty->print_cr("Already in free list: nothing to flush");
7878   }
7879   set_inFreeRange(false);
7880   set_freeRangeInFreeLists(false);
7881 }
7882 
7883 // We take a break if we've been at this for a while,
7884 // so as to avoid monopolizing the locks involved.
7885 void SweepClosure::do_yield_work(HeapWord* addr) {
7886   // Return current free chunk being used for coalescing (if any)
7887   // to the appropriate freelist.  After yielding, the next
7888   // free block encountered will start a coalescing range of
7889   // free blocks.  If the next free block is adjacent to the
7890   // chunk just flushed, they will need to wait for the next
7891   // sweep to be coalesced.
7892   if (inFreeRange()) {
7893     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7894   }
7895 
7896   // First give up the locks, then yield, then re-lock.
7897   // We should probably use a constructor/destructor idiom to
7898   // do this unlock/lock or modify the MutexUnlocker class to
7899   // serve our purpose. XXX
7900   assert_lock_strong(_bitMap->lock());
7901   assert_lock_strong(_freelistLock);
7902   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7903          "CMS thread should hold CMS token");
7904   _bitMap->lock()->unlock();
7905   _freelistLock->unlock();
7906   ConcurrentMarkSweepThread::desynchronize(true);
7907   _collector->stopTimer();
7908   if (PrintCMSStatistics != 0) {
7909     _collector->incrementYields();
7910   }
7911 
7912   // See the comment in coordinator_yield()
7913   for (unsigned i = 0; i < CMSYieldSleepCount &&
7914                        ConcurrentMarkSweepThread::should_yield() &&
7915                        !CMSCollector::foregroundGCIsActive(); ++i) {
7916     os::sleep(Thread::current(), 1, false);
7917   }
7918 
7919   ConcurrentMarkSweepThread::synchronize(true);
7920   _freelistLock->lock();
7921   _bitMap->lock()->lock_without_safepoint_check();
7922   _collector->startTimer();
7923 }
7924 
7925 #ifndef PRODUCT
7926 // This is actually very useful in a product build if it can
7927 // be called from the debugger.  Compile it into the product
7928 // as needed.
7929 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
7930   return debug_cms_space->verify_chunk_in_free_list(fc);
7931 }
7932 #endif
7933 
7934 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
7935   if (CMSTraceSweeper) {
7936     gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
7937                            p2i(fc), fc->size());
7938   }
7939 }
7940 
7941 // CMSIsAliveClosure
7942 bool CMSIsAliveClosure::do_object_b(oop obj) {
7943   HeapWord* addr = (HeapWord*)obj;
7944   return addr != NULL &&
7945          (!_span.contains(addr) || _bit_map->isMarked(addr));
7946 }
7947 
7948 
7949 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
7950                       MemRegion span,
7951                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
7952                       bool cpc):
7953   _collector(collector),
7954   _span(span),
7955   _bit_map(bit_map),
7956   _mark_stack(mark_stack),
7957   _concurrent_precleaning(cpc) {
7958   assert(!_span.is_empty(), "Empty span could spell trouble");
7959 }
7960 
7961 
7962 // CMSKeepAliveClosure: the serial version
7963 void CMSKeepAliveClosure::do_oop(oop obj) {
7964   HeapWord* addr = (HeapWord*)obj;
7965   if (_span.contains(addr) &&
7966       !_bit_map->isMarked(addr)) {
7967     _bit_map->mark(addr);
7968     bool simulate_overflow = false;
7969     NOT_PRODUCT(
7970       if (CMSMarkStackOverflowALot &&
7971           _collector->simulate_overflow()) {
7972         // simulate a stack overflow
7973         simulate_overflow = true;
7974       }
7975     )
7976     if (simulate_overflow || !_mark_stack->push(obj)) {
7977       if (_concurrent_precleaning) {
7978         // We dirty the overflown object and let the remark
7979         // phase deal with it.
7980         assert(_collector->overflow_list_is_empty(), "Error");
7981         // In the case of object arrays, we need to dirty all of
7982         // the cards that the object spans. No locking or atomics
7983         // are needed since no one else can be mutating the mod union
7984         // table.
7985         if (obj->is_objArray()) {
7986           size_t sz = obj->size();
7987           HeapWord* end_card_addr =
7988             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
7989           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7990           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7991           _collector->_modUnionTable.mark_range(redirty_range);
7992         } else {
7993           _collector->_modUnionTable.mark(addr);
7994         }
7995         _collector->_ser_kac_preclean_ovflw++;
7996       } else {
7997         _collector->push_on_overflow_list(obj);
7998         _collector->_ser_kac_ovflw++;
7999       }
8000     }
8001   }
8002 }
8003 
8004 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
8005 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
8006 
8007 // CMSParKeepAliveClosure: a parallel version of the above.
8008 // The work queues are private to each closure (thread),
8009 // but (may be) available for stealing by other threads.
8010 void CMSParKeepAliveClosure::do_oop(oop obj) {
8011   HeapWord* addr = (HeapWord*)obj;
8012   if (_span.contains(addr) &&
8013       !_bit_map->isMarked(addr)) {
8014     // In general, during recursive tracing, several threads
8015     // may be concurrently getting here; the first one to
8016     // "tag" it, claims it.
8017     if (_bit_map->par_mark(addr)) {
8018       bool res = _work_queue->push(obj);
8019       assert(res, "Low water mark should be much less than capacity");
8020       // Do a recursive trim in the hope that this will keep
8021       // stack usage lower, but leave some oops for potential stealers
8022       trim_queue(_low_water_mark);
8023     } // Else, another thread got there first
8024   }
8025 }
8026 
8027 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
8028 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
8029 
8030 void CMSParKeepAliveClosure::trim_queue(uint max) {
8031   while (_work_queue->size() > max) {
8032     oop new_oop;
8033     if (_work_queue->pop_local(new_oop)) {
8034       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
8035       assert(_bit_map->isMarked((HeapWord*)new_oop),
8036              "no white objects on this stack!");
8037       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8038       // iterate over the oops in this oop, marking and pushing
8039       // the ones in CMS heap (i.e. in _span).
8040       new_oop->oop_iterate(&_mark_and_push);
8041     }
8042   }
8043 }
8044 
8045 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
8046                                 CMSCollector* collector,
8047                                 MemRegion span, CMSBitMap* bit_map,
8048                                 OopTaskQueue* work_queue):
8049   _collector(collector),
8050   _span(span),
8051   _bit_map(bit_map),
8052   _work_queue(work_queue) { }
8053 
8054 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
8055   HeapWord* addr = (HeapWord*)obj;
8056   if (_span.contains(addr) &&
8057       !_bit_map->isMarked(addr)) {
8058     if (_bit_map->par_mark(addr)) {
8059       bool simulate_overflow = false;
8060       NOT_PRODUCT(
8061         if (CMSMarkStackOverflowALot &&
8062             _collector->par_simulate_overflow()) {
8063           // simulate a stack overflow
8064           simulate_overflow = true;
8065         }
8066       )
8067       if (simulate_overflow || !_work_queue->push(obj)) {
8068         _collector->par_push_on_overflow_list(obj);
8069         _collector->_par_kac_ovflw++;
8070       }
8071     } // Else another thread got there already
8072   }
8073 }
8074 
8075 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8076 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8077 
8078 //////////////////////////////////////////////////////////////////
8079 //  CMSExpansionCause                /////////////////////////////
8080 //////////////////////////////////////////////////////////////////
8081 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
8082   switch (cause) {
8083     case _no_expansion:
8084       return "No expansion";
8085     case _satisfy_free_ratio:
8086       return "Free ratio";
8087     case _satisfy_promotion:
8088       return "Satisfy promotion";
8089     case _satisfy_allocation:
8090       return "allocation";
8091     case _allocate_par_lab:
8092       return "Par LAB";
8093     case _allocate_par_spooling_space:
8094       return "Par Spooling Space";
8095     case _adaptive_size_policy:
8096       return "Ergonomics";
8097     default:
8098       return "unknown";
8099   }
8100 }
8101 
8102 void CMSDrainMarkingStackClosure::do_void() {
8103   // the max number to take from overflow list at a time
8104   const size_t num = _mark_stack->capacity()/4;
8105   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
8106          "Overflow list should be NULL during concurrent phases");
8107   while (!_mark_stack->isEmpty() ||
8108          // if stack is empty, check the overflow list
8109          _collector->take_from_overflow_list(num, _mark_stack)) {
8110     oop obj = _mark_stack->pop();
8111     HeapWord* addr = (HeapWord*)obj;
8112     assert(_span.contains(addr), "Should be within span");
8113     assert(_bit_map->isMarked(addr), "Should be marked");
8114     assert(obj->is_oop(), "Should be an oop");
8115     obj->oop_iterate(_keep_alive);
8116   }
8117 }
8118 
8119 void CMSParDrainMarkingStackClosure::do_void() {
8120   // drain queue
8121   trim_queue(0);
8122 }
8123 
8124 // Trim our work_queue so its length is below max at return
8125 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
8126   while (_work_queue->size() > max) {
8127     oop new_oop;
8128     if (_work_queue->pop_local(new_oop)) {
8129       assert(new_oop->is_oop(), "Expected an oop");
8130       assert(_bit_map->isMarked((HeapWord*)new_oop),
8131              "no white objects on this stack!");
8132       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8133       // iterate over the oops in this oop, marking and pushing
8134       // the ones in CMS heap (i.e. in _span).
8135       new_oop->oop_iterate(&_mark_and_push);
8136     }
8137   }
8138 }
8139 
8140 ////////////////////////////////////////////////////////////////////
8141 // Support for Marking Stack Overflow list handling and related code
8142 ////////////////////////////////////////////////////////////////////
8143 // Much of the following code is similar in shape and spirit to the
8144 // code used in ParNewGC. We should try and share that code
8145 // as much as possible in the future.
8146 
8147 #ifndef PRODUCT
8148 // Debugging support for CMSStackOverflowALot
8149 
8150 // It's OK to call this multi-threaded;  the worst thing
8151 // that can happen is that we'll get a bunch of closely
8152 // spaced simulated overflows, but that's OK, in fact
8153 // probably good as it would exercise the overflow code
8154 // under contention.
8155 bool CMSCollector::simulate_overflow() {
8156   if (_overflow_counter-- <= 0) { // just being defensive
8157     _overflow_counter = CMSMarkStackOverflowInterval;
8158     return true;
8159   } else {
8160     return false;
8161   }
8162 }
8163 
8164 bool CMSCollector::par_simulate_overflow() {
8165   return simulate_overflow();
8166 }
8167 #endif
8168 
8169 // Single-threaded
8170 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
8171   assert(stack->isEmpty(), "Expected precondition");
8172   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
8173   size_t i = num;
8174   oop  cur = _overflow_list;
8175   const markOop proto = markOopDesc::prototype();
8176   NOT_PRODUCT(ssize_t n = 0;)
8177   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
8178     next = oop(cur->mark());
8179     cur->set_mark(proto);   // until proven otherwise
8180     assert(cur->is_oop(), "Should be an oop");
8181     bool res = stack->push(cur);
8182     assert(res, "Bit off more than can chew?");
8183     NOT_PRODUCT(n++;)
8184   }
8185   _overflow_list = cur;
8186 #ifndef PRODUCT
8187   assert(_num_par_pushes >= n, "Too many pops?");
8188   _num_par_pushes -=n;
8189 #endif
8190   return !stack->isEmpty();
8191 }
8192 
8193 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
8194 // (MT-safe) Get a prefix of at most "num" from the list.
8195 // The overflow list is chained through the mark word of
8196 // each object in the list. We fetch the entire list,
8197 // break off a prefix of the right size and return the
8198 // remainder. If other threads try to take objects from
8199 // the overflow list at that time, they will wait for
8200 // some time to see if data becomes available. If (and
8201 // only if) another thread places one or more object(s)
8202 // on the global list before we have returned the suffix
8203 // to the global list, we will walk down our local list
8204 // to find its end and append the global list to
8205 // our suffix before returning it. This suffix walk can
8206 // prove to be expensive (quadratic in the amount of traffic)
8207 // when there are many objects in the overflow list and
8208 // there is much producer-consumer contention on the list.
8209 // *NOTE*: The overflow list manipulation code here and
8210 // in ParNewGeneration:: are very similar in shape,
8211 // except that in the ParNew case we use the old (from/eden)
8212 // copy of the object to thread the list via its klass word.
8213 // Because of the common code, if you make any changes in
8214 // the code below, please check the ParNew version to see if
8215 // similar changes might be needed.
8216 // CR 6797058 has been filed to consolidate the common code.
8217 bool CMSCollector::par_take_from_overflow_list(size_t num,
8218                                                OopTaskQueue* work_q,
8219                                                int no_of_gc_threads) {
8220   assert(work_q->size() == 0, "First empty local work queue");
8221   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
8222   if (_overflow_list == NULL) {
8223     return false;
8224   }
8225   // Grab the entire list; we'll put back a suffix
8226   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
8227   Thread* tid = Thread::current();
8228   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
8229   // set to ParallelGCThreads.
8230   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
8231   size_t sleep_time_millis = MAX2((size_t)1, num/100);
8232   // If the list is busy, we spin for a short while,
8233   // sleeping between attempts to get the list.
8234   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
8235     os::sleep(tid, sleep_time_millis, false);
8236     if (_overflow_list == NULL) {
8237       // Nothing left to take
8238       return false;
8239     } else if (_overflow_list != BUSY) {
8240       // Try and grab the prefix
8241       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
8242     }
8243   }
8244   // If the list was found to be empty, or we spun long
8245   // enough, we give up and return empty-handed. If we leave
8246   // the list in the BUSY state below, it must be the case that
8247   // some other thread holds the overflow list and will set it
8248   // to a non-BUSY state in the future.
8249   if (prefix == NULL || prefix == BUSY) {
8250      // Nothing to take or waited long enough
8251      if (prefix == NULL) {
8252        // Write back the NULL in case we overwrote it with BUSY above
8253        // and it is still the same value.
8254        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8255      }
8256      return false;
8257   }
8258   assert(prefix != NULL && prefix != BUSY, "Error");
8259   size_t i = num;
8260   oop cur = prefix;
8261   // Walk down the first "num" objects, unless we reach the end.
8262   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
8263   if (cur->mark() == NULL) {
8264     // We have "num" or fewer elements in the list, so there
8265     // is nothing to return to the global list.
8266     // Write back the NULL in lieu of the BUSY we wrote
8267     // above, if it is still the same value.
8268     if (_overflow_list == BUSY) {
8269       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8270     }
8271   } else {
8272     // Chop off the suffix and return it to the global list.
8273     assert(cur->mark() != BUSY, "Error");
8274     oop suffix_head = cur->mark(); // suffix will be put back on global list
8275     cur->set_mark(NULL);           // break off suffix
8276     // It's possible that the list is still in the empty(busy) state
8277     // we left it in a short while ago; in that case we may be
8278     // able to place back the suffix without incurring the cost
8279     // of a walk down the list.
8280     oop observed_overflow_list = _overflow_list;
8281     oop cur_overflow_list = observed_overflow_list;
8282     bool attached = false;
8283     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
8284       observed_overflow_list =
8285         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8286       if (cur_overflow_list == observed_overflow_list) {
8287         attached = true;
8288         break;
8289       } else cur_overflow_list = observed_overflow_list;
8290     }
8291     if (!attached) {
8292       // Too bad, someone else sneaked in (at least) an element; we'll need
8293       // to do a splice. Find tail of suffix so we can prepend suffix to global
8294       // list.
8295       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
8296       oop suffix_tail = cur;
8297       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
8298              "Tautology");
8299       observed_overflow_list = _overflow_list;
8300       do {
8301         cur_overflow_list = observed_overflow_list;
8302         if (cur_overflow_list != BUSY) {
8303           // Do the splice ...
8304           suffix_tail->set_mark(markOop(cur_overflow_list));
8305         } else { // cur_overflow_list == BUSY
8306           suffix_tail->set_mark(NULL);
8307         }
8308         // ... and try to place spliced list back on overflow_list ...
8309         observed_overflow_list =
8310           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8311       } while (cur_overflow_list != observed_overflow_list);
8312       // ... until we have succeeded in doing so.
8313     }
8314   }
8315 
8316   // Push the prefix elements on work_q
8317   assert(prefix != NULL, "control point invariant");
8318   const markOop proto = markOopDesc::prototype();
8319   oop next;
8320   NOT_PRODUCT(ssize_t n = 0;)
8321   for (cur = prefix; cur != NULL; cur = next) {
8322     next = oop(cur->mark());
8323     cur->set_mark(proto);   // until proven otherwise
8324     assert(cur->is_oop(), "Should be an oop");
8325     bool res = work_q->push(cur);
8326     assert(res, "Bit off more than we can chew?");
8327     NOT_PRODUCT(n++;)
8328   }
8329 #ifndef PRODUCT
8330   assert(_num_par_pushes >= n, "Too many pops?");
8331   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
8332 #endif
8333   return true;
8334 }
8335 
8336 // Single-threaded
8337 void CMSCollector::push_on_overflow_list(oop p) {
8338   NOT_PRODUCT(_num_par_pushes++;)
8339   assert(p->is_oop(), "Not an oop");
8340   preserve_mark_if_necessary(p);
8341   p->set_mark((markOop)_overflow_list);
8342   _overflow_list = p;
8343 }
8344 
8345 // Multi-threaded; use CAS to prepend to overflow list
8346 void CMSCollector::par_push_on_overflow_list(oop p) {
8347   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
8348   assert(p->is_oop(), "Not an oop");
8349   par_preserve_mark_if_necessary(p);
8350   oop observed_overflow_list = _overflow_list;
8351   oop cur_overflow_list;
8352   do {
8353     cur_overflow_list = observed_overflow_list;
8354     if (cur_overflow_list != BUSY) {
8355       p->set_mark(markOop(cur_overflow_list));
8356     } else {
8357       p->set_mark(NULL);
8358     }
8359     observed_overflow_list =
8360       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
8361   } while (cur_overflow_list != observed_overflow_list);
8362 }
8363 #undef BUSY
8364 
8365 // Single threaded
8366 // General Note on GrowableArray: pushes may silently fail
8367 // because we are (temporarily) out of C-heap for expanding
8368 // the stack. The problem is quite ubiquitous and affects
8369 // a lot of code in the JVM. The prudent thing for GrowableArray
8370 // to do (for now) is to exit with an error. However, that may
8371 // be too draconian in some cases because the caller may be
8372 // able to recover without much harm. For such cases, we
8373 // should probably introduce a "soft_push" method which returns
8374 // an indication of success or failure with the assumption that
8375 // the caller may be able to recover from a failure; code in
8376 // the VM can then be changed, incrementally, to deal with such
8377 // failures where possible, thus, incrementally hardening the VM
8378 // in such low resource situations.
8379 void CMSCollector::preserve_mark_work(oop p, markOop m) {
8380   _preserved_oop_stack.push(p);
8381   _preserved_mark_stack.push(m);
8382   assert(m == p->mark(), "Mark word changed");
8383   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8384          "bijection");
8385 }
8386 
8387 // Single threaded
8388 void CMSCollector::preserve_mark_if_necessary(oop p) {
8389   markOop m = p->mark();
8390   if (m->must_be_preserved(p)) {
8391     preserve_mark_work(p, m);
8392   }
8393 }
8394 
8395 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8396   markOop m = p->mark();
8397   if (m->must_be_preserved(p)) {
8398     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8399     // Even though we read the mark word without holding
8400     // the lock, we are assured that it will not change
8401     // because we "own" this oop, so no other thread can
8402     // be trying to push it on the overflow list; see
8403     // the assertion in preserve_mark_work() that checks
8404     // that m == p->mark().
8405     preserve_mark_work(p, m);
8406   }
8407 }
8408 
8409 // We should be able to do this multi-threaded,
8410 // a chunk of stack being a task (this is
8411 // correct because each oop only ever appears
8412 // once in the overflow list. However, it's
8413 // not very easy to completely overlap this with
8414 // other operations, so will generally not be done
8415 // until all work's been completed. Because we
8416 // expect the preserved oop stack (set) to be small,
8417 // it's probably fine to do this single-threaded.
8418 // We can explore cleverer concurrent/overlapped/parallel
8419 // processing of preserved marks if we feel the
8420 // need for this in the future. Stack overflow should
8421 // be so rare in practice and, when it happens, its
8422 // effect on performance so great that this will
8423 // likely just be in the noise anyway.
8424 void CMSCollector::restore_preserved_marks_if_any() {
8425   assert(SafepointSynchronize::is_at_safepoint(),
8426          "world should be stopped");
8427   assert(Thread::current()->is_ConcurrentGC_thread() ||
8428          Thread::current()->is_VM_thread(),
8429          "should be single-threaded");
8430   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8431          "bijection");
8432 
8433   while (!_preserved_oop_stack.is_empty()) {
8434     oop p = _preserved_oop_stack.pop();
8435     assert(p->is_oop(), "Should be an oop");
8436     assert(_span.contains(p), "oop should be in _span");
8437     assert(p->mark() == markOopDesc::prototype(),
8438            "Set when taken from overflow list");
8439     markOop m = _preserved_mark_stack.pop();
8440     p->set_mark(m);
8441   }
8442   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8443          "stacks were cleared above");
8444 }
8445 
8446 #ifndef PRODUCT
8447 bool CMSCollector::no_preserved_marks() const {
8448   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8449 }
8450 #endif
8451 
8452 // Transfer some number of overflown objects to usual marking
8453 // stack. Return true if some objects were transferred.
8454 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8455   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8456                     (size_t)ParGCDesiredObjsFromOverflowList);
8457 
8458   bool res = _collector->take_from_overflow_list(num, _mark_stack);
8459   assert(_collector->overflow_list_is_empty() || res,
8460          "If list is not empty, we should have taken something");
8461   assert(!res || !_mark_stack->isEmpty(),
8462          "If we took something, it should now be on our stack");
8463   return res;
8464 }
8465 
8466 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8467   size_t res = _sp->block_size_no_stall(addr, _collector);
8468   if (_sp->block_is_obj(addr)) {
8469     if (_live_bit_map->isMarked(addr)) {
8470       // It can't have been dead in a previous cycle
8471       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
8472     } else {
8473       _dead_bit_map->mark(addr);      // mark the dead object
8474     }
8475   }
8476   // Could be 0, if the block size could not be computed without stalling.
8477   return res;
8478 }
8479 
8480 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
8481 
8482   switch (phase) {
8483     case CMSCollector::InitialMarking:
8484       initialize(true  /* fullGC */ ,
8485                  cause /* cause of the GC */,
8486                  true  /* recordGCBeginTime */,
8487                  true  /* recordPreGCUsage */,
8488                  false /* recordPeakUsage */,
8489                  false /* recordPostGCusage */,
8490                  true  /* recordAccumulatedGCTime */,
8491                  false /* recordGCEndTime */,
8492                  false /* countCollection */  );
8493       break;
8494 
8495     case CMSCollector::FinalMarking:
8496       initialize(true  /* fullGC */ ,
8497                  cause /* cause of the GC */,
8498                  false /* recordGCBeginTime */,
8499                  false /* recordPreGCUsage */,
8500                  false /* recordPeakUsage */,
8501                  false /* recordPostGCusage */,
8502                  true  /* recordAccumulatedGCTime */,
8503                  false /* recordGCEndTime */,
8504                  false /* countCollection */  );
8505       break;
8506 
8507     case CMSCollector::Sweeping:
8508       initialize(true  /* fullGC */ ,
8509                  cause /* cause of the GC */,
8510                  false /* recordGCBeginTime */,
8511                  false /* recordPreGCUsage */,
8512                  true  /* recordPeakUsage */,
8513                  true  /* recordPostGCusage */,
8514                  false /* recordAccumulatedGCTime */,
8515                  true  /* recordGCEndTime */,
8516                  true  /* countCollection */  );
8517       break;
8518 
8519     default:
8520       ShouldNotReachHere();
8521   }
8522 }