1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "gc/cms/cmsCollectorPolicy.hpp"
  31 #include "gc/cms/cmsOopClosures.inline.hpp"
  32 #include "gc/cms/compactibleFreeListSpace.hpp"
  33 #include "gc/cms/concurrentMarkSweepGeneration.inline.hpp"
  34 #include "gc/cms/concurrentMarkSweepThread.hpp"
  35 #include "gc/cms/parNewGeneration.hpp"
  36 #include "gc/cms/vmCMSOperations.hpp"
  37 #include "gc/serial/genMarkSweep.hpp"
  38 #include "gc/serial/tenuredGeneration.hpp"
  39 #include "gc/shared/adaptiveSizePolicy.hpp"
  40 #include "gc/shared/cardGeneration.inline.hpp"
  41 #include "gc/shared/cardTableRS.hpp"
  42 #include "gc/shared/collectedHeap.inline.hpp"
  43 #include "gc/shared/collectorCounters.hpp"
  44 #include "gc/shared/collectorPolicy.hpp"
  45 #include "gc/shared/gcLocker.inline.hpp"
  46 #include "gc/shared/gcPolicyCounters.hpp"
  47 #include "gc/shared/gcTimer.hpp"
  48 #include "gc/shared/gcTrace.hpp"
  49 #include "gc/shared/gcTraceTime.hpp"
  50 #include "gc/shared/genCollectedHeap.hpp"
  51 #include "gc/shared/genOopClosures.inline.hpp"
  52 #include "gc/shared/isGCActiveMark.hpp"
  53 #include "gc/shared/referencePolicy.hpp"
  54 #include "gc/shared/strongRootsScope.hpp"
  55 #include "gc/shared/taskqueue.inline.hpp"
  56 #include "memory/allocation.hpp"
  57 #include "memory/iterator.inline.hpp"
  58 #include "memory/padded.hpp"
  59 #include "memory/resourceArea.hpp"
  60 #include "oops/oop.inline.hpp"
  61 #include "prims/jvmtiExport.hpp"
  62 #include "runtime/atomic.inline.hpp"
  63 #include "runtime/globals_extension.hpp"
  64 #include "runtime/handles.inline.hpp"
  65 #include "runtime/java.hpp"
  66 #include "runtime/orderAccess.inline.hpp"
  67 #include "runtime/vmThread.hpp"
  68 #include "services/memoryService.hpp"
  69 #include "services/runtimeService.hpp"
  70 #include "utilities/stack.inline.hpp"
  71 
  72 // statics
  73 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  74 bool CMSCollector::_full_gc_requested = false;
  75 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  76 
  77 //////////////////////////////////////////////////////////////////
  78 // In support of CMS/VM thread synchronization
  79 //////////////////////////////////////////////////////////////////
  80 // We split use of the CGC_lock into 2 "levels".
  81 // The low-level locking is of the usual CGC_lock monitor. We introduce
  82 // a higher level "token" (hereafter "CMS token") built on top of the
  83 // low level monitor (hereafter "CGC lock").
  84 // The token-passing protocol gives priority to the VM thread. The
  85 // CMS-lock doesn't provide any fairness guarantees, but clients
  86 // should ensure that it is only held for very short, bounded
  87 // durations.
  88 //
  89 // When either of the CMS thread or the VM thread is involved in
  90 // collection operations during which it does not want the other
  91 // thread to interfere, it obtains the CMS token.
  92 //
  93 // If either thread tries to get the token while the other has
  94 // it, that thread waits. However, if the VM thread and CMS thread
  95 // both want the token, then the VM thread gets priority while the
  96 // CMS thread waits. This ensures, for instance, that the "concurrent"
  97 // phases of the CMS thread's work do not block out the VM thread
  98 // for long periods of time as the CMS thread continues to hog
  99 // the token. (See bug 4616232).
 100 //
 101 // The baton-passing functions are, however, controlled by the
 102 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
 103 // and here the low-level CMS lock, not the high level token,
 104 // ensures mutual exclusion.
 105 //
 106 // Two important conditions that we have to satisfy:
 107 // 1. if a thread does a low-level wait on the CMS lock, then it
 108 //    relinquishes the CMS token if it were holding that token
 109 //    when it acquired the low-level CMS lock.
 110 // 2. any low-level notifications on the low-level lock
 111 //    should only be sent when a thread has relinquished the token.
 112 //
 113 // In the absence of either property, we'd have potential deadlock.
 114 //
 115 // We protect each of the CMS (concurrent and sequential) phases
 116 // with the CMS _token_, not the CMS _lock_.
 117 //
 118 // The only code protected by CMS lock is the token acquisition code
 119 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 120 // baton-passing code.
 121 //
 122 // Unfortunately, i couldn't come up with a good abstraction to factor and
 123 // hide the naked CGC_lock manipulation in the baton-passing code
 124 // further below. That's something we should try to do. Also, the proof
 125 // of correctness of this 2-level locking scheme is far from obvious,
 126 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 127 // that there may be a theoretical possibility of delay/starvation in the
 128 // low-level lock/wait/notify scheme used for the baton-passing because of
 129 // potential interference with the priority scheme embodied in the
 130 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 131 // invocation further below and marked with "XXX 20011219YSR".
 132 // Indeed, as we note elsewhere, this may become yet more slippery
 133 // in the presence of multiple CMS and/or multiple VM threads. XXX
 134 
 135 class CMSTokenSync: public StackObj {
 136  private:
 137   bool _is_cms_thread;
 138  public:
 139   CMSTokenSync(bool is_cms_thread):
 140     _is_cms_thread(is_cms_thread) {
 141     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 142            "Incorrect argument to constructor");
 143     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 144   }
 145 
 146   ~CMSTokenSync() {
 147     assert(_is_cms_thread ?
 148              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 149              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 150           "Incorrect state");
 151     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 152   }
 153 };
 154 
 155 // Convenience class that does a CMSTokenSync, and then acquires
 156 // upto three locks.
 157 class CMSTokenSyncWithLocks: public CMSTokenSync {
 158  private:
 159   // Note: locks are acquired in textual declaration order
 160   // and released in the opposite order
 161   MutexLockerEx _locker1, _locker2, _locker3;
 162  public:
 163   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 164                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 165     CMSTokenSync(is_cms_thread),
 166     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 167     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 168     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 169   { }
 170 };
 171 
 172 
 173 //////////////////////////////////////////////////////////////////
 174 //  Concurrent Mark-Sweep Generation /////////////////////////////
 175 //////////////////////////////////////////////////////////////////
 176 
 177 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 178 
 179 // This struct contains per-thread things necessary to support parallel
 180 // young-gen collection.
 181 class CMSParGCThreadState: public CHeapObj<mtGC> {
 182  public:
 183   CFLS_LAB lab;
 184   PromotionInfo promo;
 185 
 186   // Constructor.
 187   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 188     promo.setSpace(cfls);
 189   }
 190 };
 191 
 192 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 193      ReservedSpace rs, size_t initial_byte_size,
 194      CardTableRS* ct, bool use_adaptive_freelists,
 195      FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
 196   CardGeneration(rs, initial_byte_size, ct),
 197   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 198   _did_compact(false)
 199 {
 200   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 201   HeapWord* end    = (HeapWord*) _virtual_space.high();
 202 
 203   _direct_allocated_words = 0;
 204   NOT_PRODUCT(
 205     _numObjectsPromoted = 0;
 206     _numWordsPromoted = 0;
 207     _numObjectsAllocated = 0;
 208     _numWordsAllocated = 0;
 209   )
 210 
 211   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
 212                                            use_adaptive_freelists,
 213                                            dictionaryChoice);
 214   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 215   _cmsSpace->_gen = this;
 216 
 217   _gc_stats = new CMSGCStats();
 218 
 219   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 220   // offsets match. The ability to tell free chunks from objects
 221   // depends on this property.
 222   debug_only(
 223     FreeChunk* junk = NULL;
 224     assert(UseCompressedClassPointers ||
 225            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 226            "Offset of FreeChunk::_prev within FreeChunk must match"
 227            "  that of OopDesc::_klass within OopDesc");
 228   )
 229 
 230   _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadState*, ParallelGCThreads, mtGC);
 231   for (uint i = 0; i < ParallelGCThreads; i++) {
 232     _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 233   }
 234 
 235   _incremental_collection_failed = false;
 236   // The "dilatation_factor" is the expansion that can occur on
 237   // account of the fact that the minimum object size in the CMS
 238   // generation may be larger than that in, say, a contiguous young
 239   //  generation.
 240   // Ideally, in the calculation below, we'd compute the dilatation
 241   // factor as: MinChunkSize/(promoting_gen's min object size)
 242   // Since we do not have such a general query interface for the
 243   // promoting generation, we'll instead just use the minimum
 244   // object size (which today is a header's worth of space);
 245   // note that all arithmetic is in units of HeapWords.
 246   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 247   assert(_dilatation_factor >= 1.0, "from previous assert");
 248 }
 249 
 250 
 251 // The field "_initiating_occupancy" represents the occupancy percentage
 252 // at which we trigger a new collection cycle.  Unless explicitly specified
 253 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 254 // is calculated by:
 255 //
 256 //   Let "f" be MinHeapFreeRatio in
 257 //
 258 //    _initiating_occupancy = 100-f +
 259 //                           f * (CMSTriggerRatio/100)
 260 //   where CMSTriggerRatio is the argument "tr" below.
 261 //
 262 // That is, if we assume the heap is at its desired maximum occupancy at the
 263 // end of a collection, we let CMSTriggerRatio of the (purported) free
 264 // space be allocated before initiating a new collection cycle.
 265 //
 266 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 267   assert(io <= 100 && tr <= 100, "Check the arguments");
 268   if (io >= 0) {
 269     _initiating_occupancy = (double)io / 100.0;
 270   } else {
 271     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 272                              (double)(tr * MinHeapFreeRatio) / 100.0)
 273                             / 100.0;
 274   }
 275 }
 276 
 277 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 278   assert(collector() != NULL, "no collector");
 279   collector()->ref_processor_init();
 280 }
 281 
 282 void CMSCollector::ref_processor_init() {
 283   if (_ref_processor == NULL) {
 284     // Allocate and initialize a reference processor
 285     _ref_processor =
 286       new ReferenceProcessor(_span,                               // span
 287                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 288                              (int) ParallelGCThreads,             // mt processing degree
 289                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 290                              (int) MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 291                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 292                              &_is_alive_closure);                 // closure for liveness info
 293     // Initialize the _ref_processor field of CMSGen
 294     _cmsGen->set_ref_processor(_ref_processor);
 295 
 296   }
 297 }
 298 
 299 AdaptiveSizePolicy* CMSCollector::size_policy() {
 300   GenCollectedHeap* gch = GenCollectedHeap::heap();
 301   return gch->gen_policy()->size_policy();
 302 }
 303 
 304 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 305 
 306   const char* gen_name = "old";
 307   GenCollectorPolicy* gcp = (GenCollectorPolicy*) GenCollectedHeap::heap()->collector_policy();
 308 
 309   // Generation Counters - generation 1, 1 subspace
 310   _gen_counters = new GenerationCounters(gen_name, 1, 1,
 311       gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
 312 
 313   _space_counters = new GSpaceCounters(gen_name, 0,
 314                                        _virtual_space.reserved_size(),
 315                                        this, _gen_counters);
 316 }
 317 
 318 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 319   _cms_gen(cms_gen)
 320 {
 321   assert(alpha <= 100, "bad value");
 322   _saved_alpha = alpha;
 323 
 324   // Initialize the alphas to the bootstrap value of 100.
 325   _gc0_alpha = _cms_alpha = 100;
 326 
 327   _cms_begin_time.update();
 328   _cms_end_time.update();
 329 
 330   _gc0_duration = 0.0;
 331   _gc0_period = 0.0;
 332   _gc0_promoted = 0;
 333 
 334   _cms_duration = 0.0;
 335   _cms_period = 0.0;
 336   _cms_allocated = 0;
 337 
 338   _cms_used_at_gc0_begin = 0;
 339   _cms_used_at_gc0_end = 0;
 340   _allow_duty_cycle_reduction = false;
 341   _valid_bits = 0;
 342 }
 343 
 344 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 345   // TBD: CR 6909490
 346   return 1.0;
 347 }
 348 
 349 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 350 }
 351 
 352 // If promotion failure handling is on use
 353 // the padded average size of the promotion for each
 354 // young generation collection.
 355 double CMSStats::time_until_cms_gen_full() const {
 356   size_t cms_free = _cms_gen->cmsSpace()->free();
 357   GenCollectedHeap* gch = GenCollectedHeap::heap();
 358   size_t expected_promotion = MIN2(gch->young_gen()->capacity(),
 359                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 360   if (cms_free > expected_promotion) {
 361     // Start a cms collection if there isn't enough space to promote
 362     // for the next minor collection.  Use the padded average as
 363     // a safety factor.
 364     cms_free -= expected_promotion;
 365 
 366     // Adjust by the safety factor.
 367     double cms_free_dbl = (double)cms_free;
 368     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0;
 369     // Apply a further correction factor which tries to adjust
 370     // for recent occurance of concurrent mode failures.
 371     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 372     cms_free_dbl = cms_free_dbl * cms_adjustment;
 373 
 374     if (PrintGCDetails && Verbose) {
 375       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
 376         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 377         cms_free, expected_promotion);
 378       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
 379         cms_free_dbl, cms_consumption_rate() + 1.0);
 380     }
 381     // Add 1 in case the consumption rate goes to zero.
 382     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 383   }
 384   return 0.0;
 385 }
 386 
 387 // Compare the duration of the cms collection to the
 388 // time remaining before the cms generation is empty.
 389 // Note that the time from the start of the cms collection
 390 // to the start of the cms sweep (less than the total
 391 // duration of the cms collection) can be used.  This
 392 // has been tried and some applications experienced
 393 // promotion failures early in execution.  This was
 394 // possibly because the averages were not accurate
 395 // enough at the beginning.
 396 double CMSStats::time_until_cms_start() const {
 397   // We add "gc0_period" to the "work" calculation
 398   // below because this query is done (mostly) at the
 399   // end of a scavenge, so we need to conservatively
 400   // account for that much possible delay
 401   // in the query so as to avoid concurrent mode failures
 402   // due to starting the collection just a wee bit too
 403   // late.
 404   double work = cms_duration() + gc0_period();
 405   double deadline = time_until_cms_gen_full();
 406   // If a concurrent mode failure occurred recently, we want to be
 407   // more conservative and halve our expected time_until_cms_gen_full()
 408   if (work > deadline) {
 409     if (Verbose && PrintGCDetails) {
 410       gclog_or_tty->print(
 411         " CMSCollector: collect because of anticipated promotion "
 412         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
 413         gc0_period(), time_until_cms_gen_full());
 414     }
 415     return 0.0;
 416   }
 417   return work - deadline;
 418 }
 419 
 420 #ifndef PRODUCT
 421 void CMSStats::print_on(outputStream *st) const {
 422   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 423   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 424                gc0_duration(), gc0_period(), gc0_promoted());
 425   st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 426             cms_duration(), cms_period(), cms_allocated());
 427   st->print(",cms_since_beg=%g,cms_since_end=%g",
 428             cms_time_since_begin(), cms_time_since_end());
 429   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 430             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 431 
 432   if (valid()) {
 433     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 434               promotion_rate(), cms_allocation_rate());
 435     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 436               cms_consumption_rate(), time_until_cms_gen_full());
 437   }
 438   st->print(" ");
 439 }
 440 #endif // #ifndef PRODUCT
 441 
 442 CMSCollector::CollectorState CMSCollector::_collectorState =
 443                              CMSCollector::Idling;
 444 bool CMSCollector::_foregroundGCIsActive = false;
 445 bool CMSCollector::_foregroundGCShouldWait = false;
 446 
 447 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 448                            CardTableRS*                   ct,
 449                            ConcurrentMarkSweepPolicy*     cp):
 450   _cmsGen(cmsGen),
 451   _ct(ct),
 452   _ref_processor(NULL),    // will be set later
 453   _conc_workers(NULL),     // may be set later
 454   _abort_preclean(false),
 455   _start_sampling(false),
 456   _between_prologue_and_epilogue(false),
 457   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 458   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 459                  -1 /* lock-free */, "No_lock" /* dummy */),
 460   _modUnionClosurePar(&_modUnionTable),
 461   // Adjust my span to cover old (cms) gen
 462   _span(cmsGen->reserved()),
 463   // Construct the is_alive_closure with _span & markBitMap
 464   _is_alive_closure(_span, &_markBitMap),
 465   _restart_addr(NULL),
 466   _overflow_list(NULL),
 467   _stats(cmsGen),
 468   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
 469                              //verify that this lock should be acquired with safepoint check.
 470                              Monitor::_safepoint_check_sometimes)),
 471   _eden_chunk_array(NULL),     // may be set in ctor body
 472   _eden_chunk_capacity(0),     // -- ditto --
 473   _eden_chunk_index(0),        // -- ditto --
 474   _survivor_plab_array(NULL),  // -- ditto --
 475   _survivor_chunk_array(NULL), // -- ditto --
 476   _survivor_chunk_capacity(0), // -- ditto --
 477   _survivor_chunk_index(0),    // -- ditto --
 478   _ser_pmc_preclean_ovflw(0),
 479   _ser_kac_preclean_ovflw(0),
 480   _ser_pmc_remark_ovflw(0),
 481   _par_pmc_remark_ovflw(0),
 482   _ser_kac_ovflw(0),
 483   _par_kac_ovflw(0),
 484 #ifndef PRODUCT
 485   _num_par_pushes(0),
 486 #endif
 487   _collection_count_start(0),
 488   _verifying(false),
 489   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 490   _completed_initialization(false),
 491   _collector_policy(cp),
 492   _should_unload_classes(CMSClassUnloadingEnabled),
 493   _concurrent_cycles_since_last_unload(0),
 494   _roots_scanning_options(GenCollectedHeap::SO_None),
 495   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 496   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 497   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 498   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 499   _cms_start_registered(false)
 500 {
 501   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 502     ExplicitGCInvokesConcurrent = true;
 503   }
 504   // Now expand the span and allocate the collection support structures
 505   // (MUT, marking bit map etc.) to cover both generations subject to
 506   // collection.
 507 
 508   // For use by dirty card to oop closures.
 509   _cmsGen->cmsSpace()->set_collector(this);
 510 
 511   // Allocate MUT and marking bit map
 512   {
 513     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 514     if (!_markBitMap.allocate(_span)) {
 515       warning("Failed to allocate CMS Bit Map");
 516       return;
 517     }
 518     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 519   }
 520   {
 521     _modUnionTable.allocate(_span);
 522     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 523   }
 524 
 525   if (!_markStack.allocate(MarkStackSize)) {
 526     warning("Failed to allocate CMS Marking Stack");
 527     return;
 528   }
 529 
 530   // Support for multi-threaded concurrent phases
 531   if (CMSConcurrentMTEnabled) {
 532     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 533       // just for now
 534       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4);
 535     }
 536     if (ConcGCThreads > 1) {
 537       _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
 538                                  ConcGCThreads, true);
 539       if (_conc_workers == NULL) {
 540         warning("GC/CMS: _conc_workers allocation failure: "
 541               "forcing -CMSConcurrentMTEnabled");
 542         CMSConcurrentMTEnabled = false;
 543       } else {
 544         _conc_workers->initialize_workers();
 545       }
 546     } else {
 547       CMSConcurrentMTEnabled = false;
 548     }
 549   }
 550   if (!CMSConcurrentMTEnabled) {
 551     ConcGCThreads = 0;
 552   } else {
 553     // Turn off CMSCleanOnEnter optimization temporarily for
 554     // the MT case where it's not fixed yet; see 6178663.
 555     CMSCleanOnEnter = false;
 556   }
 557   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 558          "Inconsistency");
 559 
 560   // Parallel task queues; these are shared for the
 561   // concurrent and stop-world phases of CMS, but
 562   // are not shared with parallel scavenge (ParNew).
 563   {
 564     uint i;
 565     uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads);
 566 
 567     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 568          || ParallelRefProcEnabled)
 569         && num_queues > 0) {
 570       _task_queues = new OopTaskQueueSet(num_queues);
 571       if (_task_queues == NULL) {
 572         warning("task_queues allocation failure.");
 573         return;
 574       }
 575       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 576       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 577       for (i = 0; i < num_queues; i++) {
 578         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 579         if (q == NULL) {
 580           warning("work_queue allocation failure.");
 581           return;
 582         }
 583         _task_queues->register_queue(i, q);
 584       }
 585       for (i = 0; i < num_queues; i++) {
 586         _task_queues->queue(i)->initialize();
 587         _hash_seed[i] = 17;  // copied from ParNew
 588       }
 589     }
 590   }
 591 
 592   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 593 
 594   // Clip CMSBootstrapOccupancy between 0 and 100.
 595   _bootstrap_occupancy = ((double)CMSBootstrapOccupancy)/(double)100;
 596 
 597   // Now tell CMS generations the identity of their collector
 598   ConcurrentMarkSweepGeneration::set_collector(this);
 599 
 600   // Create & start a CMS thread for this CMS collector
 601   _cmsThread = ConcurrentMarkSweepThread::start(this);
 602   assert(cmsThread() != NULL, "CMS Thread should have been created");
 603   assert(cmsThread()->collector() == this,
 604          "CMS Thread should refer to this gen");
 605   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 606 
 607   // Support for parallelizing young gen rescan
 608   GenCollectedHeap* gch = GenCollectedHeap::heap();
 609   assert(gch->young_gen()->kind() == Generation::ParNew, "CMS can only be used with ParNew");
 610   _young_gen = (ParNewGeneration*)gch->young_gen();
 611   if (gch->supports_inline_contig_alloc()) {
 612     _top_addr = gch->top_addr();
 613     _end_addr = gch->end_addr();
 614     assert(_young_gen != NULL, "no _young_gen");
 615     _eden_chunk_index = 0;
 616     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
 617     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 618   }
 619 
 620   // Support for parallelizing survivor space rescan
 621   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 622     const size_t max_plab_samples =
 623       ((DefNewGeneration*)_young_gen)->max_survivor_size() / plab_sample_minimum_size();
 624 
 625     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 626     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples, mtGC);
 627     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 628     _survivor_chunk_capacity = 2*max_plab_samples;
 629     for (uint i = 0; i < ParallelGCThreads; i++) {
 630       HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 631       ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples);
 632       assert(cur->end() == 0, "Should be 0");
 633       assert(cur->array() == vec, "Should be vec");
 634       assert(cur->capacity() == max_plab_samples, "Error");
 635     }
 636   }
 637 
 638   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 639   _gc_counters = new CollectorCounters("CMS", 1);
 640   _completed_initialization = true;
 641   _inter_sweep_timer.start();  // start of time
 642 }
 643 
 644 size_t CMSCollector::plab_sample_minimum_size() {
 645   // The default value of MinTLABSize is 2k, but there is
 646   // no way to get the default value if the flag has been overridden.
 647   return MAX2(ThreadLocalAllocBuffer::min_size() * HeapWordSize, 2 * K);
 648 }
 649 
 650 const char* ConcurrentMarkSweepGeneration::name() const {
 651   return "concurrent mark-sweep generation";
 652 }
 653 void ConcurrentMarkSweepGeneration::update_counters() {
 654   if (UsePerfData) {
 655     _space_counters->update_all();
 656     _gen_counters->update_all();
 657   }
 658 }
 659 
 660 // this is an optimized version of update_counters(). it takes the
 661 // used value as a parameter rather than computing it.
 662 //
 663 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 664   if (UsePerfData) {
 665     _space_counters->update_used(used);
 666     _space_counters->update_capacity();
 667     _gen_counters->update_all();
 668   }
 669 }
 670 
 671 void ConcurrentMarkSweepGeneration::print() const {
 672   Generation::print();
 673   cmsSpace()->print();
 674 }
 675 
 676 #ifndef PRODUCT
 677 void ConcurrentMarkSweepGeneration::print_statistics() {
 678   cmsSpace()->printFLCensus(0);
 679 }
 680 #endif
 681 
 682 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
 683   GenCollectedHeap* gch = GenCollectedHeap::heap();
 684   if (PrintGCDetails) {
 685     // I didn't want to change the logging when removing the level concept,
 686     // but I guess this logging could say "old" or something instead of "1".
 687     assert(this == gch->old_gen(),
 688            "The CMS generation should be the old generation");
 689     uint level = 1;
 690     if (Verbose) {
 691       gclog_or_tty->print("[%u %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
 692         level, short_name(), s, used(), capacity());
 693     } else {
 694       gclog_or_tty->print("[%u %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
 695         level, short_name(), s, used() / K, capacity() / K);
 696     }
 697   }
 698   if (Verbose) {
 699     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
 700               gch->used(), gch->capacity());
 701   } else {
 702     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
 703               gch->used() / K, gch->capacity() / K);
 704   }
 705 }
 706 
 707 size_t
 708 ConcurrentMarkSweepGeneration::contiguous_available() const {
 709   // dld proposes an improvement in precision here. If the committed
 710   // part of the space ends in a free block we should add that to
 711   // uncommitted size in the calculation below. Will make this
 712   // change later, staying with the approximation below for the
 713   // time being. -- ysr.
 714   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 715 }
 716 
 717 size_t
 718 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 719   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 720 }
 721 
 722 size_t ConcurrentMarkSweepGeneration::max_available() const {
 723   return free() + _virtual_space.uncommitted_size();
 724 }
 725 
 726 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 727   size_t available = max_available();
 728   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 729   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 730   if (Verbose && PrintGCDetails) {
 731     gclog_or_tty->print_cr(
 732       "CMS: promo attempt is%s safe: available("SIZE_FORMAT") %s av_promo("SIZE_FORMAT"),"
 733       "max_promo("SIZE_FORMAT")",
 734       res? "":" not", available, res? ">=":"<",
 735       av_promo, max_promotion_in_bytes);
 736   }
 737   return res;
 738 }
 739 
 740 // At a promotion failure dump information on block layout in heap
 741 // (cms old generation).
 742 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 743   if (CMSDumpAtPromotionFailure) {
 744     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
 745   }
 746 }
 747 
 748 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 749   // Clear the promotion information.  These pointers can be adjusted
 750   // along with all the other pointers into the heap but
 751   // compaction is expected to be a rare event with
 752   // a heap using cms so don't do it without seeing the need.
 753   for (uint i = 0; i < ParallelGCThreads; i++) {
 754     _par_gc_thread_states[i]->promo.reset();
 755   }
 756 }
 757 
 758 void ConcurrentMarkSweepGeneration::compute_new_size() {
 759   assert_locked_or_safepoint(Heap_lock);
 760 
 761   // If incremental collection failed, we just want to expand
 762   // to the limit.
 763   if (incremental_collection_failed()) {
 764     clear_incremental_collection_failed();
 765     grow_to_reserved();
 766     return;
 767   }
 768 
 769   // The heap has been compacted but not reset yet.
 770   // Any metric such as free() or used() will be incorrect.
 771 
 772   CardGeneration::compute_new_size();
 773 
 774   // Reset again after a possible resizing
 775   if (did_compact()) {
 776     cmsSpace()->reset_after_compaction();
 777   }
 778 }
 779 
 780 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 781   assert_locked_or_safepoint(Heap_lock);
 782 
 783   // If incremental collection failed, we just want to expand
 784   // to the limit.
 785   if (incremental_collection_failed()) {
 786     clear_incremental_collection_failed();
 787     grow_to_reserved();
 788     return;
 789   }
 790 
 791   double free_percentage = ((double) free()) / capacity();
 792   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 793   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 794 
 795   // compute expansion delta needed for reaching desired free percentage
 796   if (free_percentage < desired_free_percentage) {
 797     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 798     assert(desired_capacity >= capacity(), "invalid expansion size");
 799     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 800     if (PrintGCDetails && Verbose) {
 801       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 802       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
 803       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
 804       gclog_or_tty->print_cr("  Desired free fraction %f", desired_free_percentage);
 805       gclog_or_tty->print_cr("  Maximum free fraction %f", maximum_free_percentage);
 806       gclog_or_tty->print_cr("  Capacity "SIZE_FORMAT, capacity() / 1000);
 807       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT, desired_capacity / 1000);
 808       GenCollectedHeap* gch = GenCollectedHeap::heap();
 809       assert(this == gch->_old_gen, "The CMS generation should always be the old generation");
 810       size_t young_size = gch->_young_gen->capacity();
 811       gclog_or_tty->print_cr("  Young gen size "SIZE_FORMAT, young_size / 1000);
 812       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT, unsafe_max_alloc_nogc() / 1000);
 813       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT, contiguous_available() / 1000);
 814       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)", expand_bytes);
 815     }
 816     // safe if expansion fails
 817     expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 818     if (PrintGCDetails && Verbose) {
 819       gclog_or_tty->print_cr("  Expanded free fraction %f",
 820         ((double) free()) / capacity());
 821     }
 822   } else {
 823     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 824     assert(desired_capacity <= capacity(), "invalid expansion size");
 825     size_t shrink_bytes = capacity() - desired_capacity;
 826     // Don't shrink unless the delta is greater than the minimum shrink we want
 827     if (shrink_bytes >= MinHeapDeltaBytes) {
 828       shrink_free_list_by(shrink_bytes);
 829     }
 830   }
 831 }
 832 
 833 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 834   return cmsSpace()->freelistLock();
 835 }
 836 
 837 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
 838                                                   bool   tlab) {
 839   CMSSynchronousYieldRequest yr;
 840   MutexLockerEx x(freelistLock(),
 841                   Mutex::_no_safepoint_check_flag);
 842   return have_lock_and_allocate(size, tlab);
 843 }
 844 
 845 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
 846                                                   bool   tlab /* ignored */) {
 847   assert_lock_strong(freelistLock());
 848   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
 849   HeapWord* res = cmsSpace()->allocate(adjustedSize);
 850   // Allocate the object live (grey) if the background collector has
 851   // started marking. This is necessary because the marker may
 852   // have passed this address and consequently this object will
 853   // not otherwise be greyed and would be incorrectly swept up.
 854   // Note that if this object contains references, the writing
 855   // of those references will dirty the card containing this object
 856   // allowing the object to be blackened (and its references scanned)
 857   // either during a preclean phase or at the final checkpoint.
 858   if (res != NULL) {
 859     // We may block here with an uninitialized object with
 860     // its mark-bit or P-bits not yet set. Such objects need
 861     // to be safely navigable by block_start().
 862     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
 863     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
 864     collector()->direct_allocated(res, adjustedSize);
 865     _direct_allocated_words += adjustedSize;
 866     // allocation counters
 867     NOT_PRODUCT(
 868       _numObjectsAllocated++;
 869       _numWordsAllocated += (int)adjustedSize;
 870     )
 871   }
 872   return res;
 873 }
 874 
 875 // In the case of direct allocation by mutators in a generation that
 876 // is being concurrently collected, the object must be allocated
 877 // live (grey) if the background collector has started marking.
 878 // This is necessary because the marker may
 879 // have passed this address and consequently this object will
 880 // not otherwise be greyed and would be incorrectly swept up.
 881 // Note that if this object contains references, the writing
 882 // of those references will dirty the card containing this object
 883 // allowing the object to be blackened (and its references scanned)
 884 // either during a preclean phase or at the final checkpoint.
 885 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
 886   assert(_markBitMap.covers(start, size), "Out of bounds");
 887   if (_collectorState >= Marking) {
 888     MutexLockerEx y(_markBitMap.lock(),
 889                     Mutex::_no_safepoint_check_flag);
 890     // [see comments preceding SweepClosure::do_blk() below for details]
 891     //
 892     // Can the P-bits be deleted now?  JJJ
 893     //
 894     // 1. need to mark the object as live so it isn't collected
 895     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
 896     // 3. need to mark the end of the object so marking, precleaning or sweeping
 897     //    can skip over uninitialized or unparsable objects. An allocated
 898     //    object is considered uninitialized for our purposes as long as
 899     //    its klass word is NULL.  All old gen objects are parsable
 900     //    as soon as they are initialized.)
 901     _markBitMap.mark(start);          // object is live
 902     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
 903     _markBitMap.mark(start + size - 1);
 904                                       // mark end of object
 905   }
 906   // check that oop looks uninitialized
 907   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
 908 }
 909 
 910 void CMSCollector::promoted(bool par, HeapWord* start,
 911                             bool is_obj_array, size_t obj_size) {
 912   assert(_markBitMap.covers(start), "Out of bounds");
 913   // See comment in direct_allocated() about when objects should
 914   // be allocated live.
 915   if (_collectorState >= Marking) {
 916     // we already hold the marking bit map lock, taken in
 917     // the prologue
 918     if (par) {
 919       _markBitMap.par_mark(start);
 920     } else {
 921       _markBitMap.mark(start);
 922     }
 923     // We don't need to mark the object as uninitialized (as
 924     // in direct_allocated above) because this is being done with the
 925     // world stopped and the object will be initialized by the
 926     // time the marking, precleaning or sweeping get to look at it.
 927     // But see the code for copying objects into the CMS generation,
 928     // where we need to ensure that concurrent readers of the
 929     // block offset table are able to safely navigate a block that
 930     // is in flux from being free to being allocated (and in
 931     // transition while being copied into) and subsequently
 932     // becoming a bona-fide object when the copy/promotion is complete.
 933     assert(SafepointSynchronize::is_at_safepoint(),
 934            "expect promotion only at safepoints");
 935 
 936     if (_collectorState < Sweeping) {
 937       // Mark the appropriate cards in the modUnionTable, so that
 938       // this object gets scanned before the sweep. If this is
 939       // not done, CMS generation references in the object might
 940       // not get marked.
 941       // For the case of arrays, which are otherwise precisely
 942       // marked, we need to dirty the entire array, not just its head.
 943       if (is_obj_array) {
 944         // The [par_]mark_range() method expects mr.end() below to
 945         // be aligned to the granularity of a bit's representation
 946         // in the heap. In the case of the MUT below, that's a
 947         // card size.
 948         MemRegion mr(start,
 949                      (HeapWord*)round_to((intptr_t)(start + obj_size),
 950                         CardTableModRefBS::card_size /* bytes */));
 951         if (par) {
 952           _modUnionTable.par_mark_range(mr);
 953         } else {
 954           _modUnionTable.mark_range(mr);
 955         }
 956       } else {  // not an obj array; we can just mark the head
 957         if (par) {
 958           _modUnionTable.par_mark(start);
 959         } else {
 960           _modUnionTable.mark(start);
 961         }
 962       }
 963     }
 964   }
 965 }
 966 
 967 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
 968   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
 969   // allocate, copy and if necessary update promoinfo --
 970   // delegate to underlying space.
 971   assert_lock_strong(freelistLock());
 972 
 973 #ifndef PRODUCT
 974   if (GenCollectedHeap::heap()->promotion_should_fail()) {
 975     return NULL;
 976   }
 977 #endif  // #ifndef PRODUCT
 978 
 979   oop res = _cmsSpace->promote(obj, obj_size);
 980   if (res == NULL) {
 981     // expand and retry
 982     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
 983     expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
 984     // Since this is the old generation, we don't try to promote
 985     // into a more senior generation.
 986     res = _cmsSpace->promote(obj, obj_size);
 987   }
 988   if (res != NULL) {
 989     // See comment in allocate() about when objects should
 990     // be allocated live.
 991     assert(obj->is_oop(), "Will dereference klass pointer below");
 992     collector()->promoted(false,           // Not parallel
 993                           (HeapWord*)res, obj->is_objArray(), obj_size);
 994     // promotion counters
 995     NOT_PRODUCT(
 996       _numObjectsPromoted++;
 997       _numWordsPromoted +=
 998         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
 999     )
1000   }
1001   return res;
1002 }
1003 
1004 
1005 // IMPORTANT: Notes on object size recognition in CMS.
1006 // ---------------------------------------------------
1007 // A block of storage in the CMS generation is always in
1008 // one of three states. A free block (FREE), an allocated
1009 // object (OBJECT) whose size() method reports the correct size,
1010 // and an intermediate state (TRANSIENT) in which its size cannot
1011 // be accurately determined.
1012 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
1013 // -----------------------------------------------------
1014 // FREE:      klass_word & 1 == 1; mark_word holds block size
1015 //
1016 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
1017 //            obj->size() computes correct size
1018 //
1019 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1020 //
1021 // STATE IDENTIFICATION: (64 bit+COOPS)
1022 // ------------------------------------
1023 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
1024 //
1025 // OBJECT:    klass_word installed; klass_word != 0;
1026 //            obj->size() computes correct size
1027 //
1028 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1029 //
1030 //
1031 // STATE TRANSITION DIAGRAM
1032 //
1033 //        mut / parnew                     mut  /  parnew
1034 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1035 //  ^                                                                   |
1036 //  |------------------------ DEAD <------------------------------------|
1037 //         sweep                            mut
1038 //
1039 // While a block is in TRANSIENT state its size cannot be determined
1040 // so readers will either need to come back later or stall until
1041 // the size can be determined. Note that for the case of direct
1042 // allocation, P-bits, when available, may be used to determine the
1043 // size of an object that may not yet have been initialized.
1044 
1045 // Things to support parallel young-gen collection.
1046 oop
1047 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1048                                            oop old, markOop m,
1049                                            size_t word_sz) {
1050 #ifndef PRODUCT
1051   if (GenCollectedHeap::heap()->promotion_should_fail()) {
1052     return NULL;
1053   }
1054 #endif  // #ifndef PRODUCT
1055 
1056   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1057   PromotionInfo* promoInfo = &ps->promo;
1058   // if we are tracking promotions, then first ensure space for
1059   // promotion (including spooling space for saving header if necessary).
1060   // then allocate and copy, then track promoted info if needed.
1061   // When tracking (see PromotionInfo::track()), the mark word may
1062   // be displaced and in this case restoration of the mark word
1063   // occurs in the (oop_since_save_marks_)iterate phase.
1064   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1065     // Out of space for allocating spooling buffers;
1066     // try expanding and allocating spooling buffers.
1067     if (!expand_and_ensure_spooling_space(promoInfo)) {
1068       return NULL;
1069     }
1070   }
1071   assert(promoInfo->has_spooling_space(), "Control point invariant");
1072   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1073   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1074   if (obj_ptr == NULL) {
1075      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1076      if (obj_ptr == NULL) {
1077        return NULL;
1078      }
1079   }
1080   oop obj = oop(obj_ptr);
1081   OrderAccess::storestore();
1082   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1083   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1084   // IMPORTANT: See note on object initialization for CMS above.
1085   // Otherwise, copy the object.  Here we must be careful to insert the
1086   // klass pointer last, since this marks the block as an allocated object.
1087   // Except with compressed oops it's the mark word.
1088   HeapWord* old_ptr = (HeapWord*)old;
1089   // Restore the mark word copied above.
1090   obj->set_mark(m);
1091   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1092   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1093   OrderAccess::storestore();
1094 
1095   if (UseCompressedClassPointers) {
1096     // Copy gap missed by (aligned) header size calculation below
1097     obj->set_klass_gap(old->klass_gap());
1098   }
1099   if (word_sz > (size_t)oopDesc::header_size()) {
1100     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1101                                  obj_ptr + oopDesc::header_size(),
1102                                  word_sz - oopDesc::header_size());
1103   }
1104 
1105   // Now we can track the promoted object, if necessary.  We take care
1106   // to delay the transition from uninitialized to full object
1107   // (i.e., insertion of klass pointer) until after, so that it
1108   // atomically becomes a promoted object.
1109   if (promoInfo->tracking()) {
1110     promoInfo->track((PromotedObject*)obj, old->klass());
1111   }
1112   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1113   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1114   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1115 
1116   // Finally, install the klass pointer (this should be volatile).
1117   OrderAccess::storestore();
1118   obj->set_klass(old->klass());
1119   // We should now be able to calculate the right size for this object
1120   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1121 
1122   collector()->promoted(true,          // parallel
1123                         obj_ptr, old->is_objArray(), word_sz);
1124 
1125   NOT_PRODUCT(
1126     Atomic::inc_ptr(&_numObjectsPromoted);
1127     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1128   )
1129 
1130   return obj;
1131 }
1132 
1133 void
1134 ConcurrentMarkSweepGeneration::
1135 par_promote_alloc_done(int thread_num) {
1136   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1137   ps->lab.retire(thread_num);
1138 }
1139 
1140 void
1141 ConcurrentMarkSweepGeneration::
1142 par_oop_since_save_marks_iterate_done(int thread_num) {
1143   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1144   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1145   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1146 }
1147 
1148 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1149                                                    size_t size,
1150                                                    bool   tlab)
1151 {
1152   // We allow a STW collection only if a full
1153   // collection was requested.
1154   return full || should_allocate(size, tlab); // FIX ME !!!
1155   // This and promotion failure handling are connected at the
1156   // hip and should be fixed by untying them.
1157 }
1158 
1159 bool CMSCollector::shouldConcurrentCollect() {
1160   if (_full_gc_requested) {
1161     if (Verbose && PrintGCDetails) {
1162       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
1163                              " gc request (or gc_locker)");
1164     }
1165     return true;
1166   }
1167 
1168   FreelistLocker x(this);
1169   // ------------------------------------------------------------------
1170   // Print out lots of information which affects the initiation of
1171   // a collection.
1172   if (PrintCMSInitiationStatistics && stats().valid()) {
1173     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
1174     gclog_or_tty->stamp();
1175     gclog_or_tty->cr();
1176     stats().print_on(gclog_or_tty);
1177     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
1178       stats().time_until_cms_gen_full());
1179     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
1180     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
1181                            _cmsGen->contiguous_available());
1182     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
1183     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
1184     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
1185     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1186     gclog_or_tty->print_cr("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1187     gclog_or_tty->print_cr("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1188     gclog_or_tty->print_cr("metadata initialized %d",
1189       MetaspaceGC::should_concurrent_collect());
1190   }
1191   // ------------------------------------------------------------------
1192 
1193   // If the estimated time to complete a cms collection (cms_duration())
1194   // is less than the estimated time remaining until the cms generation
1195   // is full, start a collection.
1196   if (!UseCMSInitiatingOccupancyOnly) {
1197     if (stats().valid()) {
1198       if (stats().time_until_cms_start() == 0.0) {
1199         return true;
1200       }
1201     } else {
1202       // We want to conservatively collect somewhat early in order
1203       // to try and "bootstrap" our CMS/promotion statistics;
1204       // this branch will not fire after the first successful CMS
1205       // collection because the stats should then be valid.
1206       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1207         if (Verbose && PrintGCDetails) {
1208           gclog_or_tty->print_cr(
1209             " CMSCollector: collect for bootstrapping statistics:"
1210             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
1211             _bootstrap_occupancy);
1212         }
1213         return true;
1214       }
1215     }
1216   }
1217 
1218   // Otherwise, we start a collection cycle if
1219   // old gen want a collection cycle started. Each may use
1220   // an appropriate criterion for making this decision.
1221   // XXX We need to make sure that the gen expansion
1222   // criterion dovetails well with this. XXX NEED TO FIX THIS
1223   if (_cmsGen->should_concurrent_collect()) {
1224     if (Verbose && PrintGCDetails) {
1225       gclog_or_tty->print_cr("CMS old gen initiated");
1226     }
1227     return true;
1228   }
1229 
1230   // We start a collection if we believe an incremental collection may fail;
1231   // this is not likely to be productive in practice because it's probably too
1232   // late anyway.
1233   GenCollectedHeap* gch = GenCollectedHeap::heap();
1234   assert(gch->collector_policy()->is_generation_policy(),
1235          "You may want to check the correctness of the following");
1236   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1237     if (Verbose && PrintGCDetails) {
1238       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
1239     }
1240     return true;
1241   }
1242 
1243   if (MetaspaceGC::should_concurrent_collect()) {
1244     if (Verbose && PrintGCDetails) {
1245       gclog_or_tty->print("CMSCollector: collect for metadata allocation ");
1246     }
1247     return true;
1248   }
1249 
1250   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1251   if (CMSTriggerInterval >= 0) {
1252     if (CMSTriggerInterval == 0) {
1253       // Trigger always
1254       return true;
1255     }
1256 
1257     // Check the CMS time since begin (we do not check the stats validity
1258     // as we want to be able to trigger the first CMS cycle as well)
1259     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1260       if (Verbose && PrintGCDetails) {
1261         if (stats().valid()) {
1262           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1263                                  stats().cms_time_since_begin());
1264         } else {
1265           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (first collection)");
1266         }
1267       }
1268       return true;
1269     }
1270   }
1271 
1272   return false;
1273 }
1274 
1275 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1276 
1277 // Clear _expansion_cause fields of constituent generations
1278 void CMSCollector::clear_expansion_cause() {
1279   _cmsGen->clear_expansion_cause();
1280 }
1281 
1282 // We should be conservative in starting a collection cycle.  To
1283 // start too eagerly runs the risk of collecting too often in the
1284 // extreme.  To collect too rarely falls back on full collections,
1285 // which works, even if not optimum in terms of concurrent work.
1286 // As a work around for too eagerly collecting, use the flag
1287 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1288 // giving the user an easily understandable way of controlling the
1289 // collections.
1290 // We want to start a new collection cycle if any of the following
1291 // conditions hold:
1292 // . our current occupancy exceeds the configured initiating occupancy
1293 //   for this generation, or
1294 // . we recently needed to expand this space and have not, since that
1295 //   expansion, done a collection of this generation, or
1296 // . the underlying space believes that it may be a good idea to initiate
1297 //   a concurrent collection (this may be based on criteria such as the
1298 //   following: the space uses linear allocation and linear allocation is
1299 //   going to fail, or there is believed to be excessive fragmentation in
1300 //   the generation, etc... or ...
1301 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1302 //   the case of the old generation; see CR 6543076):
1303 //   we may be approaching a point at which allocation requests may fail because
1304 //   we will be out of sufficient free space given allocation rate estimates.]
1305 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1306 
1307   assert_lock_strong(freelistLock());
1308   if (occupancy() > initiating_occupancy()) {
1309     if (PrintGCDetails && Verbose) {
1310       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
1311         short_name(), occupancy(), initiating_occupancy());
1312     }
1313     return true;
1314   }
1315   if (UseCMSInitiatingOccupancyOnly) {
1316     return false;
1317   }
1318   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1319     if (PrintGCDetails && Verbose) {
1320       gclog_or_tty->print(" %s: collect because expanded for allocation ",
1321         short_name());
1322     }
1323     return true;
1324   }
1325   if (_cmsSpace->should_concurrent_collect()) {
1326     if (PrintGCDetails && Verbose) {
1327       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
1328         short_name());
1329     }
1330     return true;
1331   }
1332   return false;
1333 }
1334 
1335 void ConcurrentMarkSweepGeneration::collect(bool   full,
1336                                             bool   clear_all_soft_refs,
1337                                             size_t size,
1338                                             bool   tlab)
1339 {
1340   collector()->collect(full, clear_all_soft_refs, size, tlab);
1341 }
1342 
1343 void CMSCollector::collect(bool   full,
1344                            bool   clear_all_soft_refs,
1345                            size_t size,
1346                            bool   tlab)
1347 {
1348   // The following "if" branch is present for defensive reasons.
1349   // In the current uses of this interface, it can be replaced with:
1350   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1351   // But I am not placing that assert here to allow future
1352   // generality in invoking this interface.
1353   if (GC_locker::is_active()) {
1354     // A consistency test for GC_locker
1355     assert(GC_locker::needs_gc(), "Should have been set already");
1356     // Skip this foreground collection, instead
1357     // expanding the heap if necessary.
1358     // Need the free list locks for the call to free() in compute_new_size()
1359     compute_new_size();
1360     return;
1361   }
1362   acquire_control_and_collect(full, clear_all_soft_refs);
1363 }
1364 
1365 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1366   GenCollectedHeap* gch = GenCollectedHeap::heap();
1367   unsigned int gc_count = gch->total_full_collections();
1368   if (gc_count == full_gc_count) {
1369     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1370     _full_gc_requested = true;
1371     _full_gc_cause = cause;
1372     CGC_lock->notify();   // nudge CMS thread
1373   } else {
1374     assert(gc_count > full_gc_count, "Error: causal loop");
1375   }
1376 }
1377 
1378 bool CMSCollector::is_external_interruption() {
1379   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1380   return GCCause::is_user_requested_gc(cause) ||
1381          GCCause::is_serviceability_requested_gc(cause);
1382 }
1383 
1384 void CMSCollector::report_concurrent_mode_interruption() {
1385   if (is_external_interruption()) {
1386     if (PrintGCDetails) {
1387       gclog_or_tty->print(" (concurrent mode interrupted)");
1388     }
1389   } else {
1390     if (PrintGCDetails) {
1391       gclog_or_tty->print(" (concurrent mode failure)");
1392     }
1393     _gc_tracer_cm->report_concurrent_mode_failure();
1394   }
1395 }
1396 
1397 
1398 // The foreground and background collectors need to coordinate in order
1399 // to make sure that they do not mutually interfere with CMS collections.
1400 // When a background collection is active,
1401 // the foreground collector may need to take over (preempt) and
1402 // synchronously complete an ongoing collection. Depending on the
1403 // frequency of the background collections and the heap usage
1404 // of the application, this preemption can be seldom or frequent.
1405 // There are only certain
1406 // points in the background collection that the "collection-baton"
1407 // can be passed to the foreground collector.
1408 //
1409 // The foreground collector will wait for the baton before
1410 // starting any part of the collection.  The foreground collector
1411 // will only wait at one location.
1412 //
1413 // The background collector will yield the baton before starting a new
1414 // phase of the collection (e.g., before initial marking, marking from roots,
1415 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1416 // of the loop which switches the phases. The background collector does some
1417 // of the phases (initial mark, final re-mark) with the world stopped.
1418 // Because of locking involved in stopping the world,
1419 // the foreground collector should not block waiting for the background
1420 // collector when it is doing a stop-the-world phase.  The background
1421 // collector will yield the baton at an additional point just before
1422 // it enters a stop-the-world phase.  Once the world is stopped, the
1423 // background collector checks the phase of the collection.  If the
1424 // phase has not changed, it proceeds with the collection.  If the
1425 // phase has changed, it skips that phase of the collection.  See
1426 // the comments on the use of the Heap_lock in collect_in_background().
1427 //
1428 // Variable used in baton passing.
1429 //   _foregroundGCIsActive - Set to true by the foreground collector when
1430 //      it wants the baton.  The foreground clears it when it has finished
1431 //      the collection.
1432 //   _foregroundGCShouldWait - Set to true by the background collector
1433 //        when it is running.  The foreground collector waits while
1434 //      _foregroundGCShouldWait is true.
1435 //  CGC_lock - monitor used to protect access to the above variables
1436 //      and to notify the foreground and background collectors.
1437 //  _collectorState - current state of the CMS collection.
1438 //
1439 // The foreground collector
1440 //   acquires the CGC_lock
1441 //   sets _foregroundGCIsActive
1442 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1443 //     various locks acquired in preparation for the collection
1444 //     are released so as not to block the background collector
1445 //     that is in the midst of a collection
1446 //   proceeds with the collection
1447 //   clears _foregroundGCIsActive
1448 //   returns
1449 //
1450 // The background collector in a loop iterating on the phases of the
1451 //      collection
1452 //   acquires the CGC_lock
1453 //   sets _foregroundGCShouldWait
1454 //   if _foregroundGCIsActive is set
1455 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1456 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1457 //     and exits the loop.
1458 //   otherwise
1459 //     proceed with that phase of the collection
1460 //     if the phase is a stop-the-world phase,
1461 //       yield the baton once more just before enqueueing
1462 //       the stop-world CMS operation (executed by the VM thread).
1463 //   returns after all phases of the collection are done
1464 //
1465 
1466 void CMSCollector::acquire_control_and_collect(bool full,
1467         bool clear_all_soft_refs) {
1468   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1469   assert(!Thread::current()->is_ConcurrentGC_thread(),
1470          "shouldn't try to acquire control from self!");
1471 
1472   // Start the protocol for acquiring control of the
1473   // collection from the background collector (aka CMS thread).
1474   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1475          "VM thread should have CMS token");
1476   // Remember the possibly interrupted state of an ongoing
1477   // concurrent collection
1478   CollectorState first_state = _collectorState;
1479 
1480   // Signal to a possibly ongoing concurrent collection that
1481   // we want to do a foreground collection.
1482   _foregroundGCIsActive = true;
1483 
1484   // release locks and wait for a notify from the background collector
1485   // releasing the locks in only necessary for phases which
1486   // do yields to improve the granularity of the collection.
1487   assert_lock_strong(bitMapLock());
1488   // We need to lock the Free list lock for the space that we are
1489   // currently collecting.
1490   assert(haveFreelistLocks(), "Must be holding free list locks");
1491   bitMapLock()->unlock();
1492   releaseFreelistLocks();
1493   {
1494     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1495     if (_foregroundGCShouldWait) {
1496       // We are going to be waiting for action for the CMS thread;
1497       // it had better not be gone (for instance at shutdown)!
1498       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1499              "CMS thread must be running");
1500       // Wait here until the background collector gives us the go-ahead
1501       ConcurrentMarkSweepThread::clear_CMS_flag(
1502         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1503       // Get a possibly blocked CMS thread going:
1504       //   Note that we set _foregroundGCIsActive true above,
1505       //   without protection of the CGC_lock.
1506       CGC_lock->notify();
1507       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1508              "Possible deadlock");
1509       while (_foregroundGCShouldWait) {
1510         // wait for notification
1511         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1512         // Possibility of delay/starvation here, since CMS token does
1513         // not know to give priority to VM thread? Actually, i think
1514         // there wouldn't be any delay/starvation, but the proof of
1515         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1516       }
1517       ConcurrentMarkSweepThread::set_CMS_flag(
1518         ConcurrentMarkSweepThread::CMS_vm_has_token);
1519     }
1520   }
1521   // The CMS_token is already held.  Get back the other locks.
1522   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1523          "VM thread should have CMS token");
1524   getFreelistLocks();
1525   bitMapLock()->lock_without_safepoint_check();
1526   if (TraceCMSState) {
1527     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
1528       INTPTR_FORMAT " with first state %d", p2i(Thread::current()), first_state);
1529     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
1530   }
1531 
1532   // Inform cms gen if this was due to partial collection failing.
1533   // The CMS gen may use this fact to determine its expansion policy.
1534   GenCollectedHeap* gch = GenCollectedHeap::heap();
1535   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1536     assert(!_cmsGen->incremental_collection_failed(),
1537            "Should have been noticed, reacted to and cleared");
1538     _cmsGen->set_incremental_collection_failed();
1539   }
1540 
1541   if (first_state > Idling) {
1542     report_concurrent_mode_interruption();
1543   }
1544 
1545   set_did_compact(true);
1546 
1547   // If the collection is being acquired from the background
1548   // collector, there may be references on the discovered
1549   // references lists.  Abandon those references, since some
1550   // of them may have become unreachable after concurrent
1551   // discovery; the STW compacting collector will redo discovery
1552   // more precisely, without being subject to floating garbage.
1553   // Leaving otherwise unreachable references in the discovered
1554   // lists would require special handling.
1555   ref_processor()->disable_discovery();
1556   ref_processor()->abandon_partial_discovery();
1557   ref_processor()->verify_no_references_recorded();
1558 
1559   if (first_state > Idling) {
1560     save_heap_summary();
1561   }
1562 
1563   do_compaction_work(clear_all_soft_refs);
1564 
1565   // Has the GC time limit been exceeded?
1566   size_t max_eden_size = _young_gen->max_capacity() -
1567                          _young_gen->to()->capacity() -
1568                          _young_gen->from()->capacity();
1569   GCCause::Cause gc_cause = gch->gc_cause();
1570   size_policy()->check_gc_overhead_limit(_young_gen->used(),
1571                                          _young_gen->eden()->used(),
1572                                          _cmsGen->max_capacity(),
1573                                          max_eden_size,
1574                                          full,
1575                                          gc_cause,
1576                                          gch->collector_policy());
1577 
1578   // Reset the expansion cause, now that we just completed
1579   // a collection cycle.
1580   clear_expansion_cause();
1581   _foregroundGCIsActive = false;
1582   return;
1583 }
1584 
1585 // Resize the tenured generation
1586 // after obtaining the free list locks for the
1587 // two generations.
1588 void CMSCollector::compute_new_size() {
1589   assert_locked_or_safepoint(Heap_lock);
1590   FreelistLocker z(this);
1591   MetaspaceGC::compute_new_size();
1592   _cmsGen->compute_new_size_free_list();
1593 }
1594 
1595 // A work method used by the foreground collector to do
1596 // a mark-sweep-compact.
1597 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1598   GenCollectedHeap* gch = GenCollectedHeap::heap();
1599 
1600   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1601   gc_timer->register_gc_start();
1602 
1603   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1604   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
1605 
1606   GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL, gc_tracer->gc_id());
1607 
1608   // Temporarily widen the span of the weak reference processing to
1609   // the entire heap.
1610   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
1611   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1612   // Temporarily, clear the "is_alive_non_header" field of the
1613   // reference processor.
1614   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1615   // Temporarily make reference _processing_ single threaded (non-MT).
1616   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1617   // Temporarily make refs discovery atomic
1618   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1619   // Temporarily make reference _discovery_ single threaded (non-MT)
1620   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1621 
1622   ref_processor()->set_enqueuing_is_done(false);
1623   ref_processor()->enable_discovery();
1624   ref_processor()->setup_policy(clear_all_soft_refs);
1625   // If an asynchronous collection finishes, the _modUnionTable is
1626   // all clear.  If we are assuming the collection from an asynchronous
1627   // collection, clear the _modUnionTable.
1628   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1629     "_modUnionTable should be clear if the baton was not passed");
1630   _modUnionTable.clear_all();
1631   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
1632     "mod union for klasses should be clear if the baton was passed");
1633   _ct->klass_rem_set()->clear_mod_union();
1634 
1635   // We must adjust the allocation statistics being maintained
1636   // in the free list space. We do so by reading and clearing
1637   // the sweep timer and updating the block flux rate estimates below.
1638   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1639   if (_inter_sweep_timer.is_active()) {
1640     _inter_sweep_timer.stop();
1641     // Note that we do not use this sample to update the _inter_sweep_estimate.
1642     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1643                                             _inter_sweep_estimate.padded_average(),
1644                                             _intra_sweep_estimate.padded_average());
1645   }
1646 
1647   GenMarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
1648   #ifdef ASSERT
1649     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1650     size_t free_size = cms_space->free();
1651     assert(free_size ==
1652            pointer_delta(cms_space->end(), cms_space->compaction_top())
1653            * HeapWordSize,
1654       "All the free space should be compacted into one chunk at top");
1655     assert(cms_space->dictionary()->total_chunk_size(
1656                                       debug_only(cms_space->freelistLock())) == 0 ||
1657            cms_space->totalSizeInIndexedFreeLists() == 0,
1658       "All the free space should be in a single chunk");
1659     size_t num = cms_space->totalCount();
1660     assert((free_size == 0 && num == 0) ||
1661            (free_size > 0  && (num == 1 || num == 2)),
1662          "There should be at most 2 free chunks after compaction");
1663   #endif // ASSERT
1664   _collectorState = Resetting;
1665   assert(_restart_addr == NULL,
1666          "Should have been NULL'd before baton was passed");
1667   reset(false /* == !concurrent */);
1668   _cmsGen->reset_after_compaction();
1669   _concurrent_cycles_since_last_unload = 0;
1670 
1671   // Clear any data recorded in the PLAB chunk arrays.
1672   if (_survivor_plab_array != NULL) {
1673     reset_survivor_plab_arrays();
1674   }
1675 
1676   // Adjust the per-size allocation stats for the next epoch.
1677   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1678   // Restart the "inter sweep timer" for the next epoch.
1679   _inter_sweep_timer.reset();
1680   _inter_sweep_timer.start();
1681 
1682   gc_timer->register_gc_end();
1683 
1684   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1685 
1686   // For a mark-sweep-compact, compute_new_size() will be called
1687   // in the heap's do_collection() method.
1688 }
1689 
1690 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1691   ContiguousSpace* eden_space = _young_gen->eden();
1692   ContiguousSpace* from_space = _young_gen->from();
1693   ContiguousSpace* to_space   = _young_gen->to();
1694   // Eden
1695   if (_eden_chunk_array != NULL) {
1696     gclog_or_tty->print_cr("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1697                            p2i(eden_space->bottom()), p2i(eden_space->top()),
1698                            p2i(eden_space->end()), eden_space->capacity());
1699     gclog_or_tty->print_cr("_eden_chunk_index=" SIZE_FORMAT ", "
1700                            "_eden_chunk_capacity=" SIZE_FORMAT,
1701                            _eden_chunk_index, _eden_chunk_capacity);
1702     for (size_t i = 0; i < _eden_chunk_index; i++) {
1703       gclog_or_tty->print_cr("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
1704                              i, p2i(_eden_chunk_array[i]));
1705     }
1706   }
1707   // Survivor
1708   if (_survivor_chunk_array != NULL) {
1709     gclog_or_tty->print_cr("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1710                            p2i(from_space->bottom()), p2i(from_space->top()),
1711                            p2i(from_space->end()), from_space->capacity());
1712     gclog_or_tty->print_cr("_survivor_chunk_index=" SIZE_FORMAT ", "
1713                            "_survivor_chunk_capacity=" SIZE_FORMAT,
1714                            _survivor_chunk_index, _survivor_chunk_capacity);
1715     for (size_t i = 0; i < _survivor_chunk_index; i++) {
1716       gclog_or_tty->print_cr("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
1717                              i, p2i(_survivor_chunk_array[i]));
1718     }
1719   }
1720 }
1721 
1722 void CMSCollector::getFreelistLocks() const {
1723   // Get locks for all free lists in all generations that this
1724   // collector is responsible for
1725   _cmsGen->freelistLock()->lock_without_safepoint_check();
1726 }
1727 
1728 void CMSCollector::releaseFreelistLocks() const {
1729   // Release locks for all free lists in all generations that this
1730   // collector is responsible for
1731   _cmsGen->freelistLock()->unlock();
1732 }
1733 
1734 bool CMSCollector::haveFreelistLocks() const {
1735   // Check locks for all free lists in all generations that this
1736   // collector is responsible for
1737   assert_lock_strong(_cmsGen->freelistLock());
1738   PRODUCT_ONLY(ShouldNotReachHere());
1739   return true;
1740 }
1741 
1742 // A utility class that is used by the CMS collector to
1743 // temporarily "release" the foreground collector from its
1744 // usual obligation to wait for the background collector to
1745 // complete an ongoing phase before proceeding.
1746 class ReleaseForegroundGC: public StackObj {
1747  private:
1748   CMSCollector* _c;
1749  public:
1750   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1751     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1752     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1753     // allow a potentially blocked foreground collector to proceed
1754     _c->_foregroundGCShouldWait = false;
1755     if (_c->_foregroundGCIsActive) {
1756       CGC_lock->notify();
1757     }
1758     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1759            "Possible deadlock");
1760   }
1761 
1762   ~ReleaseForegroundGC() {
1763     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1764     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1765     _c->_foregroundGCShouldWait = true;
1766   }
1767 };
1768 
1769 void CMSCollector::collect_in_background(GCCause::Cause cause) {
1770   assert(Thread::current()->is_ConcurrentGC_thread(),
1771     "A CMS asynchronous collection is only allowed on a CMS thread.");
1772 
1773   GenCollectedHeap* gch = GenCollectedHeap::heap();
1774   {
1775     bool safepoint_check = Mutex::_no_safepoint_check_flag;
1776     MutexLockerEx hl(Heap_lock, safepoint_check);
1777     FreelistLocker fll(this);
1778     MutexLockerEx x(CGC_lock, safepoint_check);
1779     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
1780       // The foreground collector is active or we're
1781       // not using asynchronous collections.  Skip this
1782       // background collection.
1783       assert(!_foregroundGCShouldWait, "Should be clear");
1784       return;
1785     } else {
1786       assert(_collectorState == Idling, "Should be idling before start.");
1787       _collectorState = InitialMarking;
1788       register_gc_start(cause);
1789       // Reset the expansion cause, now that we are about to begin
1790       // a new cycle.
1791       clear_expansion_cause();
1792 
1793       // Clear the MetaspaceGC flag since a concurrent collection
1794       // is starting but also clear it after the collection.
1795       MetaspaceGC::set_should_concurrent_collect(false);
1796     }
1797     // Decide if we want to enable class unloading as part of the
1798     // ensuing concurrent GC cycle.
1799     update_should_unload_classes();
1800     _full_gc_requested = false;           // acks all outstanding full gc requests
1801     _full_gc_cause = GCCause::_no_gc;
1802     // Signal that we are about to start a collection
1803     gch->increment_total_full_collections();  // ... starting a collection cycle
1804     _collection_count_start = gch->total_full_collections();
1805   }
1806 
1807   // Used for PrintGC
1808   size_t prev_used;
1809   if (PrintGC && Verbose) {
1810     prev_used = _cmsGen->used();
1811   }
1812 
1813   // The change of the collection state is normally done at this level;
1814   // the exceptions are phases that are executed while the world is
1815   // stopped.  For those phases the change of state is done while the
1816   // world is stopped.  For baton passing purposes this allows the
1817   // background collector to finish the phase and change state atomically.
1818   // The foreground collector cannot wait on a phase that is done
1819   // while the world is stopped because the foreground collector already
1820   // has the world stopped and would deadlock.
1821   while (_collectorState != Idling) {
1822     if (TraceCMSState) {
1823       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
1824         p2i(Thread::current()), _collectorState);
1825     }
1826     // The foreground collector
1827     //   holds the Heap_lock throughout its collection.
1828     //   holds the CMS token (but not the lock)
1829     //     except while it is waiting for the background collector to yield.
1830     //
1831     // The foreground collector should be blocked (not for long)
1832     //   if the background collector is about to start a phase
1833     //   executed with world stopped.  If the background
1834     //   collector has already started such a phase, the
1835     //   foreground collector is blocked waiting for the
1836     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
1837     //   are executed in the VM thread.
1838     //
1839     // The locking order is
1840     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
1841     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
1842     //   CMS token  (claimed in
1843     //                stop_world_and_do() -->
1844     //                  safepoint_synchronize() -->
1845     //                    CMSThread::synchronize())
1846 
1847     {
1848       // Check if the FG collector wants us to yield.
1849       CMSTokenSync x(true); // is cms thread
1850       if (waitForForegroundGC()) {
1851         // We yielded to a foreground GC, nothing more to be
1852         // done this round.
1853         assert(_foregroundGCShouldWait == false, "We set it to false in "
1854                "waitForForegroundGC()");
1855         if (TraceCMSState) {
1856           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
1857             " exiting collection CMS state %d",
1858             p2i(Thread::current()), _collectorState);
1859         }
1860         return;
1861       } else {
1862         // The background collector can run but check to see if the
1863         // foreground collector has done a collection while the
1864         // background collector was waiting to get the CGC_lock
1865         // above.  If yes, break so that _foregroundGCShouldWait
1866         // is cleared before returning.
1867         if (_collectorState == Idling) {
1868           break;
1869         }
1870       }
1871     }
1872 
1873     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
1874       "should be waiting");
1875 
1876     switch (_collectorState) {
1877       case InitialMarking:
1878         {
1879           ReleaseForegroundGC x(this);
1880           stats().record_cms_begin();
1881           VM_CMS_Initial_Mark initial_mark_op(this);
1882           VMThread::execute(&initial_mark_op);
1883         }
1884         // The collector state may be any legal state at this point
1885         // since the background collector may have yielded to the
1886         // foreground collector.
1887         break;
1888       case Marking:
1889         // initial marking in checkpointRootsInitialWork has been completed
1890         if (markFromRoots()) { // we were successful
1891           assert(_collectorState == Precleaning, "Collector state should "
1892             "have changed");
1893         } else {
1894           assert(_foregroundGCIsActive, "Internal state inconsistency");
1895         }
1896         break;
1897       case Precleaning:
1898         // marking from roots in markFromRoots has been completed
1899         preclean();
1900         assert(_collectorState == AbortablePreclean ||
1901                _collectorState == FinalMarking,
1902                "Collector state should have changed");
1903         break;
1904       case AbortablePreclean:
1905         abortable_preclean();
1906         assert(_collectorState == FinalMarking, "Collector state should "
1907           "have changed");
1908         break;
1909       case FinalMarking:
1910         {
1911           ReleaseForegroundGC x(this);
1912 
1913           VM_CMS_Final_Remark final_remark_op(this);
1914           VMThread::execute(&final_remark_op);
1915         }
1916         assert(_foregroundGCShouldWait, "block post-condition");
1917         break;
1918       case Sweeping:
1919         // final marking in checkpointRootsFinal has been completed
1920         sweep();
1921         assert(_collectorState == Resizing, "Collector state change "
1922           "to Resizing must be done under the free_list_lock");
1923 
1924       case Resizing: {
1925         // Sweeping has been completed...
1926         // At this point the background collection has completed.
1927         // Don't move the call to compute_new_size() down
1928         // into code that might be executed if the background
1929         // collection was preempted.
1930         {
1931           ReleaseForegroundGC x(this);   // unblock FG collection
1932           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
1933           CMSTokenSync        z(true);   // not strictly needed.
1934           if (_collectorState == Resizing) {
1935             compute_new_size();
1936             save_heap_summary();
1937             _collectorState = Resetting;
1938           } else {
1939             assert(_collectorState == Idling, "The state should only change"
1940                    " because the foreground collector has finished the collection");
1941           }
1942         }
1943         break;
1944       }
1945       case Resetting:
1946         // CMS heap resizing has been completed
1947         reset(true);
1948         assert(_collectorState == Idling, "Collector state should "
1949           "have changed");
1950 
1951         MetaspaceGC::set_should_concurrent_collect(false);
1952 
1953         stats().record_cms_end();
1954         // Don't move the concurrent_phases_end() and compute_new_size()
1955         // calls to here because a preempted background collection
1956         // has it's state set to "Resetting".
1957         break;
1958       case Idling:
1959       default:
1960         ShouldNotReachHere();
1961         break;
1962     }
1963     if (TraceCMSState) {
1964       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
1965         p2i(Thread::current()), _collectorState);
1966     }
1967     assert(_foregroundGCShouldWait, "block post-condition");
1968   }
1969 
1970   // Should this be in gc_epilogue?
1971   collector_policy()->counters()->update_counters();
1972 
1973   {
1974     // Clear _foregroundGCShouldWait and, in the event that the
1975     // foreground collector is waiting, notify it, before
1976     // returning.
1977     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1978     _foregroundGCShouldWait = false;
1979     if (_foregroundGCIsActive) {
1980       CGC_lock->notify();
1981     }
1982     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1983            "Possible deadlock");
1984   }
1985   if (TraceCMSState) {
1986     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
1987       " exiting collection CMS state %d",
1988       p2i(Thread::current()), _collectorState);
1989   }
1990   if (PrintGC && Verbose) {
1991     _cmsGen->print_heap_change(prev_used);
1992   }
1993 }
1994 
1995 void CMSCollector::register_gc_start(GCCause::Cause cause) {
1996   _cms_start_registered = true;
1997   _gc_timer_cm->register_gc_start();
1998   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
1999 }
2000 
2001 void CMSCollector::register_gc_end() {
2002   if (_cms_start_registered) {
2003     report_heap_summary(GCWhen::AfterGC);
2004 
2005     _gc_timer_cm->register_gc_end();
2006     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2007     _cms_start_registered = false;
2008   }
2009 }
2010 
2011 void CMSCollector::save_heap_summary() {
2012   GenCollectedHeap* gch = GenCollectedHeap::heap();
2013   _last_heap_summary = gch->create_heap_summary();
2014   _last_metaspace_summary = gch->create_metaspace_summary();
2015 }
2016 
2017 void CMSCollector::report_heap_summary(GCWhen::Type when) {
2018   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
2019   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
2020 }
2021 
2022 bool CMSCollector::waitForForegroundGC() {
2023   bool res = false;
2024   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2025          "CMS thread should have CMS token");
2026   // Block the foreground collector until the
2027   // background collectors decides whether to
2028   // yield.
2029   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2030   _foregroundGCShouldWait = true;
2031   if (_foregroundGCIsActive) {
2032     // The background collector yields to the
2033     // foreground collector and returns a value
2034     // indicating that it has yielded.  The foreground
2035     // collector can proceed.
2036     res = true;
2037     _foregroundGCShouldWait = false;
2038     ConcurrentMarkSweepThread::clear_CMS_flag(
2039       ConcurrentMarkSweepThread::CMS_cms_has_token);
2040     ConcurrentMarkSweepThread::set_CMS_flag(
2041       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2042     // Get a possibly blocked foreground thread going
2043     CGC_lock->notify();
2044     if (TraceCMSState) {
2045       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
2046         p2i(Thread::current()), _collectorState);
2047     }
2048     while (_foregroundGCIsActive) {
2049       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
2050     }
2051     ConcurrentMarkSweepThread::set_CMS_flag(
2052       ConcurrentMarkSweepThread::CMS_cms_has_token);
2053     ConcurrentMarkSweepThread::clear_CMS_flag(
2054       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2055   }
2056   if (TraceCMSState) {
2057     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
2058       p2i(Thread::current()), _collectorState);
2059   }
2060   return res;
2061 }
2062 
2063 // Because of the need to lock the free lists and other structures in
2064 // the collector, common to all the generations that the collector is
2065 // collecting, we need the gc_prologues of individual CMS generations
2066 // delegate to their collector. It may have been simpler had the
2067 // current infrastructure allowed one to call a prologue on a
2068 // collector. In the absence of that we have the generation's
2069 // prologue delegate to the collector, which delegates back
2070 // some "local" work to a worker method in the individual generations
2071 // that it's responsible for collecting, while itself doing any
2072 // work common to all generations it's responsible for. A similar
2073 // comment applies to the  gc_epilogue()'s.
2074 // The role of the variable _between_prologue_and_epilogue is to
2075 // enforce the invocation protocol.
2076 void CMSCollector::gc_prologue(bool full) {
2077   // Call gc_prologue_work() for the CMSGen
2078   // we are responsible for.
2079 
2080   // The following locking discipline assumes that we are only called
2081   // when the world is stopped.
2082   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2083 
2084   // The CMSCollector prologue must call the gc_prologues for the
2085   // "generations" that it's responsible
2086   // for.
2087 
2088   assert(   Thread::current()->is_VM_thread()
2089          || (   CMSScavengeBeforeRemark
2090              && Thread::current()->is_ConcurrentGC_thread()),
2091          "Incorrect thread type for prologue execution");
2092 
2093   if (_between_prologue_and_epilogue) {
2094     // We have already been invoked; this is a gc_prologue delegation
2095     // from yet another CMS generation that we are responsible for, just
2096     // ignore it since all relevant work has already been done.
2097     return;
2098   }
2099 
2100   // set a bit saying prologue has been called; cleared in epilogue
2101   _between_prologue_and_epilogue = true;
2102   // Claim locks for common data structures, then call gc_prologue_work()
2103   // for each CMSGen.
2104 
2105   getFreelistLocks();   // gets free list locks on constituent spaces
2106   bitMapLock()->lock_without_safepoint_check();
2107 
2108   // Should call gc_prologue_work() for all cms gens we are responsible for
2109   bool duringMarking =    _collectorState >= Marking
2110                          && _collectorState < Sweeping;
2111 
2112   // The young collections clear the modified oops state, which tells if
2113   // there are any modified oops in the class. The remark phase also needs
2114   // that information. Tell the young collection to save the union of all
2115   // modified klasses.
2116   if (duringMarking) {
2117     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2118   }
2119 
2120   bool registerClosure = duringMarking;
2121 
2122   _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar);
2123 
2124   if (!full) {
2125     stats().record_gc0_begin();
2126   }
2127 }
2128 
2129 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2130 
2131   _capacity_at_prologue = capacity();
2132   _used_at_prologue = used();
2133 
2134   // Delegate to CMScollector which knows how to coordinate between
2135   // this and any other CMS generations that it is responsible for
2136   // collecting.
2137   collector()->gc_prologue(full);
2138 }
2139 
2140 // This is a "private" interface for use by this generation's CMSCollector.
2141 // Not to be called directly by any other entity (for instance,
2142 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2143 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2144   bool registerClosure, ModUnionClosure* modUnionClosure) {
2145   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2146   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2147     "Should be NULL");
2148   if (registerClosure) {
2149     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2150   }
2151   cmsSpace()->gc_prologue();
2152   // Clear stat counters
2153   NOT_PRODUCT(
2154     assert(_numObjectsPromoted == 0, "check");
2155     assert(_numWordsPromoted   == 0, "check");
2156     if (Verbose && PrintGC) {
2157       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
2158                           SIZE_FORMAT" bytes concurrently",
2159       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2160     }
2161     _numObjectsAllocated = 0;
2162     _numWordsAllocated   = 0;
2163   )
2164 }
2165 
2166 void CMSCollector::gc_epilogue(bool full) {
2167   // The following locking discipline assumes that we are only called
2168   // when the world is stopped.
2169   assert(SafepointSynchronize::is_at_safepoint(),
2170          "world is stopped assumption");
2171 
2172   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2173   // if linear allocation blocks need to be appropriately marked to allow the
2174   // the blocks to be parsable. We also check here whether we need to nudge the
2175   // CMS collector thread to start a new cycle (if it's not already active).
2176   assert(   Thread::current()->is_VM_thread()
2177          || (   CMSScavengeBeforeRemark
2178              && Thread::current()->is_ConcurrentGC_thread()),
2179          "Incorrect thread type for epilogue execution");
2180 
2181   if (!_between_prologue_and_epilogue) {
2182     // We have already been invoked; this is a gc_epilogue delegation
2183     // from yet another CMS generation that we are responsible for, just
2184     // ignore it since all relevant work has already been done.
2185     return;
2186   }
2187   assert(haveFreelistLocks(), "must have freelist locks");
2188   assert_lock_strong(bitMapLock());
2189 
2190   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2191 
2192   _cmsGen->gc_epilogue_work(full);
2193 
2194   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2195     // in case sampling was not already enabled, enable it
2196     _start_sampling = true;
2197   }
2198   // reset _eden_chunk_array so sampling starts afresh
2199   _eden_chunk_index = 0;
2200 
2201   size_t cms_used   = _cmsGen->cmsSpace()->used();
2202 
2203   // update performance counters - this uses a special version of
2204   // update_counters() that allows the utilization to be passed as a
2205   // parameter, avoiding multiple calls to used().
2206   //
2207   _cmsGen->update_counters(cms_used);
2208 
2209   bitMapLock()->unlock();
2210   releaseFreelistLocks();
2211 
2212   if (!CleanChunkPoolAsync) {
2213     Chunk::clean_chunk_pool();
2214   }
2215 
2216   set_did_compact(false);
2217   _between_prologue_and_epilogue = false;  // ready for next cycle
2218 }
2219 
2220 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2221   collector()->gc_epilogue(full);
2222 
2223   // Also reset promotion tracking in par gc thread states.
2224   for (uint i = 0; i < ParallelGCThreads; i++) {
2225     _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2226   }
2227 }
2228 
2229 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2230   assert(!incremental_collection_failed(), "Should have been cleared");
2231   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2232   cmsSpace()->gc_epilogue();
2233     // Print stat counters
2234   NOT_PRODUCT(
2235     assert(_numObjectsAllocated == 0, "check");
2236     assert(_numWordsAllocated == 0, "check");
2237     if (Verbose && PrintGC) {
2238       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
2239                           SIZE_FORMAT" bytes",
2240                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2241     }
2242     _numObjectsPromoted = 0;
2243     _numWordsPromoted   = 0;
2244   )
2245 
2246   if (PrintGC && Verbose) {
2247     // Call down the chain in contiguous_available needs the freelistLock
2248     // so print this out before releasing the freeListLock.
2249     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
2250                         contiguous_available());
2251   }
2252 }
2253 
2254 #ifndef PRODUCT
2255 bool CMSCollector::have_cms_token() {
2256   Thread* thr = Thread::current();
2257   if (thr->is_VM_thread()) {
2258     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2259   } else if (thr->is_ConcurrentGC_thread()) {
2260     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2261   } else if (thr->is_GC_task_thread()) {
2262     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2263            ParGCRareEvent_lock->owned_by_self();
2264   }
2265   return false;
2266 }
2267 #endif
2268 
2269 // Check reachability of the given heap address in CMS generation,
2270 // treating all other generations as roots.
2271 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2272   // We could "guarantee" below, rather than assert, but I'll
2273   // leave these as "asserts" so that an adventurous debugger
2274   // could try this in the product build provided some subset of
2275   // the conditions were met, provided they were interested in the
2276   // results and knew that the computation below wouldn't interfere
2277   // with other concurrent computations mutating the structures
2278   // being read or written.
2279   assert(SafepointSynchronize::is_at_safepoint(),
2280          "Else mutations in object graph will make answer suspect");
2281   assert(have_cms_token(), "Should hold cms token");
2282   assert(haveFreelistLocks(), "must hold free list locks");
2283   assert_lock_strong(bitMapLock());
2284 
2285   // Clear the marking bit map array before starting, but, just
2286   // for kicks, first report if the given address is already marked
2287   gclog_or_tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr),
2288                 _markBitMap.isMarked(addr) ? "" : " not");
2289 
2290   if (verify_after_remark()) {
2291     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2292     bool result = verification_mark_bm()->isMarked(addr);
2293     gclog_or_tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr),
2294                            result ? "IS" : "is NOT");
2295     return result;
2296   } else {
2297     gclog_or_tty->print_cr("Could not compute result");
2298     return false;
2299   }
2300 }
2301 
2302 
2303 void
2304 CMSCollector::print_on_error(outputStream* st) {
2305   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2306   if (collector != NULL) {
2307     CMSBitMap* bitmap = &collector->_markBitMap;
2308     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap));
2309     bitmap->print_on_error(st, " Bits: ");
2310 
2311     st->cr();
2312 
2313     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2314     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap));
2315     mut_bitmap->print_on_error(st, " Bits: ");
2316   }
2317 }
2318 
2319 ////////////////////////////////////////////////////////
2320 // CMS Verification Support
2321 ////////////////////////////////////////////////////////
2322 // Following the remark phase, the following invariant
2323 // should hold -- each object in the CMS heap which is
2324 // marked in markBitMap() should be marked in the verification_mark_bm().
2325 
2326 class VerifyMarkedClosure: public BitMapClosure {
2327   CMSBitMap* _marks;
2328   bool       _failed;
2329 
2330  public:
2331   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2332 
2333   bool do_bit(size_t offset) {
2334     HeapWord* addr = _marks->offsetToHeapWord(offset);
2335     if (!_marks->isMarked(addr)) {
2336       oop(addr)->print_on(gclog_or_tty);
2337       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", p2i(addr));
2338       _failed = true;
2339     }
2340     return true;
2341   }
2342 
2343   bool failed() { return _failed; }
2344 };
2345 
2346 bool CMSCollector::verify_after_remark(bool silent) {
2347   if (!silent) gclog_or_tty->print(" [Verifying CMS Marking... ");
2348   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2349   static bool init = false;
2350 
2351   assert(SafepointSynchronize::is_at_safepoint(),
2352          "Else mutations in object graph will make answer suspect");
2353   assert(have_cms_token(),
2354          "Else there may be mutual interference in use of "
2355          " verification data structures");
2356   assert(_collectorState > Marking && _collectorState <= Sweeping,
2357          "Else marking info checked here may be obsolete");
2358   assert(haveFreelistLocks(), "must hold free list locks");
2359   assert_lock_strong(bitMapLock());
2360 
2361 
2362   // Allocate marking bit map if not already allocated
2363   if (!init) { // first time
2364     if (!verification_mark_bm()->allocate(_span)) {
2365       return false;
2366     }
2367     init = true;
2368   }
2369 
2370   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2371 
2372   // Turn off refs discovery -- so we will be tracing through refs.
2373   // This is as intended, because by this time
2374   // GC must already have cleared any refs that need to be cleared,
2375   // and traced those that need to be marked; moreover,
2376   // the marking done here is not going to interfere in any
2377   // way with the marking information used by GC.
2378   NoRefDiscovery no_discovery(ref_processor());
2379 
2380   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2381 
2382   // Clear any marks from a previous round
2383   verification_mark_bm()->clear_all();
2384   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2385   verify_work_stacks_empty();
2386 
2387   GenCollectedHeap* gch = GenCollectedHeap::heap();
2388   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2389   // Update the saved marks which may affect the root scans.
2390   gch->save_marks();
2391 
2392   if (CMSRemarkVerifyVariant == 1) {
2393     // In this first variant of verification, we complete
2394     // all marking, then check if the new marks-vector is
2395     // a subset of the CMS marks-vector.
2396     verify_after_remark_work_1();
2397   } else if (CMSRemarkVerifyVariant == 2) {
2398     // In this second variant of verification, we flag an error
2399     // (i.e. an object reachable in the new marks-vector not reachable
2400     // in the CMS marks-vector) immediately, also indicating the
2401     // identify of an object (A) that references the unmarked object (B) --
2402     // presumably, a mutation to A failed to be picked up by preclean/remark?
2403     verify_after_remark_work_2();
2404   } else {
2405     warning("Unrecognized value " UINTX_FORMAT " for CMSRemarkVerifyVariant",
2406             CMSRemarkVerifyVariant);
2407   }
2408   if (!silent) gclog_or_tty->print(" done] ");
2409   return true;
2410 }
2411 
2412 void CMSCollector::verify_after_remark_work_1() {
2413   ResourceMark rm;
2414   HandleMark  hm;
2415   GenCollectedHeap* gch = GenCollectedHeap::heap();
2416 
2417   // Get a clear set of claim bits for the roots processing to work with.
2418   ClassLoaderDataGraph::clear_claimed_marks();
2419 
2420   // Mark from roots one level into CMS
2421   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2422   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2423 
2424   {
2425     StrongRootsScope srs(1);
2426 
2427     gch->gen_process_roots(&srs,
2428                            Generation::Old,
2429                            true,   // younger gens are roots
2430                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2431                            should_unload_classes(),
2432                            &notOlder,
2433                            NULL,
2434                            NULL);
2435   }
2436 
2437   // Now mark from the roots
2438   MarkFromRootsClosure markFromRootsClosure(this, _span,
2439     verification_mark_bm(), verification_mark_stack(),
2440     false /* don't yield */, true /* verifying */);
2441   assert(_restart_addr == NULL, "Expected pre-condition");
2442   verification_mark_bm()->iterate(&markFromRootsClosure);
2443   while (_restart_addr != NULL) {
2444     // Deal with stack overflow: by restarting at the indicated
2445     // address.
2446     HeapWord* ra = _restart_addr;
2447     markFromRootsClosure.reset(ra);
2448     _restart_addr = NULL;
2449     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2450   }
2451   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2452   verify_work_stacks_empty();
2453 
2454   // Marking completed -- now verify that each bit marked in
2455   // verification_mark_bm() is also marked in markBitMap(); flag all
2456   // errors by printing corresponding objects.
2457   VerifyMarkedClosure vcl(markBitMap());
2458   verification_mark_bm()->iterate(&vcl);
2459   if (vcl.failed()) {
2460     gclog_or_tty->print("Verification failed");
2461     gch->print_on(gclog_or_tty);
2462     fatal("CMS: failed marking verification after remark");
2463   }
2464 }
2465 
2466 class VerifyKlassOopsKlassClosure : public KlassClosure {
2467   class VerifyKlassOopsClosure : public OopClosure {
2468     CMSBitMap* _bitmap;
2469    public:
2470     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2471     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2472     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2473   } _oop_closure;
2474  public:
2475   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2476   void do_klass(Klass* k) {
2477     k->oops_do(&_oop_closure);
2478   }
2479 };
2480 
2481 void CMSCollector::verify_after_remark_work_2() {
2482   ResourceMark rm;
2483   HandleMark  hm;
2484   GenCollectedHeap* gch = GenCollectedHeap::heap();
2485 
2486   // Get a clear set of claim bits for the roots processing to work with.
2487   ClassLoaderDataGraph::clear_claimed_marks();
2488 
2489   // Mark from roots one level into CMS
2490   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2491                                      markBitMap());
2492   CLDToOopClosure cld_closure(&notOlder, true);
2493 
2494   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2495 
2496   {
2497     StrongRootsScope srs(1);
2498 
2499     gch->gen_process_roots(&srs,
2500                            Generation::Old,
2501                            true,   // younger gens are roots
2502                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2503                            should_unload_classes(),
2504                            &notOlder,
2505                            NULL,
2506                            &cld_closure);
2507   }
2508 
2509   // Now mark from the roots
2510   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2511     verification_mark_bm(), markBitMap(), verification_mark_stack());
2512   assert(_restart_addr == NULL, "Expected pre-condition");
2513   verification_mark_bm()->iterate(&markFromRootsClosure);
2514   while (_restart_addr != NULL) {
2515     // Deal with stack overflow: by restarting at the indicated
2516     // address.
2517     HeapWord* ra = _restart_addr;
2518     markFromRootsClosure.reset(ra);
2519     _restart_addr = NULL;
2520     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2521   }
2522   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2523   verify_work_stacks_empty();
2524 
2525   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
2526   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
2527 
2528   // Marking completed -- now verify that each bit marked in
2529   // verification_mark_bm() is also marked in markBitMap(); flag all
2530   // errors by printing corresponding objects.
2531   VerifyMarkedClosure vcl(markBitMap());
2532   verification_mark_bm()->iterate(&vcl);
2533   assert(!vcl.failed(), "Else verification above should not have succeeded");
2534 }
2535 
2536 void ConcurrentMarkSweepGeneration::save_marks() {
2537   // delegate to CMS space
2538   cmsSpace()->save_marks();
2539   for (uint i = 0; i < ParallelGCThreads; i++) {
2540     _par_gc_thread_states[i]->promo.startTrackingPromotions();
2541   }
2542 }
2543 
2544 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2545   return cmsSpace()->no_allocs_since_save_marks();
2546 }
2547 
2548 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
2549                                                                 \
2550 void ConcurrentMarkSweepGeneration::                            \
2551 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
2552   cl->set_generation(this);                                     \
2553   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
2554   cl->reset_generation();                                       \
2555   save_marks();                                                 \
2556 }
2557 
2558 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
2559 
2560 void
2561 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
2562   if (freelistLock()->owned_by_self()) {
2563     Generation::oop_iterate(cl);
2564   } else {
2565     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2566     Generation::oop_iterate(cl);
2567   }
2568 }
2569 
2570 void
2571 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2572   if (freelistLock()->owned_by_self()) {
2573     Generation::object_iterate(cl);
2574   } else {
2575     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2576     Generation::object_iterate(cl);
2577   }
2578 }
2579 
2580 void
2581 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2582   if (freelistLock()->owned_by_self()) {
2583     Generation::safe_object_iterate(cl);
2584   } else {
2585     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2586     Generation::safe_object_iterate(cl);
2587   }
2588 }
2589 
2590 void
2591 ConcurrentMarkSweepGeneration::post_compact() {
2592 }
2593 
2594 void
2595 ConcurrentMarkSweepGeneration::prepare_for_verify() {
2596   // Fix the linear allocation blocks to look like free blocks.
2597 
2598   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2599   // are not called when the heap is verified during universe initialization and
2600   // at vm shutdown.
2601   if (freelistLock()->owned_by_self()) {
2602     cmsSpace()->prepare_for_verify();
2603   } else {
2604     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2605     cmsSpace()->prepare_for_verify();
2606   }
2607 }
2608 
2609 void
2610 ConcurrentMarkSweepGeneration::verify() {
2611   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2612   // are not called when the heap is verified during universe initialization and
2613   // at vm shutdown.
2614   if (freelistLock()->owned_by_self()) {
2615     cmsSpace()->verify();
2616   } else {
2617     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2618     cmsSpace()->verify();
2619   }
2620 }
2621 
2622 void CMSCollector::verify() {
2623   _cmsGen->verify();
2624 }
2625 
2626 #ifndef PRODUCT
2627 bool CMSCollector::overflow_list_is_empty() const {
2628   assert(_num_par_pushes >= 0, "Inconsistency");
2629   if (_overflow_list == NULL) {
2630     assert(_num_par_pushes == 0, "Inconsistency");
2631   }
2632   return _overflow_list == NULL;
2633 }
2634 
2635 // The methods verify_work_stacks_empty() and verify_overflow_empty()
2636 // merely consolidate assertion checks that appear to occur together frequently.
2637 void CMSCollector::verify_work_stacks_empty() const {
2638   assert(_markStack.isEmpty(), "Marking stack should be empty");
2639   assert(overflow_list_is_empty(), "Overflow list should be empty");
2640 }
2641 
2642 void CMSCollector::verify_overflow_empty() const {
2643   assert(overflow_list_is_empty(), "Overflow list should be empty");
2644   assert(no_preserved_marks(), "No preserved marks");
2645 }
2646 #endif // PRODUCT
2647 
2648 // Decide if we want to enable class unloading as part of the
2649 // ensuing concurrent GC cycle. We will collect and
2650 // unload classes if it's the case that:
2651 // (1) an explicit gc request has been made and the flag
2652 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
2653 // (2) (a) class unloading is enabled at the command line, and
2654 //     (b) old gen is getting really full
2655 // NOTE: Provided there is no change in the state of the heap between
2656 // calls to this method, it should have idempotent results. Moreover,
2657 // its results should be monotonically increasing (i.e. going from 0 to 1,
2658 // but not 1 to 0) between successive calls between which the heap was
2659 // not collected. For the implementation below, it must thus rely on
2660 // the property that concurrent_cycles_since_last_unload()
2661 // will not decrease unless a collection cycle happened and that
2662 // _cmsGen->is_too_full() are
2663 // themselves also monotonic in that sense. See check_monotonicity()
2664 // below.
2665 void CMSCollector::update_should_unload_classes() {
2666   _should_unload_classes = false;
2667   // Condition 1 above
2668   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
2669     _should_unload_classes = true;
2670   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
2671     // Disjuncts 2.b.(i,ii,iii) above
2672     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
2673                               CMSClassUnloadingMaxInterval)
2674                            || _cmsGen->is_too_full();
2675   }
2676 }
2677 
2678 bool ConcurrentMarkSweepGeneration::is_too_full() const {
2679   bool res = should_concurrent_collect();
2680   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
2681   return res;
2682 }
2683 
2684 void CMSCollector::setup_cms_unloading_and_verification_state() {
2685   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
2686                              || VerifyBeforeExit;
2687   const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
2688 
2689   // We set the proper root for this CMS cycle here.
2690   if (should_unload_classes()) {   // Should unload classes this cycle
2691     remove_root_scanning_option(rso);  // Shrink the root set appropriately
2692     set_verifying(should_verify);    // Set verification state for this cycle
2693     return;                            // Nothing else needs to be done at this time
2694   }
2695 
2696   // Not unloading classes this cycle
2697   assert(!should_unload_classes(), "Inconsistency!");
2698 
2699   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
2700     // Include symbols, strings and code cache elements to prevent their resurrection.
2701     add_root_scanning_option(rso);
2702     set_verifying(true);
2703   } else if (verifying() && !should_verify) {
2704     // We were verifying, but some verification flags got disabled.
2705     set_verifying(false);
2706     // Exclude symbols, strings and code cache elements from root scanning to
2707     // reduce IM and RM pauses.
2708     remove_root_scanning_option(rso);
2709   }
2710 }
2711 
2712 
2713 #ifndef PRODUCT
2714 HeapWord* CMSCollector::block_start(const void* p) const {
2715   const HeapWord* addr = (HeapWord*)p;
2716   if (_span.contains(p)) {
2717     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
2718       return _cmsGen->cmsSpace()->block_start(p);
2719     }
2720   }
2721   return NULL;
2722 }
2723 #endif
2724 
2725 HeapWord*
2726 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
2727                                                    bool   tlab,
2728                                                    bool   parallel) {
2729   CMSSynchronousYieldRequest yr;
2730   assert(!tlab, "Can't deal with TLAB allocation");
2731   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2732   expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
2733   if (GCExpandToAllocateDelayMillis > 0) {
2734     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2735   }
2736   return have_lock_and_allocate(word_size, tlab);
2737 }
2738 
2739 void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
2740     size_t bytes,
2741     size_t expand_bytes,
2742     CMSExpansionCause::Cause cause)
2743 {
2744 
2745   bool success = expand(bytes, expand_bytes);
2746 
2747   // remember why we expanded; this information is used
2748   // by shouldConcurrentCollect() when making decisions on whether to start
2749   // a new CMS cycle.
2750   if (success) {
2751     set_expansion_cause(cause);
2752     if (PrintGCDetails && Verbose) {
2753       gclog_or_tty->print_cr("Expanded CMS gen for %s",
2754         CMSExpansionCause::to_string(cause));
2755     }
2756   }
2757 }
2758 
2759 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
2760   HeapWord* res = NULL;
2761   MutexLocker x(ParGCRareEvent_lock);
2762   while (true) {
2763     // Expansion by some other thread might make alloc OK now:
2764     res = ps->lab.alloc(word_sz);
2765     if (res != NULL) return res;
2766     // If there's not enough expansion space available, give up.
2767     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
2768       return NULL;
2769     }
2770     // Otherwise, we try expansion.
2771     expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
2772     // Now go around the loop and try alloc again;
2773     // A competing par_promote might beat us to the expansion space,
2774     // so we may go around the loop again if promotion fails again.
2775     if (GCExpandToAllocateDelayMillis > 0) {
2776       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2777     }
2778   }
2779 }
2780 
2781 
2782 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
2783   PromotionInfo* promo) {
2784   MutexLocker x(ParGCRareEvent_lock);
2785   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
2786   while (true) {
2787     // Expansion by some other thread might make alloc OK now:
2788     if (promo->ensure_spooling_space()) {
2789       assert(promo->has_spooling_space(),
2790              "Post-condition of successful ensure_spooling_space()");
2791       return true;
2792     }
2793     // If there's not enough expansion space available, give up.
2794     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
2795       return false;
2796     }
2797     // Otherwise, we try expansion.
2798     expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
2799     // Now go around the loop and try alloc again;
2800     // A competing allocation might beat us to the expansion space,
2801     // so we may go around the loop again if allocation fails again.
2802     if (GCExpandToAllocateDelayMillis > 0) {
2803       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2804     }
2805   }
2806 }
2807 
2808 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
2809   // Only shrink if a compaction was done so that all the free space
2810   // in the generation is in a contiguous block at the end.
2811   if (did_compact()) {
2812     CardGeneration::shrink(bytes);
2813   }
2814 }
2815 
2816 void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
2817   assert_locked_or_safepoint(Heap_lock);
2818 }
2819 
2820 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
2821   assert_locked_or_safepoint(Heap_lock);
2822   assert_lock_strong(freelistLock());
2823   if (PrintGCDetails && Verbose) {
2824     warning("Shrinking of CMS not yet implemented");
2825   }
2826   return;
2827 }
2828 
2829 
2830 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
2831 // phases.
2832 class CMSPhaseAccounting: public StackObj {
2833  public:
2834   CMSPhaseAccounting(CMSCollector *collector,
2835                      const char *phase,
2836                      const GCId gc_id,
2837                      bool print_cr = true);
2838   ~CMSPhaseAccounting();
2839 
2840  private:
2841   CMSCollector *_collector;
2842   const char *_phase;
2843   elapsedTimer _wallclock;
2844   bool _print_cr;
2845   const GCId _gc_id;
2846 
2847  public:
2848   // Not MT-safe; so do not pass around these StackObj's
2849   // where they may be accessed by other threads.
2850   jlong wallclock_millis() {
2851     assert(_wallclock.is_active(), "Wall clock should not stop");
2852     _wallclock.stop();  // to record time
2853     jlong ret = _wallclock.milliseconds();
2854     _wallclock.start(); // restart
2855     return ret;
2856   }
2857 };
2858 
2859 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
2860                                        const char *phase,
2861                                        const GCId gc_id,
2862                                        bool print_cr) :
2863   _collector(collector), _phase(phase), _print_cr(print_cr), _gc_id(gc_id) {
2864 
2865   if (PrintCMSStatistics != 0) {
2866     _collector->resetYields();
2867   }
2868   if (PrintGCDetails) {
2869     gclog_or_tty->gclog_stamp(_gc_id);
2870     gclog_or_tty->print_cr("[%s-concurrent-%s-start]",
2871       _collector->cmsGen()->short_name(), _phase);
2872   }
2873   _collector->resetTimer();
2874   _wallclock.start();
2875   _collector->startTimer();
2876 }
2877 
2878 CMSPhaseAccounting::~CMSPhaseAccounting() {
2879   assert(_wallclock.is_active(), "Wall clock should not have stopped");
2880   _collector->stopTimer();
2881   _wallclock.stop();
2882   if (PrintGCDetails) {
2883     gclog_or_tty->gclog_stamp(_gc_id);
2884     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
2885                  _collector->cmsGen()->short_name(),
2886                  _phase, _collector->timerValue(), _wallclock.seconds());
2887     if (_print_cr) {
2888       gclog_or_tty->cr();
2889     }
2890     if (PrintCMSStatistics != 0) {
2891       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
2892                     _collector->yields());
2893     }
2894   }
2895 }
2896 
2897 // CMS work
2898 
2899 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
2900 class CMSParMarkTask : public AbstractGangTask {
2901  protected:
2902   CMSCollector*     _collector;
2903   uint              _n_workers;
2904   CMSParMarkTask(const char* name, CMSCollector* collector, uint n_workers) :
2905       AbstractGangTask(name),
2906       _collector(collector),
2907       _n_workers(n_workers) {}
2908   // Work method in support of parallel rescan ... of young gen spaces
2909   void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl,
2910                              ContiguousSpace* space,
2911                              HeapWord** chunk_array, size_t chunk_top);
2912   void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl);
2913 };
2914 
2915 // Parallel initial mark task
2916 class CMSParInitialMarkTask: public CMSParMarkTask {
2917   StrongRootsScope* _strong_roots_scope;
2918  public:
2919   CMSParInitialMarkTask(CMSCollector* collector, StrongRootsScope* strong_roots_scope, uint n_workers) :
2920       CMSParMarkTask("Scan roots and young gen for initial mark in parallel", collector, n_workers),
2921       _strong_roots_scope(strong_roots_scope) {}
2922   void work(uint worker_id);
2923 };
2924 
2925 // Checkpoint the roots into this generation from outside
2926 // this generation. [Note this initial checkpoint need only
2927 // be approximate -- we'll do a catch up phase subsequently.]
2928 void CMSCollector::checkpointRootsInitial() {
2929   assert(_collectorState == InitialMarking, "Wrong collector state");
2930   check_correct_thread_executing();
2931   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
2932 
2933   save_heap_summary();
2934   report_heap_summary(GCWhen::BeforeGC);
2935 
2936   ReferenceProcessor* rp = ref_processor();
2937   assert(_restart_addr == NULL, "Control point invariant");
2938   {
2939     // acquire locks for subsequent manipulations
2940     MutexLockerEx x(bitMapLock(),
2941                     Mutex::_no_safepoint_check_flag);
2942     checkpointRootsInitialWork();
2943     // enable ("weak") refs discovery
2944     rp->enable_discovery();
2945     _collectorState = Marking;
2946   }
2947 }
2948 
2949 void CMSCollector::checkpointRootsInitialWork() {
2950   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
2951   assert(_collectorState == InitialMarking, "just checking");
2952 
2953   // If there has not been a GC[n-1] since last GC[n] cycle completed,
2954   // precede our marking with a collection of all
2955   // younger generations to keep floating garbage to a minimum.
2956   // XXX: we won't do this for now -- it's an optimization to be done later.
2957 
2958   // already have locks
2959   assert_lock_strong(bitMapLock());
2960   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
2961 
2962   // Setup the verification and class unloading state for this
2963   // CMS collection cycle.
2964   setup_cms_unloading_and_verification_state();
2965 
2966   NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork",
2967     PrintGCDetails && Verbose, true, _gc_timer_cm, _gc_tracer_cm->gc_id());)
2968 
2969   // Reset all the PLAB chunk arrays if necessary.
2970   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
2971     reset_survivor_plab_arrays();
2972   }
2973 
2974   ResourceMark rm;
2975   HandleMark  hm;
2976 
2977   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
2978   GenCollectedHeap* gch = GenCollectedHeap::heap();
2979 
2980   verify_work_stacks_empty();
2981   verify_overflow_empty();
2982 
2983   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2984   // Update the saved marks which may affect the root scans.
2985   gch->save_marks();
2986 
2987   // weak reference processing has not started yet.
2988   ref_processor()->set_enqueuing_is_done(false);
2989 
2990   // Need to remember all newly created CLDs,
2991   // so that we can guarantee that the remark finds them.
2992   ClassLoaderDataGraph::remember_new_clds(true);
2993 
2994   // Whenever a CLD is found, it will be claimed before proceeding to mark
2995   // the klasses. The claimed marks need to be cleared before marking starts.
2996   ClassLoaderDataGraph::clear_claimed_marks();
2997 
2998   if (CMSPrintEdenSurvivorChunks) {
2999     print_eden_and_survivor_chunk_arrays();
3000   }
3001 
3002   {
3003     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
3004     if (CMSParallelInitialMarkEnabled) {
3005       // The parallel version.
3006       FlexibleWorkGang* workers = gch->workers();
3007       assert(workers != NULL, "Need parallel worker threads.");
3008       uint n_workers = workers->active_workers();
3009 
3010       StrongRootsScope srs(n_workers);
3011 
3012       CMSParInitialMarkTask tsk(this, &srs, n_workers);
3013       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
3014       if (n_workers > 1) {
3015         workers->run_task(&tsk);
3016       } else {
3017         tsk.work(0);
3018       }
3019     } else {
3020       // The serial version.
3021       CLDToOopClosure cld_closure(&notOlder, true);
3022       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3023 
3024       StrongRootsScope srs(1);
3025 
3026       gch->gen_process_roots(&srs,
3027                              Generation::Old,
3028                              true,   // younger gens are roots
3029                              GenCollectedHeap::ScanningOption(roots_scanning_options()),
3030                              should_unload_classes(),
3031                              &notOlder,
3032                              NULL,
3033                              &cld_closure);
3034     }
3035   }
3036 
3037   // Clear mod-union table; it will be dirtied in the prologue of
3038   // CMS generation per each younger generation collection.
3039 
3040   assert(_modUnionTable.isAllClear(),
3041        "Was cleared in most recent final checkpoint phase"
3042        " or no bits are set in the gc_prologue before the start of the next "
3043        "subsequent marking phase.");
3044 
3045   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
3046 
3047   // Save the end of the used_region of the constituent generations
3048   // to be used to limit the extent of sweep in each generation.
3049   save_sweep_limits();
3050   verify_overflow_empty();
3051 }
3052 
3053 bool CMSCollector::markFromRoots() {
3054   // we might be tempted to assert that:
3055   // assert(!SafepointSynchronize::is_at_safepoint(),
3056   //        "inconsistent argument?");
3057   // However that wouldn't be right, because it's possible that
3058   // a safepoint is indeed in progress as a younger generation
3059   // stop-the-world GC happens even as we mark in this generation.
3060   assert(_collectorState == Marking, "inconsistent state?");
3061   check_correct_thread_executing();
3062   verify_overflow_empty();
3063 
3064   // Weak ref discovery note: We may be discovering weak
3065   // refs in this generation concurrent (but interleaved) with
3066   // weak ref discovery by a younger generation collector.
3067 
3068   CMSTokenSyncWithLocks ts(true, bitMapLock());
3069   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3070   CMSPhaseAccounting pa(this, "mark", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3071   bool res = markFromRootsWork();
3072   if (res) {
3073     _collectorState = Precleaning;
3074   } else { // We failed and a foreground collection wants to take over
3075     assert(_foregroundGCIsActive, "internal state inconsistency");
3076     assert(_restart_addr == NULL,  "foreground will restart from scratch");
3077     if (PrintGCDetails) {
3078       gclog_or_tty->print_cr("bailing out to foreground collection");
3079     }
3080   }
3081   verify_overflow_empty();
3082   return res;
3083 }
3084 
3085 bool CMSCollector::markFromRootsWork() {
3086   // iterate over marked bits in bit map, doing a full scan and mark
3087   // from these roots using the following algorithm:
3088   // . if oop is to the right of the current scan pointer,
3089   //   mark corresponding bit (we'll process it later)
3090   // . else (oop is to left of current scan pointer)
3091   //   push oop on marking stack
3092   // . drain the marking stack
3093 
3094   // Note that when we do a marking step we need to hold the
3095   // bit map lock -- recall that direct allocation (by mutators)
3096   // and promotion (by younger generation collectors) is also
3097   // marking the bit map. [the so-called allocate live policy.]
3098   // Because the implementation of bit map marking is not
3099   // robust wrt simultaneous marking of bits in the same word,
3100   // we need to make sure that there is no such interference
3101   // between concurrent such updates.
3102 
3103   // already have locks
3104   assert_lock_strong(bitMapLock());
3105 
3106   verify_work_stacks_empty();
3107   verify_overflow_empty();
3108   bool result = false;
3109   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
3110     result = do_marking_mt();
3111   } else {
3112     result = do_marking_st();
3113   }
3114   return result;
3115 }
3116 
3117 // Forward decl
3118 class CMSConcMarkingTask;
3119 
3120 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
3121   CMSCollector*       _collector;
3122   CMSConcMarkingTask* _task;
3123  public:
3124   virtual void yield();
3125 
3126   // "n_threads" is the number of threads to be terminated.
3127   // "queue_set" is a set of work queues of other threads.
3128   // "collector" is the CMS collector associated with this task terminator.
3129   // "yield" indicates whether we need the gang as a whole to yield.
3130   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3131     ParallelTaskTerminator(n_threads, queue_set),
3132     _collector(collector) { }
3133 
3134   void set_task(CMSConcMarkingTask* task) {
3135     _task = task;
3136   }
3137 };
3138 
3139 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3140   CMSConcMarkingTask* _task;
3141  public:
3142   bool should_exit_termination();
3143   void set_task(CMSConcMarkingTask* task) {
3144     _task = task;
3145   }
3146 };
3147 
3148 // MT Concurrent Marking Task
3149 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3150   CMSCollector* _collector;
3151   uint          _n_workers;       // requested/desired # workers
3152   bool          _result;
3153   CompactibleFreeListSpace*  _cms_space;
3154   char          _pad_front[64];   // padding to ...
3155   HeapWord*     _global_finger;   // ... avoid sharing cache line
3156   char          _pad_back[64];
3157   HeapWord*     _restart_addr;
3158 
3159   //  Exposed here for yielding support
3160   Mutex* const _bit_map_lock;
3161 
3162   // The per thread work queues, available here for stealing
3163   OopTaskQueueSet*  _task_queues;
3164 
3165   // Termination (and yielding) support
3166   CMSConcMarkingTerminator _term;
3167   CMSConcMarkingTerminatorTerminator _term_term;
3168 
3169  public:
3170   CMSConcMarkingTask(CMSCollector* collector,
3171                  CompactibleFreeListSpace* cms_space,
3172                  YieldingFlexibleWorkGang* workers,
3173                  OopTaskQueueSet* task_queues):
3174     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3175     _collector(collector),
3176     _cms_space(cms_space),
3177     _n_workers(0), _result(true),
3178     _task_queues(task_queues),
3179     _term(_n_workers, task_queues, _collector),
3180     _bit_map_lock(collector->bitMapLock())
3181   {
3182     _requested_size = _n_workers;
3183     _term.set_task(this);
3184     _term_term.set_task(this);
3185     _restart_addr = _global_finger = _cms_space->bottom();
3186   }
3187 
3188 
3189   OopTaskQueueSet* task_queues()  { return _task_queues; }
3190 
3191   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3192 
3193   HeapWord** global_finger_addr() { return &_global_finger; }
3194 
3195   CMSConcMarkingTerminator* terminator() { return &_term; }
3196 
3197   virtual void set_for_termination(uint active_workers) {
3198     terminator()->reset_for_reuse(active_workers);
3199   }
3200 
3201   void work(uint worker_id);
3202   bool should_yield() {
3203     return    ConcurrentMarkSweepThread::should_yield()
3204            && !_collector->foregroundGCIsActive();
3205   }
3206 
3207   virtual void coordinator_yield();  // stuff done by coordinator
3208   bool result() { return _result; }
3209 
3210   void reset(HeapWord* ra) {
3211     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3212     _restart_addr = _global_finger = ra;
3213     _term.reset_for_reuse();
3214   }
3215 
3216   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3217                                            OopTaskQueue* work_q);
3218 
3219  private:
3220   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3221   void do_work_steal(int i);
3222   void bump_global_finger(HeapWord* f);
3223 };
3224 
3225 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3226   assert(_task != NULL, "Error");
3227   return _task->yielding();
3228   // Note that we do not need the disjunct || _task->should_yield() above
3229   // because we want terminating threads to yield only if the task
3230   // is already in the midst of yielding, which happens only after at least one
3231   // thread has yielded.
3232 }
3233 
3234 void CMSConcMarkingTerminator::yield() {
3235   if (_task->should_yield()) {
3236     _task->yield();
3237   } else {
3238     ParallelTaskTerminator::yield();
3239   }
3240 }
3241 
3242 ////////////////////////////////////////////////////////////////
3243 // Concurrent Marking Algorithm Sketch
3244 ////////////////////////////////////////////////////////////////
3245 // Until all tasks exhausted (both spaces):
3246 // -- claim next available chunk
3247 // -- bump global finger via CAS
3248 // -- find first object that starts in this chunk
3249 //    and start scanning bitmap from that position
3250 // -- scan marked objects for oops
3251 // -- CAS-mark target, and if successful:
3252 //    . if target oop is above global finger (volatile read)
3253 //      nothing to do
3254 //    . if target oop is in chunk and above local finger
3255 //        then nothing to do
3256 //    . else push on work-queue
3257 // -- Deal with possible overflow issues:
3258 //    . local work-queue overflow causes stuff to be pushed on
3259 //      global (common) overflow queue
3260 //    . always first empty local work queue
3261 //    . then get a batch of oops from global work queue if any
3262 //    . then do work stealing
3263 // -- When all tasks claimed (both spaces)
3264 //    and local work queue empty,
3265 //    then in a loop do:
3266 //    . check global overflow stack; steal a batch of oops and trace
3267 //    . try to steal from other threads oif GOS is empty
3268 //    . if neither is available, offer termination
3269 // -- Terminate and return result
3270 //
3271 void CMSConcMarkingTask::work(uint worker_id) {
3272   elapsedTimer _timer;
3273   ResourceMark rm;
3274   HandleMark hm;
3275 
3276   DEBUG_ONLY(_collector->verify_overflow_empty();)
3277 
3278   // Before we begin work, our work queue should be empty
3279   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3280   // Scan the bitmap covering _cms_space, tracing through grey objects.
3281   _timer.start();
3282   do_scan_and_mark(worker_id, _cms_space);
3283   _timer.stop();
3284   if (PrintCMSStatistics != 0) {
3285     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
3286       worker_id, _timer.seconds());
3287       // XXX: need xxx/xxx type of notation, two timers
3288   }
3289 
3290   // ... do work stealing
3291   _timer.reset();
3292   _timer.start();
3293   do_work_steal(worker_id);
3294   _timer.stop();
3295   if (PrintCMSStatistics != 0) {
3296     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
3297       worker_id, _timer.seconds());
3298       // XXX: need xxx/xxx type of notation, two timers
3299   }
3300   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3301   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3302   // Note that under the current task protocol, the
3303   // following assertion is true even of the spaces
3304   // expanded since the completion of the concurrent
3305   // marking. XXX This will likely change under a strict
3306   // ABORT semantics.
3307   // After perm removal the comparison was changed to
3308   // greater than or equal to from strictly greater than.
3309   // Before perm removal the highest address sweep would
3310   // have been at the end of perm gen but now is at the
3311   // end of the tenured gen.
3312   assert(_global_finger >=  _cms_space->end(),
3313          "All tasks have been completed");
3314   DEBUG_ONLY(_collector->verify_overflow_empty();)
3315 }
3316 
3317 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3318   HeapWord* read = _global_finger;
3319   HeapWord* cur  = read;
3320   while (f > read) {
3321     cur = read;
3322     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3323     if (cur == read) {
3324       // our cas succeeded
3325       assert(_global_finger >= f, "protocol consistency");
3326       break;
3327     }
3328   }
3329 }
3330 
3331 // This is really inefficient, and should be redone by
3332 // using (not yet available) block-read and -write interfaces to the
3333 // stack and the work_queue. XXX FIX ME !!!
3334 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3335                                                       OopTaskQueue* work_q) {
3336   // Fast lock-free check
3337   if (ovflw_stk->length() == 0) {
3338     return false;
3339   }
3340   assert(work_q->size() == 0, "Shouldn't steal");
3341   MutexLockerEx ml(ovflw_stk->par_lock(),
3342                    Mutex::_no_safepoint_check_flag);
3343   // Grab up to 1/4 the size of the work queue
3344   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3345                     (size_t)ParGCDesiredObjsFromOverflowList);
3346   num = MIN2(num, ovflw_stk->length());
3347   for (int i = (int) num; i > 0; i--) {
3348     oop cur = ovflw_stk->pop();
3349     assert(cur != NULL, "Counted wrong?");
3350     work_q->push(cur);
3351   }
3352   return num > 0;
3353 }
3354 
3355 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3356   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3357   int n_tasks = pst->n_tasks();
3358   // We allow that there may be no tasks to do here because
3359   // we are restarting after a stack overflow.
3360   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3361   uint nth_task = 0;
3362 
3363   HeapWord* aligned_start = sp->bottom();
3364   if (sp->used_region().contains(_restart_addr)) {
3365     // Align down to a card boundary for the start of 0th task
3366     // for this space.
3367     aligned_start =
3368       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3369                                  CardTableModRefBS::card_size);
3370   }
3371 
3372   size_t chunk_size = sp->marking_task_size();
3373   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3374     // Having claimed the nth task in this space,
3375     // compute the chunk that it corresponds to:
3376     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3377                                aligned_start + (nth_task+1)*chunk_size);
3378     // Try and bump the global finger via a CAS;
3379     // note that we need to do the global finger bump
3380     // _before_ taking the intersection below, because
3381     // the task corresponding to that region will be
3382     // deemed done even if the used_region() expands
3383     // because of allocation -- as it almost certainly will
3384     // during start-up while the threads yield in the
3385     // closure below.
3386     HeapWord* finger = span.end();
3387     bump_global_finger(finger);   // atomically
3388     // There are null tasks here corresponding to chunks
3389     // beyond the "top" address of the space.
3390     span = span.intersection(sp->used_region());
3391     if (!span.is_empty()) {  // Non-null task
3392       HeapWord* prev_obj;
3393       assert(!span.contains(_restart_addr) || nth_task == 0,
3394              "Inconsistency");
3395       if (nth_task == 0) {
3396         // For the 0th task, we'll not need to compute a block_start.
3397         if (span.contains(_restart_addr)) {
3398           // In the case of a restart because of stack overflow,
3399           // we might additionally skip a chunk prefix.
3400           prev_obj = _restart_addr;
3401         } else {
3402           prev_obj = span.start();
3403         }
3404       } else {
3405         // We want to skip the first object because
3406         // the protocol is to scan any object in its entirety
3407         // that _starts_ in this span; a fortiori, any
3408         // object starting in an earlier span is scanned
3409         // as part of an earlier claimed task.
3410         // Below we use the "careful" version of block_start
3411         // so we do not try to navigate uninitialized objects.
3412         prev_obj = sp->block_start_careful(span.start());
3413         // Below we use a variant of block_size that uses the
3414         // Printezis bits to avoid waiting for allocated
3415         // objects to become initialized/parsable.
3416         while (prev_obj < span.start()) {
3417           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3418           if (sz > 0) {
3419             prev_obj += sz;
3420           } else {
3421             // In this case we may end up doing a bit of redundant
3422             // scanning, but that appears unavoidable, short of
3423             // locking the free list locks; see bug 6324141.
3424             break;
3425           }
3426         }
3427       }
3428       if (prev_obj < span.end()) {
3429         MemRegion my_span = MemRegion(prev_obj, span.end());
3430         // Do the marking work within a non-empty span --
3431         // the last argument to the constructor indicates whether the
3432         // iteration should be incremental with periodic yields.
3433         Par_MarkFromRootsClosure cl(this, _collector, my_span,
3434                                     &_collector->_markBitMap,
3435                                     work_queue(i),
3436                                     &_collector->_markStack);
3437         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3438       } // else nothing to do for this task
3439     }   // else nothing to do for this task
3440   }
3441   // We'd be tempted to assert here that since there are no
3442   // more tasks left to claim in this space, the global_finger
3443   // must exceed space->top() and a fortiori space->end(). However,
3444   // that would not quite be correct because the bumping of
3445   // global_finger occurs strictly after the claiming of a task,
3446   // so by the time we reach here the global finger may not yet
3447   // have been bumped up by the thread that claimed the last
3448   // task.
3449   pst->all_tasks_completed();
3450 }
3451 
3452 class Par_ConcMarkingClosure: public MetadataAwareOopClosure {
3453  private:
3454   CMSCollector* _collector;
3455   CMSConcMarkingTask* _task;
3456   MemRegion     _span;
3457   CMSBitMap*    _bit_map;
3458   CMSMarkStack* _overflow_stack;
3459   OopTaskQueue* _work_queue;
3460  protected:
3461   DO_OOP_WORK_DEFN
3462  public:
3463   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3464                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3465     MetadataAwareOopClosure(collector->ref_processor()),
3466     _collector(collector),
3467     _task(task),
3468     _span(collector->_span),
3469     _work_queue(work_queue),
3470     _bit_map(bit_map),
3471     _overflow_stack(overflow_stack)
3472   { }
3473   virtual void do_oop(oop* p);
3474   virtual void do_oop(narrowOop* p);
3475 
3476   void trim_queue(size_t max);
3477   void handle_stack_overflow(HeapWord* lost);
3478   void do_yield_check() {
3479     if (_task->should_yield()) {
3480       _task->yield();
3481     }
3482   }
3483 };
3484 
3485 // Grey object scanning during work stealing phase --
3486 // the salient assumption here is that any references
3487 // that are in these stolen objects being scanned must
3488 // already have been initialized (else they would not have
3489 // been published), so we do not need to check for
3490 // uninitialized objects before pushing here.
3491 void Par_ConcMarkingClosure::do_oop(oop obj) {
3492   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
3493   HeapWord* addr = (HeapWord*)obj;
3494   // Check if oop points into the CMS generation
3495   // and is not marked
3496   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3497     // a white object ...
3498     // If we manage to "claim" the object, by being the
3499     // first thread to mark it, then we push it on our
3500     // marking stack
3501     if (_bit_map->par_mark(addr)) {     // ... now grey
3502       // push on work queue (grey set)
3503       bool simulate_overflow = false;
3504       NOT_PRODUCT(
3505         if (CMSMarkStackOverflowALot &&
3506             _collector->simulate_overflow()) {
3507           // simulate a stack overflow
3508           simulate_overflow = true;
3509         }
3510       )
3511       if (simulate_overflow ||
3512           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3513         // stack overflow
3514         if (PrintCMSStatistics != 0) {
3515           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
3516                                  SIZE_FORMAT, _overflow_stack->capacity());
3517         }
3518         // We cannot assert that the overflow stack is full because
3519         // it may have been emptied since.
3520         assert(simulate_overflow ||
3521                _work_queue->size() == _work_queue->max_elems(),
3522               "Else push should have succeeded");
3523         handle_stack_overflow(addr);
3524       }
3525     } // Else, some other thread got there first
3526     do_yield_check();
3527   }
3528 }
3529 
3530 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
3531 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
3532 
3533 void Par_ConcMarkingClosure::trim_queue(size_t max) {
3534   while (_work_queue->size() > max) {
3535     oop new_oop;
3536     if (_work_queue->pop_local(new_oop)) {
3537       assert(new_oop->is_oop(), "Should be an oop");
3538       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3539       assert(_span.contains((HeapWord*)new_oop), "Not in span");
3540       new_oop->oop_iterate(this);  // do_oop() above
3541       do_yield_check();
3542     }
3543   }
3544 }
3545 
3546 // Upon stack overflow, we discard (part of) the stack,
3547 // remembering the least address amongst those discarded
3548 // in CMSCollector's _restart_address.
3549 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
3550   // We need to do this under a mutex to prevent other
3551   // workers from interfering with the work done below.
3552   MutexLockerEx ml(_overflow_stack->par_lock(),
3553                    Mutex::_no_safepoint_check_flag);
3554   // Remember the least grey address discarded
3555   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
3556   _collector->lower_restart_addr(ra);
3557   _overflow_stack->reset();  // discard stack contents
3558   _overflow_stack->expand(); // expand the stack if possible
3559 }
3560 
3561 
3562 void CMSConcMarkingTask::do_work_steal(int i) {
3563   OopTaskQueue* work_q = work_queue(i);
3564   oop obj_to_scan;
3565   CMSBitMap* bm = &(_collector->_markBitMap);
3566   CMSMarkStack* ovflw = &(_collector->_markStack);
3567   int* seed = _collector->hash_seed(i);
3568   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
3569   while (true) {
3570     cl.trim_queue(0);
3571     assert(work_q->size() == 0, "Should have been emptied above");
3572     if (get_work_from_overflow_stack(ovflw, work_q)) {
3573       // Can't assert below because the work obtained from the
3574       // overflow stack may already have been stolen from us.
3575       // assert(work_q->size() > 0, "Work from overflow stack");
3576       continue;
3577     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
3578       assert(obj_to_scan->is_oop(), "Should be an oop");
3579       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
3580       obj_to_scan->oop_iterate(&cl);
3581     } else if (terminator()->offer_termination(&_term_term)) {
3582       assert(work_q->size() == 0, "Impossible!");
3583       break;
3584     } else if (yielding() || should_yield()) {
3585       yield();
3586     }
3587   }
3588 }
3589 
3590 // This is run by the CMS (coordinator) thread.
3591 void CMSConcMarkingTask::coordinator_yield() {
3592   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3593          "CMS thread should hold CMS token");
3594   // First give up the locks, then yield, then re-lock
3595   // We should probably use a constructor/destructor idiom to
3596   // do this unlock/lock or modify the MutexUnlocker class to
3597   // serve our purpose. XXX
3598   assert_lock_strong(_bit_map_lock);
3599   _bit_map_lock->unlock();
3600   ConcurrentMarkSweepThread::desynchronize(true);
3601   _collector->stopTimer();
3602   if (PrintCMSStatistics != 0) {
3603     _collector->incrementYields();
3604   }
3605 
3606   // It is possible for whichever thread initiated the yield request
3607   // not to get a chance to wake up and take the bitmap lock between
3608   // this thread releasing it and reacquiring it. So, while the
3609   // should_yield() flag is on, let's sleep for a bit to give the
3610   // other thread a chance to wake up. The limit imposed on the number
3611   // of iterations is defensive, to avoid any unforseen circumstances
3612   // putting us into an infinite loop. Since it's always been this
3613   // (coordinator_yield()) method that was observed to cause the
3614   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
3615   // which is by default non-zero. For the other seven methods that
3616   // also perform the yield operation, as are using a different
3617   // parameter (CMSYieldSleepCount) which is by default zero. This way we
3618   // can enable the sleeping for those methods too, if necessary.
3619   // See 6442774.
3620   //
3621   // We really need to reconsider the synchronization between the GC
3622   // thread and the yield-requesting threads in the future and we
3623   // should really use wait/notify, which is the recommended
3624   // way of doing this type of interaction. Additionally, we should
3625   // consolidate the eight methods that do the yield operation and they
3626   // are almost identical into one for better maintainability and
3627   // readability. See 6445193.
3628   //
3629   // Tony 2006.06.29
3630   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
3631                    ConcurrentMarkSweepThread::should_yield() &&
3632                    !CMSCollector::foregroundGCIsActive(); ++i) {
3633     os::sleep(Thread::current(), 1, false);
3634   }
3635 
3636   ConcurrentMarkSweepThread::synchronize(true);
3637   _bit_map_lock->lock_without_safepoint_check();
3638   _collector->startTimer();
3639 }
3640 
3641 bool CMSCollector::do_marking_mt() {
3642   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
3643   uint num_workers = AdaptiveSizePolicy::calc_active_conc_workers(conc_workers()->total_workers(),
3644                                                                   conc_workers()->active_workers(),
3645                                                                   Threads::number_of_non_daemon_threads());
3646   conc_workers()->set_active_workers(num_workers);
3647 
3648   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
3649 
3650   CMSConcMarkingTask tsk(this,
3651                          cms_space,
3652                          conc_workers(),
3653                          task_queues());
3654 
3655   // Since the actual number of workers we get may be different
3656   // from the number we requested above, do we need to do anything different
3657   // below? In particular, may be we need to subclass the SequantialSubTasksDone
3658   // class?? XXX
3659   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
3660 
3661   // Refs discovery is already non-atomic.
3662   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
3663   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
3664   conc_workers()->start_task(&tsk);
3665   while (tsk.yielded()) {
3666     tsk.coordinator_yield();
3667     conc_workers()->continue_task(&tsk);
3668   }
3669   // If the task was aborted, _restart_addr will be non-NULL
3670   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
3671   while (_restart_addr != NULL) {
3672     // XXX For now we do not make use of ABORTED state and have not
3673     // yet implemented the right abort semantics (even in the original
3674     // single-threaded CMS case). That needs some more investigation
3675     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
3676     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
3677     // If _restart_addr is non-NULL, a marking stack overflow
3678     // occurred; we need to do a fresh marking iteration from the
3679     // indicated restart address.
3680     if (_foregroundGCIsActive) {
3681       // We may be running into repeated stack overflows, having
3682       // reached the limit of the stack size, while making very
3683       // slow forward progress. It may be best to bail out and
3684       // let the foreground collector do its job.
3685       // Clear _restart_addr, so that foreground GC
3686       // works from scratch. This avoids the headache of
3687       // a "rescan" which would otherwise be needed because
3688       // of the dirty mod union table & card table.
3689       _restart_addr = NULL;
3690       return false;
3691     }
3692     // Adjust the task to restart from _restart_addr
3693     tsk.reset(_restart_addr);
3694     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
3695                   _restart_addr);
3696     _restart_addr = NULL;
3697     // Get the workers going again
3698     conc_workers()->start_task(&tsk);
3699     while (tsk.yielded()) {
3700       tsk.coordinator_yield();
3701       conc_workers()->continue_task(&tsk);
3702     }
3703   }
3704   assert(tsk.completed(), "Inconsistency");
3705   assert(tsk.result() == true, "Inconsistency");
3706   return true;
3707 }
3708 
3709 bool CMSCollector::do_marking_st() {
3710   ResourceMark rm;
3711   HandleMark   hm;
3712 
3713   // Temporarily make refs discovery single threaded (non-MT)
3714   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
3715   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
3716     &_markStack, CMSYield);
3717   // the last argument to iterate indicates whether the iteration
3718   // should be incremental with periodic yields.
3719   _markBitMap.iterate(&markFromRootsClosure);
3720   // If _restart_addr is non-NULL, a marking stack overflow
3721   // occurred; we need to do a fresh iteration from the
3722   // indicated restart address.
3723   while (_restart_addr != NULL) {
3724     if (_foregroundGCIsActive) {
3725       // We may be running into repeated stack overflows, having
3726       // reached the limit of the stack size, while making very
3727       // slow forward progress. It may be best to bail out and
3728       // let the foreground collector do its job.
3729       // Clear _restart_addr, so that foreground GC
3730       // works from scratch. This avoids the headache of
3731       // a "rescan" which would otherwise be needed because
3732       // of the dirty mod union table & card table.
3733       _restart_addr = NULL;
3734       return false;  // indicating failure to complete marking
3735     }
3736     // Deal with stack overflow:
3737     // we restart marking from _restart_addr
3738     HeapWord* ra = _restart_addr;
3739     markFromRootsClosure.reset(ra);
3740     _restart_addr = NULL;
3741     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
3742   }
3743   return true;
3744 }
3745 
3746 void CMSCollector::preclean() {
3747   check_correct_thread_executing();
3748   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
3749   verify_work_stacks_empty();
3750   verify_overflow_empty();
3751   _abort_preclean = false;
3752   if (CMSPrecleaningEnabled) {
3753     if (!CMSEdenChunksRecordAlways) {
3754       _eden_chunk_index = 0;
3755     }
3756     size_t used = get_eden_used();
3757     size_t capacity = get_eden_capacity();
3758     // Don't start sampling unless we will get sufficiently
3759     // many samples.
3760     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
3761                 * CMSScheduleRemarkEdenPenetration)) {
3762       _start_sampling = true;
3763     } else {
3764       _start_sampling = false;
3765     }
3766     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3767     CMSPhaseAccounting pa(this, "preclean", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3768     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
3769   }
3770   CMSTokenSync x(true); // is cms thread
3771   if (CMSPrecleaningEnabled) {
3772     sample_eden();
3773     _collectorState = AbortablePreclean;
3774   } else {
3775     _collectorState = FinalMarking;
3776   }
3777   verify_work_stacks_empty();
3778   verify_overflow_empty();
3779 }
3780 
3781 // Try and schedule the remark such that young gen
3782 // occupancy is CMSScheduleRemarkEdenPenetration %.
3783 void CMSCollector::abortable_preclean() {
3784   check_correct_thread_executing();
3785   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
3786   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
3787 
3788   // If Eden's current occupancy is below this threshold,
3789   // immediately schedule the remark; else preclean
3790   // past the next scavenge in an effort to
3791   // schedule the pause as described above. By choosing
3792   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
3793   // we will never do an actual abortable preclean cycle.
3794   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
3795     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3796     CMSPhaseAccounting pa(this, "abortable-preclean", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3797     // We need more smarts in the abortable preclean
3798     // loop below to deal with cases where allocation
3799     // in young gen is very very slow, and our precleaning
3800     // is running a losing race against a horde of
3801     // mutators intent on flooding us with CMS updates
3802     // (dirty cards).
3803     // One, admittedly dumb, strategy is to give up
3804     // after a certain number of abortable precleaning loops
3805     // or after a certain maximum time. We want to make
3806     // this smarter in the next iteration.
3807     // XXX FIX ME!!! YSR
3808     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
3809     while (!(should_abort_preclean() ||
3810              ConcurrentMarkSweepThread::should_terminate())) {
3811       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
3812       cumworkdone += workdone;
3813       loops++;
3814       // Voluntarily terminate abortable preclean phase if we have
3815       // been at it for too long.
3816       if ((CMSMaxAbortablePrecleanLoops != 0) &&
3817           loops >= CMSMaxAbortablePrecleanLoops) {
3818         if (PrintGCDetails) {
3819           gclog_or_tty->print(" CMS: abort preclean due to loops ");
3820         }
3821         break;
3822       }
3823       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
3824         if (PrintGCDetails) {
3825           gclog_or_tty->print(" CMS: abort preclean due to time ");
3826         }
3827         break;
3828       }
3829       // If we are doing little work each iteration, we should
3830       // take a short break.
3831       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
3832         // Sleep for some time, waiting for work to accumulate
3833         stopTimer();
3834         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
3835         startTimer();
3836         waited++;
3837       }
3838     }
3839     if (PrintCMSStatistics > 0) {
3840       gclog_or_tty->print(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
3841                           loops, waited, cumworkdone);
3842     }
3843   }
3844   CMSTokenSync x(true); // is cms thread
3845   if (_collectorState != Idling) {
3846     assert(_collectorState == AbortablePreclean,
3847            "Spontaneous state transition?");
3848     _collectorState = FinalMarking;
3849   } // Else, a foreground collection completed this CMS cycle.
3850   return;
3851 }
3852 
3853 // Respond to an Eden sampling opportunity
3854 void CMSCollector::sample_eden() {
3855   // Make sure a young gc cannot sneak in between our
3856   // reading and recording of a sample.
3857   assert(Thread::current()->is_ConcurrentGC_thread(),
3858          "Only the cms thread may collect Eden samples");
3859   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3860          "Should collect samples while holding CMS token");
3861   if (!_start_sampling) {
3862     return;
3863   }
3864   // When CMSEdenChunksRecordAlways is true, the eden chunk array
3865   // is populated by the young generation.
3866   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
3867     if (_eden_chunk_index < _eden_chunk_capacity) {
3868       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
3869       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
3870              "Unexpected state of Eden");
3871       // We'd like to check that what we just sampled is an oop-start address;
3872       // however, we cannot do that here since the object may not yet have been
3873       // initialized. So we'll instead do the check when we _use_ this sample
3874       // later.
3875       if (_eden_chunk_index == 0 ||
3876           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
3877                          _eden_chunk_array[_eden_chunk_index-1])
3878            >= CMSSamplingGrain)) {
3879         _eden_chunk_index++;  // commit sample
3880       }
3881     }
3882   }
3883   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
3884     size_t used = get_eden_used();
3885     size_t capacity = get_eden_capacity();
3886     assert(used <= capacity, "Unexpected state of Eden");
3887     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
3888       _abort_preclean = true;
3889     }
3890   }
3891 }
3892 
3893 
3894 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
3895   assert(_collectorState == Precleaning ||
3896          _collectorState == AbortablePreclean, "incorrect state");
3897   ResourceMark rm;
3898   HandleMark   hm;
3899 
3900   // Precleaning is currently not MT but the reference processor
3901   // may be set for MT.  Disable it temporarily here.
3902   ReferenceProcessor* rp = ref_processor();
3903   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
3904 
3905   // Do one pass of scrubbing the discovered reference lists
3906   // to remove any reference objects with strongly-reachable
3907   // referents.
3908   if (clean_refs) {
3909     CMSPrecleanRefsYieldClosure yield_cl(this);
3910     assert(rp->span().equals(_span), "Spans should be equal");
3911     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
3912                                    &_markStack, true /* preclean */);
3913     CMSDrainMarkingStackClosure complete_trace(this,
3914                                    _span, &_markBitMap, &_markStack,
3915                                    &keep_alive, true /* preclean */);
3916 
3917     // We don't want this step to interfere with a young
3918     // collection because we don't want to take CPU
3919     // or memory bandwidth away from the young GC threads
3920     // (which may be as many as there are CPUs).
3921     // Note that we don't need to protect ourselves from
3922     // interference with mutators because they can't
3923     // manipulate the discovered reference lists nor affect
3924     // the computed reachability of the referents, the
3925     // only properties manipulated by the precleaning
3926     // of these reference lists.
3927     stopTimer();
3928     CMSTokenSyncWithLocks x(true /* is cms thread */,
3929                             bitMapLock());
3930     startTimer();
3931     sample_eden();
3932 
3933     // The following will yield to allow foreground
3934     // collection to proceed promptly. XXX YSR:
3935     // The code in this method may need further
3936     // tweaking for better performance and some restructuring
3937     // for cleaner interfaces.
3938     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
3939     rp->preclean_discovered_references(
3940           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
3941           gc_timer, _gc_tracer_cm->gc_id());
3942   }
3943 
3944   if (clean_survivor) {  // preclean the active survivor space(s)
3945     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
3946                              &_markBitMap, &_modUnionTable,
3947                              &_markStack, true /* precleaning phase */);
3948     stopTimer();
3949     CMSTokenSyncWithLocks ts(true /* is cms thread */,
3950                              bitMapLock());
3951     startTimer();
3952     unsigned int before_count =
3953       GenCollectedHeap::heap()->total_collections();
3954     SurvivorSpacePrecleanClosure
3955       sss_cl(this, _span, &_markBitMap, &_markStack,
3956              &pam_cl, before_count, CMSYield);
3957     _young_gen->from()->object_iterate_careful(&sss_cl);
3958     _young_gen->to()->object_iterate_careful(&sss_cl);
3959   }
3960   MarkRefsIntoAndScanClosure
3961     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
3962              &_markStack, this, CMSYield,
3963              true /* precleaning phase */);
3964   // CAUTION: The following closure has persistent state that may need to
3965   // be reset upon a decrease in the sequence of addresses it
3966   // processes.
3967   ScanMarkedObjectsAgainCarefullyClosure
3968     smoac_cl(this, _span,
3969       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
3970 
3971   // Preclean dirty cards in ModUnionTable and CardTable using
3972   // appropriate convergence criterion;
3973   // repeat CMSPrecleanIter times unless we find that
3974   // we are losing.
3975   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
3976   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
3977          "Bad convergence multiplier");
3978   assert(CMSPrecleanThreshold >= 100,
3979          "Unreasonably low CMSPrecleanThreshold");
3980 
3981   size_t numIter, cumNumCards, lastNumCards, curNumCards;
3982   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
3983        numIter < CMSPrecleanIter;
3984        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
3985     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
3986     if (Verbose && PrintGCDetails) {
3987       gclog_or_tty->print(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
3988     }
3989     // Either there are very few dirty cards, so re-mark
3990     // pause will be small anyway, or our pre-cleaning isn't
3991     // that much faster than the rate at which cards are being
3992     // dirtied, so we might as well stop and re-mark since
3993     // precleaning won't improve our re-mark time by much.
3994     if (curNumCards <= CMSPrecleanThreshold ||
3995         (numIter > 0 &&
3996          (curNumCards * CMSPrecleanDenominator >
3997          lastNumCards * CMSPrecleanNumerator))) {
3998       numIter++;
3999       cumNumCards += curNumCards;
4000       break;
4001     }
4002   }
4003 
4004   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
4005 
4006   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
4007   cumNumCards += curNumCards;
4008   if (PrintGCDetails && PrintCMSStatistics != 0) {
4009     gclog_or_tty->print_cr(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
4010                   curNumCards, cumNumCards, numIter);
4011   }
4012   return cumNumCards;   // as a measure of useful work done
4013 }
4014 
4015 // PRECLEANING NOTES:
4016 // Precleaning involves:
4017 // . reading the bits of the modUnionTable and clearing the set bits.
4018 // . For the cards corresponding to the set bits, we scan the
4019 //   objects on those cards. This means we need the free_list_lock
4020 //   so that we can safely iterate over the CMS space when scanning
4021 //   for oops.
4022 // . When we scan the objects, we'll be both reading and setting
4023 //   marks in the marking bit map, so we'll need the marking bit map.
4024 // . For protecting _collector_state transitions, we take the CGC_lock.
4025 //   Note that any races in the reading of of card table entries by the
4026 //   CMS thread on the one hand and the clearing of those entries by the
4027 //   VM thread or the setting of those entries by the mutator threads on the
4028 //   other are quite benign. However, for efficiency it makes sense to keep
4029 //   the VM thread from racing with the CMS thread while the latter is
4030 //   dirty card info to the modUnionTable. We therefore also use the
4031 //   CGC_lock to protect the reading of the card table and the mod union
4032 //   table by the CM thread.
4033 // . We run concurrently with mutator updates, so scanning
4034 //   needs to be done carefully  -- we should not try to scan
4035 //   potentially uninitialized objects.
4036 //
4037 // Locking strategy: While holding the CGC_lock, we scan over and
4038 // reset a maximal dirty range of the mod union / card tables, then lock
4039 // the free_list_lock and bitmap lock to do a full marking, then
4040 // release these locks; and repeat the cycle. This allows for a
4041 // certain amount of fairness in the sharing of these locks between
4042 // the CMS collector on the one hand, and the VM thread and the
4043 // mutators on the other.
4044 
4045 // NOTE: preclean_mod_union_table() and preclean_card_table()
4046 // further below are largely identical; if you need to modify
4047 // one of these methods, please check the other method too.
4048 
4049 size_t CMSCollector::preclean_mod_union_table(
4050   ConcurrentMarkSweepGeneration* gen,
4051   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4052   verify_work_stacks_empty();
4053   verify_overflow_empty();
4054 
4055   // strategy: starting with the first card, accumulate contiguous
4056   // ranges of dirty cards; clear these cards, then scan the region
4057   // covered by these cards.
4058 
4059   // Since all of the MUT is committed ahead, we can just use
4060   // that, in case the generations expand while we are precleaning.
4061   // It might also be fine to just use the committed part of the
4062   // generation, but we might potentially miss cards when the
4063   // generation is rapidly expanding while we are in the midst
4064   // of precleaning.
4065   HeapWord* startAddr = gen->reserved().start();
4066   HeapWord* endAddr   = gen->reserved().end();
4067 
4068   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4069 
4070   size_t numDirtyCards, cumNumDirtyCards;
4071   HeapWord *nextAddr, *lastAddr;
4072   for (cumNumDirtyCards = numDirtyCards = 0,
4073        nextAddr = lastAddr = startAddr;
4074        nextAddr < endAddr;
4075        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4076 
4077     ResourceMark rm;
4078     HandleMark   hm;
4079 
4080     MemRegion dirtyRegion;
4081     {
4082       stopTimer();
4083       // Potential yield point
4084       CMSTokenSync ts(true);
4085       startTimer();
4086       sample_eden();
4087       // Get dirty region starting at nextOffset (inclusive),
4088       // simultaneously clearing it.
4089       dirtyRegion =
4090         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
4091       assert(dirtyRegion.start() >= nextAddr,
4092              "returned region inconsistent?");
4093     }
4094     // Remember where the next search should begin.
4095     // The returned region (if non-empty) is a right open interval,
4096     // so lastOffset is obtained from the right end of that
4097     // interval.
4098     lastAddr = dirtyRegion.end();
4099     // Should do something more transparent and less hacky XXX
4100     numDirtyCards =
4101       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4102 
4103     // We'll scan the cards in the dirty region (with periodic
4104     // yields for foreground GC as needed).
4105     if (!dirtyRegion.is_empty()) {
4106       assert(numDirtyCards > 0, "consistency check");
4107       HeapWord* stop_point = NULL;
4108       stopTimer();
4109       // Potential yield point
4110       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
4111                                bitMapLock());
4112       startTimer();
4113       {
4114         verify_work_stacks_empty();
4115         verify_overflow_empty();
4116         sample_eden();
4117         stop_point =
4118           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4119       }
4120       if (stop_point != NULL) {
4121         // The careful iteration stopped early either because it found an
4122         // uninitialized object, or because we were in the midst of an
4123         // "abortable preclean", which should now be aborted. Redirty
4124         // the bits corresponding to the partially-scanned or unscanned
4125         // cards. We'll either restart at the next block boundary or
4126         // abort the preclean.
4127         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4128                "Should only be AbortablePreclean.");
4129         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4130         if (should_abort_preclean()) {
4131           break; // out of preclean loop
4132         } else {
4133           // Compute the next address at which preclean should pick up;
4134           // might need bitMapLock in order to read P-bits.
4135           lastAddr = next_card_start_after_block(stop_point);
4136         }
4137       }
4138     } else {
4139       assert(lastAddr == endAddr, "consistency check");
4140       assert(numDirtyCards == 0, "consistency check");
4141       break;
4142     }
4143   }
4144   verify_work_stacks_empty();
4145   verify_overflow_empty();
4146   return cumNumDirtyCards;
4147 }
4148 
4149 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4150 // below are largely identical; if you need to modify
4151 // one of these methods, please check the other method too.
4152 
4153 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
4154   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4155   // strategy: it's similar to precleamModUnionTable above, in that
4156   // we accumulate contiguous ranges of dirty cards, mark these cards
4157   // precleaned, then scan the region covered by these cards.
4158   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
4159   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
4160 
4161   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4162 
4163   size_t numDirtyCards, cumNumDirtyCards;
4164   HeapWord *lastAddr, *nextAddr;
4165 
4166   for (cumNumDirtyCards = numDirtyCards = 0,
4167        nextAddr = lastAddr = startAddr;
4168        nextAddr < endAddr;
4169        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4170 
4171     ResourceMark rm;
4172     HandleMark   hm;
4173 
4174     MemRegion dirtyRegion;
4175     {
4176       // See comments in "Precleaning notes" above on why we
4177       // do this locking. XXX Could the locking overheads be
4178       // too high when dirty cards are sparse? [I don't think so.]
4179       stopTimer();
4180       CMSTokenSync x(true); // is cms thread
4181       startTimer();
4182       sample_eden();
4183       // Get and clear dirty region from card table
4184       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4185                                     MemRegion(nextAddr, endAddr),
4186                                     true,
4187                                     CardTableModRefBS::precleaned_card_val());
4188 
4189       assert(dirtyRegion.start() >= nextAddr,
4190              "returned region inconsistent?");
4191     }
4192     lastAddr = dirtyRegion.end();
4193     numDirtyCards =
4194       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4195 
4196     if (!dirtyRegion.is_empty()) {
4197       stopTimer();
4198       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
4199       startTimer();
4200       sample_eden();
4201       verify_work_stacks_empty();
4202       verify_overflow_empty();
4203       HeapWord* stop_point =
4204         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4205       if (stop_point != NULL) {
4206         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4207                "Should only be AbortablePreclean.");
4208         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4209         if (should_abort_preclean()) {
4210           break; // out of preclean loop
4211         } else {
4212           // Compute the next address at which preclean should pick up.
4213           lastAddr = next_card_start_after_block(stop_point);
4214         }
4215       }
4216     } else {
4217       break;
4218     }
4219   }
4220   verify_work_stacks_empty();
4221   verify_overflow_empty();
4222   return cumNumDirtyCards;
4223 }
4224 
4225 class PrecleanKlassClosure : public KlassClosure {
4226   KlassToOopClosure _cm_klass_closure;
4227  public:
4228   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4229   void do_klass(Klass* k) {
4230     if (k->has_accumulated_modified_oops()) {
4231       k->clear_accumulated_modified_oops();
4232 
4233       _cm_klass_closure.do_klass(k);
4234     }
4235   }
4236 };
4237 
4238 // The freelist lock is needed to prevent asserts, is it really needed?
4239 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4240 
4241   cl->set_freelistLock(freelistLock);
4242 
4243   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4244 
4245   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4246   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4247   PrecleanKlassClosure preclean_klass_closure(cl);
4248   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4249 
4250   verify_work_stacks_empty();
4251   verify_overflow_empty();
4252 }
4253 
4254 void CMSCollector::checkpointRootsFinal() {
4255   assert(_collectorState == FinalMarking, "incorrect state transition?");
4256   check_correct_thread_executing();
4257   // world is stopped at this checkpoint
4258   assert(SafepointSynchronize::is_at_safepoint(),
4259          "world should be stopped");
4260   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4261 
4262   verify_work_stacks_empty();
4263   verify_overflow_empty();
4264 
4265   if (PrintGCDetails) {
4266     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
4267                         _young_gen->used() / K,
4268                         _young_gen->capacity() / K);
4269   }
4270   {
4271     if (CMSScavengeBeforeRemark) {
4272       GenCollectedHeap* gch = GenCollectedHeap::heap();
4273       // Temporarily set flag to false, GCH->do_collection will
4274       // expect it to be false and set to true
4275       FlagSetting fl(gch->_is_gc_active, false);
4276       NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark",
4277         PrintGCDetails && Verbose, true, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4278       gch->do_collection(true,             // full (i.e. force, see below)
4279                          false,            // !clear_all_soft_refs
4280                          0,                // size
4281                          false,            // is_tlab
4282                          Generation::Young // type
4283         );
4284     }
4285     FreelistLocker x(this);
4286     MutexLockerEx y(bitMapLock(),
4287                     Mutex::_no_safepoint_check_flag);
4288     checkpointRootsFinalWork();
4289   }
4290   verify_work_stacks_empty();
4291   verify_overflow_empty();
4292 }
4293 
4294 void CMSCollector::checkpointRootsFinalWork() {
4295   NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4296 
4297   assert(haveFreelistLocks(), "must have free list locks");
4298   assert_lock_strong(bitMapLock());
4299 
4300   ResourceMark rm;
4301   HandleMark   hm;
4302 
4303   GenCollectedHeap* gch = GenCollectedHeap::heap();
4304 
4305   if (should_unload_classes()) {
4306     CodeCache::gc_prologue();
4307   }
4308   assert(haveFreelistLocks(), "must have free list locks");
4309   assert_lock_strong(bitMapLock());
4310 
4311   // We might assume that we need not fill TLAB's when
4312   // CMSScavengeBeforeRemark is set, because we may have just done
4313   // a scavenge which would have filled all TLAB's -- and besides
4314   // Eden would be empty. This however may not always be the case --
4315   // for instance although we asked for a scavenge, it may not have
4316   // happened because of a JNI critical section. We probably need
4317   // a policy for deciding whether we can in that case wait until
4318   // the critical section releases and then do the remark following
4319   // the scavenge, and skip it here. In the absence of that policy,
4320   // or of an indication of whether the scavenge did indeed occur,
4321   // we cannot rely on TLAB's having been filled and must do
4322   // so here just in case a scavenge did not happen.
4323   gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4324   // Update the saved marks which may affect the root scans.
4325   gch->save_marks();
4326 
4327   if (CMSPrintEdenSurvivorChunks) {
4328     print_eden_and_survivor_chunk_arrays();
4329   }
4330 
4331   {
4332     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
4333 
4334     // Note on the role of the mod union table:
4335     // Since the marker in "markFromRoots" marks concurrently with
4336     // mutators, it is possible for some reachable objects not to have been
4337     // scanned. For instance, an only reference to an object A was
4338     // placed in object B after the marker scanned B. Unless B is rescanned,
4339     // A would be collected. Such updates to references in marked objects
4340     // are detected via the mod union table which is the set of all cards
4341     // dirtied since the first checkpoint in this GC cycle and prior to
4342     // the most recent young generation GC, minus those cleaned up by the
4343     // concurrent precleaning.
4344     if (CMSParallelRemarkEnabled) {
4345       GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
4346       do_remark_parallel();
4347     } else {
4348       GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
4349                   _gc_timer_cm, _gc_tracer_cm->gc_id());
4350       do_remark_non_parallel();
4351     }
4352   }
4353   verify_work_stacks_empty();
4354   verify_overflow_empty();
4355 
4356   {
4357     NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4358     refProcessingWork();
4359   }
4360   verify_work_stacks_empty();
4361   verify_overflow_empty();
4362 
4363   if (should_unload_classes()) {
4364     CodeCache::gc_epilogue();
4365   }
4366   JvmtiExport::gc_epilogue();
4367 
4368   // If we encountered any (marking stack / work queue) overflow
4369   // events during the current CMS cycle, take appropriate
4370   // remedial measures, where possible, so as to try and avoid
4371   // recurrence of that condition.
4372   assert(_markStack.isEmpty(), "No grey objects");
4373   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4374                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4375   if (ser_ovflw > 0) {
4376     if (PrintCMSStatistics != 0) {
4377       gclog_or_tty->print_cr("Marking stack overflow (benign) "
4378         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT
4379         ", kac_preclean="SIZE_FORMAT")",
4380         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
4381         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4382     }
4383     _markStack.expand();
4384     _ser_pmc_remark_ovflw = 0;
4385     _ser_pmc_preclean_ovflw = 0;
4386     _ser_kac_preclean_ovflw = 0;
4387     _ser_kac_ovflw = 0;
4388   }
4389   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4390     if (PrintCMSStatistics != 0) {
4391       gclog_or_tty->print_cr("Work queue overflow (benign) "
4392         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
4393         _par_pmc_remark_ovflw, _par_kac_ovflw);
4394     }
4395     _par_pmc_remark_ovflw = 0;
4396     _par_kac_ovflw = 0;
4397   }
4398   if (PrintCMSStatistics != 0) {
4399      if (_markStack._hit_limit > 0) {
4400        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
4401                               _markStack._hit_limit);
4402      }
4403      if (_markStack._failed_double > 0) {
4404        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
4405                               " current capacity "SIZE_FORMAT,
4406                               _markStack._failed_double,
4407                               _markStack.capacity());
4408      }
4409   }
4410   _markStack._hit_limit = 0;
4411   _markStack._failed_double = 0;
4412 
4413   if ((VerifyAfterGC || VerifyDuringGC) &&
4414       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4415     verify_after_remark();
4416   }
4417 
4418   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4419 
4420   // Change under the freelistLocks.
4421   _collectorState = Sweeping;
4422   // Call isAllClear() under bitMapLock
4423   assert(_modUnionTable.isAllClear(),
4424       "Should be clear by end of the final marking");
4425   assert(_ct->klass_rem_set()->mod_union_is_clear(),
4426       "Should be clear by end of the final marking");
4427 }
4428 
4429 void CMSParInitialMarkTask::work(uint worker_id) {
4430   elapsedTimer _timer;
4431   ResourceMark rm;
4432   HandleMark   hm;
4433 
4434   // ---------- scan from roots --------------
4435   _timer.start();
4436   GenCollectedHeap* gch = GenCollectedHeap::heap();
4437   Par_MarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4438 
4439   // ---------- young gen roots --------------
4440   {
4441     work_on_young_gen_roots(worker_id, &par_mri_cl);
4442     _timer.stop();
4443     if (PrintCMSStatistics != 0) {
4444       gclog_or_tty->print_cr(
4445         "Finished young gen initial mark scan work in %dth thread: %3.3f sec",
4446         worker_id, _timer.seconds());
4447     }
4448   }
4449 
4450   // ---------- remaining roots --------------
4451   _timer.reset();
4452   _timer.start();
4453 
4454   CLDToOopClosure cld_closure(&par_mri_cl, true);
4455 
4456   gch->gen_process_roots(_strong_roots_scope,
4457                          Generation::Old,
4458                          false,     // yg was scanned above
4459                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4460                          _collector->should_unload_classes(),
4461                          &par_mri_cl,
4462                          NULL,
4463                          &cld_closure);
4464   assert(_collector->should_unload_classes()
4465          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4466          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4467   _timer.stop();
4468   if (PrintCMSStatistics != 0) {
4469     gclog_or_tty->print_cr(
4470       "Finished remaining root initial mark scan work in %dth thread: %3.3f sec",
4471       worker_id, _timer.seconds());
4472   }
4473 }
4474 
4475 // Parallel remark task
4476 class CMSParRemarkTask: public CMSParMarkTask {
4477   CompactibleFreeListSpace* _cms_space;
4478 
4479   // The per-thread work queues, available here for stealing.
4480   OopTaskQueueSet*       _task_queues;
4481   ParallelTaskTerminator _term;
4482   StrongRootsScope*      _strong_roots_scope;
4483 
4484  public:
4485   // A value of 0 passed to n_workers will cause the number of
4486   // workers to be taken from the active workers in the work gang.
4487   CMSParRemarkTask(CMSCollector* collector,
4488                    CompactibleFreeListSpace* cms_space,
4489                    uint n_workers, FlexibleWorkGang* workers,
4490                    OopTaskQueueSet* task_queues,
4491                    StrongRootsScope* strong_roots_scope):
4492     CMSParMarkTask("Rescan roots and grey objects in parallel",
4493                    collector, n_workers),
4494     _cms_space(cms_space),
4495     _task_queues(task_queues),
4496     _term(n_workers, task_queues),
4497     _strong_roots_scope(strong_roots_scope) { }
4498 
4499   OopTaskQueueSet* task_queues() { return _task_queues; }
4500 
4501   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4502 
4503   ParallelTaskTerminator* terminator() { return &_term; }
4504   uint n_workers() { return _n_workers; }
4505 
4506   void work(uint worker_id);
4507 
4508  private:
4509   // ... of  dirty cards in old space
4510   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4511                                   Par_MarkRefsIntoAndScanClosure* cl);
4512 
4513   // ... work stealing for the above
4514   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
4515 };
4516 
4517 class RemarkKlassClosure : public KlassClosure {
4518   KlassToOopClosure _cm_klass_closure;
4519  public:
4520   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4521   void do_klass(Klass* k) {
4522     // Check if we have modified any oops in the Klass during the concurrent marking.
4523     if (k->has_accumulated_modified_oops()) {
4524       k->clear_accumulated_modified_oops();
4525 
4526       // We could have transfered the current modified marks to the accumulated marks,
4527       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
4528     } else if (k->has_modified_oops()) {
4529       // Don't clear anything, this info is needed by the next young collection.
4530     } else {
4531       // No modified oops in the Klass.
4532       return;
4533     }
4534 
4535     // The klass has modified fields, need to scan the klass.
4536     _cm_klass_closure.do_klass(k);
4537   }
4538 };
4539 
4540 void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) {
4541   ParNewGeneration* young_gen = _collector->_young_gen;
4542   ContiguousSpace* eden_space = young_gen->eden();
4543   ContiguousSpace* from_space = young_gen->from();
4544   ContiguousSpace* to_space   = young_gen->to();
4545 
4546   HeapWord** eca = _collector->_eden_chunk_array;
4547   size_t     ect = _collector->_eden_chunk_index;
4548   HeapWord** sca = _collector->_survivor_chunk_array;
4549   size_t     sct = _collector->_survivor_chunk_index;
4550 
4551   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
4552   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
4553 
4554   do_young_space_rescan(worker_id, cl, to_space, NULL, 0);
4555   do_young_space_rescan(worker_id, cl, from_space, sca, sct);
4556   do_young_space_rescan(worker_id, cl, eden_space, eca, ect);
4557 }
4558 
4559 // work_queue(i) is passed to the closure
4560 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
4561 // also is passed to do_dirty_card_rescan_tasks() and to
4562 // do_work_steal() to select the i-th task_queue.
4563 
4564 void CMSParRemarkTask::work(uint worker_id) {
4565   elapsedTimer _timer;
4566   ResourceMark rm;
4567   HandleMark   hm;
4568 
4569   // ---------- rescan from roots --------------
4570   _timer.start();
4571   GenCollectedHeap* gch = GenCollectedHeap::heap();
4572   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
4573     _collector->_span, _collector->ref_processor(),
4574     &(_collector->_markBitMap),
4575     work_queue(worker_id));
4576 
4577   // Rescan young gen roots first since these are likely
4578   // coarsely partitioned and may, on that account, constitute
4579   // the critical path; thus, it's best to start off that
4580   // work first.
4581   // ---------- young gen roots --------------
4582   {
4583     work_on_young_gen_roots(worker_id, &par_mrias_cl);
4584     _timer.stop();
4585     if (PrintCMSStatistics != 0) {
4586       gclog_or_tty->print_cr(
4587         "Finished young gen rescan work in %dth thread: %3.3f sec",
4588         worker_id, _timer.seconds());
4589     }
4590   }
4591 
4592   // ---------- remaining roots --------------
4593   _timer.reset();
4594   _timer.start();
4595   gch->gen_process_roots(_strong_roots_scope,
4596                          Generation::Old,
4597                          false,     // yg was scanned above
4598                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4599                          _collector->should_unload_classes(),
4600                          &par_mrias_cl,
4601                          NULL,
4602                          NULL);     // The dirty klasses will be handled below
4603 
4604   assert(_collector->should_unload_classes()
4605          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4606          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4607   _timer.stop();
4608   if (PrintCMSStatistics != 0) {
4609     gclog_or_tty->print_cr(
4610       "Finished remaining root rescan work in %dth thread: %3.3f sec",
4611       worker_id, _timer.seconds());
4612   }
4613 
4614   // ---------- unhandled CLD scanning ----------
4615   if (worker_id == 0) { // Single threaded at the moment.
4616     _timer.reset();
4617     _timer.start();
4618 
4619     // Scan all new class loader data objects and new dependencies that were
4620     // introduced during concurrent marking.
4621     ResourceMark rm;
4622     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4623     for (int i = 0; i < array->length(); i++) {
4624       par_mrias_cl.do_class_loader_data(array->at(i));
4625     }
4626 
4627     // We don't need to keep track of new CLDs anymore.
4628     ClassLoaderDataGraph::remember_new_clds(false);
4629 
4630     _timer.stop();
4631     if (PrintCMSStatistics != 0) {
4632       gclog_or_tty->print_cr(
4633           "Finished unhandled CLD scanning work in %dth thread: %3.3f sec",
4634           worker_id, _timer.seconds());
4635     }
4636   }
4637 
4638   // ---------- dirty klass scanning ----------
4639   if (worker_id == 0) { // Single threaded at the moment.
4640     _timer.reset();
4641     _timer.start();
4642 
4643     // Scan all classes that was dirtied during the concurrent marking phase.
4644     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
4645     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4646 
4647     _timer.stop();
4648     if (PrintCMSStatistics != 0) {
4649       gclog_or_tty->print_cr(
4650           "Finished dirty klass scanning work in %dth thread: %3.3f sec",
4651           worker_id, _timer.seconds());
4652     }
4653   }
4654 
4655   // We might have added oops to ClassLoaderData::_handles during the
4656   // concurrent marking phase. These oops point to newly allocated objects
4657   // that are guaranteed to be kept alive. Either by the direct allocation
4658   // code, or when the young collector processes the roots. Hence,
4659   // we don't have to revisit the _handles block during the remark phase.
4660 
4661   // ---------- rescan dirty cards ------------
4662   _timer.reset();
4663   _timer.start();
4664 
4665   // Do the rescan tasks for each of the two spaces
4666   // (cms_space) in turn.
4667   // "worker_id" is passed to select the task_queue for "worker_id"
4668   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
4669   _timer.stop();
4670   if (PrintCMSStatistics != 0) {
4671     gclog_or_tty->print_cr(
4672       "Finished dirty card rescan work in %dth thread: %3.3f sec",
4673       worker_id, _timer.seconds());
4674   }
4675 
4676   // ---------- steal work from other threads ...
4677   // ---------- ... and drain overflow list.
4678   _timer.reset();
4679   _timer.start();
4680   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
4681   _timer.stop();
4682   if (PrintCMSStatistics != 0) {
4683     gclog_or_tty->print_cr(
4684       "Finished work stealing in %dth thread: %3.3f sec",
4685       worker_id, _timer.seconds());
4686   }
4687 }
4688 
4689 // Note that parameter "i" is not used.
4690 void
4691 CMSParMarkTask::do_young_space_rescan(uint worker_id,
4692   OopsInGenClosure* cl, ContiguousSpace* space,
4693   HeapWord** chunk_array, size_t chunk_top) {
4694   // Until all tasks completed:
4695   // . claim an unclaimed task
4696   // . compute region boundaries corresponding to task claimed
4697   //   using chunk_array
4698   // . par_oop_iterate(cl) over that region
4699 
4700   ResourceMark rm;
4701   HandleMark   hm;
4702 
4703   SequentialSubTasksDone* pst = space->par_seq_tasks();
4704 
4705   uint nth_task = 0;
4706   uint n_tasks  = pst->n_tasks();
4707 
4708   if (n_tasks > 0) {
4709     assert(pst->valid(), "Uninitialized use?");
4710     HeapWord *start, *end;
4711     while (!pst->is_task_claimed(/* reference */ nth_task)) {
4712       // We claimed task # nth_task; compute its boundaries.
4713       if (chunk_top == 0) {  // no samples were taken
4714         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
4715         start = space->bottom();
4716         end   = space->top();
4717       } else if (nth_task == 0) {
4718         start = space->bottom();
4719         end   = chunk_array[nth_task];
4720       } else if (nth_task < (uint)chunk_top) {
4721         assert(nth_task >= 1, "Control point invariant");
4722         start = chunk_array[nth_task - 1];
4723         end   = chunk_array[nth_task];
4724       } else {
4725         assert(nth_task == (uint)chunk_top, "Control point invariant");
4726         start = chunk_array[chunk_top - 1];
4727         end   = space->top();
4728       }
4729       MemRegion mr(start, end);
4730       // Verify that mr is in space
4731       assert(mr.is_empty() || space->used_region().contains(mr),
4732              "Should be in space");
4733       // Verify that "start" is an object boundary
4734       assert(mr.is_empty() || oop(mr.start())->is_oop(),
4735              "Should be an oop");
4736       space->par_oop_iterate(mr, cl);
4737     }
4738     pst->all_tasks_completed();
4739   }
4740 }
4741 
4742 void
4743 CMSParRemarkTask::do_dirty_card_rescan_tasks(
4744   CompactibleFreeListSpace* sp, int i,
4745   Par_MarkRefsIntoAndScanClosure* cl) {
4746   // Until all tasks completed:
4747   // . claim an unclaimed task
4748   // . compute region boundaries corresponding to task claimed
4749   // . transfer dirty bits ct->mut for that region
4750   // . apply rescanclosure to dirty mut bits for that region
4751 
4752   ResourceMark rm;
4753   HandleMark   hm;
4754 
4755   OopTaskQueue* work_q = work_queue(i);
4756   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
4757   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
4758   // CAUTION: This closure has state that persists across calls to
4759   // the work method dirty_range_iterate_clear() in that it has
4760   // embedded in it a (subtype of) UpwardsObjectClosure. The
4761   // use of that state in the embedded UpwardsObjectClosure instance
4762   // assumes that the cards are always iterated (even if in parallel
4763   // by several threads) in monotonically increasing order per each
4764   // thread. This is true of the implementation below which picks
4765   // card ranges (chunks) in monotonically increasing order globally
4766   // and, a-fortiori, in monotonically increasing order per thread
4767   // (the latter order being a subsequence of the former).
4768   // If the work code below is ever reorganized into a more chaotic
4769   // work-partitioning form than the current "sequential tasks"
4770   // paradigm, the use of that persistent state will have to be
4771   // revisited and modified appropriately. See also related
4772   // bug 4756801 work on which should examine this code to make
4773   // sure that the changes there do not run counter to the
4774   // assumptions made here and necessary for correctness and
4775   // efficiency. Note also that this code might yield inefficient
4776   // behavior in the case of very large objects that span one or
4777   // more work chunks. Such objects would potentially be scanned
4778   // several times redundantly. Work on 4756801 should try and
4779   // address that performance anomaly if at all possible. XXX
4780   MemRegion  full_span  = _collector->_span;
4781   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
4782   MarkFromDirtyCardsClosure
4783     greyRescanClosure(_collector, full_span, // entire span of interest
4784                       sp, bm, work_q, cl);
4785 
4786   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4787   assert(pst->valid(), "Uninitialized use?");
4788   uint nth_task = 0;
4789   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
4790   MemRegion span = sp->used_region();
4791   HeapWord* start_addr = span.start();
4792   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
4793                                            alignment);
4794   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
4795   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
4796          start_addr, "Check alignment");
4797   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
4798          chunk_size, "Check alignment");
4799 
4800   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4801     // Having claimed the nth_task, compute corresponding mem-region,
4802     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
4803     // The alignment restriction ensures that we do not need any
4804     // synchronization with other gang-workers while setting or
4805     // clearing bits in thus chunk of the MUT.
4806     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
4807                                     start_addr + (nth_task+1)*chunk_size);
4808     // The last chunk's end might be way beyond end of the
4809     // used region. In that case pull back appropriately.
4810     if (this_span.end() > end_addr) {
4811       this_span.set_end(end_addr);
4812       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
4813     }
4814     // Iterate over the dirty cards covering this chunk, marking them
4815     // precleaned, and setting the corresponding bits in the mod union
4816     // table. Since we have been careful to partition at Card and MUT-word
4817     // boundaries no synchronization is needed between parallel threads.
4818     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
4819                                                  &modUnionClosure);
4820 
4821     // Having transferred these marks into the modUnionTable,
4822     // rescan the marked objects on the dirty cards in the modUnionTable.
4823     // Even if this is at a synchronous collection, the initial marking
4824     // may have been done during an asynchronous collection so there
4825     // may be dirty bits in the mod-union table.
4826     _collector->_modUnionTable.dirty_range_iterate_clear(
4827                   this_span, &greyRescanClosure);
4828     _collector->_modUnionTable.verifyNoOneBitsInRange(
4829                                  this_span.start(),
4830                                  this_span.end());
4831   }
4832   pst->all_tasks_completed();  // declare that i am done
4833 }
4834 
4835 // . see if we can share work_queues with ParNew? XXX
4836 void
4837 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
4838                                 int* seed) {
4839   OopTaskQueue* work_q = work_queue(i);
4840   NOT_PRODUCT(int num_steals = 0;)
4841   oop obj_to_scan;
4842   CMSBitMap* bm = &(_collector->_markBitMap);
4843 
4844   while (true) {
4845     // Completely finish any left over work from (an) earlier round(s)
4846     cl->trim_queue(0);
4847     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4848                                          (size_t)ParGCDesiredObjsFromOverflowList);
4849     // Now check if there's any work in the overflow list
4850     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
4851     // only affects the number of attempts made to get work from the
4852     // overflow list and does not affect the number of workers.  Just
4853     // pass ParallelGCThreads so this behavior is unchanged.
4854     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
4855                                                 work_q,
4856                                                 ParallelGCThreads)) {
4857       // found something in global overflow list;
4858       // not yet ready to go stealing work from others.
4859       // We'd like to assert(work_q->size() != 0, ...)
4860       // because we just took work from the overflow list,
4861       // but of course we can't since all of that could have
4862       // been already stolen from us.
4863       // "He giveth and He taketh away."
4864       continue;
4865     }
4866     // Verify that we have no work before we resort to stealing
4867     assert(work_q->size() == 0, "Have work, shouldn't steal");
4868     // Try to steal from other queues that have work
4869     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4870       NOT_PRODUCT(num_steals++;)
4871       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
4872       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
4873       // Do scanning work
4874       obj_to_scan->oop_iterate(cl);
4875       // Loop around, finish this work, and try to steal some more
4876     } else if (terminator()->offer_termination()) {
4877         break;  // nirvana from the infinite cycle
4878     }
4879   }
4880   NOT_PRODUCT(
4881     if (PrintCMSStatistics != 0) {
4882       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
4883     }
4884   )
4885   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
4886          "Else our work is not yet done");
4887 }
4888 
4889 // Record object boundaries in _eden_chunk_array by sampling the eden
4890 // top in the slow-path eden object allocation code path and record
4891 // the boundaries, if CMSEdenChunksRecordAlways is true. If
4892 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
4893 // sampling in sample_eden() that activates during the part of the
4894 // preclean phase.
4895 void CMSCollector::sample_eden_chunk() {
4896   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
4897     if (_eden_chunk_lock->try_lock()) {
4898       // Record a sample. This is the critical section. The contents
4899       // of the _eden_chunk_array have to be non-decreasing in the
4900       // address order.
4901       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
4902       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4903              "Unexpected state of Eden");
4904       if (_eden_chunk_index == 0 ||
4905           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
4906            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4907                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
4908         _eden_chunk_index++;  // commit sample
4909       }
4910       _eden_chunk_lock->unlock();
4911     }
4912   }
4913 }
4914 
4915 // Return a thread-local PLAB recording array, as appropriate.
4916 void* CMSCollector::get_data_recorder(int thr_num) {
4917   if (_survivor_plab_array != NULL &&
4918       (CMSPLABRecordAlways ||
4919        (_collectorState > Marking && _collectorState < FinalMarking))) {
4920     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
4921     ChunkArray* ca = &_survivor_plab_array[thr_num];
4922     ca->reset();   // clear it so that fresh data is recorded
4923     return (void*) ca;
4924   } else {
4925     return NULL;
4926   }
4927 }
4928 
4929 // Reset all the thread-local PLAB recording arrays
4930 void CMSCollector::reset_survivor_plab_arrays() {
4931   for (uint i = 0; i < ParallelGCThreads; i++) {
4932     _survivor_plab_array[i].reset();
4933   }
4934 }
4935 
4936 // Merge the per-thread plab arrays into the global survivor chunk
4937 // array which will provide the partitioning of the survivor space
4938 // for CMS initial scan and rescan.
4939 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
4940                                               int no_of_gc_threads) {
4941   assert(_survivor_plab_array  != NULL, "Error");
4942   assert(_survivor_chunk_array != NULL, "Error");
4943   assert(_collectorState == FinalMarking ||
4944          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
4945   for (int j = 0; j < no_of_gc_threads; j++) {
4946     _cursor[j] = 0;
4947   }
4948   HeapWord* top = surv->top();
4949   size_t i;
4950   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
4951     HeapWord* min_val = top;          // Higher than any PLAB address
4952     uint      min_tid = 0;            // position of min_val this round
4953     for (int j = 0; j < no_of_gc_threads; j++) {
4954       ChunkArray* cur_sca = &_survivor_plab_array[j];
4955       if (_cursor[j] == cur_sca->end()) {
4956         continue;
4957       }
4958       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
4959       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
4960       assert(surv->used_region().contains(cur_val), "Out of bounds value");
4961       if (cur_val < min_val) {
4962         min_tid = j;
4963         min_val = cur_val;
4964       } else {
4965         assert(cur_val < top, "All recorded addresses should be less");
4966       }
4967     }
4968     // At this point min_val and min_tid are respectively
4969     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
4970     // and the thread (j) that witnesses that address.
4971     // We record this address in the _survivor_chunk_array[i]
4972     // and increment _cursor[min_tid] prior to the next round i.
4973     if (min_val == top) {
4974       break;
4975     }
4976     _survivor_chunk_array[i] = min_val;
4977     _cursor[min_tid]++;
4978   }
4979   // We are all done; record the size of the _survivor_chunk_array
4980   _survivor_chunk_index = i; // exclusive: [0, i)
4981   if (PrintCMSStatistics > 0) {
4982     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
4983   }
4984   // Verify that we used up all the recorded entries
4985   #ifdef ASSERT
4986     size_t total = 0;
4987     for (int j = 0; j < no_of_gc_threads; j++) {
4988       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
4989       total += _cursor[j];
4990     }
4991     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
4992     // Check that the merged array is in sorted order
4993     if (total > 0) {
4994       for (size_t i = 0; i < total - 1; i++) {
4995         if (PrintCMSStatistics > 0) {
4996           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
4997                               i, p2i(_survivor_chunk_array[i]));
4998         }
4999         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
5000                "Not sorted");
5001       }
5002     }
5003   #endif // ASSERT
5004 }
5005 
5006 // Set up the space's par_seq_tasks structure for work claiming
5007 // for parallel initial scan and rescan of young gen.
5008 // See ParRescanTask where this is currently used.
5009 void
5010 CMSCollector::
5011 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
5012   assert(n_threads > 0, "Unexpected n_threads argument");
5013 
5014   // Eden space
5015   if (!_young_gen->eden()->is_empty()) {
5016     SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
5017     assert(!pst->valid(), "Clobbering existing data?");
5018     // Each valid entry in [0, _eden_chunk_index) represents a task.
5019     size_t n_tasks = _eden_chunk_index + 1;
5020     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
5021     // Sets the condition for completion of the subtask (how many threads
5022     // need to finish in order to be done).
5023     pst->set_n_threads(n_threads);
5024     pst->set_n_tasks((int)n_tasks);
5025   }
5026 
5027   // Merge the survivor plab arrays into _survivor_chunk_array
5028   if (_survivor_plab_array != NULL) {
5029     merge_survivor_plab_arrays(_young_gen->from(), n_threads);
5030   } else {
5031     assert(_survivor_chunk_index == 0, "Error");
5032   }
5033 
5034   // To space
5035   {
5036     SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
5037     assert(!pst->valid(), "Clobbering existing data?");
5038     // Sets the condition for completion of the subtask (how many threads
5039     // need to finish in order to be done).
5040     pst->set_n_threads(n_threads);
5041     pst->set_n_tasks(1);
5042     assert(pst->valid(), "Error");
5043   }
5044 
5045   // From space
5046   {
5047     SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
5048     assert(!pst->valid(), "Clobbering existing data?");
5049     size_t n_tasks = _survivor_chunk_index + 1;
5050     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
5051     // Sets the condition for completion of the subtask (how many threads
5052     // need to finish in order to be done).
5053     pst->set_n_threads(n_threads);
5054     pst->set_n_tasks((int)n_tasks);
5055     assert(pst->valid(), "Error");
5056   }
5057 }
5058 
5059 // Parallel version of remark
5060 void CMSCollector::do_remark_parallel() {
5061   GenCollectedHeap* gch = GenCollectedHeap::heap();
5062   FlexibleWorkGang* workers = gch->workers();
5063   assert(workers != NULL, "Need parallel worker threads.");
5064   // Choose to use the number of GC workers most recently set
5065   // into "active_workers".
5066   uint n_workers = workers->active_workers();
5067 
5068   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
5069 
5070   StrongRootsScope srs(n_workers);
5071 
5072   CMSParRemarkTask tsk(this, cms_space, n_workers, workers, task_queues(), &srs);
5073 
5074   // We won't be iterating over the cards in the card table updating
5075   // the younger_gen cards, so we shouldn't call the following else
5076   // the verification code as well as subsequent younger_refs_iterate
5077   // code would get confused. XXX
5078   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
5079 
5080   // The young gen rescan work will not be done as part of
5081   // process_roots (which currently doesn't know how to
5082   // parallelize such a scan), but rather will be broken up into
5083   // a set of parallel tasks (via the sampling that the [abortable]
5084   // preclean phase did of eden, plus the [two] tasks of
5085   // scanning the [two] survivor spaces. Further fine-grain
5086   // parallelization of the scanning of the survivor spaces
5087   // themselves, and of precleaning of the younger gen itself
5088   // is deferred to the future.
5089   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
5090 
5091   // The dirty card rescan work is broken up into a "sequence"
5092   // of parallel tasks (per constituent space) that are dynamically
5093   // claimed by the parallel threads.
5094   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
5095 
5096   // It turns out that even when we're using 1 thread, doing the work in a
5097   // separate thread causes wide variance in run times.  We can't help this
5098   // in the multi-threaded case, but we special-case n=1 here to get
5099   // repeatable measurements of the 1-thread overhead of the parallel code.
5100   if (n_workers > 1) {
5101     // Make refs discovery MT-safe, if it isn't already: it may not
5102     // necessarily be so, since it's possible that we are doing
5103     // ST marking.
5104     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
5105     workers->run_task(&tsk);
5106   } else {
5107     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5108     tsk.work(0);
5109   }
5110 
5111   // restore, single-threaded for now, any preserved marks
5112   // as a result of work_q overflow
5113   restore_preserved_marks_if_any();
5114 }
5115 
5116 // Non-parallel version of remark
5117 void CMSCollector::do_remark_non_parallel() {
5118   ResourceMark rm;
5119   HandleMark   hm;
5120   GenCollectedHeap* gch = GenCollectedHeap::heap();
5121   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5122 
5123   MarkRefsIntoAndScanClosure
5124     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
5125              &_markStack, this,
5126              false /* should_yield */, false /* not precleaning */);
5127   MarkFromDirtyCardsClosure
5128     markFromDirtyCardsClosure(this, _span,
5129                               NULL,  // space is set further below
5130                               &_markBitMap, &_markStack, &mrias_cl);
5131   {
5132     GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5133     // Iterate over the dirty cards, setting the corresponding bits in the
5134     // mod union table.
5135     {
5136       ModUnionClosure modUnionClosure(&_modUnionTable);
5137       _ct->ct_bs()->dirty_card_iterate(
5138                       _cmsGen->used_region(),
5139                       &modUnionClosure);
5140     }
5141     // Having transferred these marks into the modUnionTable, we just need
5142     // to rescan the marked objects on the dirty cards in the modUnionTable.
5143     // The initial marking may have been done during an asynchronous
5144     // collection so there may be dirty bits in the mod-union table.
5145     const int alignment =
5146       CardTableModRefBS::card_size * BitsPerWord;
5147     {
5148       // ... First handle dirty cards in CMS gen
5149       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
5150       MemRegion ur = _cmsGen->used_region();
5151       HeapWord* lb = ur.start();
5152       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5153       MemRegion cms_span(lb, ub);
5154       _modUnionTable.dirty_range_iterate_clear(cms_span,
5155                                                &markFromDirtyCardsClosure);
5156       verify_work_stacks_empty();
5157       if (PrintCMSStatistics != 0) {
5158         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
5159           markFromDirtyCardsClosure.num_dirty_cards());
5160       }
5161     }
5162   }
5163   if (VerifyDuringGC &&
5164       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5165     HandleMark hm;  // Discard invalid handles created during verification
5166     Universe::verify();
5167   }
5168   {
5169     GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5170 
5171     verify_work_stacks_empty();
5172 
5173     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5174     StrongRootsScope srs(1);
5175 
5176     gch->gen_process_roots(&srs,
5177                            Generation::Old,
5178                            true,  // younger gens as roots
5179                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
5180                            should_unload_classes(),
5181                            &mrias_cl,
5182                            NULL,
5183                            NULL); // The dirty klasses will be handled below
5184 
5185     assert(should_unload_classes()
5186            || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
5187            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5188   }
5189 
5190   {
5191     GCTraceTime t("visit unhandled CLDs", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5192 
5193     verify_work_stacks_empty();
5194 
5195     // Scan all class loader data objects that might have been introduced
5196     // during concurrent marking.
5197     ResourceMark rm;
5198     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5199     for (int i = 0; i < array->length(); i++) {
5200       mrias_cl.do_class_loader_data(array->at(i));
5201     }
5202 
5203     // We don't need to keep track of new CLDs anymore.
5204     ClassLoaderDataGraph::remember_new_clds(false);
5205 
5206     verify_work_stacks_empty();
5207   }
5208 
5209   {
5210     GCTraceTime t("dirty klass scan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5211 
5212     verify_work_stacks_empty();
5213 
5214     RemarkKlassClosure remark_klass_closure(&mrias_cl);
5215     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5216 
5217     verify_work_stacks_empty();
5218   }
5219 
5220   // We might have added oops to ClassLoaderData::_handles during the
5221   // concurrent marking phase. These oops point to newly allocated objects
5222   // that are guaranteed to be kept alive. Either by the direct allocation
5223   // code, or when the young collector processes the roots. Hence,
5224   // we don't have to revisit the _handles block during the remark phase.
5225 
5226   verify_work_stacks_empty();
5227   // Restore evacuated mark words, if any, used for overflow list links
5228   if (!CMSOverflowEarlyRestoration) {
5229     restore_preserved_marks_if_any();
5230   }
5231   verify_overflow_empty();
5232 }
5233 
5234 ////////////////////////////////////////////////////////
5235 // Parallel Reference Processing Task Proxy Class
5236 ////////////////////////////////////////////////////////
5237 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5238   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5239   CMSCollector*          _collector;
5240   CMSBitMap*             _mark_bit_map;
5241   const MemRegion        _span;
5242   ProcessTask&           _task;
5243 
5244 public:
5245   CMSRefProcTaskProxy(ProcessTask&     task,
5246                       CMSCollector*    collector,
5247                       const MemRegion& span,
5248                       CMSBitMap*       mark_bit_map,
5249                       AbstractWorkGang* workers,
5250                       OopTaskQueueSet* task_queues):
5251     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5252       task_queues,
5253       workers->active_workers()),
5254     _task(task),
5255     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5256   {
5257     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5258            "Inconsistency in _span");
5259   }
5260 
5261   OopTaskQueueSet* task_queues() { return queues(); }
5262 
5263   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5264 
5265   void do_work_steal(int i,
5266                      CMSParDrainMarkingStackClosure* drain,
5267                      CMSParKeepAliveClosure* keep_alive,
5268                      int* seed);
5269 
5270   virtual void work(uint worker_id);
5271 };
5272 
5273 void CMSRefProcTaskProxy::work(uint worker_id) {
5274   ResourceMark rm;
5275   HandleMark hm;
5276   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5277   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5278                                         _mark_bit_map,
5279                                         work_queue(worker_id));
5280   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5281                                                  _mark_bit_map,
5282                                                  work_queue(worker_id));
5283   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5284   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5285   if (_task.marks_oops_alive()) {
5286     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5287                   _collector->hash_seed(worker_id));
5288   }
5289   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5290   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5291 }
5292 
5293 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5294   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5295   EnqueueTask& _task;
5296 
5297 public:
5298   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5299     : AbstractGangTask("Enqueue reference objects in parallel"),
5300       _task(task)
5301   { }
5302 
5303   virtual void work(uint worker_id)
5304   {
5305     _task.work(worker_id);
5306   }
5307 };
5308 
5309 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5310   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5311    _span(span),
5312    _bit_map(bit_map),
5313    _work_queue(work_queue),
5314    _mark_and_push(collector, span, bit_map, work_queue),
5315    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
5316                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5317 { }
5318 
5319 // . see if we can share work_queues with ParNew? XXX
5320 void CMSRefProcTaskProxy::do_work_steal(int i,
5321   CMSParDrainMarkingStackClosure* drain,
5322   CMSParKeepAliveClosure* keep_alive,
5323   int* seed) {
5324   OopTaskQueue* work_q = work_queue(i);
5325   NOT_PRODUCT(int num_steals = 0;)
5326   oop obj_to_scan;
5327 
5328   while (true) {
5329     // Completely finish any left over work from (an) earlier round(s)
5330     drain->trim_queue(0);
5331     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5332                                          (size_t)ParGCDesiredObjsFromOverflowList);
5333     // Now check if there's any work in the overflow list
5334     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5335     // only affects the number of attempts made to get work from the
5336     // overflow list and does not affect the number of workers.  Just
5337     // pass ParallelGCThreads so this behavior is unchanged.
5338     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5339                                                 work_q,
5340                                                 ParallelGCThreads)) {
5341       // Found something in global overflow list;
5342       // not yet ready to go stealing work from others.
5343       // We'd like to assert(work_q->size() != 0, ...)
5344       // because we just took work from the overflow list,
5345       // but of course we can't, since all of that might have
5346       // been already stolen from us.
5347       continue;
5348     }
5349     // Verify that we have no work before we resort to stealing
5350     assert(work_q->size() == 0, "Have work, shouldn't steal");
5351     // Try to steal from other queues that have work
5352     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5353       NOT_PRODUCT(num_steals++;)
5354       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5355       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5356       // Do scanning work
5357       obj_to_scan->oop_iterate(keep_alive);
5358       // Loop around, finish this work, and try to steal some more
5359     } else if (terminator()->offer_termination()) {
5360       break;  // nirvana from the infinite cycle
5361     }
5362   }
5363   NOT_PRODUCT(
5364     if (PrintCMSStatistics != 0) {
5365       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5366     }
5367   )
5368 }
5369 
5370 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5371 {
5372   GenCollectedHeap* gch = GenCollectedHeap::heap();
5373   FlexibleWorkGang* workers = gch->workers();
5374   assert(workers != NULL, "Need parallel worker threads.");
5375   CMSRefProcTaskProxy rp_task(task, &_collector,
5376                               _collector.ref_processor()->span(),
5377                               _collector.markBitMap(),
5378                               workers, _collector.task_queues());
5379   workers->run_task(&rp_task);
5380 }
5381 
5382 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5383 {
5384 
5385   GenCollectedHeap* gch = GenCollectedHeap::heap();
5386   FlexibleWorkGang* workers = gch->workers();
5387   assert(workers != NULL, "Need parallel worker threads.");
5388   CMSRefEnqueueTaskProxy enq_task(task);
5389   workers->run_task(&enq_task);
5390 }
5391 
5392 void CMSCollector::refProcessingWork() {
5393   ResourceMark rm;
5394   HandleMark   hm;
5395 
5396   ReferenceProcessor* rp = ref_processor();
5397   assert(rp->span().equals(_span), "Spans should be equal");
5398   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5399   // Process weak references.
5400   rp->setup_policy(false);
5401   verify_work_stacks_empty();
5402 
5403   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5404                                           &_markStack, false /* !preclean */);
5405   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5406                                 _span, &_markBitMap, &_markStack,
5407                                 &cmsKeepAliveClosure, false /* !preclean */);
5408   {
5409     GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5410 
5411     ReferenceProcessorStats stats;
5412     if (rp->processing_is_mt()) {
5413       // Set the degree of MT here.  If the discovery is done MT, there
5414       // may have been a different number of threads doing the discovery
5415       // and a different number of discovered lists may have Ref objects.
5416       // That is OK as long as the Reference lists are balanced (see
5417       // balance_all_queues() and balance_queues()).
5418       GenCollectedHeap* gch = GenCollectedHeap::heap();
5419       uint active_workers = ParallelGCThreads;
5420       FlexibleWorkGang* workers = gch->workers();
5421       if (workers != NULL) {
5422         active_workers = workers->active_workers();
5423         // The expectation is that active_workers will have already
5424         // been set to a reasonable value.  If it has not been set,
5425         // investigate.
5426         assert(active_workers > 0, "Should have been set during scavenge");
5427       }
5428       rp->set_active_mt_degree(active_workers);
5429       CMSRefProcTaskExecutor task_executor(*this);
5430       stats = rp->process_discovered_references(&_is_alive_closure,
5431                                         &cmsKeepAliveClosure,
5432                                         &cmsDrainMarkingStackClosure,
5433                                         &task_executor,
5434                                         _gc_timer_cm,
5435                                         _gc_tracer_cm->gc_id());
5436     } else {
5437       stats = rp->process_discovered_references(&_is_alive_closure,
5438                                         &cmsKeepAliveClosure,
5439                                         &cmsDrainMarkingStackClosure,
5440                                         NULL,
5441                                         _gc_timer_cm,
5442                                         _gc_tracer_cm->gc_id());
5443     }
5444     _gc_tracer_cm->report_gc_reference_stats(stats);
5445 
5446   }
5447 
5448   // This is the point where the entire marking should have completed.
5449   verify_work_stacks_empty();
5450 
5451   if (should_unload_classes()) {
5452     {
5453       GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5454 
5455       // Unload classes and purge the SystemDictionary.
5456       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
5457 
5458       // Unload nmethods.
5459       CodeCache::do_unloading(&_is_alive_closure, purged_class);
5460 
5461       // Prune dead klasses from subklass/sibling/implementor lists.
5462       Klass::clean_weak_klass_links(&_is_alive_closure);
5463     }
5464 
5465     {
5466       GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5467       // Clean up unreferenced symbols in symbol table.
5468       SymbolTable::unlink();
5469     }
5470 
5471     {
5472       GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5473       // Delete entries for dead interned strings.
5474       StringTable::unlink(&_is_alive_closure);
5475     }
5476   }
5477 
5478 
5479   // Restore any preserved marks as a result of mark stack or
5480   // work queue overflow
5481   restore_preserved_marks_if_any();  // done single-threaded for now
5482 
5483   rp->set_enqueuing_is_done(true);
5484   if (rp->processing_is_mt()) {
5485     rp->balance_all_queues();
5486     CMSRefProcTaskExecutor task_executor(*this);
5487     rp->enqueue_discovered_references(&task_executor);
5488   } else {
5489     rp->enqueue_discovered_references(NULL);
5490   }
5491   rp->verify_no_references_recorded();
5492   assert(!rp->discovery_enabled(), "should have been disabled");
5493 }
5494 
5495 #ifndef PRODUCT
5496 void CMSCollector::check_correct_thread_executing() {
5497   Thread* t = Thread::current();
5498   // Only the VM thread or the CMS thread should be here.
5499   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5500          "Unexpected thread type");
5501   // If this is the vm thread, the foreground process
5502   // should not be waiting.  Note that _foregroundGCIsActive is
5503   // true while the foreground collector is waiting.
5504   if (_foregroundGCShouldWait) {
5505     // We cannot be the VM thread
5506     assert(t->is_ConcurrentGC_thread(),
5507            "Should be CMS thread");
5508   } else {
5509     // We can be the CMS thread only if we are in a stop-world
5510     // phase of CMS collection.
5511     if (t->is_ConcurrentGC_thread()) {
5512       assert(_collectorState == InitialMarking ||
5513              _collectorState == FinalMarking,
5514              "Should be a stop-world phase");
5515       // The CMS thread should be holding the CMS_token.
5516       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5517              "Potential interference with concurrently "
5518              "executing VM thread");
5519     }
5520   }
5521 }
5522 #endif
5523 
5524 void CMSCollector::sweep() {
5525   assert(_collectorState == Sweeping, "just checking");
5526   check_correct_thread_executing();
5527   verify_work_stacks_empty();
5528   verify_overflow_empty();
5529   increment_sweep_count();
5530   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5531 
5532   _inter_sweep_timer.stop();
5533   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5534 
5535   assert(!_intra_sweep_timer.is_active(), "Should not be active");
5536   _intra_sweep_timer.reset();
5537   _intra_sweep_timer.start();
5538   {
5539     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5540     CMSPhaseAccounting pa(this, "sweep", _gc_tracer_cm->gc_id(), !PrintGCDetails);
5541     // First sweep the old gen
5542     {
5543       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5544                                bitMapLock());
5545       sweepWork(_cmsGen);
5546     }
5547 
5548     // Update Universe::_heap_*_at_gc figures.
5549     // We need all the free list locks to make the abstract state
5550     // transition from Sweeping to Resetting. See detailed note
5551     // further below.
5552     {
5553       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
5554       // Update heap occupancy information which is used as
5555       // input to soft ref clearing policy at the next gc.
5556       Universe::update_heap_info_at_gc();
5557       _collectorState = Resizing;
5558     }
5559   }
5560   verify_work_stacks_empty();
5561   verify_overflow_empty();
5562 
5563   if (should_unload_classes()) {
5564     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
5565     // requires that the virtual spaces are stable and not deleted.
5566     ClassLoaderDataGraph::set_should_purge(true);
5567   }
5568 
5569   _intra_sweep_timer.stop();
5570   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5571 
5572   _inter_sweep_timer.reset();
5573   _inter_sweep_timer.start();
5574 
5575   // We need to use a monotonically non-decreasing time in ms
5576   // or we will see time-warp warnings and os::javaTimeMillis()
5577   // does not guarantee monotonicity.
5578   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
5579   update_time_of_last_gc(now);
5580 
5581   // NOTE on abstract state transitions:
5582   // Mutators allocate-live and/or mark the mod-union table dirty
5583   // based on the state of the collection.  The former is done in
5584   // the interval [Marking, Sweeping] and the latter in the interval
5585   // [Marking, Sweeping).  Thus the transitions into the Marking state
5586   // and out of the Sweeping state must be synchronously visible
5587   // globally to the mutators.
5588   // The transition into the Marking state happens with the world
5589   // stopped so the mutators will globally see it.  Sweeping is
5590   // done asynchronously by the background collector so the transition
5591   // from the Sweeping state to the Resizing state must be done
5592   // under the freelistLock (as is the check for whether to
5593   // allocate-live and whether to dirty the mod-union table).
5594   assert(_collectorState == Resizing, "Change of collector state to"
5595     " Resizing must be done under the freelistLocks (plural)");
5596 
5597   // Now that sweeping has been completed, we clear
5598   // the incremental_collection_failed flag,
5599   // thus inviting a younger gen collection to promote into
5600   // this generation. If such a promotion may still fail,
5601   // the flag will be set again when a young collection is
5602   // attempted.
5603   GenCollectedHeap* gch = GenCollectedHeap::heap();
5604   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
5605   gch->update_full_collections_completed(_collection_count_start);
5606 }
5607 
5608 // FIX ME!!! Looks like this belongs in CFLSpace, with
5609 // CMSGen merely delegating to it.
5610 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5611   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5612   HeapWord*  minAddr        = _cmsSpace->bottom();
5613   HeapWord*  largestAddr    =
5614     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
5615   if (largestAddr == NULL) {
5616     // The dictionary appears to be empty.  In this case
5617     // try to coalesce at the end of the heap.
5618     largestAddr = _cmsSpace->end();
5619   }
5620   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5621   size_t nearLargestOffset =
5622     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5623   if (PrintFLSStatistics != 0) {
5624     gclog_or_tty->print_cr(
5625       "CMS: Large Block: " PTR_FORMAT ";"
5626       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5627       p2i(largestAddr),
5628       p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset));
5629   }
5630   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
5631 }
5632 
5633 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
5634   return addr >= _cmsSpace->nearLargestChunk();
5635 }
5636 
5637 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
5638   return _cmsSpace->find_chunk_at_end();
5639 }
5640 
5641 void ConcurrentMarkSweepGeneration::update_gc_stats(Generation* current_generation,
5642                                                     bool full) {
5643   // If the young generation has been collected, gather any statistics
5644   // that are of interest at this point.
5645   bool current_is_young = (current_generation == GenCollectedHeap::heap()->young_gen());
5646   if (!full && current_is_young) {
5647     // Gather statistics on the young generation collection.
5648     collector()->stats().record_gc0_end(used());
5649   }
5650 }
5651 
5652 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen) {
5653   // We iterate over the space(s) underlying this generation,
5654   // checking the mark bit map to see if the bits corresponding
5655   // to specific blocks are marked or not. Blocks that are
5656   // marked are live and are not swept up. All remaining blocks
5657   // are swept up, with coalescing on-the-fly as we sweep up
5658   // contiguous free and/or garbage blocks:
5659   // We need to ensure that the sweeper synchronizes with allocators
5660   // and stop-the-world collectors. In particular, the following
5661   // locks are used:
5662   // . CMS token: if this is held, a stop the world collection cannot occur
5663   // . freelistLock: if this is held no allocation can occur from this
5664   //                 generation by another thread
5665   // . bitMapLock: if this is held, no other thread can access or update
5666   //
5667 
5668   // Note that we need to hold the freelistLock if we use
5669   // block iterate below; else the iterator might go awry if
5670   // a mutator (or promotion) causes block contents to change
5671   // (for instance if the allocator divvies up a block).
5672   // If we hold the free list lock, for all practical purposes
5673   // young generation GC's can't occur (they'll usually need to
5674   // promote), so we might as well prevent all young generation
5675   // GC's while we do a sweeping step. For the same reason, we might
5676   // as well take the bit map lock for the entire duration
5677 
5678   // check that we hold the requisite locks
5679   assert(have_cms_token(), "Should hold cms token");
5680   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
5681   assert_lock_strong(gen->freelistLock());
5682   assert_lock_strong(bitMapLock());
5683 
5684   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
5685   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
5686   gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
5687                                       _inter_sweep_estimate.padded_average(),
5688                                       _intra_sweep_estimate.padded_average());
5689   gen->setNearLargestChunk();
5690 
5691   {
5692     SweepClosure sweepClosure(this, gen, &_markBitMap, CMSYield);
5693     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
5694     // We need to free-up/coalesce garbage/blocks from a
5695     // co-terminal free run. This is done in the SweepClosure
5696     // destructor; so, do not remove this scope, else the
5697     // end-of-sweep-census below will be off by a little bit.
5698   }
5699   gen->cmsSpace()->sweep_completed();
5700   gen->cmsSpace()->endSweepFLCensus(sweep_count());
5701   if (should_unload_classes()) {                // unloaded classes this cycle,
5702     _concurrent_cycles_since_last_unload = 0;   // ... reset count
5703   } else {                                      // did not unload classes,
5704     _concurrent_cycles_since_last_unload++;     // ... increment count
5705   }
5706 }
5707 
5708 // Reset CMS data structures (for now just the marking bit map)
5709 // preparatory for the next cycle.
5710 void CMSCollector::reset(bool concurrent) {
5711   if (concurrent) {
5712     CMSTokenSyncWithLocks ts(true, bitMapLock());
5713 
5714     // If the state is not "Resetting", the foreground  thread
5715     // has done a collection and the resetting.
5716     if (_collectorState != Resetting) {
5717       assert(_collectorState == Idling, "The state should only change"
5718         " because the foreground collector has finished the collection");
5719       return;
5720     }
5721 
5722     // Clear the mark bitmap (no grey objects to start with)
5723     // for the next cycle.
5724     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5725     CMSPhaseAccounting cmspa(this, "reset", _gc_tracer_cm->gc_id(), !PrintGCDetails);
5726 
5727     HeapWord* curAddr = _markBitMap.startWord();
5728     while (curAddr < _markBitMap.endWord()) {
5729       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
5730       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
5731       _markBitMap.clear_large_range(chunk);
5732       if (ConcurrentMarkSweepThread::should_yield() &&
5733           !foregroundGCIsActive() &&
5734           CMSYield) {
5735         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5736                "CMS thread should hold CMS token");
5737         assert_lock_strong(bitMapLock());
5738         bitMapLock()->unlock();
5739         ConcurrentMarkSweepThread::desynchronize(true);
5740         stopTimer();
5741         if (PrintCMSStatistics != 0) {
5742           incrementYields();
5743         }
5744 
5745         // See the comment in coordinator_yield()
5746         for (unsigned i = 0; i < CMSYieldSleepCount &&
5747                          ConcurrentMarkSweepThread::should_yield() &&
5748                          !CMSCollector::foregroundGCIsActive(); ++i) {
5749           os::sleep(Thread::current(), 1, false);
5750         }
5751 
5752         ConcurrentMarkSweepThread::synchronize(true);
5753         bitMapLock()->lock_without_safepoint_check();
5754         startTimer();
5755       }
5756       curAddr = chunk.end();
5757     }
5758     // A successful mostly concurrent collection has been done.
5759     // Because only the full (i.e., concurrent mode failure) collections
5760     // are being measured for gc overhead limits, clean the "near" flag
5761     // and count.
5762     size_policy()->reset_gc_overhead_limit_count();
5763     _collectorState = Idling;
5764   } else {
5765     // already have the lock
5766     assert(_collectorState == Resetting, "just checking");
5767     assert_lock_strong(bitMapLock());
5768     _markBitMap.clear_all();
5769     _collectorState = Idling;
5770   }
5771 
5772   register_gc_end();
5773 }
5774 
5775 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
5776   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5777   GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL, _gc_tracer_cm->gc_id());
5778   TraceCollectorStats tcs(counters());
5779 
5780   switch (op) {
5781     case CMS_op_checkpointRootsInitial: {
5782       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5783       checkpointRootsInitial();
5784       if (PrintGC) {
5785         _cmsGen->printOccupancy("initial-mark");
5786       }
5787       break;
5788     }
5789     case CMS_op_checkpointRootsFinal: {
5790       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5791       checkpointRootsFinal();
5792       if (PrintGC) {
5793         _cmsGen->printOccupancy("remark");
5794       }
5795       break;
5796     }
5797     default:
5798       fatal("No such CMS_op");
5799   }
5800 }
5801 
5802 #ifndef PRODUCT
5803 size_t const CMSCollector::skip_header_HeapWords() {
5804   return FreeChunk::header_size();
5805 }
5806 
5807 // Try and collect here conditions that should hold when
5808 // CMS thread is exiting. The idea is that the foreground GC
5809 // thread should not be blocked if it wants to terminate
5810 // the CMS thread and yet continue to run the VM for a while
5811 // after that.
5812 void CMSCollector::verify_ok_to_terminate() const {
5813   assert(Thread::current()->is_ConcurrentGC_thread(),
5814          "should be called by CMS thread");
5815   assert(!_foregroundGCShouldWait, "should be false");
5816   // We could check here that all the various low-level locks
5817   // are not held by the CMS thread, but that is overkill; see
5818   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
5819   // is checked.
5820 }
5821 #endif
5822 
5823 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
5824    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
5825           "missing Printezis mark?");
5826   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5827   size_t size = pointer_delta(nextOneAddr + 1, addr);
5828   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5829          "alignment problem");
5830   assert(size >= 3, "Necessary for Printezis marks to work");
5831   return size;
5832 }
5833 
5834 // A variant of the above (block_size_using_printezis_bits()) except
5835 // that we return 0 if the P-bits are not yet set.
5836 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
5837   if (_markBitMap.isMarked(addr + 1)) {
5838     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
5839     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5840     size_t size = pointer_delta(nextOneAddr + 1, addr);
5841     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5842            "alignment problem");
5843     assert(size >= 3, "Necessary for Printezis marks to work");
5844     return size;
5845   }
5846   return 0;
5847 }
5848 
5849 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
5850   size_t sz = 0;
5851   oop p = (oop)addr;
5852   if (p->klass_or_null() != NULL) {
5853     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
5854   } else {
5855     sz = block_size_using_printezis_bits(addr);
5856   }
5857   assert(sz > 0, "size must be nonzero");
5858   HeapWord* next_block = addr + sz;
5859   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
5860                                              CardTableModRefBS::card_size);
5861   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
5862          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
5863          "must be different cards");
5864   return next_card;
5865 }
5866 
5867 
5868 // CMS Bit Map Wrapper /////////////////////////////////////////
5869 
5870 // Construct a CMS bit map infrastructure, but don't create the
5871 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
5872 // further below.
5873 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
5874   _bm(),
5875   _shifter(shifter),
5876   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
5877                                     Monitor::_safepoint_check_sometimes) : NULL)
5878 {
5879   _bmStartWord = 0;
5880   _bmWordSize  = 0;
5881 }
5882 
5883 bool CMSBitMap::allocate(MemRegion mr) {
5884   _bmStartWord = mr.start();
5885   _bmWordSize  = mr.word_size();
5886   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
5887                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
5888   if (!brs.is_reserved()) {
5889     warning("CMS bit map allocation failure");
5890     return false;
5891   }
5892   // For now we'll just commit all of the bit map up front.
5893   // Later on we'll try to be more parsimonious with swap.
5894   if (!_virtual_space.initialize(brs, brs.size())) {
5895     warning("CMS bit map backing store failure");
5896     return false;
5897   }
5898   assert(_virtual_space.committed_size() == brs.size(),
5899          "didn't reserve backing store for all of CMS bit map?");
5900   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
5901   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5902          _bmWordSize, "inconsistency in bit map sizing");
5903   _bm.set_size(_bmWordSize >> _shifter);
5904 
5905   // bm.clear(); // can we rely on getting zero'd memory? verify below
5906   assert(isAllClear(),
5907          "Expected zero'd memory from ReservedSpace constructor");
5908   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
5909          "consistency check");
5910   return true;
5911 }
5912 
5913 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
5914   HeapWord *next_addr, *end_addr, *last_addr;
5915   assert_locked();
5916   assert(covers(mr), "out-of-range error");
5917   // XXX assert that start and end are appropriately aligned
5918   for (next_addr = mr.start(), end_addr = mr.end();
5919        next_addr < end_addr; next_addr = last_addr) {
5920     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
5921     last_addr = dirty_region.end();
5922     if (!dirty_region.is_empty()) {
5923       cl->do_MemRegion(dirty_region);
5924     } else {
5925       assert(last_addr == end_addr, "program logic");
5926       return;
5927     }
5928   }
5929 }
5930 
5931 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
5932   _bm.print_on_error(st, prefix);
5933 }
5934 
5935 #ifndef PRODUCT
5936 void CMSBitMap::assert_locked() const {
5937   CMSLockVerifier::assert_locked(lock());
5938 }
5939 
5940 bool CMSBitMap::covers(MemRegion mr) const {
5941   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
5942   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
5943          "size inconsistency");
5944   return (mr.start() >= _bmStartWord) &&
5945          (mr.end()   <= endWord());
5946 }
5947 
5948 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
5949     return (start >= _bmStartWord && (start + size) <= endWord());
5950 }
5951 
5952 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
5953   // verify that there are no 1 bits in the interval [left, right)
5954   FalseBitMapClosure falseBitMapClosure;
5955   iterate(&falseBitMapClosure, left, right);
5956 }
5957 
5958 void CMSBitMap::region_invariant(MemRegion mr)
5959 {
5960   assert_locked();
5961   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
5962   assert(!mr.is_empty(), "unexpected empty region");
5963   assert(covers(mr), "mr should be covered by bit map");
5964   // convert address range into offset range
5965   size_t start_ofs = heapWordToOffset(mr.start());
5966   // Make sure that end() is appropriately aligned
5967   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
5968                         (1 << (_shifter+LogHeapWordSize))),
5969          "Misaligned mr.end()");
5970   size_t end_ofs   = heapWordToOffset(mr.end());
5971   assert(end_ofs > start_ofs, "Should mark at least one bit");
5972 }
5973 
5974 #endif
5975 
5976 bool CMSMarkStack::allocate(size_t size) {
5977   // allocate a stack of the requisite depth
5978   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5979                    size * sizeof(oop)));
5980   if (!rs.is_reserved()) {
5981     warning("CMSMarkStack allocation failure");
5982     return false;
5983   }
5984   if (!_virtual_space.initialize(rs, rs.size())) {
5985     warning("CMSMarkStack backing store failure");
5986     return false;
5987   }
5988   assert(_virtual_space.committed_size() == rs.size(),
5989          "didn't reserve backing store for all of CMS stack?");
5990   _base = (oop*)(_virtual_space.low());
5991   _index = 0;
5992   _capacity = size;
5993   NOT_PRODUCT(_max_depth = 0);
5994   return true;
5995 }
5996 
5997 // XXX FIX ME !!! In the MT case we come in here holding a
5998 // leaf lock. For printing we need to take a further lock
5999 // which has lower rank. We need to recalibrate the two
6000 // lock-ranks involved in order to be able to print the
6001 // messages below. (Or defer the printing to the caller.
6002 // For now we take the expedient path of just disabling the
6003 // messages for the problematic case.)
6004 void CMSMarkStack::expand() {
6005   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
6006   if (_capacity == MarkStackSizeMax) {
6007     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6008       // We print a warning message only once per CMS cycle.
6009       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
6010     }
6011     return;
6012   }
6013   // Double capacity if possible
6014   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
6015   // Do not give up existing stack until we have managed to
6016   // get the double capacity that we desired.
6017   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6018                    new_capacity * sizeof(oop)));
6019   if (rs.is_reserved()) {
6020     // Release the backing store associated with old stack
6021     _virtual_space.release();
6022     // Reinitialize virtual space for new stack
6023     if (!_virtual_space.initialize(rs, rs.size())) {
6024       fatal("Not enough swap for expanded marking stack");
6025     }
6026     _base = (oop*)(_virtual_space.low());
6027     _index = 0;
6028     _capacity = new_capacity;
6029   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6030     // Failed to double capacity, continue;
6031     // we print a detail message only once per CMS cycle.
6032     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
6033             SIZE_FORMAT"K",
6034             _capacity / K, new_capacity / K);
6035   }
6036 }
6037 
6038 
6039 // Closures
6040 // XXX: there seems to be a lot of code  duplication here;
6041 // should refactor and consolidate common code.
6042 
6043 // This closure is used to mark refs into the CMS generation in
6044 // the CMS bit map. Called at the first checkpoint. This closure
6045 // assumes that we do not need to re-mark dirty cards; if the CMS
6046 // generation on which this is used is not an oldest
6047 // generation then this will lose younger_gen cards!
6048 
6049 MarkRefsIntoClosure::MarkRefsIntoClosure(
6050   MemRegion span, CMSBitMap* bitMap):
6051     _span(span),
6052     _bitMap(bitMap)
6053 {
6054     assert(_ref_processor == NULL, "deliberately left NULL");
6055     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6056 }
6057 
6058 void MarkRefsIntoClosure::do_oop(oop obj) {
6059   // if p points into _span, then mark corresponding bit in _markBitMap
6060   assert(obj->is_oop(), "expected an oop");
6061   HeapWord* addr = (HeapWord*)obj;
6062   if (_span.contains(addr)) {
6063     // this should be made more efficient
6064     _bitMap->mark(addr);
6065   }
6066 }
6067 
6068 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
6069 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
6070 
6071 Par_MarkRefsIntoClosure::Par_MarkRefsIntoClosure(
6072   MemRegion span, CMSBitMap* bitMap):
6073     _span(span),
6074     _bitMap(bitMap)
6075 {
6076     assert(_ref_processor == NULL, "deliberately left NULL");
6077     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6078 }
6079 
6080 void Par_MarkRefsIntoClosure::do_oop(oop obj) {
6081   // if p points into _span, then mark corresponding bit in _markBitMap
6082   assert(obj->is_oop(), "expected an oop");
6083   HeapWord* addr = (HeapWord*)obj;
6084   if (_span.contains(addr)) {
6085     // this should be made more efficient
6086     _bitMap->par_mark(addr);
6087   }
6088 }
6089 
6090 void Par_MarkRefsIntoClosure::do_oop(oop* p)       { Par_MarkRefsIntoClosure::do_oop_work(p); }
6091 void Par_MarkRefsIntoClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoClosure::do_oop_work(p); }
6092 
6093 // A variant of the above, used for CMS marking verification.
6094 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
6095   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
6096     _span(span),
6097     _verification_bm(verification_bm),
6098     _cms_bm(cms_bm)
6099 {
6100     assert(_ref_processor == NULL, "deliberately left NULL");
6101     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
6102 }
6103 
6104 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
6105   // if p points into _span, then mark corresponding bit in _markBitMap
6106   assert(obj->is_oop(), "expected an oop");
6107   HeapWord* addr = (HeapWord*)obj;
6108   if (_span.contains(addr)) {
6109     _verification_bm->mark(addr);
6110     if (!_cms_bm->isMarked(addr)) {
6111       oop(addr)->print();
6112       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
6113       fatal("... aborting");
6114     }
6115   }
6116 }
6117 
6118 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6119 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6120 
6121 //////////////////////////////////////////////////
6122 // MarkRefsIntoAndScanClosure
6123 //////////////////////////////////////////////////
6124 
6125 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
6126                                                        ReferenceProcessor* rp,
6127                                                        CMSBitMap* bit_map,
6128                                                        CMSBitMap* mod_union_table,
6129                                                        CMSMarkStack*  mark_stack,
6130                                                        CMSCollector* collector,
6131                                                        bool should_yield,
6132                                                        bool concurrent_precleaning):
6133   _collector(collector),
6134   _span(span),
6135   _bit_map(bit_map),
6136   _mark_stack(mark_stack),
6137   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
6138                       mark_stack, concurrent_precleaning),
6139   _yield(should_yield),
6140   _concurrent_precleaning(concurrent_precleaning),
6141   _freelistLock(NULL)
6142 {
6143   _ref_processor = rp;
6144   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6145 }
6146 
6147 // This closure is used to mark refs into the CMS generation at the
6148 // second (final) checkpoint, and to scan and transitively follow
6149 // the unmarked oops. It is also used during the concurrent precleaning
6150 // phase while scanning objects on dirty cards in the CMS generation.
6151 // The marks are made in the marking bit map and the marking stack is
6152 // used for keeping the (newly) grey objects during the scan.
6153 // The parallel version (Par_...) appears further below.
6154 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6155   if (obj != NULL) {
6156     assert(obj->is_oop(), "expected an oop");
6157     HeapWord* addr = (HeapWord*)obj;
6158     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6159     assert(_collector->overflow_list_is_empty(),
6160            "overflow list should be empty");
6161     if (_span.contains(addr) &&
6162         !_bit_map->isMarked(addr)) {
6163       // mark bit map (object is now grey)
6164       _bit_map->mark(addr);
6165       // push on marking stack (stack should be empty), and drain the
6166       // stack by applying this closure to the oops in the oops popped
6167       // from the stack (i.e. blacken the grey objects)
6168       bool res = _mark_stack->push(obj);
6169       assert(res, "Should have space to push on empty stack");
6170       do {
6171         oop new_oop = _mark_stack->pop();
6172         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6173         assert(_bit_map->isMarked((HeapWord*)new_oop),
6174                "only grey objects on this stack");
6175         // iterate over the oops in this oop, marking and pushing
6176         // the ones in CMS heap (i.e. in _span).
6177         new_oop->oop_iterate(&_pushAndMarkClosure);
6178         // check if it's time to yield
6179         do_yield_check();
6180       } while (!_mark_stack->isEmpty() ||
6181                (!_concurrent_precleaning && take_from_overflow_list()));
6182         // if marking stack is empty, and we are not doing this
6183         // during precleaning, then check the overflow list
6184     }
6185     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6186     assert(_collector->overflow_list_is_empty(),
6187            "overflow list was drained above");
6188     // We could restore evacuated mark words, if any, used for
6189     // overflow list links here because the overflow list is
6190     // provably empty here. That would reduce the maximum
6191     // size requirements for preserved_{oop,mark}_stack.
6192     // But we'll just postpone it until we are all done
6193     // so we can just stream through.
6194     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
6195       _collector->restore_preserved_marks_if_any();
6196       assert(_collector->no_preserved_marks(), "No preserved marks");
6197     }
6198     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
6199            "All preserved marks should have been restored above");
6200   }
6201 }
6202 
6203 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6204 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6205 
6206 void MarkRefsIntoAndScanClosure::do_yield_work() {
6207   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6208          "CMS thread should hold CMS token");
6209   assert_lock_strong(_freelistLock);
6210   assert_lock_strong(_bit_map->lock());
6211   // relinquish the free_list_lock and bitMaplock()
6212   _bit_map->lock()->unlock();
6213   _freelistLock->unlock();
6214   ConcurrentMarkSweepThread::desynchronize(true);
6215   _collector->stopTimer();
6216   if (PrintCMSStatistics != 0) {
6217     _collector->incrementYields();
6218   }
6219 
6220   // See the comment in coordinator_yield()
6221   for (unsigned i = 0;
6222        i < CMSYieldSleepCount &&
6223        ConcurrentMarkSweepThread::should_yield() &&
6224        !CMSCollector::foregroundGCIsActive();
6225        ++i) {
6226     os::sleep(Thread::current(), 1, false);
6227   }
6228 
6229   ConcurrentMarkSweepThread::synchronize(true);
6230   _freelistLock->lock_without_safepoint_check();
6231   _bit_map->lock()->lock_without_safepoint_check();
6232   _collector->startTimer();
6233 }
6234 
6235 ///////////////////////////////////////////////////////////
6236 // Par_MarkRefsIntoAndScanClosure: a parallel version of
6237 //                                 MarkRefsIntoAndScanClosure
6238 ///////////////////////////////////////////////////////////
6239 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
6240   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6241   CMSBitMap* bit_map, OopTaskQueue* work_queue):
6242   _span(span),
6243   _bit_map(bit_map),
6244   _work_queue(work_queue),
6245   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
6246                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6247   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue)
6248 {
6249   _ref_processor = rp;
6250   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6251 }
6252 
6253 // This closure is used to mark refs into the CMS generation at the
6254 // second (final) checkpoint, and to scan and transitively follow
6255 // the unmarked oops. The marks are made in the marking bit map and
6256 // the work_queue is used for keeping the (newly) grey objects during
6257 // the scan phase whence they are also available for stealing by parallel
6258 // threads. Since the marking bit map is shared, updates are
6259 // synchronized (via CAS).
6260 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6261   if (obj != NULL) {
6262     // Ignore mark word because this could be an already marked oop
6263     // that may be chained at the end of the overflow list.
6264     assert(obj->is_oop(true), "expected an oop");
6265     HeapWord* addr = (HeapWord*)obj;
6266     if (_span.contains(addr) &&
6267         !_bit_map->isMarked(addr)) {
6268       // mark bit map (object will become grey):
6269       // It is possible for several threads to be
6270       // trying to "claim" this object concurrently;
6271       // the unique thread that succeeds in marking the
6272       // object first will do the subsequent push on
6273       // to the work queue (or overflow list).
6274       if (_bit_map->par_mark(addr)) {
6275         // push on work_queue (which may not be empty), and trim the
6276         // queue to an appropriate length by applying this closure to
6277         // the oops in the oops popped from the stack (i.e. blacken the
6278         // grey objects)
6279         bool res = _work_queue->push(obj);
6280         assert(res, "Low water mark should be less than capacity?");
6281         trim_queue(_low_water_mark);
6282       } // Else, another thread claimed the object
6283     }
6284   }
6285 }
6286 
6287 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6288 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6289 
6290 // This closure is used to rescan the marked objects on the dirty cards
6291 // in the mod union table and the card table proper.
6292 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6293   oop p, MemRegion mr) {
6294 
6295   size_t size = 0;
6296   HeapWord* addr = (HeapWord*)p;
6297   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6298   assert(_span.contains(addr), "we are scanning the CMS generation");
6299   // check if it's time to yield
6300   if (do_yield_check()) {
6301     // We yielded for some foreground stop-world work,
6302     // and we have been asked to abort this ongoing preclean cycle.
6303     return 0;
6304   }
6305   if (_bitMap->isMarked(addr)) {
6306     // it's marked; is it potentially uninitialized?
6307     if (p->klass_or_null() != NULL) {
6308         // an initialized object; ignore mark word in verification below
6309         // since we are running concurrent with mutators
6310         assert(p->is_oop(true), "should be an oop");
6311         if (p->is_objArray()) {
6312           // objArrays are precisely marked; restrict scanning
6313           // to dirty cards only.
6314           size = CompactibleFreeListSpace::adjustObjectSize(
6315                    p->oop_iterate(_scanningClosure, mr));
6316         } else {
6317           // A non-array may have been imprecisely marked; we need
6318           // to scan object in its entirety.
6319           size = CompactibleFreeListSpace::adjustObjectSize(
6320                    p->oop_iterate(_scanningClosure));
6321         }
6322         #ifdef ASSERT
6323           size_t direct_size =
6324             CompactibleFreeListSpace::adjustObjectSize(p->size());
6325           assert(size == direct_size, "Inconsistency in size");
6326           assert(size >= 3, "Necessary for Printezis marks to work");
6327           if (!_bitMap->isMarked(addr+1)) {
6328             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
6329           } else {
6330             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
6331             assert(_bitMap->isMarked(addr+size-1),
6332                    "inconsistent Printezis mark");
6333           }
6334         #endif // ASSERT
6335     } else {
6336       // An uninitialized object.
6337       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6338       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6339       size = pointer_delta(nextOneAddr + 1, addr);
6340       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6341              "alignment problem");
6342       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6343       // will dirty the card when the klass pointer is installed in the
6344       // object (signaling the completion of initialization).
6345     }
6346   } else {
6347     // Either a not yet marked object or an uninitialized object
6348     if (p->klass_or_null() == NULL) {
6349       // An uninitialized object, skip to the next card, since
6350       // we may not be able to read its P-bits yet.
6351       assert(size == 0, "Initial value");
6352     } else {
6353       // An object not (yet) reached by marking: we merely need to
6354       // compute its size so as to go look at the next block.
6355       assert(p->is_oop(true), "should be an oop");
6356       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6357     }
6358   }
6359   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6360   return size;
6361 }
6362 
6363 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6364   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6365          "CMS thread should hold CMS token");
6366   assert_lock_strong(_freelistLock);
6367   assert_lock_strong(_bitMap->lock());
6368   // relinquish the free_list_lock and bitMaplock()
6369   _bitMap->lock()->unlock();
6370   _freelistLock->unlock();
6371   ConcurrentMarkSweepThread::desynchronize(true);
6372   _collector->stopTimer();
6373   if (PrintCMSStatistics != 0) {
6374     _collector->incrementYields();
6375   }
6376 
6377   // See the comment in coordinator_yield()
6378   for (unsigned i = 0; i < CMSYieldSleepCount &&
6379                    ConcurrentMarkSweepThread::should_yield() &&
6380                    !CMSCollector::foregroundGCIsActive(); ++i) {
6381     os::sleep(Thread::current(), 1, false);
6382   }
6383 
6384   ConcurrentMarkSweepThread::synchronize(true);
6385   _freelistLock->lock_without_safepoint_check();
6386   _bitMap->lock()->lock_without_safepoint_check();
6387   _collector->startTimer();
6388 }
6389 
6390 
6391 //////////////////////////////////////////////////////////////////
6392 // SurvivorSpacePrecleanClosure
6393 //////////////////////////////////////////////////////////////////
6394 // This (single-threaded) closure is used to preclean the oops in
6395 // the survivor spaces.
6396 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6397 
6398   HeapWord* addr = (HeapWord*)p;
6399   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6400   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6401   assert(p->klass_or_null() != NULL, "object should be initialized");
6402   // an initialized object; ignore mark word in verification below
6403   // since we are running concurrent with mutators
6404   assert(p->is_oop(true), "should be an oop");
6405   // Note that we do not yield while we iterate over
6406   // the interior oops of p, pushing the relevant ones
6407   // on our marking stack.
6408   size_t size = p->oop_iterate(_scanning_closure);
6409   do_yield_check();
6410   // Observe that below, we do not abandon the preclean
6411   // phase as soon as we should; rather we empty the
6412   // marking stack before returning. This is to satisfy
6413   // some existing assertions. In general, it may be a
6414   // good idea to abort immediately and complete the marking
6415   // from the grey objects at a later time.
6416   while (!_mark_stack->isEmpty()) {
6417     oop new_oop = _mark_stack->pop();
6418     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6419     assert(_bit_map->isMarked((HeapWord*)new_oop),
6420            "only grey objects on this stack");
6421     // iterate over the oops in this oop, marking and pushing
6422     // the ones in CMS heap (i.e. in _span).
6423     new_oop->oop_iterate(_scanning_closure);
6424     // check if it's time to yield
6425     do_yield_check();
6426   }
6427   unsigned int after_count =
6428     GenCollectedHeap::heap()->total_collections();
6429   bool abort = (_before_count != after_count) ||
6430                _collector->should_abort_preclean();
6431   return abort ? 0 : size;
6432 }
6433 
6434 void SurvivorSpacePrecleanClosure::do_yield_work() {
6435   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6436          "CMS thread should hold CMS token");
6437   assert_lock_strong(_bit_map->lock());
6438   // Relinquish the bit map lock
6439   _bit_map->lock()->unlock();
6440   ConcurrentMarkSweepThread::desynchronize(true);
6441   _collector->stopTimer();
6442   if (PrintCMSStatistics != 0) {
6443     _collector->incrementYields();
6444   }
6445 
6446   // See the comment in coordinator_yield()
6447   for (unsigned i = 0; i < CMSYieldSleepCount &&
6448                        ConcurrentMarkSweepThread::should_yield() &&
6449                        !CMSCollector::foregroundGCIsActive(); ++i) {
6450     os::sleep(Thread::current(), 1, false);
6451   }
6452 
6453   ConcurrentMarkSweepThread::synchronize(true);
6454   _bit_map->lock()->lock_without_safepoint_check();
6455   _collector->startTimer();
6456 }
6457 
6458 // This closure is used to rescan the marked objects on the dirty cards
6459 // in the mod union table and the card table proper. In the parallel
6460 // case, although the bitMap is shared, we do a single read so the
6461 // isMarked() query is "safe".
6462 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6463   // Ignore mark word because we are running concurrent with mutators
6464   assert(p->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(p)));
6465   HeapWord* addr = (HeapWord*)p;
6466   assert(_span.contains(addr), "we are scanning the CMS generation");
6467   bool is_obj_array = false;
6468   #ifdef ASSERT
6469     if (!_parallel) {
6470       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6471       assert(_collector->overflow_list_is_empty(),
6472              "overflow list should be empty");
6473 
6474     }
6475   #endif // ASSERT
6476   if (_bit_map->isMarked(addr)) {
6477     // Obj arrays are precisely marked, non-arrays are not;
6478     // so we scan objArrays precisely and non-arrays in their
6479     // entirety.
6480     if (p->is_objArray()) {
6481       is_obj_array = true;
6482       if (_parallel) {
6483         p->oop_iterate(_par_scan_closure, mr);
6484       } else {
6485         p->oop_iterate(_scan_closure, mr);
6486       }
6487     } else {
6488       if (_parallel) {
6489         p->oop_iterate(_par_scan_closure);
6490       } else {
6491         p->oop_iterate(_scan_closure);
6492       }
6493     }
6494   }
6495   #ifdef ASSERT
6496     if (!_parallel) {
6497       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6498       assert(_collector->overflow_list_is_empty(),
6499              "overflow list should be empty");
6500 
6501     }
6502   #endif // ASSERT
6503   return is_obj_array;
6504 }
6505 
6506 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6507                         MemRegion span,
6508                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
6509                         bool should_yield, bool verifying):
6510   _collector(collector),
6511   _span(span),
6512   _bitMap(bitMap),
6513   _mut(&collector->_modUnionTable),
6514   _markStack(markStack),
6515   _yield(should_yield),
6516   _skipBits(0)
6517 {
6518   assert(_markStack->isEmpty(), "stack should be empty");
6519   _finger = _bitMap->startWord();
6520   _threshold = _finger;
6521   assert(_collector->_restart_addr == NULL, "Sanity check");
6522   assert(_span.contains(_finger), "Out of bounds _finger?");
6523   DEBUG_ONLY(_verifying = verifying;)
6524 }
6525 
6526 void MarkFromRootsClosure::reset(HeapWord* addr) {
6527   assert(_markStack->isEmpty(), "would cause duplicates on stack");
6528   assert(_span.contains(addr), "Out of bounds _finger?");
6529   _finger = addr;
6530   _threshold = (HeapWord*)round_to(
6531                  (intptr_t)_finger, CardTableModRefBS::card_size);
6532 }
6533 
6534 // Should revisit to see if this should be restructured for
6535 // greater efficiency.
6536 bool MarkFromRootsClosure::do_bit(size_t offset) {
6537   if (_skipBits > 0) {
6538     _skipBits--;
6539     return true;
6540   }
6541   // convert offset into a HeapWord*
6542   HeapWord* addr = _bitMap->startWord() + offset;
6543   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6544          "address out of range");
6545   assert(_bitMap->isMarked(addr), "tautology");
6546   if (_bitMap->isMarked(addr+1)) {
6547     // this is an allocated but not yet initialized object
6548     assert(_skipBits == 0, "tautology");
6549     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6550     oop p = oop(addr);
6551     if (p->klass_or_null() == NULL) {
6552       DEBUG_ONLY(if (!_verifying) {)
6553         // We re-dirty the cards on which this object lies and increase
6554         // the _threshold so that we'll come back to scan this object
6555         // during the preclean or remark phase. (CMSCleanOnEnter)
6556         if (CMSCleanOnEnter) {
6557           size_t sz = _collector->block_size_using_printezis_bits(addr);
6558           HeapWord* end_card_addr   = (HeapWord*)round_to(
6559                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6560           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6561           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6562           // Bump _threshold to end_card_addr; note that
6563           // _threshold cannot possibly exceed end_card_addr, anyhow.
6564           // This prevents future clearing of the card as the scan proceeds
6565           // to the right.
6566           assert(_threshold <= end_card_addr,
6567                  "Because we are just scanning into this object");
6568           if (_threshold < end_card_addr) {
6569             _threshold = end_card_addr;
6570           }
6571           if (p->klass_or_null() != NULL) {
6572             // Redirty the range of cards...
6573             _mut->mark_range(redirty_range);
6574           } // ...else the setting of klass will dirty the card anyway.
6575         }
6576       DEBUG_ONLY(})
6577       return true;
6578     }
6579   }
6580   scanOopsInOop(addr);
6581   return true;
6582 }
6583 
6584 // We take a break if we've been at this for a while,
6585 // so as to avoid monopolizing the locks involved.
6586 void MarkFromRootsClosure::do_yield_work() {
6587   // First give up the locks, then yield, then re-lock
6588   // We should probably use a constructor/destructor idiom to
6589   // do this unlock/lock or modify the MutexUnlocker class to
6590   // serve our purpose. XXX
6591   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6592          "CMS thread should hold CMS token");
6593   assert_lock_strong(_bitMap->lock());
6594   _bitMap->lock()->unlock();
6595   ConcurrentMarkSweepThread::desynchronize(true);
6596   _collector->stopTimer();
6597   if (PrintCMSStatistics != 0) {
6598     _collector->incrementYields();
6599   }
6600 
6601   // See the comment in coordinator_yield()
6602   for (unsigned i = 0; i < CMSYieldSleepCount &&
6603                        ConcurrentMarkSweepThread::should_yield() &&
6604                        !CMSCollector::foregroundGCIsActive(); ++i) {
6605     os::sleep(Thread::current(), 1, false);
6606   }
6607 
6608   ConcurrentMarkSweepThread::synchronize(true);
6609   _bitMap->lock()->lock_without_safepoint_check();
6610   _collector->startTimer();
6611 }
6612 
6613 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
6614   assert(_bitMap->isMarked(ptr), "expected bit to be set");
6615   assert(_markStack->isEmpty(),
6616          "should drain stack to limit stack usage");
6617   // convert ptr to an oop preparatory to scanning
6618   oop obj = oop(ptr);
6619   // Ignore mark word in verification below, since we
6620   // may be running concurrent with mutators.
6621   assert(obj->is_oop(true), "should be an oop");
6622   assert(_finger <= ptr, "_finger runneth ahead");
6623   // advance the finger to right end of this object
6624   _finger = ptr + obj->size();
6625   assert(_finger > ptr, "we just incremented it above");
6626   // On large heaps, it may take us some time to get through
6627   // the marking phase. During
6628   // this time it's possible that a lot of mutations have
6629   // accumulated in the card table and the mod union table --
6630   // these mutation records are redundant until we have
6631   // actually traced into the corresponding card.
6632   // Here, we check whether advancing the finger would make
6633   // us cross into a new card, and if so clear corresponding
6634   // cards in the MUT (preclean them in the card-table in the
6635   // future).
6636 
6637   DEBUG_ONLY(if (!_verifying) {)
6638     // The clean-on-enter optimization is disabled by default,
6639     // until we fix 6178663.
6640     if (CMSCleanOnEnter && (_finger > _threshold)) {
6641       // [_threshold, _finger) represents the interval
6642       // of cards to be cleared  in MUT (or precleaned in card table).
6643       // The set of cards to be cleared is all those that overlap
6644       // with the interval [_threshold, _finger); note that
6645       // _threshold is always kept card-aligned but _finger isn't
6646       // always card-aligned.
6647       HeapWord* old_threshold = _threshold;
6648       assert(old_threshold == (HeapWord*)round_to(
6649               (intptr_t)old_threshold, CardTableModRefBS::card_size),
6650              "_threshold should always be card-aligned");
6651       _threshold = (HeapWord*)round_to(
6652                      (intptr_t)_finger, CardTableModRefBS::card_size);
6653       MemRegion mr(old_threshold, _threshold);
6654       assert(!mr.is_empty(), "Control point invariant");
6655       assert(_span.contains(mr), "Should clear within span");
6656       _mut->clear_range(mr);
6657     }
6658   DEBUG_ONLY(})
6659   // Note: the finger doesn't advance while we drain
6660   // the stack below.
6661   PushOrMarkClosure pushOrMarkClosure(_collector,
6662                                       _span, _bitMap, _markStack,
6663                                       _finger, this);
6664   bool res = _markStack->push(obj);
6665   assert(res, "Empty non-zero size stack should have space for single push");
6666   while (!_markStack->isEmpty()) {
6667     oop new_oop = _markStack->pop();
6668     // Skip verifying header mark word below because we are
6669     // running concurrent with mutators.
6670     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6671     // now scan this oop's oops
6672     new_oop->oop_iterate(&pushOrMarkClosure);
6673     do_yield_check();
6674   }
6675   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
6676 }
6677 
6678 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
6679                        CMSCollector* collector, MemRegion span,
6680                        CMSBitMap* bit_map,
6681                        OopTaskQueue* work_queue,
6682                        CMSMarkStack*  overflow_stack):
6683   _collector(collector),
6684   _whole_span(collector->_span),
6685   _span(span),
6686   _bit_map(bit_map),
6687   _mut(&collector->_modUnionTable),
6688   _work_queue(work_queue),
6689   _overflow_stack(overflow_stack),
6690   _skip_bits(0),
6691   _task(task)
6692 {
6693   assert(_work_queue->size() == 0, "work_queue should be empty");
6694   _finger = span.start();
6695   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
6696   assert(_span.contains(_finger), "Out of bounds _finger?");
6697 }
6698 
6699 // Should revisit to see if this should be restructured for
6700 // greater efficiency.
6701 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
6702   if (_skip_bits > 0) {
6703     _skip_bits--;
6704     return true;
6705   }
6706   // convert offset into a HeapWord*
6707   HeapWord* addr = _bit_map->startWord() + offset;
6708   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
6709          "address out of range");
6710   assert(_bit_map->isMarked(addr), "tautology");
6711   if (_bit_map->isMarked(addr+1)) {
6712     // this is an allocated object that might not yet be initialized
6713     assert(_skip_bits == 0, "tautology");
6714     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
6715     oop p = oop(addr);
6716     if (p->klass_or_null() == NULL) {
6717       // in the case of Clean-on-Enter optimization, redirty card
6718       // and avoid clearing card by increasing  the threshold.
6719       return true;
6720     }
6721   }
6722   scan_oops_in_oop(addr);
6723   return true;
6724 }
6725 
6726 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
6727   assert(_bit_map->isMarked(ptr), "expected bit to be set");
6728   // Should we assert that our work queue is empty or
6729   // below some drain limit?
6730   assert(_work_queue->size() == 0,
6731          "should drain stack to limit stack usage");
6732   // convert ptr to an oop preparatory to scanning
6733   oop obj = oop(ptr);
6734   // Ignore mark word in verification below, since we
6735   // may be running concurrent with mutators.
6736   assert(obj->is_oop(true), "should be an oop");
6737   assert(_finger <= ptr, "_finger runneth ahead");
6738   // advance the finger to right end of this object
6739   _finger = ptr + obj->size();
6740   assert(_finger > ptr, "we just incremented it above");
6741   // On large heaps, it may take us some time to get through
6742   // the marking phase. During
6743   // this time it's possible that a lot of mutations have
6744   // accumulated in the card table and the mod union table --
6745   // these mutation records are redundant until we have
6746   // actually traced into the corresponding card.
6747   // Here, we check whether advancing the finger would make
6748   // us cross into a new card, and if so clear corresponding
6749   // cards in the MUT (preclean them in the card-table in the
6750   // future).
6751 
6752   // The clean-on-enter optimization is disabled by default,
6753   // until we fix 6178663.
6754   if (CMSCleanOnEnter && (_finger > _threshold)) {
6755     // [_threshold, _finger) represents the interval
6756     // of cards to be cleared  in MUT (or precleaned in card table).
6757     // The set of cards to be cleared is all those that overlap
6758     // with the interval [_threshold, _finger); note that
6759     // _threshold is always kept card-aligned but _finger isn't
6760     // always card-aligned.
6761     HeapWord* old_threshold = _threshold;
6762     assert(old_threshold == (HeapWord*)round_to(
6763             (intptr_t)old_threshold, CardTableModRefBS::card_size),
6764            "_threshold should always be card-aligned");
6765     _threshold = (HeapWord*)round_to(
6766                    (intptr_t)_finger, CardTableModRefBS::card_size);
6767     MemRegion mr(old_threshold, _threshold);
6768     assert(!mr.is_empty(), "Control point invariant");
6769     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
6770     _mut->clear_range(mr);
6771   }
6772 
6773   // Note: the local finger doesn't advance while we drain
6774   // the stack below, but the global finger sure can and will.
6775   HeapWord** gfa = _task->global_finger_addr();
6776   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
6777                                       _span, _bit_map,
6778                                       _work_queue,
6779                                       _overflow_stack,
6780                                       _finger,
6781                                       gfa, this);
6782   bool res = _work_queue->push(obj);   // overflow could occur here
6783   assert(res, "Will hold once we use workqueues");
6784   while (true) {
6785     oop new_oop;
6786     if (!_work_queue->pop_local(new_oop)) {
6787       // We emptied our work_queue; check if there's stuff that can
6788       // be gotten from the overflow stack.
6789       if (CMSConcMarkingTask::get_work_from_overflow_stack(
6790             _overflow_stack, _work_queue)) {
6791         do_yield_check();
6792         continue;
6793       } else {  // done
6794         break;
6795       }
6796     }
6797     // Skip verifying header mark word below because we are
6798     // running concurrent with mutators.
6799     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6800     // now scan this oop's oops
6801     new_oop->oop_iterate(&pushOrMarkClosure);
6802     do_yield_check();
6803   }
6804   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
6805 }
6806 
6807 // Yield in response to a request from VM Thread or
6808 // from mutators.
6809 void Par_MarkFromRootsClosure::do_yield_work() {
6810   assert(_task != NULL, "sanity");
6811   _task->yield();
6812 }
6813 
6814 // A variant of the above used for verifying CMS marking work.
6815 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
6816                         MemRegion span,
6817                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6818                         CMSMarkStack*  mark_stack):
6819   _collector(collector),
6820   _span(span),
6821   _verification_bm(verification_bm),
6822   _cms_bm(cms_bm),
6823   _mark_stack(mark_stack),
6824   _pam_verify_closure(collector, span, verification_bm, cms_bm,
6825                       mark_stack)
6826 {
6827   assert(_mark_stack->isEmpty(), "stack should be empty");
6828   _finger = _verification_bm->startWord();
6829   assert(_collector->_restart_addr == NULL, "Sanity check");
6830   assert(_span.contains(_finger), "Out of bounds _finger?");
6831 }
6832 
6833 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
6834   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
6835   assert(_span.contains(addr), "Out of bounds _finger?");
6836   _finger = addr;
6837 }
6838 
6839 // Should revisit to see if this should be restructured for
6840 // greater efficiency.
6841 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
6842   // convert offset into a HeapWord*
6843   HeapWord* addr = _verification_bm->startWord() + offset;
6844   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
6845          "address out of range");
6846   assert(_verification_bm->isMarked(addr), "tautology");
6847   assert(_cms_bm->isMarked(addr), "tautology");
6848 
6849   assert(_mark_stack->isEmpty(),
6850          "should drain stack to limit stack usage");
6851   // convert addr to an oop preparatory to scanning
6852   oop obj = oop(addr);
6853   assert(obj->is_oop(), "should be an oop");
6854   assert(_finger <= addr, "_finger runneth ahead");
6855   // advance the finger to right end of this object
6856   _finger = addr + obj->size();
6857   assert(_finger > addr, "we just incremented it above");
6858   // Note: the finger doesn't advance while we drain
6859   // the stack below.
6860   bool res = _mark_stack->push(obj);
6861   assert(res, "Empty non-zero size stack should have space for single push");
6862   while (!_mark_stack->isEmpty()) {
6863     oop new_oop = _mark_stack->pop();
6864     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
6865     // now scan this oop's oops
6866     new_oop->oop_iterate(&_pam_verify_closure);
6867   }
6868   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
6869   return true;
6870 }
6871 
6872 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
6873   CMSCollector* collector, MemRegion span,
6874   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6875   CMSMarkStack*  mark_stack):
6876   MetadataAwareOopClosure(collector->ref_processor()),
6877   _collector(collector),
6878   _span(span),
6879   _verification_bm(verification_bm),
6880   _cms_bm(cms_bm),
6881   _mark_stack(mark_stack)
6882 { }
6883 
6884 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
6885 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
6886 
6887 // Upon stack overflow, we discard (part of) the stack,
6888 // remembering the least address amongst those discarded
6889 // in CMSCollector's _restart_address.
6890 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
6891   // Remember the least grey address discarded
6892   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
6893   _collector->lower_restart_addr(ra);
6894   _mark_stack->reset();  // discard stack contents
6895   _mark_stack->expand(); // expand the stack if possible
6896 }
6897 
6898 void PushAndMarkVerifyClosure::do_oop(oop obj) {
6899   assert(obj->is_oop_or_null(), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
6900   HeapWord* addr = (HeapWord*)obj;
6901   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
6902     // Oop lies in _span and isn't yet grey or black
6903     _verification_bm->mark(addr);            // now grey
6904     if (!_cms_bm->isMarked(addr)) {
6905       oop(addr)->print();
6906       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
6907                              p2i(addr));
6908       fatal("... aborting");
6909     }
6910 
6911     if (!_mark_stack->push(obj)) { // stack overflow
6912       if (PrintCMSStatistics != 0) {
6913         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
6914                                SIZE_FORMAT, _mark_stack->capacity());
6915       }
6916       assert(_mark_stack->isFull(), "Else push should have succeeded");
6917       handle_stack_overflow(addr);
6918     }
6919     // anything including and to the right of _finger
6920     // will be scanned as we iterate over the remainder of the
6921     // bit map
6922   }
6923 }
6924 
6925 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
6926                      MemRegion span,
6927                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
6928                      HeapWord* finger, MarkFromRootsClosure* parent) :
6929   MetadataAwareOopClosure(collector->ref_processor()),
6930   _collector(collector),
6931   _span(span),
6932   _bitMap(bitMap),
6933   _markStack(markStack),
6934   _finger(finger),
6935   _parent(parent)
6936 { }
6937 
6938 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
6939                      MemRegion span,
6940                      CMSBitMap* bit_map,
6941                      OopTaskQueue* work_queue,
6942                      CMSMarkStack*  overflow_stack,
6943                      HeapWord* finger,
6944                      HeapWord** global_finger_addr,
6945                      Par_MarkFromRootsClosure* parent) :
6946   MetadataAwareOopClosure(collector->ref_processor()),
6947   _collector(collector),
6948   _whole_span(collector->_span),
6949   _span(span),
6950   _bit_map(bit_map),
6951   _work_queue(work_queue),
6952   _overflow_stack(overflow_stack),
6953   _finger(finger),
6954   _global_finger_addr(global_finger_addr),
6955   _parent(parent)
6956 { }
6957 
6958 // Assumes thread-safe access by callers, who are
6959 // responsible for mutual exclusion.
6960 void CMSCollector::lower_restart_addr(HeapWord* low) {
6961   assert(_span.contains(low), "Out of bounds addr");
6962   if (_restart_addr == NULL) {
6963     _restart_addr = low;
6964   } else {
6965     _restart_addr = MIN2(_restart_addr, low);
6966   }
6967 }
6968 
6969 // Upon stack overflow, we discard (part of) the stack,
6970 // remembering the least address amongst those discarded
6971 // in CMSCollector's _restart_address.
6972 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6973   // Remember the least grey address discarded
6974   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
6975   _collector->lower_restart_addr(ra);
6976   _markStack->reset();  // discard stack contents
6977   _markStack->expand(); // expand the stack if possible
6978 }
6979 
6980 // Upon stack overflow, we discard (part of) the stack,
6981 // remembering the least address amongst those discarded
6982 // in CMSCollector's _restart_address.
6983 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6984   // We need to do this under a mutex to prevent other
6985   // workers from interfering with the work done below.
6986   MutexLockerEx ml(_overflow_stack->par_lock(),
6987                    Mutex::_no_safepoint_check_flag);
6988   // Remember the least grey address discarded
6989   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
6990   _collector->lower_restart_addr(ra);
6991   _overflow_stack->reset();  // discard stack contents
6992   _overflow_stack->expand(); // expand the stack if possible
6993 }
6994 
6995 void PushOrMarkClosure::do_oop(oop obj) {
6996   // Ignore mark word because we are running concurrent with mutators.
6997   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
6998   HeapWord* addr = (HeapWord*)obj;
6999   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
7000     // Oop lies in _span and isn't yet grey or black
7001     _bitMap->mark(addr);            // now grey
7002     if (addr < _finger) {
7003       // the bit map iteration has already either passed, or
7004       // sampled, this bit in the bit map; we'll need to
7005       // use the marking stack to scan this oop's oops.
7006       bool simulate_overflow = false;
7007       NOT_PRODUCT(
7008         if (CMSMarkStackOverflowALot &&
7009             _collector->simulate_overflow()) {
7010           // simulate a stack overflow
7011           simulate_overflow = true;
7012         }
7013       )
7014       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
7015         if (PrintCMSStatistics != 0) {
7016           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7017                                  SIZE_FORMAT, _markStack->capacity());
7018         }
7019         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
7020         handle_stack_overflow(addr);
7021       }
7022     }
7023     // anything including and to the right of _finger
7024     // will be scanned as we iterate over the remainder of the
7025     // bit map
7026     do_yield_check();
7027   }
7028 }
7029 
7030 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
7031 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
7032 
7033 void Par_PushOrMarkClosure::do_oop(oop obj) {
7034   // Ignore mark word because we are running concurrent with mutators.
7035   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7036   HeapWord* addr = (HeapWord*)obj;
7037   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
7038     // Oop lies in _span and isn't yet grey or black
7039     // We read the global_finger (volatile read) strictly after marking oop
7040     bool res = _bit_map->par_mark(addr);    // now grey
7041     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
7042     // Should we push this marked oop on our stack?
7043     // -- if someone else marked it, nothing to do
7044     // -- if target oop is above global finger nothing to do
7045     // -- if target oop is in chunk and above local finger
7046     //      then nothing to do
7047     // -- else push on work queue
7048     if (   !res       // someone else marked it, they will deal with it
7049         || (addr >= *gfa)  // will be scanned in a later task
7050         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
7051       return;
7052     }
7053     // the bit map iteration has already either passed, or
7054     // sampled, this bit in the bit map; we'll need to
7055     // use the marking stack to scan this oop's oops.
7056     bool simulate_overflow = false;
7057     NOT_PRODUCT(
7058       if (CMSMarkStackOverflowALot &&
7059           _collector->simulate_overflow()) {
7060         // simulate a stack overflow
7061         simulate_overflow = true;
7062       }
7063     )
7064     if (simulate_overflow ||
7065         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
7066       // stack overflow
7067       if (PrintCMSStatistics != 0) {
7068         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7069                                SIZE_FORMAT, _overflow_stack->capacity());
7070       }
7071       // We cannot assert that the overflow stack is full because
7072       // it may have been emptied since.
7073       assert(simulate_overflow ||
7074              _work_queue->size() == _work_queue->max_elems(),
7075             "Else push should have succeeded");
7076       handle_stack_overflow(addr);
7077     }
7078     do_yield_check();
7079   }
7080 }
7081 
7082 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
7083 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
7084 
7085 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
7086                                        MemRegion span,
7087                                        ReferenceProcessor* rp,
7088                                        CMSBitMap* bit_map,
7089                                        CMSBitMap* mod_union_table,
7090                                        CMSMarkStack*  mark_stack,
7091                                        bool           concurrent_precleaning):
7092   MetadataAwareOopClosure(rp),
7093   _collector(collector),
7094   _span(span),
7095   _bit_map(bit_map),
7096   _mod_union_table(mod_union_table),
7097   _mark_stack(mark_stack),
7098   _concurrent_precleaning(concurrent_precleaning)
7099 {
7100   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7101 }
7102 
7103 // Grey object rescan during pre-cleaning and second checkpoint phases --
7104 // the non-parallel version (the parallel version appears further below.)
7105 void PushAndMarkClosure::do_oop(oop obj) {
7106   // Ignore mark word verification. If during concurrent precleaning,
7107   // the object monitor may be locked. If during the checkpoint
7108   // phases, the object may already have been reached by a  different
7109   // path and may be at the end of the global overflow list (so
7110   // the mark word may be NULL).
7111   assert(obj->is_oop_or_null(true /* ignore mark word */),
7112          err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7113   HeapWord* addr = (HeapWord*)obj;
7114   // Check if oop points into the CMS generation
7115   // and is not marked
7116   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7117     // a white object ...
7118     _bit_map->mark(addr);         // ... now grey
7119     // push on the marking stack (grey set)
7120     bool simulate_overflow = false;
7121     NOT_PRODUCT(
7122       if (CMSMarkStackOverflowALot &&
7123           _collector->simulate_overflow()) {
7124         // simulate a stack overflow
7125         simulate_overflow = true;
7126       }
7127     )
7128     if (simulate_overflow || !_mark_stack->push(obj)) {
7129       if (_concurrent_precleaning) {
7130          // During precleaning we can just dirty the appropriate card(s)
7131          // in the mod union table, thus ensuring that the object remains
7132          // in the grey set  and continue. In the case of object arrays
7133          // we need to dirty all of the cards that the object spans,
7134          // since the rescan of object arrays will be limited to the
7135          // dirty cards.
7136          // Note that no one can be interfering with us in this action
7137          // of dirtying the mod union table, so no locking or atomics
7138          // are required.
7139          if (obj->is_objArray()) {
7140            size_t sz = obj->size();
7141            HeapWord* end_card_addr = (HeapWord*)round_to(
7142                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7143            MemRegion redirty_range = MemRegion(addr, end_card_addr);
7144            assert(!redirty_range.is_empty(), "Arithmetical tautology");
7145            _mod_union_table->mark_range(redirty_range);
7146          } else {
7147            _mod_union_table->mark(addr);
7148          }
7149          _collector->_ser_pmc_preclean_ovflw++;
7150       } else {
7151          // During the remark phase, we need to remember this oop
7152          // in the overflow list.
7153          _collector->push_on_overflow_list(obj);
7154          _collector->_ser_pmc_remark_ovflw++;
7155       }
7156     }
7157   }
7158 }
7159 
7160 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
7161                                                MemRegion span,
7162                                                ReferenceProcessor* rp,
7163                                                CMSBitMap* bit_map,
7164                                                OopTaskQueue* work_queue):
7165   MetadataAwareOopClosure(rp),
7166   _collector(collector),
7167   _span(span),
7168   _bit_map(bit_map),
7169   _work_queue(work_queue)
7170 {
7171   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7172 }
7173 
7174 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
7175 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
7176 
7177 // Grey object rescan during second checkpoint phase --
7178 // the parallel version.
7179 void Par_PushAndMarkClosure::do_oop(oop obj) {
7180   // In the assert below, we ignore the mark word because
7181   // this oop may point to an already visited object that is
7182   // on the overflow stack (in which case the mark word has
7183   // been hijacked for chaining into the overflow stack --
7184   // if this is the last object in the overflow stack then
7185   // its mark word will be NULL). Because this object may
7186   // have been subsequently popped off the global overflow
7187   // stack, and the mark word possibly restored to the prototypical
7188   // value, by the time we get to examined this failing assert in
7189   // the debugger, is_oop_or_null(false) may subsequently start
7190   // to hold.
7191   assert(obj->is_oop_or_null(true),
7192          err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7193   HeapWord* addr = (HeapWord*)obj;
7194   // Check if oop points into the CMS generation
7195   // and is not marked
7196   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7197     // a white object ...
7198     // If we manage to "claim" the object, by being the
7199     // first thread to mark it, then we push it on our
7200     // marking stack
7201     if (_bit_map->par_mark(addr)) {     // ... now grey
7202       // push on work queue (grey set)
7203       bool simulate_overflow = false;
7204       NOT_PRODUCT(
7205         if (CMSMarkStackOverflowALot &&
7206             _collector->par_simulate_overflow()) {
7207           // simulate a stack overflow
7208           simulate_overflow = true;
7209         }
7210       )
7211       if (simulate_overflow || !_work_queue->push(obj)) {
7212         _collector->par_push_on_overflow_list(obj);
7213         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
7214       }
7215     } // Else, some other thread got there first
7216   }
7217 }
7218 
7219 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
7220 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
7221 
7222 void CMSPrecleanRefsYieldClosure::do_yield_work() {
7223   Mutex* bml = _collector->bitMapLock();
7224   assert_lock_strong(bml);
7225   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7226          "CMS thread should hold CMS token");
7227 
7228   bml->unlock();
7229   ConcurrentMarkSweepThread::desynchronize(true);
7230 
7231   _collector->stopTimer();
7232   if (PrintCMSStatistics != 0) {
7233     _collector->incrementYields();
7234   }
7235 
7236   // See the comment in coordinator_yield()
7237   for (unsigned i = 0; i < CMSYieldSleepCount &&
7238                        ConcurrentMarkSweepThread::should_yield() &&
7239                        !CMSCollector::foregroundGCIsActive(); ++i) {
7240     os::sleep(Thread::current(), 1, false);
7241   }
7242 
7243   ConcurrentMarkSweepThread::synchronize(true);
7244   bml->lock();
7245 
7246   _collector->startTimer();
7247 }
7248 
7249 bool CMSPrecleanRefsYieldClosure::should_return() {
7250   if (ConcurrentMarkSweepThread::should_yield()) {
7251     do_yield_work();
7252   }
7253   return _collector->foregroundGCIsActive();
7254 }
7255 
7256 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7257   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7258          "mr should be aligned to start at a card boundary");
7259   // We'd like to assert:
7260   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7261   //        "mr should be a range of cards");
7262   // However, that would be too strong in one case -- the last
7263   // partition ends at _unallocated_block which, in general, can be
7264   // an arbitrary boundary, not necessarily card aligned.
7265   if (PrintCMSStatistics != 0) {
7266     _num_dirty_cards +=
7267          mr.word_size()/CardTableModRefBS::card_size_in_words;
7268   }
7269   _space->object_iterate_mem(mr, &_scan_cl);
7270 }
7271 
7272 SweepClosure::SweepClosure(CMSCollector* collector,
7273                            ConcurrentMarkSweepGeneration* g,
7274                            CMSBitMap* bitMap, bool should_yield) :
7275   _collector(collector),
7276   _g(g),
7277   _sp(g->cmsSpace()),
7278   _limit(_sp->sweep_limit()),
7279   _freelistLock(_sp->freelistLock()),
7280   _bitMap(bitMap),
7281   _yield(should_yield),
7282   _inFreeRange(false),           // No free range at beginning of sweep
7283   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7284   _lastFreeRangeCoalesced(false),
7285   _freeFinger(g->used_region().start())
7286 {
7287   NOT_PRODUCT(
7288     _numObjectsFreed = 0;
7289     _numWordsFreed   = 0;
7290     _numObjectsLive = 0;
7291     _numWordsLive = 0;
7292     _numObjectsAlreadyFree = 0;
7293     _numWordsAlreadyFree = 0;
7294     _last_fc = NULL;
7295 
7296     _sp->initializeIndexedFreeListArrayReturnedBytes();
7297     _sp->dictionary()->initialize_dict_returned_bytes();
7298   )
7299   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7300          "sweep _limit out of bounds");
7301   if (CMSTraceSweeper) {
7302     gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT,
7303                         p2i(_limit));
7304   }
7305 }
7306 
7307 void SweepClosure::print_on(outputStream* st) const {
7308   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7309                 p2i(_sp->bottom()), p2i(_sp->end()));
7310   tty->print_cr("_limit = " PTR_FORMAT, p2i(_limit));
7311   tty->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger));
7312   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));)
7313   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7314                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7315 }
7316 
7317 #ifndef PRODUCT
7318 // Assertion checking only:  no useful work in product mode --
7319 // however, if any of the flags below become product flags,
7320 // you may need to review this code to see if it needs to be
7321 // enabled in product mode.
7322 SweepClosure::~SweepClosure() {
7323   assert_lock_strong(_freelistLock);
7324   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7325          "sweep _limit out of bounds");
7326   if (inFreeRange()) {
7327     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
7328     print();
7329     ShouldNotReachHere();
7330   }
7331   if (Verbose && PrintGC) {
7332     gclog_or_tty->print("Collected "SIZE_FORMAT" objects, " SIZE_FORMAT " bytes",
7333                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7334     gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
7335                            SIZE_FORMAT" bytes  "
7336       "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
7337       _numObjectsLive, _numWordsLive*sizeof(HeapWord),
7338       _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7339     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree)
7340                         * sizeof(HeapWord);
7341     gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
7342 
7343     if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
7344       size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7345       size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7346       size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7347       gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returned_bytes);
7348       gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
7349         indexListReturnedBytes);
7350       gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
7351         dict_returned_bytes);
7352     }
7353   }
7354   if (CMSTraceSweeper) {
7355     gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================",
7356                            p2i(_limit));
7357   }
7358 }
7359 #endif  // PRODUCT
7360 
7361 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7362     bool freeRangeInFreeLists) {
7363   if (CMSTraceSweeper) {
7364     gclog_or_tty->print("---- Start free range at " PTR_FORMAT " with free block (%d)\n",
7365                p2i(freeFinger), freeRangeInFreeLists);
7366   }
7367   assert(!inFreeRange(), "Trampling existing free range");
7368   set_inFreeRange(true);
7369   set_lastFreeRangeCoalesced(false);
7370 
7371   set_freeFinger(freeFinger);
7372   set_freeRangeInFreeLists(freeRangeInFreeLists);
7373   if (CMSTestInFreeList) {
7374     if (freeRangeInFreeLists) {
7375       FreeChunk* fc = (FreeChunk*) freeFinger;
7376       assert(fc->is_free(), "A chunk on the free list should be free.");
7377       assert(fc->size() > 0, "Free range should have a size");
7378       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7379     }
7380   }
7381 }
7382 
7383 // Note that the sweeper runs concurrently with mutators. Thus,
7384 // it is possible for direct allocation in this generation to happen
7385 // in the middle of the sweep. Note that the sweeper also coalesces
7386 // contiguous free blocks. Thus, unless the sweeper and the allocator
7387 // synchronize appropriately freshly allocated blocks may get swept up.
7388 // This is accomplished by the sweeper locking the free lists while
7389 // it is sweeping. Thus blocks that are determined to be free are
7390 // indeed free. There is however one additional complication:
7391 // blocks that have been allocated since the final checkpoint and
7392 // mark, will not have been marked and so would be treated as
7393 // unreachable and swept up. To prevent this, the allocator marks
7394 // the bit map when allocating during the sweep phase. This leads,
7395 // however, to a further complication -- objects may have been allocated
7396 // but not yet initialized -- in the sense that the header isn't yet
7397 // installed. The sweeper can not then determine the size of the block
7398 // in order to skip over it. To deal with this case, we use a technique
7399 // (due to Printezis) to encode such uninitialized block sizes in the
7400 // bit map. Since the bit map uses a bit per every HeapWord, but the
7401 // CMS generation has a minimum object size of 3 HeapWords, it follows
7402 // that "normal marks" won't be adjacent in the bit map (there will
7403 // always be at least two 0 bits between successive 1 bits). We make use
7404 // of these "unused" bits to represent uninitialized blocks -- the bit
7405 // corresponding to the start of the uninitialized object and the next
7406 // bit are both set. Finally, a 1 bit marks the end of the object that
7407 // started with the two consecutive 1 bits to indicate its potentially
7408 // uninitialized state.
7409 
7410 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7411   FreeChunk* fc = (FreeChunk*)addr;
7412   size_t res;
7413 
7414   // Check if we are done sweeping. Below we check "addr >= _limit" rather
7415   // than "addr == _limit" because although _limit was a block boundary when
7416   // we started the sweep, it may no longer be one because heap expansion
7417   // may have caused us to coalesce the block ending at the address _limit
7418   // with a newly expanded chunk (this happens when _limit was set to the
7419   // previous _end of the space), so we may have stepped past _limit:
7420   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7421   if (addr >= _limit) { // we have swept up to or past the limit: finish up
7422     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7423            "sweep _limit out of bounds");
7424     assert(addr < _sp->end(), "addr out of bounds");
7425     // Flush any free range we might be holding as a single
7426     // coalesced chunk to the appropriate free list.
7427     if (inFreeRange()) {
7428       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7429              err_msg("freeFinger() " PTR_FORMAT" is out-of-bounds", p2i(freeFinger())));
7430       flush_cur_free_chunk(freeFinger(),
7431                            pointer_delta(addr, freeFinger()));
7432       if (CMSTraceSweeper) {
7433         gclog_or_tty->print("Sweep: last chunk: ");
7434         gclog_or_tty->print("put_free_blk " PTR_FORMAT " ("SIZE_FORMAT") "
7435                    "[coalesced:%d]\n",
7436                    p2i(freeFinger()), pointer_delta(addr, freeFinger()),
7437                    lastFreeRangeCoalesced() ? 1 : 0);
7438       }
7439     }
7440 
7441     // help the iterator loop finish
7442     return pointer_delta(_sp->end(), addr);
7443   }
7444 
7445   assert(addr < _limit, "sweep invariant");
7446   // check if we should yield
7447   do_yield_check(addr);
7448   if (fc->is_free()) {
7449     // Chunk that is already free
7450     res = fc->size();
7451     do_already_free_chunk(fc);
7452     debug_only(_sp->verifyFreeLists());
7453     // If we flush the chunk at hand in lookahead_and_flush()
7454     // and it's coalesced with a preceding chunk, then the
7455     // process of "mangling" the payload of the coalesced block
7456     // will cause erasure of the size information from the
7457     // (erstwhile) header of all the coalesced blocks but the
7458     // first, so the first disjunct in the assert will not hold
7459     // in that specific case (in which case the second disjunct
7460     // will hold).
7461     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7462            "Otherwise the size info doesn't change at this step");
7463     NOT_PRODUCT(
7464       _numObjectsAlreadyFree++;
7465       _numWordsAlreadyFree += res;
7466     )
7467     NOT_PRODUCT(_last_fc = fc;)
7468   } else if (!_bitMap->isMarked(addr)) {
7469     // Chunk is fresh garbage
7470     res = do_garbage_chunk(fc);
7471     debug_only(_sp->verifyFreeLists());
7472     NOT_PRODUCT(
7473       _numObjectsFreed++;
7474       _numWordsFreed += res;
7475     )
7476   } else {
7477     // Chunk that is alive.
7478     res = do_live_chunk(fc);
7479     debug_only(_sp->verifyFreeLists());
7480     NOT_PRODUCT(
7481         _numObjectsLive++;
7482         _numWordsLive += res;
7483     )
7484   }
7485   return res;
7486 }
7487 
7488 // For the smart allocation, record following
7489 //  split deaths - a free chunk is removed from its free list because
7490 //      it is being split into two or more chunks.
7491 //  split birth - a free chunk is being added to its free list because
7492 //      a larger free chunk has been split and resulted in this free chunk.
7493 //  coal death - a free chunk is being removed from its free list because
7494 //      it is being coalesced into a large free chunk.
7495 //  coal birth - a free chunk is being added to its free list because
7496 //      it was created when two or more free chunks where coalesced into
7497 //      this free chunk.
7498 //
7499 // These statistics are used to determine the desired number of free
7500 // chunks of a given size.  The desired number is chosen to be relative
7501 // to the end of a CMS sweep.  The desired number at the end of a sweep
7502 // is the
7503 //      count-at-end-of-previous-sweep (an amount that was enough)
7504 //              - count-at-beginning-of-current-sweep  (the excess)
7505 //              + split-births  (gains in this size during interval)
7506 //              - split-deaths  (demands on this size during interval)
7507 // where the interval is from the end of one sweep to the end of the
7508 // next.
7509 //
7510 // When sweeping the sweeper maintains an accumulated chunk which is
7511 // the chunk that is made up of chunks that have been coalesced.  That
7512 // will be termed the left-hand chunk.  A new chunk of garbage that
7513 // is being considered for coalescing will be referred to as the
7514 // right-hand chunk.
7515 //
7516 // When making a decision on whether to coalesce a right-hand chunk with
7517 // the current left-hand chunk, the current count vs. the desired count
7518 // of the left-hand chunk is considered.  Also if the right-hand chunk
7519 // is near the large chunk at the end of the heap (see
7520 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7521 // left-hand chunk is coalesced.
7522 //
7523 // When making a decision about whether to split a chunk, the desired count
7524 // vs. the current count of the candidate to be split is also considered.
7525 // If the candidate is underpopulated (currently fewer chunks than desired)
7526 // a chunk of an overpopulated (currently more chunks than desired) size may
7527 // be chosen.  The "hint" associated with a free list, if non-null, points
7528 // to a free list which may be overpopulated.
7529 //
7530 
7531 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
7532   const size_t size = fc->size();
7533   // Chunks that cannot be coalesced are not in the
7534   // free lists.
7535   if (CMSTestInFreeList && !fc->cantCoalesce()) {
7536     assert(_sp->verify_chunk_in_free_list(fc),
7537       "free chunk should be in free lists");
7538   }
7539   // a chunk that is already free, should not have been
7540   // marked in the bit map
7541   HeapWord* const addr = (HeapWord*) fc;
7542   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7543   // Verify that the bit map has no bits marked between
7544   // addr and purported end of this block.
7545   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7546 
7547   // Some chunks cannot be coalesced under any circumstances.
7548   // See the definition of cantCoalesce().
7549   if (!fc->cantCoalesce()) {
7550     // This chunk can potentially be coalesced.
7551     if (_sp->adaptive_freelists()) {
7552       // All the work is done in
7553       do_post_free_or_garbage_chunk(fc, size);
7554     } else {  // Not adaptive free lists
7555       // this is a free chunk that can potentially be coalesced by the sweeper;
7556       if (!inFreeRange()) {
7557         // if the next chunk is a free block that can't be coalesced
7558         // it doesn't make sense to remove this chunk from the free lists
7559         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
7560         assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
7561         if ((HeapWord*)nextChunk < _sp->end() &&     // There is another free chunk to the right ...
7562             nextChunk->is_free()               &&     // ... which is free...
7563             nextChunk->cantCoalesce()) {             // ... but can't be coalesced
7564           // nothing to do
7565         } else {
7566           // Potentially the start of a new free range:
7567           // Don't eagerly remove it from the free lists.
7568           // No need to remove it if it will just be put
7569           // back again.  (Also from a pragmatic point of view
7570           // if it is a free block in a region that is beyond
7571           // any allocated blocks, an assertion will fail)
7572           // Remember the start of a free run.
7573           initialize_free_range(addr, true);
7574           // end - can coalesce with next chunk
7575         }
7576       } else {
7577         // the midst of a free range, we are coalescing
7578         print_free_block_coalesced(fc);
7579         if (CMSTraceSweeper) {
7580           gclog_or_tty->print("  -- pick up free block " PTR_FORMAT " (" SIZE_FORMAT ")\n", p2i(fc), size);
7581         }
7582         // remove it from the free lists
7583         _sp->removeFreeChunkFromFreeLists(fc);
7584         set_lastFreeRangeCoalesced(true);
7585         // If the chunk is being coalesced and the current free range is
7586         // in the free lists, remove the current free range so that it
7587         // will be returned to the free lists in its entirety - all
7588         // the coalesced pieces included.
7589         if (freeRangeInFreeLists()) {
7590           FreeChunk* ffc = (FreeChunk*) freeFinger();
7591           assert(ffc->size() == pointer_delta(addr, freeFinger()),
7592             "Size of free range is inconsistent with chunk size.");
7593           if (CMSTestInFreeList) {
7594             assert(_sp->verify_chunk_in_free_list(ffc),
7595               "free range is not in free lists");
7596           }
7597           _sp->removeFreeChunkFromFreeLists(ffc);
7598           set_freeRangeInFreeLists(false);
7599         }
7600       }
7601     }
7602     // Note that if the chunk is not coalescable (the else arm
7603     // below), we unconditionally flush, without needing to do
7604     // a "lookahead," as we do below.
7605     if (inFreeRange()) lookahead_and_flush(fc, size);
7606   } else {
7607     // Code path common to both original and adaptive free lists.
7608 
7609     // cant coalesce with previous block; this should be treated
7610     // as the end of a free run if any
7611     if (inFreeRange()) {
7612       // we kicked some butt; time to pick up the garbage
7613       assert(freeFinger() < addr, "freeFinger points too high");
7614       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7615     }
7616     // else, nothing to do, just continue
7617   }
7618 }
7619 
7620 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
7621   // This is a chunk of garbage.  It is not in any free list.
7622   // Add it to a free list or let it possibly be coalesced into
7623   // a larger chunk.
7624   HeapWord* const addr = (HeapWord*) fc;
7625   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7626 
7627   if (_sp->adaptive_freelists()) {
7628     // Verify that the bit map has no bits marked between
7629     // addr and purported end of just dead object.
7630     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7631 
7632     do_post_free_or_garbage_chunk(fc, size);
7633   } else {
7634     if (!inFreeRange()) {
7635       // start of a new free range
7636       assert(size > 0, "A free range should have a size");
7637       initialize_free_range(addr, false);
7638     } else {
7639       // this will be swept up when we hit the end of the
7640       // free range
7641       if (CMSTraceSweeper) {
7642         gclog_or_tty->print("  -- pick up garbage " PTR_FORMAT " (" SIZE_FORMAT ")\n", p2i(fc), size);
7643       }
7644       // If the chunk is being coalesced and the current free range is
7645       // in the free lists, remove the current free range so that it
7646       // will be returned to the free lists in its entirety - all
7647       // the coalesced pieces included.
7648       if (freeRangeInFreeLists()) {
7649         FreeChunk* ffc = (FreeChunk*)freeFinger();
7650         assert(ffc->size() == pointer_delta(addr, freeFinger()),
7651           "Size of free range is inconsistent with chunk size.");
7652         if (CMSTestInFreeList) {
7653           assert(_sp->verify_chunk_in_free_list(ffc),
7654             "free range is not in free lists");
7655         }
7656         _sp->removeFreeChunkFromFreeLists(ffc);
7657         set_freeRangeInFreeLists(false);
7658       }
7659       set_lastFreeRangeCoalesced(true);
7660     }
7661     // this will be swept up when we hit the end of the free range
7662 
7663     // Verify that the bit map has no bits marked between
7664     // addr and purported end of just dead object.
7665     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7666   }
7667   assert(_limit >= addr + size,
7668          "A freshly garbage chunk can't possibly straddle over _limit");
7669   if (inFreeRange()) lookahead_and_flush(fc, size);
7670   return size;
7671 }
7672 
7673 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
7674   HeapWord* addr = (HeapWord*) fc;
7675   // The sweeper has just found a live object. Return any accumulated
7676   // left hand chunk to the free lists.
7677   if (inFreeRange()) {
7678     assert(freeFinger() < addr, "freeFinger points too high");
7679     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7680   }
7681 
7682   // This object is live: we'd normally expect this to be
7683   // an oop, and like to assert the following:
7684   // assert(oop(addr)->is_oop(), "live block should be an oop");
7685   // However, as we commented above, this may be an object whose
7686   // header hasn't yet been initialized.
7687   size_t size;
7688   assert(_bitMap->isMarked(addr), "Tautology for this control point");
7689   if (_bitMap->isMarked(addr + 1)) {
7690     // Determine the size from the bit map, rather than trying to
7691     // compute it from the object header.
7692     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7693     size = pointer_delta(nextOneAddr + 1, addr);
7694     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7695            "alignment problem");
7696 
7697 #ifdef ASSERT
7698       if (oop(addr)->klass_or_null() != NULL) {
7699         // Ignore mark word because we are running concurrent with mutators
7700         assert(oop(addr)->is_oop(true), "live block should be an oop");
7701         assert(size ==
7702                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
7703                "P-mark and computed size do not agree");
7704       }
7705 #endif
7706 
7707   } else {
7708     // This should be an initialized object that's alive.
7709     assert(oop(addr)->klass_or_null() != NULL,
7710            "Should be an initialized object");
7711     // Ignore mark word because we are running concurrent with mutators
7712     assert(oop(addr)->is_oop(true), "live block should be an oop");
7713     // Verify that the bit map has no bits marked between
7714     // addr and purported end of this block.
7715     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7716     assert(size >= 3, "Necessary for Printezis marks to work");
7717     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
7718     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
7719   }
7720   return size;
7721 }
7722 
7723 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
7724                                                  size_t chunkSize) {
7725   // do_post_free_or_garbage_chunk() should only be called in the case
7726   // of the adaptive free list allocator.
7727   const bool fcInFreeLists = fc->is_free();
7728   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
7729   assert((HeapWord*)fc <= _limit, "sweep invariant");
7730   if (CMSTestInFreeList && fcInFreeLists) {
7731     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
7732   }
7733 
7734   if (CMSTraceSweeper) {
7735     gclog_or_tty->print_cr("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize);
7736   }
7737 
7738   HeapWord* const fc_addr = (HeapWord*) fc;
7739 
7740   bool coalesce;
7741   const size_t left  = pointer_delta(fc_addr, freeFinger());
7742   const size_t right = chunkSize;
7743   switch (FLSCoalescePolicy) {
7744     // numeric value forms a coalition aggressiveness metric
7745     case 0:  { // never coalesce
7746       coalesce = false;
7747       break;
7748     }
7749     case 1: { // coalesce if left & right chunks on overpopulated lists
7750       coalesce = _sp->coalOverPopulated(left) &&
7751                  _sp->coalOverPopulated(right);
7752       break;
7753     }
7754     case 2: { // coalesce if left chunk on overpopulated list (default)
7755       coalesce = _sp->coalOverPopulated(left);
7756       break;
7757     }
7758     case 3: { // coalesce if left OR right chunk on overpopulated list
7759       coalesce = _sp->coalOverPopulated(left) ||
7760                  _sp->coalOverPopulated(right);
7761       break;
7762     }
7763     case 4: { // always coalesce
7764       coalesce = true;
7765       break;
7766     }
7767     default:
7768      ShouldNotReachHere();
7769   }
7770 
7771   // Should the current free range be coalesced?
7772   // If the chunk is in a free range and either we decided to coalesce above
7773   // or the chunk is near the large block at the end of the heap
7774   // (isNearLargestChunk() returns true), then coalesce this chunk.
7775   const bool doCoalesce = inFreeRange()
7776                           && (coalesce || _g->isNearLargestChunk(fc_addr));
7777   if (doCoalesce) {
7778     // Coalesce the current free range on the left with the new
7779     // chunk on the right.  If either is on a free list,
7780     // it must be removed from the list and stashed in the closure.
7781     if (freeRangeInFreeLists()) {
7782       FreeChunk* const ffc = (FreeChunk*)freeFinger();
7783       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
7784         "Size of free range is inconsistent with chunk size.");
7785       if (CMSTestInFreeList) {
7786         assert(_sp->verify_chunk_in_free_list(ffc),
7787           "Chunk is not in free lists");
7788       }
7789       _sp->coalDeath(ffc->size());
7790       _sp->removeFreeChunkFromFreeLists(ffc);
7791       set_freeRangeInFreeLists(false);
7792     }
7793     if (fcInFreeLists) {
7794       _sp->coalDeath(chunkSize);
7795       assert(fc->size() == chunkSize,
7796         "The chunk has the wrong size or is not in the free lists");
7797       _sp->removeFreeChunkFromFreeLists(fc);
7798     }
7799     set_lastFreeRangeCoalesced(true);
7800     print_free_block_coalesced(fc);
7801   } else {  // not in a free range and/or should not coalesce
7802     // Return the current free range and start a new one.
7803     if (inFreeRange()) {
7804       // In a free range but cannot coalesce with the right hand chunk.
7805       // Put the current free range into the free lists.
7806       flush_cur_free_chunk(freeFinger(),
7807                            pointer_delta(fc_addr, freeFinger()));
7808     }
7809     // Set up for new free range.  Pass along whether the right hand
7810     // chunk is in the free lists.
7811     initialize_free_range((HeapWord*)fc, fcInFreeLists);
7812   }
7813 }
7814 
7815 // Lookahead flush:
7816 // If we are tracking a free range, and this is the last chunk that
7817 // we'll look at because its end crosses past _limit, we'll preemptively
7818 // flush it along with any free range we may be holding on to. Note that
7819 // this can be the case only for an already free or freshly garbage
7820 // chunk. If this block is an object, it can never straddle
7821 // over _limit. The "straddling" occurs when _limit is set at
7822 // the previous end of the space when this cycle started, and
7823 // a subsequent heap expansion caused the previously co-terminal
7824 // free block to be coalesced with the newly expanded portion,
7825 // thus rendering _limit a non-block-boundary making it dangerous
7826 // for the sweeper to step over and examine.
7827 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
7828   assert(inFreeRange(), "Should only be called if currently in a free range.");
7829   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
7830   assert(_sp->used_region().contains(eob - 1),
7831          err_msg("eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
7832                  " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
7833                  " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
7834                  p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size));
7835   if (eob >= _limit) {
7836     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
7837     if (CMSTraceSweeper) {
7838       gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
7839                              "[" PTR_FORMAT "," PTR_FORMAT ") in space "
7840                              "[" PTR_FORMAT "," PTR_FORMAT ")",
7841                              p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end()));
7842     }
7843     // Return the storage we are tracking back into the free lists.
7844     if (CMSTraceSweeper) {
7845       gclog_or_tty->print_cr("Flushing ... ");
7846     }
7847     assert(freeFinger() < eob, "Error");
7848     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
7849   }
7850 }
7851 
7852 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
7853   assert(inFreeRange(), "Should only be called if currently in a free range.");
7854   assert(size > 0,
7855     "A zero sized chunk cannot be added to the free lists.");
7856   if (!freeRangeInFreeLists()) {
7857     if (CMSTestInFreeList) {
7858       FreeChunk* fc = (FreeChunk*) chunk;
7859       fc->set_size(size);
7860       assert(!_sp->verify_chunk_in_free_list(fc),
7861         "chunk should not be in free lists yet");
7862     }
7863     if (CMSTraceSweeper) {
7864       gclog_or_tty->print_cr(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists",
7865                     p2i(chunk), size);
7866     }
7867     // A new free range is going to be starting.  The current
7868     // free range has not been added to the free lists yet or
7869     // was removed so add it back.
7870     // If the current free range was coalesced, then the death
7871     // of the free range was recorded.  Record a birth now.
7872     if (lastFreeRangeCoalesced()) {
7873       _sp->coalBirth(size);
7874     }
7875     _sp->addChunkAndRepairOffsetTable(chunk, size,
7876             lastFreeRangeCoalesced());
7877   } else if (CMSTraceSweeper) {
7878     gclog_or_tty->print_cr("Already in free list: nothing to flush");
7879   }
7880   set_inFreeRange(false);
7881   set_freeRangeInFreeLists(false);
7882 }
7883 
7884 // We take a break if we've been at this for a while,
7885 // so as to avoid monopolizing the locks involved.
7886 void SweepClosure::do_yield_work(HeapWord* addr) {
7887   // Return current free chunk being used for coalescing (if any)
7888   // to the appropriate freelist.  After yielding, the next
7889   // free block encountered will start a coalescing range of
7890   // free blocks.  If the next free block is adjacent to the
7891   // chunk just flushed, they will need to wait for the next
7892   // sweep to be coalesced.
7893   if (inFreeRange()) {
7894     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7895   }
7896 
7897   // First give up the locks, then yield, then re-lock.
7898   // We should probably use a constructor/destructor idiom to
7899   // do this unlock/lock or modify the MutexUnlocker class to
7900   // serve our purpose. XXX
7901   assert_lock_strong(_bitMap->lock());
7902   assert_lock_strong(_freelistLock);
7903   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7904          "CMS thread should hold CMS token");
7905   _bitMap->lock()->unlock();
7906   _freelistLock->unlock();
7907   ConcurrentMarkSweepThread::desynchronize(true);
7908   _collector->stopTimer();
7909   if (PrintCMSStatistics != 0) {
7910     _collector->incrementYields();
7911   }
7912 
7913   // See the comment in coordinator_yield()
7914   for (unsigned i = 0; i < CMSYieldSleepCount &&
7915                        ConcurrentMarkSweepThread::should_yield() &&
7916                        !CMSCollector::foregroundGCIsActive(); ++i) {
7917     os::sleep(Thread::current(), 1, false);
7918   }
7919 
7920   ConcurrentMarkSweepThread::synchronize(true);
7921   _freelistLock->lock();
7922   _bitMap->lock()->lock_without_safepoint_check();
7923   _collector->startTimer();
7924 }
7925 
7926 #ifndef PRODUCT
7927 // This is actually very useful in a product build if it can
7928 // be called from the debugger.  Compile it into the product
7929 // as needed.
7930 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
7931   return debug_cms_space->verify_chunk_in_free_list(fc);
7932 }
7933 #endif
7934 
7935 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
7936   if (CMSTraceSweeper) {
7937     gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
7938                            p2i(fc), fc->size());
7939   }
7940 }
7941 
7942 // CMSIsAliveClosure
7943 bool CMSIsAliveClosure::do_object_b(oop obj) {
7944   HeapWord* addr = (HeapWord*)obj;
7945   return addr != NULL &&
7946          (!_span.contains(addr) || _bit_map->isMarked(addr));
7947 }
7948 
7949 
7950 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
7951                       MemRegion span,
7952                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
7953                       bool cpc):
7954   _collector(collector),
7955   _span(span),
7956   _bit_map(bit_map),
7957   _mark_stack(mark_stack),
7958   _concurrent_precleaning(cpc) {
7959   assert(!_span.is_empty(), "Empty span could spell trouble");
7960 }
7961 
7962 
7963 // CMSKeepAliveClosure: the serial version
7964 void CMSKeepAliveClosure::do_oop(oop obj) {
7965   HeapWord* addr = (HeapWord*)obj;
7966   if (_span.contains(addr) &&
7967       !_bit_map->isMarked(addr)) {
7968     _bit_map->mark(addr);
7969     bool simulate_overflow = false;
7970     NOT_PRODUCT(
7971       if (CMSMarkStackOverflowALot &&
7972           _collector->simulate_overflow()) {
7973         // simulate a stack overflow
7974         simulate_overflow = true;
7975       }
7976     )
7977     if (simulate_overflow || !_mark_stack->push(obj)) {
7978       if (_concurrent_precleaning) {
7979         // We dirty the overflown object and let the remark
7980         // phase deal with it.
7981         assert(_collector->overflow_list_is_empty(), "Error");
7982         // In the case of object arrays, we need to dirty all of
7983         // the cards that the object spans. No locking or atomics
7984         // are needed since no one else can be mutating the mod union
7985         // table.
7986         if (obj->is_objArray()) {
7987           size_t sz = obj->size();
7988           HeapWord* end_card_addr =
7989             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
7990           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7991           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7992           _collector->_modUnionTable.mark_range(redirty_range);
7993         } else {
7994           _collector->_modUnionTable.mark(addr);
7995         }
7996         _collector->_ser_kac_preclean_ovflw++;
7997       } else {
7998         _collector->push_on_overflow_list(obj);
7999         _collector->_ser_kac_ovflw++;
8000       }
8001     }
8002   }
8003 }
8004 
8005 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
8006 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
8007 
8008 // CMSParKeepAliveClosure: a parallel version of the above.
8009 // The work queues are private to each closure (thread),
8010 // but (may be) available for stealing by other threads.
8011 void CMSParKeepAliveClosure::do_oop(oop obj) {
8012   HeapWord* addr = (HeapWord*)obj;
8013   if (_span.contains(addr) &&
8014       !_bit_map->isMarked(addr)) {
8015     // In general, during recursive tracing, several threads
8016     // may be concurrently getting here; the first one to
8017     // "tag" it, claims it.
8018     if (_bit_map->par_mark(addr)) {
8019       bool res = _work_queue->push(obj);
8020       assert(res, "Low water mark should be much less than capacity");
8021       // Do a recursive trim in the hope that this will keep
8022       // stack usage lower, but leave some oops for potential stealers
8023       trim_queue(_low_water_mark);
8024     } // Else, another thread got there first
8025   }
8026 }
8027 
8028 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
8029 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
8030 
8031 void CMSParKeepAliveClosure::trim_queue(uint max) {
8032   while (_work_queue->size() > max) {
8033     oop new_oop;
8034     if (_work_queue->pop_local(new_oop)) {
8035       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
8036       assert(_bit_map->isMarked((HeapWord*)new_oop),
8037              "no white objects on this stack!");
8038       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8039       // iterate over the oops in this oop, marking and pushing
8040       // the ones in CMS heap (i.e. in _span).
8041       new_oop->oop_iterate(&_mark_and_push);
8042     }
8043   }
8044 }
8045 
8046 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
8047                                 CMSCollector* collector,
8048                                 MemRegion span, CMSBitMap* bit_map,
8049                                 OopTaskQueue* work_queue):
8050   _collector(collector),
8051   _span(span),
8052   _bit_map(bit_map),
8053   _work_queue(work_queue) { }
8054 
8055 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
8056   HeapWord* addr = (HeapWord*)obj;
8057   if (_span.contains(addr) &&
8058       !_bit_map->isMarked(addr)) {
8059     if (_bit_map->par_mark(addr)) {
8060       bool simulate_overflow = false;
8061       NOT_PRODUCT(
8062         if (CMSMarkStackOverflowALot &&
8063             _collector->par_simulate_overflow()) {
8064           // simulate a stack overflow
8065           simulate_overflow = true;
8066         }
8067       )
8068       if (simulate_overflow || !_work_queue->push(obj)) {
8069         _collector->par_push_on_overflow_list(obj);
8070         _collector->_par_kac_ovflw++;
8071       }
8072     } // Else another thread got there already
8073   }
8074 }
8075 
8076 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8077 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8078 
8079 //////////////////////////////////////////////////////////////////
8080 //  CMSExpansionCause                /////////////////////////////
8081 //////////////////////////////////////////////////////////////////
8082 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
8083   switch (cause) {
8084     case _no_expansion:
8085       return "No expansion";
8086     case _satisfy_free_ratio:
8087       return "Free ratio";
8088     case _satisfy_promotion:
8089       return "Satisfy promotion";
8090     case _satisfy_allocation:
8091       return "allocation";
8092     case _allocate_par_lab:
8093       return "Par LAB";
8094     case _allocate_par_spooling_space:
8095       return "Par Spooling Space";
8096     case _adaptive_size_policy:
8097       return "Ergonomics";
8098     default:
8099       return "unknown";
8100   }
8101 }
8102 
8103 void CMSDrainMarkingStackClosure::do_void() {
8104   // the max number to take from overflow list at a time
8105   const size_t num = _mark_stack->capacity()/4;
8106   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
8107          "Overflow list should be NULL during concurrent phases");
8108   while (!_mark_stack->isEmpty() ||
8109          // if stack is empty, check the overflow list
8110          _collector->take_from_overflow_list(num, _mark_stack)) {
8111     oop obj = _mark_stack->pop();
8112     HeapWord* addr = (HeapWord*)obj;
8113     assert(_span.contains(addr), "Should be within span");
8114     assert(_bit_map->isMarked(addr), "Should be marked");
8115     assert(obj->is_oop(), "Should be an oop");
8116     obj->oop_iterate(_keep_alive);
8117   }
8118 }
8119 
8120 void CMSParDrainMarkingStackClosure::do_void() {
8121   // drain queue
8122   trim_queue(0);
8123 }
8124 
8125 // Trim our work_queue so its length is below max at return
8126 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
8127   while (_work_queue->size() > max) {
8128     oop new_oop;
8129     if (_work_queue->pop_local(new_oop)) {
8130       assert(new_oop->is_oop(), "Expected an oop");
8131       assert(_bit_map->isMarked((HeapWord*)new_oop),
8132              "no white objects on this stack!");
8133       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8134       // iterate over the oops in this oop, marking and pushing
8135       // the ones in CMS heap (i.e. in _span).
8136       new_oop->oop_iterate(&_mark_and_push);
8137     }
8138   }
8139 }
8140 
8141 ////////////////////////////////////////////////////////////////////
8142 // Support for Marking Stack Overflow list handling and related code
8143 ////////////////////////////////////////////////////////////////////
8144 // Much of the following code is similar in shape and spirit to the
8145 // code used in ParNewGC. We should try and share that code
8146 // as much as possible in the future.
8147 
8148 #ifndef PRODUCT
8149 // Debugging support for CMSStackOverflowALot
8150 
8151 // It's OK to call this multi-threaded;  the worst thing
8152 // that can happen is that we'll get a bunch of closely
8153 // spaced simulated overflows, but that's OK, in fact
8154 // probably good as it would exercise the overflow code
8155 // under contention.
8156 bool CMSCollector::simulate_overflow() {
8157   if (_overflow_counter-- <= 0) { // just being defensive
8158     _overflow_counter = CMSMarkStackOverflowInterval;
8159     return true;
8160   } else {
8161     return false;
8162   }
8163 }
8164 
8165 bool CMSCollector::par_simulate_overflow() {
8166   return simulate_overflow();
8167 }
8168 #endif
8169 
8170 // Single-threaded
8171 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
8172   assert(stack->isEmpty(), "Expected precondition");
8173   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
8174   size_t i = num;
8175   oop  cur = _overflow_list;
8176   const markOop proto = markOopDesc::prototype();
8177   NOT_PRODUCT(ssize_t n = 0;)
8178   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
8179     next = oop(cur->mark());
8180     cur->set_mark(proto);   // until proven otherwise
8181     assert(cur->is_oop(), "Should be an oop");
8182     bool res = stack->push(cur);
8183     assert(res, "Bit off more than can chew?");
8184     NOT_PRODUCT(n++;)
8185   }
8186   _overflow_list = cur;
8187 #ifndef PRODUCT
8188   assert(_num_par_pushes >= n, "Too many pops?");
8189   _num_par_pushes -=n;
8190 #endif
8191   return !stack->isEmpty();
8192 }
8193 
8194 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
8195 // (MT-safe) Get a prefix of at most "num" from the list.
8196 // The overflow list is chained through the mark word of
8197 // each object in the list. We fetch the entire list,
8198 // break off a prefix of the right size and return the
8199 // remainder. If other threads try to take objects from
8200 // the overflow list at that time, they will wait for
8201 // some time to see if data becomes available. If (and
8202 // only if) another thread places one or more object(s)
8203 // on the global list before we have returned the suffix
8204 // to the global list, we will walk down our local list
8205 // to find its end and append the global list to
8206 // our suffix before returning it. This suffix walk can
8207 // prove to be expensive (quadratic in the amount of traffic)
8208 // when there are many objects in the overflow list and
8209 // there is much producer-consumer contention on the list.
8210 // *NOTE*: The overflow list manipulation code here and
8211 // in ParNewGeneration:: are very similar in shape,
8212 // except that in the ParNew case we use the old (from/eden)
8213 // copy of the object to thread the list via its klass word.
8214 // Because of the common code, if you make any changes in
8215 // the code below, please check the ParNew version to see if
8216 // similar changes might be needed.
8217 // CR 6797058 has been filed to consolidate the common code.
8218 bool CMSCollector::par_take_from_overflow_list(size_t num,
8219                                                OopTaskQueue* work_q,
8220                                                int no_of_gc_threads) {
8221   assert(work_q->size() == 0, "First empty local work queue");
8222   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
8223   if (_overflow_list == NULL) {
8224     return false;
8225   }
8226   // Grab the entire list; we'll put back a suffix
8227   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
8228   Thread* tid = Thread::current();
8229   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
8230   // set to ParallelGCThreads.
8231   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
8232   size_t sleep_time_millis = MAX2((size_t)1, num/100);
8233   // If the list is busy, we spin for a short while,
8234   // sleeping between attempts to get the list.
8235   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
8236     os::sleep(tid, sleep_time_millis, false);
8237     if (_overflow_list == NULL) {
8238       // Nothing left to take
8239       return false;
8240     } else if (_overflow_list != BUSY) {
8241       // Try and grab the prefix
8242       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
8243     }
8244   }
8245   // If the list was found to be empty, or we spun long
8246   // enough, we give up and return empty-handed. If we leave
8247   // the list in the BUSY state below, it must be the case that
8248   // some other thread holds the overflow list and will set it
8249   // to a non-BUSY state in the future.
8250   if (prefix == NULL || prefix == BUSY) {
8251      // Nothing to take or waited long enough
8252      if (prefix == NULL) {
8253        // Write back the NULL in case we overwrote it with BUSY above
8254        // and it is still the same value.
8255        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8256      }
8257      return false;
8258   }
8259   assert(prefix != NULL && prefix != BUSY, "Error");
8260   size_t i = num;
8261   oop cur = prefix;
8262   // Walk down the first "num" objects, unless we reach the end.
8263   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
8264   if (cur->mark() == NULL) {
8265     // We have "num" or fewer elements in the list, so there
8266     // is nothing to return to the global list.
8267     // Write back the NULL in lieu of the BUSY we wrote
8268     // above, if it is still the same value.
8269     if (_overflow_list == BUSY) {
8270       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8271     }
8272   } else {
8273     // Chop off the suffix and return it to the global list.
8274     assert(cur->mark() != BUSY, "Error");
8275     oop suffix_head = cur->mark(); // suffix will be put back on global list
8276     cur->set_mark(NULL);           // break off suffix
8277     // It's possible that the list is still in the empty(busy) state
8278     // we left it in a short while ago; in that case we may be
8279     // able to place back the suffix without incurring the cost
8280     // of a walk down the list.
8281     oop observed_overflow_list = _overflow_list;
8282     oop cur_overflow_list = observed_overflow_list;
8283     bool attached = false;
8284     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
8285       observed_overflow_list =
8286         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8287       if (cur_overflow_list == observed_overflow_list) {
8288         attached = true;
8289         break;
8290       } else cur_overflow_list = observed_overflow_list;
8291     }
8292     if (!attached) {
8293       // Too bad, someone else sneaked in (at least) an element; we'll need
8294       // to do a splice. Find tail of suffix so we can prepend suffix to global
8295       // list.
8296       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
8297       oop suffix_tail = cur;
8298       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
8299              "Tautology");
8300       observed_overflow_list = _overflow_list;
8301       do {
8302         cur_overflow_list = observed_overflow_list;
8303         if (cur_overflow_list != BUSY) {
8304           // Do the splice ...
8305           suffix_tail->set_mark(markOop(cur_overflow_list));
8306         } else { // cur_overflow_list == BUSY
8307           suffix_tail->set_mark(NULL);
8308         }
8309         // ... and try to place spliced list back on overflow_list ...
8310         observed_overflow_list =
8311           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8312       } while (cur_overflow_list != observed_overflow_list);
8313       // ... until we have succeeded in doing so.
8314     }
8315   }
8316 
8317   // Push the prefix elements on work_q
8318   assert(prefix != NULL, "control point invariant");
8319   const markOop proto = markOopDesc::prototype();
8320   oop next;
8321   NOT_PRODUCT(ssize_t n = 0;)
8322   for (cur = prefix; cur != NULL; cur = next) {
8323     next = oop(cur->mark());
8324     cur->set_mark(proto);   // until proven otherwise
8325     assert(cur->is_oop(), "Should be an oop");
8326     bool res = work_q->push(cur);
8327     assert(res, "Bit off more than we can chew?");
8328     NOT_PRODUCT(n++;)
8329   }
8330 #ifndef PRODUCT
8331   assert(_num_par_pushes >= n, "Too many pops?");
8332   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
8333 #endif
8334   return true;
8335 }
8336 
8337 // Single-threaded
8338 void CMSCollector::push_on_overflow_list(oop p) {
8339   NOT_PRODUCT(_num_par_pushes++;)
8340   assert(p->is_oop(), "Not an oop");
8341   preserve_mark_if_necessary(p);
8342   p->set_mark((markOop)_overflow_list);
8343   _overflow_list = p;
8344 }
8345 
8346 // Multi-threaded; use CAS to prepend to overflow list
8347 void CMSCollector::par_push_on_overflow_list(oop p) {
8348   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
8349   assert(p->is_oop(), "Not an oop");
8350   par_preserve_mark_if_necessary(p);
8351   oop observed_overflow_list = _overflow_list;
8352   oop cur_overflow_list;
8353   do {
8354     cur_overflow_list = observed_overflow_list;
8355     if (cur_overflow_list != BUSY) {
8356       p->set_mark(markOop(cur_overflow_list));
8357     } else {
8358       p->set_mark(NULL);
8359     }
8360     observed_overflow_list =
8361       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
8362   } while (cur_overflow_list != observed_overflow_list);
8363 }
8364 #undef BUSY
8365 
8366 // Single threaded
8367 // General Note on GrowableArray: pushes may silently fail
8368 // because we are (temporarily) out of C-heap for expanding
8369 // the stack. The problem is quite ubiquitous and affects
8370 // a lot of code in the JVM. The prudent thing for GrowableArray
8371 // to do (for now) is to exit with an error. However, that may
8372 // be too draconian in some cases because the caller may be
8373 // able to recover without much harm. For such cases, we
8374 // should probably introduce a "soft_push" method which returns
8375 // an indication of success or failure with the assumption that
8376 // the caller may be able to recover from a failure; code in
8377 // the VM can then be changed, incrementally, to deal with such
8378 // failures where possible, thus, incrementally hardening the VM
8379 // in such low resource situations.
8380 void CMSCollector::preserve_mark_work(oop p, markOop m) {
8381   _preserved_oop_stack.push(p);
8382   _preserved_mark_stack.push(m);
8383   assert(m == p->mark(), "Mark word changed");
8384   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8385          "bijection");
8386 }
8387 
8388 // Single threaded
8389 void CMSCollector::preserve_mark_if_necessary(oop p) {
8390   markOop m = p->mark();
8391   if (m->must_be_preserved(p)) {
8392     preserve_mark_work(p, m);
8393   }
8394 }
8395 
8396 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8397   markOop m = p->mark();
8398   if (m->must_be_preserved(p)) {
8399     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8400     // Even though we read the mark word without holding
8401     // the lock, we are assured that it will not change
8402     // because we "own" this oop, so no other thread can
8403     // be trying to push it on the overflow list; see
8404     // the assertion in preserve_mark_work() that checks
8405     // that m == p->mark().
8406     preserve_mark_work(p, m);
8407   }
8408 }
8409 
8410 // We should be able to do this multi-threaded,
8411 // a chunk of stack being a task (this is
8412 // correct because each oop only ever appears
8413 // once in the overflow list. However, it's
8414 // not very easy to completely overlap this with
8415 // other operations, so will generally not be done
8416 // until all work's been completed. Because we
8417 // expect the preserved oop stack (set) to be small,
8418 // it's probably fine to do this single-threaded.
8419 // We can explore cleverer concurrent/overlapped/parallel
8420 // processing of preserved marks if we feel the
8421 // need for this in the future. Stack overflow should
8422 // be so rare in practice and, when it happens, its
8423 // effect on performance so great that this will
8424 // likely just be in the noise anyway.
8425 void CMSCollector::restore_preserved_marks_if_any() {
8426   assert(SafepointSynchronize::is_at_safepoint(),
8427          "world should be stopped");
8428   assert(Thread::current()->is_ConcurrentGC_thread() ||
8429          Thread::current()->is_VM_thread(),
8430          "should be single-threaded");
8431   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8432          "bijection");
8433 
8434   while (!_preserved_oop_stack.is_empty()) {
8435     oop p = _preserved_oop_stack.pop();
8436     assert(p->is_oop(), "Should be an oop");
8437     assert(_span.contains(p), "oop should be in _span");
8438     assert(p->mark() == markOopDesc::prototype(),
8439            "Set when taken from overflow list");
8440     markOop m = _preserved_mark_stack.pop();
8441     p->set_mark(m);
8442   }
8443   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8444          "stacks were cleared above");
8445 }
8446 
8447 #ifndef PRODUCT
8448 bool CMSCollector::no_preserved_marks() const {
8449   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8450 }
8451 #endif
8452 
8453 // Transfer some number of overflown objects to usual marking
8454 // stack. Return true if some objects were transferred.
8455 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8456   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8457                     (size_t)ParGCDesiredObjsFromOverflowList);
8458 
8459   bool res = _collector->take_from_overflow_list(num, _mark_stack);
8460   assert(_collector->overflow_list_is_empty() || res,
8461          "If list is not empty, we should have taken something");
8462   assert(!res || !_mark_stack->isEmpty(),
8463          "If we took something, it should now be on our stack");
8464   return res;
8465 }
8466 
8467 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8468   size_t res = _sp->block_size_no_stall(addr, _collector);
8469   if (_sp->block_is_obj(addr)) {
8470     if (_live_bit_map->isMarked(addr)) {
8471       // It can't have been dead in a previous cycle
8472       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
8473     } else {
8474       _dead_bit_map->mark(addr);      // mark the dead object
8475     }
8476   }
8477   // Could be 0, if the block size could not be computed without stalling.
8478   return res;
8479 }
8480 
8481 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
8482 
8483   switch (phase) {
8484     case CMSCollector::InitialMarking:
8485       initialize(true  /* fullGC */ ,
8486                  cause /* cause of the GC */,
8487                  true  /* recordGCBeginTime */,
8488                  true  /* recordPreGCUsage */,
8489                  false /* recordPeakUsage */,
8490                  false /* recordPostGCusage */,
8491                  true  /* recordAccumulatedGCTime */,
8492                  false /* recordGCEndTime */,
8493                  false /* countCollection */  );
8494       break;
8495 
8496     case CMSCollector::FinalMarking:
8497       initialize(true  /* fullGC */ ,
8498                  cause /* cause of the GC */,
8499                  false /* recordGCBeginTime */,
8500                  false /* recordPreGCUsage */,
8501                  false /* recordPeakUsage */,
8502                  false /* recordPostGCusage */,
8503                  true  /* recordAccumulatedGCTime */,
8504                  false /* recordGCEndTime */,
8505                  false /* countCollection */  );
8506       break;
8507 
8508     case CMSCollector::Sweeping:
8509       initialize(true  /* fullGC */ ,
8510                  cause /* cause of the GC */,
8511                  false /* recordGCBeginTime */,
8512                  false /* recordPreGCUsage */,
8513                  true  /* recordPeakUsage */,
8514                  true  /* recordPostGCusage */,
8515                  false /* recordAccumulatedGCTime */,
8516                  true  /* recordGCEndTime */,
8517                  true  /* countCollection */  );
8518       break;
8519 
8520     default:
8521       ShouldNotReachHere();
8522   }
8523 }