1 /*
   2  * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_SHARED_GENCOLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_SHARED_GENCOLLECTEDHEAP_HPP
  27 
  28 #include "gc/shared/adaptiveSizePolicy.hpp"
  29 #include "gc/shared/collectedHeap.hpp"
  30 #include "gc/shared/collectorPolicy.hpp"
  31 #include "gc/shared/generation.hpp"
  32 
  33 class FlexibleWorkGang;
  34 class StrongRootsScope;
  35 class SubTasksDone;
  36 
  37 // A "GenCollectedHeap" is a CollectedHeap that uses generational
  38 // collection.  It has two generations, young and old.
  39 class GenCollectedHeap : public CollectedHeap {
  40   friend class GenCollectorPolicy;
  41   friend class Generation;
  42   friend class DefNewGeneration;
  43   friend class TenuredGeneration;
  44   friend class ConcurrentMarkSweepGeneration;
  45   friend class CMSCollector;
  46   friend class GenMarkSweep;
  47   friend class VM_GenCollectForAllocation;
  48   friend class VM_GenCollectFull;
  49   friend class VM_GenCollectFullConcurrent;
  50   friend class VM_GC_HeapInspection;
  51   friend class VM_HeapDumper;
  52   friend class HeapInspection;
  53   friend class GCCauseSetter;
  54   friend class VMStructs;
  55 public:
  56   friend class VM_PopulateDumpSharedSpace;
  57 
  58 private:
  59   Generation* _young_gen;
  60   Generation* _old_gen;
  61 
  62   // The singleton Gen Remembered Set.
  63   GenRemSet* _rem_set;
  64 
  65   // The generational collector policy.
  66   GenCollectorPolicy* _gen_policy;
  67 
  68   // Indicates that the most recent previous incremental collection failed.
  69   // The flag is cleared when an action is taken that might clear the
  70   // condition that caused that incremental collection to fail.
  71   bool _incremental_collection_failed;
  72 
  73   // In support of ExplicitGCInvokesConcurrent functionality
  74   unsigned int _full_collections_completed;
  75 
  76   // Data structure for claiming the (potentially) parallel tasks in
  77   // (gen-specific) roots processing.
  78   SubTasksDone* _process_strong_tasks;
  79 
  80   // Collects the given generation.
  81   void collect_generation(Generation* gen, bool full, size_t size, bool is_tlab,
  82                           bool run_verification, bool clear_soft_refs,
  83                           bool restore_marks_for_biased_locking);
  84 
  85   // In block contents verification, the number of header words to skip
  86   NOT_PRODUCT(static size_t _skip_header_HeapWords;)
  87 
  88   FlexibleWorkGang* _workers;
  89 
  90 protected:
  91   // Helper functions for allocation
  92   HeapWord* attempt_allocation(size_t size,
  93                                bool   is_tlab,
  94                                bool   first_only);
  95 
  96   // Helper function for two callbacks below.
  97   // Considers collection of the first max_level+1 generations.
  98   void do_collection(bool             full,
  99                      bool             clear_all_soft_refs,
 100                      size_t           size,
 101                      bool             is_tlab,
 102                      Generation::Type max_generation);
 103 
 104   // Callback from VM_GenCollectForAllocation operation.
 105   // This function does everything necessary/possible to satisfy an
 106   // allocation request that failed in the youngest generation that should
 107   // have handled it (including collection, expansion, etc.)
 108   HeapWord* satisfy_failed_allocation(size_t size, bool is_tlab);
 109 
 110   // Callback from VM_GenCollectFull operation.
 111   // Perform a full collection of the first max_level+1 generations.
 112   virtual void do_full_collection(bool clear_all_soft_refs);
 113   void do_full_collection(bool clear_all_soft_refs, Generation::Type max_generation);
 114 
 115   // Does the "cause" of GC indicate that
 116   // we absolutely __must__ clear soft refs?
 117   bool must_clear_all_soft_refs();
 118 
 119 public:
 120   GenCollectedHeap(GenCollectorPolicy *policy);
 121 
 122   FlexibleWorkGang* workers() const { return _workers; }
 123 
 124   GCStats* gc_stats(Generation* generation) const;
 125 
 126   // Returns JNI_OK on success
 127   virtual jint initialize();
 128 
 129   // Reserve aligned space for the heap as needed by the contained generations.
 130   char* allocate(size_t alignment, ReservedSpace* heap_rs);
 131 
 132   // Does operations required after initialization has been done.
 133   void post_initialize();
 134 
 135   // Initialize ("weak") refs processing support
 136   virtual void ref_processing_init();
 137 
 138   virtual Name kind() const {
 139     return CollectedHeap::GenCollectedHeap;
 140   }
 141 
 142   Generation* young_gen() const { return _young_gen; }
 143   Generation* old_gen()   const { return _old_gen; }
 144 
 145   bool is_young_gen(const Generation* gen) const { return gen == _young_gen; }
 146   bool is_old_gen(const Generation* gen) const { return gen == _old_gen; }
 147 
 148   // The generational collector policy.
 149   GenCollectorPolicy* gen_policy() const { return _gen_policy; }
 150 
 151   virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) gen_policy(); }
 152 
 153   // Adaptive size policy
 154   virtual AdaptiveSizePolicy* size_policy() {
 155     return gen_policy()->size_policy();
 156   }
 157 
 158   // Return the (conservative) maximum heap alignment
 159   static size_t conservative_max_heap_alignment() {
 160     return Generation::GenGrain;
 161   }
 162 
 163   size_t capacity() const;
 164   size_t used() const;
 165 
 166   // Save the "used_region" for both generations.
 167   void save_used_regions();
 168 
 169   size_t max_capacity() const;
 170 
 171   HeapWord* mem_allocate(size_t size,
 172                          bool*  gc_overhead_limit_was_exceeded);
 173 
 174   // We may support a shared contiguous allocation area, if the youngest
 175   // generation does.
 176   bool supports_inline_contig_alloc() const;
 177   HeapWord** top_addr() const;
 178   HeapWord** end_addr() const;
 179 
 180   // Perform a full collection of the heap; intended for use in implementing
 181   // "System.gc". This implies as full a collection as the CollectedHeap
 182   // supports. Caller does not hold the Heap_lock on entry.
 183   void collect(GCCause::Cause cause);
 184 
 185   // The same as above but assume that the caller holds the Heap_lock.
 186   void collect_locked(GCCause::Cause cause);
 187 
 188   // Perform a full collection of generations up to and including max_generation.
 189   // Mostly used for testing purposes. Caller does not hold the Heap_lock on entry.
 190   void collect(GCCause::Cause cause, Generation::Type max_generation);
 191 
 192   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 193   // The methods is_in(), is_in_closed_subset() and is_in_youngest() may
 194   // be expensive to compute in general, so, to prevent
 195   // their inadvertent use in product jvm's, we restrict their use to
 196   // assertion checking or verification only.
 197   bool is_in(const void* p) const;
 198 
 199   // override
 200   bool is_in_closed_subset(const void* p) const {
 201     if (UseConcMarkSweepGC) {
 202       return is_in_reserved(p);
 203     } else {
 204       return is_in(p);
 205     }
 206   }
 207 
 208   // Returns true if the reference is to an object in the reserved space
 209   // for the young generation.
 210   // Assumes the the young gen address range is less than that of the old gen.
 211   bool is_in_young(oop p);
 212 
 213 #ifdef ASSERT
 214   bool is_in_partial_collection(const void* p);
 215 #endif
 216 
 217   virtual bool is_scavengable(const void* addr) {
 218     return is_in_young((oop)addr);
 219   }
 220 
 221   // Iteration functions.
 222   void oop_iterate_no_header(OopClosure* cl);
 223   void oop_iterate(ExtendedOopClosure* cl);
 224   void object_iterate(ObjectClosure* cl);
 225   void safe_object_iterate(ObjectClosure* cl);
 226   Space* space_containing(const void* addr) const;
 227 
 228   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 229   // each address in the (reserved) heap is a member of exactly
 230   // one block.  The defining characteristic of a block is that it is
 231   // possible to find its size, and thus to progress forward to the next
 232   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 233   // represent Java objects, or they might be free blocks in a
 234   // free-list-based heap (or subheap), as long as the two kinds are
 235   // distinguishable and the size of each is determinable.
 236 
 237   // Returns the address of the start of the "block" that contains the
 238   // address "addr".  We say "blocks" instead of "object" since some heaps
 239   // may not pack objects densely; a chunk may either be an object or a
 240   // non-object.
 241   virtual HeapWord* block_start(const void* addr) const;
 242 
 243   // Requires "addr" to be the start of a chunk, and returns its size.
 244   // "addr + size" is required to be the start of a new chunk, or the end
 245   // of the active area of the heap. Assumes (and verifies in non-product
 246   // builds) that addr is in the allocated part of the heap and is
 247   // the start of a chunk.
 248   virtual size_t block_size(const HeapWord* addr) const;
 249 
 250   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 251   // the block is an object. Assumes (and verifies in non-product
 252   // builds) that addr is in the allocated part of the heap and is
 253   // the start of a chunk.
 254   virtual bool block_is_obj(const HeapWord* addr) const;
 255 
 256   // Section on TLAB's.
 257   virtual bool supports_tlab_allocation() const;
 258   virtual size_t tlab_capacity(Thread* thr) const;
 259   virtual size_t tlab_used(Thread* thr) const;
 260   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
 261   virtual HeapWord* allocate_new_tlab(size_t size);
 262 
 263   // Can a compiler initialize a new object without store barriers?
 264   // This permission only extends from the creation of a new object
 265   // via a TLAB up to the first subsequent safepoint.
 266   virtual bool can_elide_tlab_store_barriers() const {
 267     return true;
 268   }
 269 
 270   virtual bool card_mark_must_follow_store() const {
 271     return UseConcMarkSweepGC;
 272   }
 273 
 274   // We don't need barriers for stores to objects in the
 275   // young gen and, a fortiori, for initializing stores to
 276   // objects therein. This applies to DefNew+Tenured and ParNew+CMS
 277   // only and may need to be re-examined in case other
 278   // kinds of collectors are implemented in the future.
 279   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
 280     return is_in_young(new_obj);
 281   }
 282 
 283   // The "requestor" generation is performing some garbage collection
 284   // action for which it would be useful to have scratch space.  The
 285   // requestor promises to allocate no more than "max_alloc_words" in any
 286   // older generation (via promotion say.)   Any blocks of space that can
 287   // be provided are returned as a list of ScratchBlocks, sorted by
 288   // decreasing size.
 289   ScratchBlock* gather_scratch(Generation* requestor, size_t max_alloc_words);
 290   // Allow each generation to reset any scratch space that it has
 291   // contributed as it needs.
 292   void release_scratch();
 293 
 294   // Ensure parsability: override
 295   virtual void ensure_parsability(bool retire_tlabs);
 296 
 297   // Time in ms since the longest time a collector ran in
 298   // in any generation.
 299   virtual jlong millis_since_last_gc();
 300 
 301   // Total number of full collections completed.
 302   unsigned int total_full_collections_completed() {
 303     assert(_full_collections_completed <= _total_full_collections,
 304            "Can't complete more collections than were started");
 305     return _full_collections_completed;
 306   }
 307 
 308   // Update above counter, as appropriate, at the end of a stop-world GC cycle
 309   unsigned int update_full_collections_completed();
 310   // Update above counter, as appropriate, at the end of a concurrent GC cycle
 311   unsigned int update_full_collections_completed(unsigned int count);
 312 
 313   // Update "time of last gc" for all generations to "now".
 314   void update_time_of_last_gc(jlong now) {
 315     _young_gen->update_time_of_last_gc(now);
 316     _old_gen->update_time_of_last_gc(now);
 317   }
 318 
 319   // Update the gc statistics for each generation.
 320   void update_gc_stats(Generation* current_generation, bool full) {
 321     _old_gen->update_gc_stats(current_generation, full);
 322   }
 323 
 324   bool no_gc_in_progress() { return !is_gc_active(); }
 325 
 326   // Override.
 327   void prepare_for_verify();
 328 
 329   // Override.
 330   void verify(bool silent, VerifyOption option);
 331 
 332   // Override.
 333   virtual void print_on(outputStream* st) const;
 334   virtual void print_gc_threads_on(outputStream* st) const;
 335   virtual void gc_threads_do(ThreadClosure* tc) const;
 336   virtual void print_tracing_info() const;
 337   virtual void print_on_error(outputStream* st) const;
 338 
 339   // PrintGC, PrintGCDetails support
 340   void print_heap_change(size_t prev_used) const;
 341 
 342   // The functions below are helper functions that a subclass of
 343   // "CollectedHeap" can use in the implementation of its virtual
 344   // functions.
 345 
 346   class GenClosure : public StackObj {
 347    public:
 348     virtual void do_generation(Generation* gen) = 0;
 349   };
 350 
 351   // Apply "cl.do_generation" to all generations in the heap
 352   // If "old_to_young" determines the order.
 353   void generation_iterate(GenClosure* cl, bool old_to_young);
 354 
 355   // Return "true" if all generations have reached the
 356   // maximal committed limit that they can reach, without a garbage
 357   // collection.
 358   virtual bool is_maximal_no_gc() const;
 359 
 360   // This function returns the "GenRemSet" object that allows us to scan
 361   // generations in a fully generational heap.
 362   GenRemSet* rem_set() { return _rem_set; }
 363 
 364   // Convenience function to be used in situations where the heap type can be
 365   // asserted to be this type.
 366   static GenCollectedHeap* heap();
 367 
 368   // Invoke the "do_oop" method of one of the closures "not_older_gens"
 369   // or "older_gens" on root locations for the generations depending on
 370   // the type.  (The "older_gens" closure is used for scanning references
 371   // from older generations; "not_older_gens" is used everywhere else.)
 372   // If "younger_gens_as_roots" is false, younger generations are
 373   // not scanned as roots; in this case, the caller must be arranging to
 374   // scan the younger generations itself.  (For example, a generation might
 375   // explicitly mark reachable objects in younger generations, to avoid
 376   // excess storage retention.)
 377   // The "so" argument determines which of the roots
 378   // the closure is applied to:
 379   // "SO_None" does none;
 380   enum ScanningOption {
 381     SO_None                =  0x0,
 382     SO_AllCodeCache        =  0x8,
 383     SO_ScavengeCodeCache   = 0x10
 384   };
 385 
 386  private:
 387   void process_roots(StrongRootsScope* scope,
 388                      ScanningOption so,
 389                      OopClosure* strong_roots,
 390                      OopClosure* weak_roots,
 391                      CLDClosure* strong_cld_closure,
 392                      CLDClosure* weak_cld_closure,
 393                      CodeBlobClosure* code_roots);
 394 
 395  public:
 396   static const bool StrongAndWeakRoots = false;
 397   static const bool StrongRootsOnly    = true;
 398 
 399   void gen_process_roots(StrongRootsScope* scope,
 400                          Generation::Type type,
 401                          bool younger_gens_as_roots,
 402                          ScanningOption so,
 403                          bool only_strong_roots,
 404                          OopsInGenClosure* not_older_gens,
 405                          OopsInGenClosure* older_gens,
 406                          CLDClosure* cld_closure);
 407 
 408   // Apply "root_closure" to all the weak roots of the system.
 409   // These include JNI weak roots, string table,
 410   // and referents of reachable weak refs.
 411   void gen_process_weak_roots(OopClosure* root_closure);
 412 
 413   // Set the saved marks of generations, if that makes sense.
 414   // In particular, if any generation might iterate over the oops
 415   // in other generations, it should call this method.
 416   void save_marks();
 417 
 418   // Apply "cur->do_oop" or "older->do_oop" to all the oops in objects
 419   // allocated since the last call to save_marks in generations at or above
 420   // "level".  The "cur" closure is
 421   // applied to references in the generation at "level", and the "older"
 422   // closure to older generations.
 423 #define GCH_SINCE_SAVE_MARKS_ITERATE_DECL(OopClosureType, nv_suffix)    \
 424   void oop_since_save_marks_iterate(Generation::Type start_gen,         \
 425                                     OopClosureType* cur,                \
 426                                     OopClosureType* older);
 427 
 428   ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DECL)
 429 
 430 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DECL
 431 
 432   // Returns "true" iff no allocations have occurred since the last
 433   // call to "save_marks".
 434   bool no_allocs_since_save_marks(bool include_young);
 435 
 436   // Returns true if an incremental collection is likely to fail.
 437   // We optionally consult the young gen, if asked to do so;
 438   // otherwise we base our answer on whether the previous incremental
 439   // collection attempt failed with no corrective action as of yet.
 440   bool incremental_collection_will_fail(bool consult_young) {
 441     // The first disjunct remembers if an incremental collection failed, even
 442     // when we thought (second disjunct) that it would not.
 443     return incremental_collection_failed() ||
 444            (consult_young && !_young_gen->collection_attempt_is_safe());
 445   }
 446 
 447   // If a generation bails out of an incremental collection,
 448   // it sets this flag.
 449   bool incremental_collection_failed() const {
 450     return _incremental_collection_failed;
 451   }
 452   void set_incremental_collection_failed() {
 453     _incremental_collection_failed = true;
 454   }
 455   void clear_incremental_collection_failed() {
 456     _incremental_collection_failed = false;
 457   }
 458 
 459   // Promotion of obj into gen failed.  Try to promote obj to higher
 460   // gens in ascending order; return the new location of obj if successful.
 461   // Otherwise, try expand-and-allocate for obj in both the young and old
 462   // generation; return the new location of obj if successful.  Otherwise, return NULL.
 463   oop handle_failed_promotion(Generation* old_gen,
 464                               oop obj,
 465                               size_t obj_size);
 466 
 467 private:
 468   // Accessor for memory state verification support
 469   NOT_PRODUCT(
 470     static size_t skip_header_HeapWords() { return _skip_header_HeapWords; }
 471   )
 472 
 473   // Override
 474   void check_for_non_bad_heap_word_value(HeapWord* addr,
 475     size_t size) PRODUCT_RETURN;
 476 
 477   // For use by mark-sweep.  As implemented, mark-sweep-compact is global
 478   // in an essential way: compaction is performed across generations, by
 479   // iterating over spaces.
 480   void prepare_for_compaction();
 481 
 482   // Perform a full collection of the generations up to and including max_generation.
 483   // This is the low level interface used by the public versions of
 484   // collect() and collect_locked(). Caller holds the Heap_lock on entry.
 485   void collect_locked(GCCause::Cause cause, Generation::Type max_generation);
 486 
 487   // Returns success or failure.
 488   bool create_cms_collector();
 489 
 490   // In support of ExplicitGCInvokesConcurrent functionality
 491   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 492   void collect_mostly_concurrent(GCCause::Cause cause);
 493 
 494   // Save the tops of the spaces in all generations
 495   void record_gen_tops_before_GC() PRODUCT_RETURN;
 496 
 497 protected:
 498   void gc_prologue(bool full);
 499   void gc_epilogue(bool full);
 500 };
 501 
 502 #endif // SHARE_VM_GC_SHARED_GENCOLLECTEDHEAP_HPP