1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/shared/cardTableRS.hpp"
  27 #include "gc/shared/genCollectedHeap.hpp"
  28 #include "gc/shared/generation.hpp"
  29 #include "gc/shared/space.inline.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "oops/oop.inline.hpp"
  32 #include "runtime/atomic.inline.hpp"
  33 #include "runtime/java.hpp"
  34 #include "runtime/os.hpp"
  35 #include "utilities/macros.hpp"
  36 
  37 CardTableRS::CardTableRS(MemRegion whole_heap) :
  38   GenRemSet(),
  39   _cur_youngergen_card_val(youngergenP1_card)
  40 {
  41   _ct_bs = new CardTableModRefBSForCTRS(whole_heap);
  42   _ct_bs->initialize();
  43   set_bs(_ct_bs);
  44   // max_gens is really GenCollectedHeap::heap()->gen_policy()->number_of_generations()
  45   // (which is always 2, young & old), but GenCollectedHeap has not been initialized yet.
  46   uint max_gens = 2;
  47   _last_cur_val_in_gen = NEW_C_HEAP_ARRAY3(jbyte, max_gens + 1,
  48                          mtGC, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
  49   if (_last_cur_val_in_gen == NULL) {
  50     vm_exit_during_initialization("Could not create last_cur_val_in_gen array.");
  51   }
  52   for (uint i = 0; i < max_gens + 1; i++) {
  53     _last_cur_val_in_gen[i] = clean_card_val();
  54   }
  55   _ct_bs->set_CTRS(this);
  56 }
  57 
  58 CardTableRS::~CardTableRS() {
  59   if (_ct_bs) {
  60     delete _ct_bs;
  61     _ct_bs = NULL;
  62   }
  63   if (_last_cur_val_in_gen) {
  64     FREE_C_HEAP_ARRAY(jbyte, _last_cur_val_in_gen);
  65   }
  66 }
  67 
  68 void CardTableRS::resize_covered_region(MemRegion new_region) {
  69   _ct_bs->resize_covered_region(new_region);
  70 }
  71 
  72 jbyte CardTableRS::find_unused_youngergenP_card_value() {
  73   for (jbyte v = youngergenP1_card;
  74        v < cur_youngergen_and_prev_nonclean_card;
  75        v++) {
  76     bool seen = false;
  77     for (int g = 0; g < _regions_to_iterate; g++) {
  78       if (_last_cur_val_in_gen[g] == v) {
  79         seen = true;
  80         break;
  81       }
  82     }
  83     if (!seen) return v;
  84   }
  85   ShouldNotReachHere();
  86   return 0;
  87 }
  88 
  89 void CardTableRS::prepare_for_younger_refs_iterate(bool parallel) {
  90   // Parallel or sequential, we must always set the prev to equal the
  91   // last one written.
  92   if (parallel) {
  93     // Find a parallel value to be used next.
  94     jbyte next_val = find_unused_youngergenP_card_value();
  95     set_cur_youngergen_card_val(next_val);
  96 
  97   } else {
  98     // In an sequential traversal we will always write youngergen, so that
  99     // the inline barrier is  correct.
 100     set_cur_youngergen_card_val(youngergen_card);
 101   }
 102 }
 103 
 104 void CardTableRS::younger_refs_iterate(Generation* g,
 105                                        OopsInGenClosure* blk) {
 106   // The indexing in this array is slightly odd. We want to access
 107   // the old generation record here, which is at index 2.
 108   _last_cur_val_in_gen[2] = cur_youngergen_card_val();
 109   g->younger_refs_iterate(blk);
 110 }
 111 
 112 inline bool ClearNoncleanCardWrapper::clear_card(jbyte* entry) {
 113   if (_is_par) {
 114     return clear_card_parallel(entry);
 115   } else {
 116     return clear_card_serial(entry);
 117   }
 118 }
 119 
 120 inline bool ClearNoncleanCardWrapper::clear_card_parallel(jbyte* entry) {
 121   while (true) {
 122     // In the parallel case, we may have to do this several times.
 123     jbyte entry_val = *entry;
 124     assert(entry_val != CardTableRS::clean_card_val(),
 125            "We shouldn't be looking at clean cards, and this should "
 126            "be the only place they get cleaned.");
 127     if (CardTableRS::card_is_dirty_wrt_gen_iter(entry_val)
 128         || _ct->is_prev_youngergen_card_val(entry_val)) {
 129       jbyte res =
 130         Atomic::cmpxchg(CardTableRS::clean_card_val(), entry, entry_val);
 131       if (res == entry_val) {
 132         break;
 133       } else {
 134         assert(res == CardTableRS::cur_youngergen_and_prev_nonclean_card,
 135                "The CAS above should only fail if another thread did "
 136                "a GC write barrier.");
 137       }
 138     } else if (entry_val ==
 139                CardTableRS::cur_youngergen_and_prev_nonclean_card) {
 140       // Parallelism shouldn't matter in this case.  Only the thread
 141       // assigned to scan the card should change this value.
 142       *entry = _ct->cur_youngergen_card_val();
 143       break;
 144     } else {
 145       assert(entry_val == _ct->cur_youngergen_card_val(),
 146              "Should be the only possibility.");
 147       // In this case, the card was clean before, and become
 148       // cur_youngergen only because of processing of a promoted object.
 149       // We don't have to look at the card.
 150       return false;
 151     }
 152   }
 153   return true;
 154 }
 155 
 156 
 157 inline bool ClearNoncleanCardWrapper::clear_card_serial(jbyte* entry) {
 158   jbyte entry_val = *entry;
 159   assert(entry_val != CardTableRS::clean_card_val(),
 160          "We shouldn't be looking at clean cards, and this should "
 161          "be the only place they get cleaned.");
 162   assert(entry_val != CardTableRS::cur_youngergen_and_prev_nonclean_card,
 163          "This should be possible in the sequential case.");
 164   *entry = CardTableRS::clean_card_val();
 165   return true;
 166 }
 167 
 168 ClearNoncleanCardWrapper::ClearNoncleanCardWrapper(
 169   DirtyCardToOopClosure* dirty_card_closure, CardTableRS* ct) :
 170     _dirty_card_closure(dirty_card_closure), _ct(ct) {
 171     // Cannot yet substitute active_workers for n_par_threads
 172     // in the case where parallelism is being turned off by
 173     // setting n_par_threads to 0.
 174     _is_par = (GenCollectedHeap::heap()->n_par_threads() > 0);
 175     assert(!_is_par ||
 176            (GenCollectedHeap::heap()->n_par_threads() ==
 177             GenCollectedHeap::heap()->workers()->active_workers()), "Mismatch");
 178 }
 179 
 180 bool ClearNoncleanCardWrapper::is_word_aligned(jbyte* entry) {
 181   return (((intptr_t)entry) & (BytesPerWord-1)) == 0;
 182 }
 183 
 184 // The regions are visited in *decreasing* address order.
 185 // This order aids with imprecise card marking, where a dirty
 186 // card may cause scanning, and summarization marking, of objects
 187 // that extend onto subsequent cards.
 188 void ClearNoncleanCardWrapper::do_MemRegion(MemRegion mr) {
 189   assert(mr.word_size() > 0, "Error");
 190   assert(_ct->is_aligned(mr.start()), "mr.start() should be card aligned");
 191   // mr.end() may not necessarily be card aligned.
 192   jbyte* cur_entry = _ct->byte_for(mr.last());
 193   const jbyte* limit = _ct->byte_for(mr.start());
 194   HeapWord* end_of_non_clean = mr.end();
 195   HeapWord* start_of_non_clean = end_of_non_clean;
 196   while (cur_entry >= limit) {
 197     HeapWord* cur_hw = _ct->addr_for(cur_entry);
 198     if ((*cur_entry != CardTableRS::clean_card_val()) && clear_card(cur_entry)) {
 199       // Continue the dirty range by opening the
 200       // dirty window one card to the left.
 201       start_of_non_clean = cur_hw;
 202     } else {
 203       // We hit a "clean" card; process any non-empty
 204       // "dirty" range accumulated so far.
 205       if (start_of_non_clean < end_of_non_clean) {
 206         const MemRegion mrd(start_of_non_clean, end_of_non_clean);
 207         _dirty_card_closure->do_MemRegion(mrd);
 208       }
 209 
 210       // fast forward through potential continuous whole-word range of clean cards beginning at a word-boundary
 211       if (is_word_aligned(cur_entry)) {
 212         jbyte* cur_row = cur_entry - BytesPerWord;
 213         while (cur_row >= limit && *((intptr_t*)cur_row) ==  CardTableRS::clean_card_row()) {
 214           cur_row -= BytesPerWord;
 215         }
 216         cur_entry = cur_row + BytesPerWord;
 217         cur_hw = _ct->addr_for(cur_entry);
 218       }
 219 
 220       // Reset the dirty window, while continuing to look
 221       // for the next dirty card that will start a
 222       // new dirty window.
 223       end_of_non_clean = cur_hw;
 224       start_of_non_clean = cur_hw;
 225     }
 226     // Note that "cur_entry" leads "start_of_non_clean" in
 227     // its leftward excursion after this point
 228     // in the loop and, when we hit the left end of "mr",
 229     // will point off of the left end of the card-table
 230     // for "mr".
 231     cur_entry--;
 232   }
 233   // If the first card of "mr" was dirty, we will have
 234   // been left with a dirty window, co-initial with "mr",
 235   // which we now process.
 236   if (start_of_non_clean < end_of_non_clean) {
 237     const MemRegion mrd(start_of_non_clean, end_of_non_clean);
 238     _dirty_card_closure->do_MemRegion(mrd);
 239   }
 240 }
 241 
 242 // clean (by dirty->clean before) ==> cur_younger_gen
 243 // dirty                          ==> cur_youngergen_and_prev_nonclean_card
 244 // precleaned                     ==> cur_youngergen_and_prev_nonclean_card
 245 // prev-younger-gen               ==> cur_youngergen_and_prev_nonclean_card
 246 // cur-younger-gen                ==> cur_younger_gen
 247 // cur_youngergen_and_prev_nonclean_card ==> no change.
 248 void CardTableRS::write_ref_field_gc_par(void* field, oop new_val) {
 249   jbyte* entry = ct_bs()->byte_for(field);
 250   do {
 251     jbyte entry_val = *entry;
 252     // We put this first because it's probably the most common case.
 253     if (entry_val == clean_card_val()) {
 254       // No threat of contention with cleaning threads.
 255       *entry = cur_youngergen_card_val();
 256       return;
 257     } else if (card_is_dirty_wrt_gen_iter(entry_val)
 258                || is_prev_youngergen_card_val(entry_val)) {
 259       // Mark it as both cur and prev youngergen; card cleaning thread will
 260       // eventually remove the previous stuff.
 261       jbyte new_val = cur_youngergen_and_prev_nonclean_card;
 262       jbyte res = Atomic::cmpxchg(new_val, entry, entry_val);
 263       // Did the CAS succeed?
 264       if (res == entry_val) return;
 265       // Otherwise, retry, to see the new value.
 266       continue;
 267     } else {
 268       assert(entry_val == cur_youngergen_and_prev_nonclean_card
 269              || entry_val == cur_youngergen_card_val(),
 270              "should be only possibilities.");
 271       return;
 272     }
 273   } while (true);
 274 }
 275 
 276 void CardTableRS::younger_refs_in_space_iterate(Space* sp,
 277                                                 OopsInGenClosure* cl) {
 278   const MemRegion urasm = sp->used_region_at_save_marks();
 279 #ifdef ASSERT
 280   // Convert the assertion check to a warning if we are running
 281   // CMS+ParNew until related bug is fixed.
 282   MemRegion ur    = sp->used_region();
 283   assert(ur.contains(urasm) || (UseConcMarkSweepGC),
 284          err_msg("Did you forget to call save_marks()? "
 285                  "[" PTR_FORMAT ", " PTR_FORMAT ") is not contained in "
 286                  "[" PTR_FORMAT ", " PTR_FORMAT ")",
 287                  p2i(urasm.start()), p2i(urasm.end()), p2i(ur.start()), p2i(ur.end())));
 288   // In the case of CMS+ParNew, issue a warning
 289   if (!ur.contains(urasm)) {
 290     assert(UseConcMarkSweepGC, "Tautology: see assert above");
 291     warning("CMS+ParNew: Did you forget to call save_marks()? "
 292             "[" PTR_FORMAT ", " PTR_FORMAT ") is not contained in "
 293             "[" PTR_FORMAT ", " PTR_FORMAT ")",
 294              p2i(urasm.start()), p2i(urasm.end()), p2i(ur.start()), p2i(ur.end()));
 295     MemRegion ur2 = sp->used_region();
 296     MemRegion urasm2 = sp->used_region_at_save_marks();
 297     if (!ur.equals(ur2)) {
 298       warning("CMS+ParNew: Flickering used_region()!!");
 299     }
 300     if (!urasm.equals(urasm2)) {
 301       warning("CMS+ParNew: Flickering used_region_at_save_marks()!!");
 302     }
 303     ShouldNotReachHere();
 304   }
 305 #endif
 306   _ct_bs->non_clean_card_iterate_possibly_parallel(sp, urasm, cl, this);
 307 }
 308 
 309 void CardTableRS::clear_into_younger(Generation* old_gen) {
 310   assert(old_gen == GenCollectedHeap::heap()->old_gen(),
 311          "Should only be called for the old generation");
 312   // The card tables for the youngest gen need never be cleared.
 313   // There's a bit of subtlety in the clear() and invalidate()
 314   // methods that we exploit here and in invalidate_or_clear()
 315   // below to avoid missing cards at the fringes. If clear() or
 316   // invalidate() are changed in the future, this code should
 317   // be revisited. 20040107.ysr
 318   clear(old_gen->prev_used_region());
 319 }
 320 
 321 void CardTableRS::invalidate_or_clear(Generation* old_gen) {
 322   assert(old_gen == GenCollectedHeap::heap()->old_gen(),
 323          "Should only be called for the old generation");
 324   // Invalidate the cards for the currently occupied part of
 325   // the old generation and clear the cards for the
 326   // unoccupied part of the generation (if any, making use
 327   // of that generation's prev_used_region to determine that
 328   // region). No need to do anything for the youngest
 329   // generation. Also see note#20040107.ysr above.
 330   MemRegion used_mr = old_gen->used_region();
 331   MemRegion to_be_cleared_mr = old_gen->prev_used_region().minus(used_mr);
 332   if (!to_be_cleared_mr.is_empty()) {
 333     clear(to_be_cleared_mr);
 334   }
 335   invalidate(used_mr);
 336 }
 337 
 338 
 339 class VerifyCleanCardClosure: public OopClosure {
 340 private:
 341   HeapWord* _boundary;
 342   HeapWord* _begin;
 343   HeapWord* _end;
 344 protected:
 345   template <class T> void do_oop_work(T* p) {
 346     HeapWord* jp = (HeapWord*)p;
 347     assert(jp >= _begin && jp < _end,
 348            err_msg("Error: jp " PTR_FORMAT " should be within "
 349                    "[_begin, _end) = [" PTR_FORMAT "," PTR_FORMAT ")",
 350                    p2i(jp), p2i(_begin), p2i(_end)));
 351     oop obj = oopDesc::load_decode_heap_oop(p);
 352     guarantee(obj == NULL || (HeapWord*)obj >= _boundary,
 353               err_msg("pointer " PTR_FORMAT " at " PTR_FORMAT " on "
 354                       "clean card crosses boundary" PTR_FORMAT,
 355                       p2i((HeapWord*)obj), p2i(jp), p2i(_boundary)));
 356   }
 357 
 358 public:
 359   VerifyCleanCardClosure(HeapWord* b, HeapWord* begin, HeapWord* end) :
 360     _boundary(b), _begin(begin), _end(end) {
 361     assert(b <= begin,
 362            err_msg("Error: boundary " PTR_FORMAT " should be at or below begin " PTR_FORMAT,
 363                    p2i(b), p2i(begin)));
 364     assert(begin <= end,
 365            err_msg("Error: begin " PTR_FORMAT " should be strictly below end " PTR_FORMAT,
 366                    p2i(begin), p2i(end)));
 367   }
 368 
 369   virtual void do_oop(oop* p)       { VerifyCleanCardClosure::do_oop_work(p); }
 370   virtual void do_oop(narrowOop* p) { VerifyCleanCardClosure::do_oop_work(p); }
 371 };
 372 
 373 class VerifyCTSpaceClosure: public SpaceClosure {
 374 private:
 375   CardTableRS* _ct;
 376   HeapWord* _boundary;
 377 public:
 378   VerifyCTSpaceClosure(CardTableRS* ct, HeapWord* boundary) :
 379     _ct(ct), _boundary(boundary) {}
 380   virtual void do_space(Space* s) { _ct->verify_space(s, _boundary); }
 381 };
 382 
 383 class VerifyCTGenClosure: public GenCollectedHeap::GenClosure {
 384   CardTableRS* _ct;
 385 public:
 386   VerifyCTGenClosure(CardTableRS* ct) : _ct(ct) {}
 387   void do_generation(Generation* gen) {
 388     // Skip the youngest generation.
 389     if (gen == GenCollectedHeap::heap()->young_gen()) {
 390       return;
 391     }
 392     // Normally, we're interested in pointers to younger generations.
 393     VerifyCTSpaceClosure blk(_ct, gen->reserved().start());
 394     gen->space_iterate(&blk, true);
 395   }
 396 };
 397 
 398 void CardTableRS::verify_space(Space* s, HeapWord* gen_boundary) {
 399   // We don't need to do young-gen spaces.
 400   if (s->end() <= gen_boundary) return;
 401   MemRegion used = s->used_region();
 402 
 403   jbyte* cur_entry = byte_for(used.start());
 404   jbyte* limit = byte_after(used.last());
 405   while (cur_entry < limit) {
 406     if (*cur_entry == CardTableModRefBS::clean_card) {
 407       jbyte* first_dirty = cur_entry+1;
 408       while (first_dirty < limit &&
 409              *first_dirty == CardTableModRefBS::clean_card) {
 410         first_dirty++;
 411       }
 412       // If the first object is a regular object, and it has a
 413       // young-to-old field, that would mark the previous card.
 414       HeapWord* boundary = addr_for(cur_entry);
 415       HeapWord* end = (first_dirty >= limit) ? used.end() : addr_for(first_dirty);
 416       HeapWord* boundary_block = s->block_start(boundary);
 417       HeapWord* begin = boundary;             // Until proven otherwise.
 418       HeapWord* start_block = boundary_block; // Until proven otherwise.
 419       if (boundary_block < boundary) {
 420         if (s->block_is_obj(boundary_block) && s->obj_is_alive(boundary_block)) {
 421           oop boundary_obj = oop(boundary_block);
 422           if (!boundary_obj->is_objArray() &&
 423               !boundary_obj->is_typeArray()) {
 424             guarantee(cur_entry > byte_for(used.start()),
 425                       "else boundary would be boundary_block");
 426             if (*byte_for(boundary_block) != CardTableModRefBS::clean_card) {
 427               begin = boundary_block + s->block_size(boundary_block);
 428               start_block = begin;
 429             }
 430           }
 431         }
 432       }
 433       // Now traverse objects until end.
 434       if (begin < end) {
 435         MemRegion mr(begin, end);
 436         VerifyCleanCardClosure verify_blk(gen_boundary, begin, end);
 437         for (HeapWord* cur = start_block; cur < end; cur += s->block_size(cur)) {
 438           if (s->block_is_obj(cur) && s->obj_is_alive(cur)) {
 439             oop(cur)->oop_iterate_no_header(&verify_blk, mr);
 440           }
 441         }
 442       }
 443       cur_entry = first_dirty;
 444     } else {
 445       // We'd normally expect that cur_youngergen_and_prev_nonclean_card
 446       // is a transient value, that cannot be in the card table
 447       // except during GC, and thus assert that:
 448       // guarantee(*cur_entry != cur_youngergen_and_prev_nonclean_card,
 449       //        "Illegal CT value");
 450       // That however, need not hold, as will become clear in the
 451       // following...
 452 
 453       // We'd normally expect that if we are in the parallel case,
 454       // we can't have left a prev value (which would be different
 455       // from the current value) in the card table, and so we'd like to
 456       // assert that:
 457       // guarantee(cur_youngergen_card_val() == youngergen_card
 458       //           || !is_prev_youngergen_card_val(*cur_entry),
 459       //           "Illegal CT value");
 460       // That, however, may not hold occasionally, because of
 461       // CMS or MSC in the old gen. To wit, consider the
 462       // following two simple illustrative scenarios:
 463       // (a) CMS: Consider the case where a large object L
 464       //     spanning several cards is allocated in the old
 465       //     gen, and has a young gen reference stored in it, dirtying
 466       //     some interior cards. A young collection scans the card,
 467       //     finds a young ref and installs a youngergenP_n value.
 468       //     L then goes dead. Now a CMS collection starts,
 469       //     finds L dead and sweeps it up. Assume that L is
 470       //     abutting _unallocated_blk, so _unallocated_blk is
 471       //     adjusted down to (below) L. Assume further that
 472       //     no young collection intervenes during this CMS cycle.
 473       //     The next young gen cycle will not get to look at this
 474       //     youngergenP_n card since it lies in the unoccupied
 475       //     part of the space.
 476       //     Some young collections later the blocks on this
 477       //     card can be re-allocated either due to direct allocation
 478       //     or due to absorbing promotions. At this time, the
 479       //     before-gc verification will fail the above assert.
 480       // (b) MSC: In this case, an object L with a young reference
 481       //     is on a card that (therefore) holds a youngergen_n value.
 482       //     Suppose also that L lies towards the end of the used
 483       //     the used space before GC. An MSC collection
 484       //     occurs that compacts to such an extent that this
 485       //     card is no longer in the occupied part of the space.
 486       //     Since current code in MSC does not always clear cards
 487       //     in the unused part of old gen, this stale youngergen_n
 488       //     value is left behind and can later be covered by
 489       //     an object when promotion or direct allocation
 490       //     re-allocates that part of the heap.
 491       //
 492       // Fortunately, the presence of such stale card values is
 493       // "only" a minor annoyance in that subsequent young collections
 494       // might needlessly scan such cards, but would still never corrupt
 495       // the heap as a result. However, it's likely not to be a significant
 496       // performance inhibitor in practice. For instance,
 497       // some recent measurements with unoccupied cards eagerly cleared
 498       // out to maintain this invariant, showed next to no
 499       // change in young collection times; of course one can construct
 500       // degenerate examples where the cost can be significant.)
 501       // Note, in particular, that if the "stale" card is modified
 502       // after re-allocation, it would be dirty, not "stale". Thus,
 503       // we can never have a younger ref in such a card and it is
 504       // safe not to scan that card in any collection. [As we see
 505       // below, we do some unnecessary scanning
 506       // in some cases in the current parallel scanning algorithm.]
 507       //
 508       // The main point below is that the parallel card scanning code
 509       // deals correctly with these stale card values. There are two main
 510       // cases to consider where we have a stale "younger gen" value and a
 511       // "derivative" case to consider, where we have a stale
 512       // "cur_younger_gen_and_prev_non_clean" value, as will become
 513       // apparent in the case analysis below.
 514       // o Case 1. If the stale value corresponds to a younger_gen_n
 515       //   value other than the cur_younger_gen value then the code
 516       //   treats this as being tantamount to a prev_younger_gen
 517       //   card. This means that the card may be unnecessarily scanned.
 518       //   There are two sub-cases to consider:
 519       //   o Case 1a. Let us say that the card is in the occupied part
 520       //     of the generation at the time the collection begins. In
 521       //     that case the card will be either cleared when it is scanned
 522       //     for young pointers, or will be set to cur_younger_gen as a
 523       //     result of promotion. (We have elided the normal case where
 524       //     the scanning thread and the promoting thread interleave
 525       //     possibly resulting in a transient
 526       //     cur_younger_gen_and_prev_non_clean value before settling
 527       //     to cur_younger_gen. [End Case 1a.]
 528       //   o Case 1b. Consider now the case when the card is in the unoccupied
 529       //     part of the space which becomes occupied because of promotions
 530       //     into it during the current young GC. In this case the card
 531       //     will never be scanned for young references. The current
 532       //     code will set the card value to either
 533       //     cur_younger_gen_and_prev_non_clean or leave
 534       //     it with its stale value -- because the promotions didn't
 535       //     result in any younger refs on that card. Of these two
 536       //     cases, the latter will be covered in Case 1a during
 537       //     a subsequent scan. To deal with the former case, we need
 538       //     to further consider how we deal with a stale value of
 539       //     cur_younger_gen_and_prev_non_clean in our case analysis
 540       //     below. This we do in Case 3 below. [End Case 1b]
 541       //   [End Case 1]
 542       // o Case 2. If the stale value corresponds to cur_younger_gen being
 543       //   a value not necessarily written by a current promotion, the
 544       //   card will not be scanned by the younger refs scanning code.
 545       //   (This is OK since as we argued above such cards cannot contain
 546       //   any younger refs.) The result is that this value will be
 547       //   treated as a prev_younger_gen value in a subsequent collection,
 548       //   which is addressed in Case 1 above. [End Case 2]
 549       // o Case 3. We here consider the "derivative" case from Case 1b. above
 550       //   because of which we may find a stale
 551       //   cur_younger_gen_and_prev_non_clean card value in the table.
 552       //   Once again, as in Case 1, we consider two subcases, depending
 553       //   on whether the card lies in the occupied or unoccupied part
 554       //   of the space at the start of the young collection.
 555       //   o Case 3a. Let us say the card is in the occupied part of
 556       //     the old gen at the start of the young collection. In that
 557       //     case, the card will be scanned by the younger refs scanning
 558       //     code which will set it to cur_younger_gen. In a subsequent
 559       //     scan, the card will be considered again and get its final
 560       //     correct value. [End Case 3a]
 561       //   o Case 3b. Now consider the case where the card is in the
 562       //     unoccupied part of the old gen, and is occupied as a result
 563       //     of promotions during thus young gc. In that case,
 564       //     the card will not be scanned for younger refs. The presence
 565       //     of newly promoted objects on the card will then result in
 566       //     its keeping the value cur_younger_gen_and_prev_non_clean
 567       //     value, which we have dealt with in Case 3 here. [End Case 3b]
 568       //   [End Case 3]
 569       //
 570       // (Please refer to the code in the helper class
 571       // ClearNonCleanCardWrapper and in CardTableModRefBS for details.)
 572       //
 573       // The informal arguments above can be tightened into a formal
 574       // correctness proof and it behooves us to write up such a proof,
 575       // or to use model checking to prove that there are no lingering
 576       // concerns.
 577       //
 578       // Clearly because of Case 3b one cannot bound the time for
 579       // which a card will retain what we have called a "stale" value.
 580       // However, one can obtain a Loose upper bound on the redundant
 581       // work as a result of such stale values. Note first that any
 582       // time a stale card lies in the occupied part of the space at
 583       // the start of the collection, it is scanned by younger refs
 584       // code and we can define a rank function on card values that
 585       // declines when this is so. Note also that when a card does not
 586       // lie in the occupied part of the space at the beginning of a
 587       // young collection, its rank can either decline or stay unchanged.
 588       // In this case, no extra work is done in terms of redundant
 589       // younger refs scanning of that card.
 590       // Then, the case analysis above reveals that, in the worst case,
 591       // any such stale card will be scanned unnecessarily at most twice.
 592       //
 593       // It is nonetheless advisable to try and get rid of some of this
 594       // redundant work in a subsequent (low priority) re-design of
 595       // the card-scanning code, if only to simplify the underlying
 596       // state machine analysis/proof. ysr 1/28/2002. XXX
 597       cur_entry++;
 598     }
 599   }
 600 }
 601 
 602 void CardTableRS::verify() {
 603   // At present, we only know how to verify the card table RS for
 604   // generational heaps.
 605   VerifyCTGenClosure blk(this);
 606   GenCollectedHeap::heap()->generation_iterate(&blk, false);
 607   _ct_bs->verify();
 608 }