/* * Copyright (c) 2005, 2014, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "c1/c1_Instruction.hpp" #include "c1/c1_LinearScan.hpp" #include "utilities/bitMap.inline.hpp" //---------------------------------------------------------------------- // Allocation of FPU stack slots (Intel x86 only) //---------------------------------------------------------------------- void LinearScan::allocate_fpu_stack() { // First compute which FPU registers are live at the start of each basic block // (To minimize the amount of work we have to do if we have to merge FPU stacks) if (ComputeExactFPURegisterUsage) { Interval* intervals_in_register, *intervals_in_memory; create_unhandled_lists(&intervals_in_register, &intervals_in_memory, is_in_fpu_register, NULL); // ignore memory intervals by overwriting intervals_in_memory // the dummy interval is needed to enforce the walker to walk until the given id: // without it, the walker stops when the unhandled-list is empty -> live information // beyond this point would be incorrect. Interval* dummy_interval = new Interval(any_reg); dummy_interval->add_range(max_jint - 2, max_jint - 1); dummy_interval->set_next(Interval::end()); intervals_in_memory = dummy_interval; IntervalWalker iw(this, intervals_in_register, intervals_in_memory); const int num_blocks = block_count(); for (int i = 0; i < num_blocks; i++) { BlockBegin* b = block_at(i); // register usage is only needed for merging stacks -> compute only // when more than one predecessor. // the block must not have any spill moves at the beginning (checked by assertions) // spill moves would use intervals that are marked as handled and so the usage bit // would been set incorrectly // NOTE: the check for number_of_preds > 1 is necessary. A block with only one // predecessor may have spill moves at the begin of the block. // If an interval ends at the current instruction id, it is not possible // to decide if the register is live or not at the block begin -> the // register information would be incorrect. if (b->number_of_preds() > 1) { int id = b->first_lir_instruction_id(); ResourceBitMap regs(FrameMap::nof_fpu_regs); iw.walk_to(id); // walk after the first instruction (always a label) of the block assert(iw.current_position() == id, "did not walk completely to id"); // Only consider FPU values in registers Interval* interval = iw.active_first(fixedKind); while (interval != Interval::end()) { int reg = interval->assigned_reg(); assert(reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg, "no fpu register"); assert(interval->assigned_regHi() == -1, "must not have hi register (doubles stored in one register)"); assert(interval->from() <= id && id < interval->to(), "interval out of range"); #ifndef PRODUCT if (TraceFPURegisterUsage) { tty->print("fpu reg %d is live because of ", reg - pd_first_fpu_reg); interval->print(); } #endif regs.set_bit(reg - pd_first_fpu_reg); interval = interval->next(); } b->set_fpu_register_usage(regs); #ifndef PRODUCT if (TraceFPURegisterUsage) { tty->print("FPU regs for block %d, LIR instr %d): ", b->block_id(), id); regs.print_on(tty); tty->cr(); } #endif } } } FpuStackAllocator alloc(ir()->compilation(), this); _fpu_stack_allocator = &alloc; alloc.allocate(); _fpu_stack_allocator = NULL; } FpuStackAllocator::FpuStackAllocator(Compilation* compilation, LinearScan* allocator) : _compilation(compilation) , _lir(NULL) , _pos(-1) , _allocator(allocator) , _sim(compilation) , _temp_sim(compilation) {} void FpuStackAllocator::allocate() { int num_blocks = allocator()->block_count(); for (int i = 0; i < num_blocks; i++) { // Set up to process block BlockBegin* block = allocator()->block_at(i); intArray* fpu_stack_state = block->fpu_stack_state(); #ifndef PRODUCT if (TraceFPUStack) { tty->cr(); tty->print_cr("------- Begin of new Block %d -------", block->block_id()); } #endif assert(fpu_stack_state != NULL || block->end()->as_Base() != NULL || block->is_set(BlockBegin::exception_entry_flag), "FPU stack state must be present due to linear-scan order for FPU stack allocation"); // note: exception handler entries always start with an empty fpu stack // because stack merging would be too complicated if (fpu_stack_state != NULL) { sim()->read_state(fpu_stack_state); } else { sim()->clear(); } #ifndef PRODUCT if (TraceFPUStack) { tty->print("Reading FPU state for block %d:", block->block_id()); sim()->print(); tty->cr(); } #endif allocate_block(block); CHECK_BAILOUT(); } } void FpuStackAllocator::allocate_block(BlockBegin* block) { bool processed_merge = false; LIR_OpList* insts = block->lir()->instructions_list(); set_lir(block->lir()); set_pos(0); // Note: insts->length() may change during loop while (pos() < insts->length()) { LIR_Op* op = insts->at(pos()); _debug_information_computed = false; #ifndef PRODUCT if (TraceFPUStack) { op->print(); } check_invalid_lir_op(op); #endif LIR_OpBranch* branch = op->as_OpBranch(); LIR_Op1* op1 = op->as_Op1(); LIR_Op2* op2 = op->as_Op2(); LIR_OpCall* opCall = op->as_OpCall(); if (branch != NULL && branch->block() != NULL) { if (!processed_merge) { // propagate stack at first branch to a successor processed_merge = true; bool required_merge = merge_fpu_stack_with_successors(block); assert(!required_merge || branch->cond() == lir_cond_always, "splitting of critical edges should prevent FPU stack mismatches at cond branches"); } } else if (op1 != NULL) { handle_op1(op1); } else if (op2 != NULL) { handle_op2(op2); } else if (opCall != NULL) { handle_opCall(opCall); } compute_debug_information(op); set_pos(1 + pos()); } // Propagate stack when block does not end with branch if (!processed_merge) { merge_fpu_stack_with_successors(block); } } void FpuStackAllocator::compute_debug_information(LIR_Op* op) { if (!_debug_information_computed && op->id() != -1 && allocator()->has_info(op->id())) { visitor.visit(op); // exception handling if (allocator()->compilation()->has_exception_handlers()) { XHandlers* xhandlers = visitor.all_xhandler(); int n = xhandlers->length(); for (int k = 0; k < n; k++) { allocate_exception_handler(xhandlers->handler_at(k)); } } else { assert(visitor.all_xhandler()->length() == 0, "missed exception handler"); } // compute debug information int n = visitor.info_count(); assert(n > 0, "should not visit operation otherwise"); for (int j = 0; j < n; j++) { CodeEmitInfo* info = visitor.info_at(j); // Compute debug information allocator()->compute_debug_info(info, op->id()); } } _debug_information_computed = true; } void FpuStackAllocator::allocate_exception_handler(XHandler* xhandler) { if (!sim()->is_empty()) { LIR_List* old_lir = lir(); int old_pos = pos(); intArray* old_state = sim()->write_state(); #ifndef PRODUCT if (TraceFPUStack) { tty->cr(); tty->print_cr("------- begin of exception handler -------"); } #endif if (xhandler->entry_code() == NULL) { // need entry code to clear FPU stack LIR_List* entry_code = new LIR_List(_compilation); entry_code->jump(xhandler->entry_block()); xhandler->set_entry_code(entry_code); } LIR_OpList* insts = xhandler->entry_code()->instructions_list(); set_lir(xhandler->entry_code()); set_pos(0); // Note: insts->length() may change during loop while (pos() < insts->length()) { LIR_Op* op = insts->at(pos()); #ifndef PRODUCT if (TraceFPUStack) { op->print(); } check_invalid_lir_op(op); #endif switch (op->code()) { case lir_move: assert(op->as_Op1() != NULL, "must be LIR_Op1"); assert(pos() != insts->length() - 1, "must not be last operation"); handle_op1((LIR_Op1*)op); break; case lir_branch: assert(op->as_OpBranch()->cond() == lir_cond_always, "must be unconditional branch"); assert(pos() == insts->length() - 1, "must be last operation"); // remove all remaining dead registers from FPU stack clear_fpu_stack(LIR_OprFact::illegalOpr); break; default: // other operations not allowed in exception entry code ShouldNotReachHere(); } set_pos(pos() + 1); } #ifndef PRODUCT if (TraceFPUStack) { tty->cr(); tty->print_cr("------- end of exception handler -------"); } #endif set_lir(old_lir); set_pos(old_pos); sim()->read_state(old_state); } } int FpuStackAllocator::fpu_num(LIR_Opr opr) { assert(opr->is_fpu_register() && !opr->is_xmm_register(), "shouldn't call this otherwise"); return opr->is_single_fpu() ? opr->fpu_regnr() : opr->fpu_regnrLo(); } int FpuStackAllocator::tos_offset(LIR_Opr opr) { return sim()->offset_from_tos(fpu_num(opr)); } LIR_Opr FpuStackAllocator::to_fpu_stack(LIR_Opr opr) { assert(opr->is_fpu_register() && !opr->is_xmm_register(), "shouldn't call this otherwise"); int stack_offset = tos_offset(opr); if (opr->is_single_fpu()) { return LIR_OprFact::single_fpu(stack_offset)->make_fpu_stack_offset(); } else { assert(opr->is_double_fpu(), "shouldn't call this otherwise"); return LIR_OprFact::double_fpu(stack_offset)->make_fpu_stack_offset(); } } LIR_Opr FpuStackAllocator::to_fpu_stack_top(LIR_Opr opr, bool dont_check_offset) { assert(opr->is_fpu_register() && !opr->is_xmm_register(), "shouldn't call this otherwise"); assert(dont_check_offset || tos_offset(opr) == 0, "operand is not on stack top"); int stack_offset = 0; if (opr->is_single_fpu()) { return LIR_OprFact::single_fpu(stack_offset)->make_fpu_stack_offset(); } else { assert(opr->is_double_fpu(), "shouldn't call this otherwise"); return LIR_OprFact::double_fpu(stack_offset)->make_fpu_stack_offset(); } } void FpuStackAllocator::insert_op(LIR_Op* op) { lir()->insert_before(pos(), op); set_pos(1 + pos()); } void FpuStackAllocator::insert_exchange(int offset) { if (offset > 0) { LIR_Op1* fxch_op = new LIR_Op1(lir_fxch, LIR_OprFact::intConst(offset), LIR_OprFact::illegalOpr); insert_op(fxch_op); sim()->swap(offset); #ifndef PRODUCT if (TraceFPUStack) { tty->print("Exchanged register: %d New state: ", sim()->get_slot(0)); sim()->print(); tty->cr(); } #endif } } void FpuStackAllocator::insert_exchange(LIR_Opr opr) { insert_exchange(tos_offset(opr)); } void FpuStackAllocator::insert_free(int offset) { // move stack slot to the top of stack and then pop it insert_exchange(offset); LIR_Op* fpop = new LIR_Op0(lir_fpop_raw); insert_op(fpop); sim()->pop(); #ifndef PRODUCT if (TraceFPUStack) { tty->print("Inserted pop New state: "); sim()->print(); tty->cr(); } #endif } void FpuStackAllocator::insert_free_if_dead(LIR_Opr opr) { if (sim()->contains(fpu_num(opr))) { int res_slot = tos_offset(opr); insert_free(res_slot); } } void FpuStackAllocator::insert_free_if_dead(LIR_Opr opr, LIR_Opr ignore) { if (fpu_num(opr) != fpu_num(ignore) && sim()->contains(fpu_num(opr))) { int res_slot = tos_offset(opr); insert_free(res_slot); } } void FpuStackAllocator::insert_copy(LIR_Opr from, LIR_Opr to) { int offset = tos_offset(from); LIR_Op1* fld = new LIR_Op1(lir_fld, LIR_OprFact::intConst(offset), LIR_OprFact::illegalOpr); insert_op(fld); sim()->push(fpu_num(to)); #ifndef PRODUCT if (TraceFPUStack) { tty->print("Inserted copy (%d -> %d) New state: ", fpu_num(from), fpu_num(to)); sim()->print(); tty->cr(); } #endif } void FpuStackAllocator::do_rename(LIR_Opr from, LIR_Opr to) { sim()->rename(fpu_num(from), fpu_num(to)); } void FpuStackAllocator::do_push(LIR_Opr opr) { sim()->push(fpu_num(opr)); } void FpuStackAllocator::pop_if_last_use(LIR_Op* op, LIR_Opr opr) { assert(op->fpu_pop_count() == 0, "fpu_pop_count alredy set"); assert(tos_offset(opr) == 0, "can only pop stack top"); if (opr->is_last_use()) { op->set_fpu_pop_count(1); sim()->pop(); } } void FpuStackAllocator::pop_always(LIR_Op* op, LIR_Opr opr) { assert(op->fpu_pop_count() == 0, "fpu_pop_count alredy set"); assert(tos_offset(opr) == 0, "can only pop stack top"); op->set_fpu_pop_count(1); sim()->pop(); } void FpuStackAllocator::clear_fpu_stack(LIR_Opr preserve) { int result_stack_size = (preserve->is_fpu_register() && !preserve->is_xmm_register() ? 1 : 0); while (sim()->stack_size() > result_stack_size) { assert(!sim()->slot_is_empty(0), "not allowed"); if (result_stack_size == 0 || sim()->get_slot(0) != fpu_num(preserve)) { insert_free(0); } else { // move "preserve" to bottom of stack so that all other stack slots can be popped insert_exchange(sim()->stack_size() - 1); } } } void FpuStackAllocator::handle_op1(LIR_Op1* op1) { LIR_Opr in = op1->in_opr(); LIR_Opr res = op1->result_opr(); LIR_Opr new_in = in; // new operands relative to the actual fpu stack top LIR_Opr new_res = res; // Note: this switch is processed for all LIR_Op1, regardless if they have FPU-arguments, // so checks for is_float_kind() are necessary inside the cases switch (op1->code()) { case lir_return: { // FPU-Stack must only contain the (optional) fpu return value. // All remaining dead values are popped from the stack // If the input operand is a fpu-register, it is exchanged to the bottom of the stack clear_fpu_stack(in); if (in->is_fpu_register() && !in->is_xmm_register()) { new_in = to_fpu_stack_top(in); } break; } case lir_move: { if (in->is_fpu_register() && !in->is_xmm_register()) { if (res->is_xmm_register()) { // move from fpu register to xmm register (necessary for operations that // are not available in the SSE instruction set) insert_exchange(in); new_in = to_fpu_stack_top(in); pop_always(op1, in); } else if (res->is_fpu_register() && !res->is_xmm_register()) { // move from fpu-register to fpu-register: // * input and result register equal: // nothing to do // * input register is last use: // rename the input register to result register -> input register // not present on fpu-stack afterwards // * input register not last use: // duplicate input register to result register to preserve input // // Note: The LIR-Assembler does not produce any code for fpu register moves, // so input and result stack index must be equal if (fpu_num(in) == fpu_num(res)) { // nothing to do } else if (in->is_last_use()) { insert_free_if_dead(res);//, in); do_rename(in, res); } else { insert_free_if_dead(res); insert_copy(in, res); } new_in = to_fpu_stack(res); new_res = new_in; } else { // move from fpu-register to memory // input operand must be on top of stack insert_exchange(in); // create debug information here because afterwards the register may have been popped compute_debug_information(op1); new_in = to_fpu_stack_top(in); pop_if_last_use(op1, in); } } else if (res->is_fpu_register() && !res->is_xmm_register()) { // move from memory/constant to fpu register // result is pushed on the stack insert_free_if_dead(res); // create debug information before register is pushed compute_debug_information(op1); do_push(res); new_res = to_fpu_stack_top(res); } break; } case lir_neg: { if (in->is_fpu_register() && !in->is_xmm_register()) { assert(res->is_fpu_register() && !res->is_xmm_register(), "must be"); assert(in->is_last_use(), "old value gets destroyed"); insert_free_if_dead(res, in); insert_exchange(in); new_in = to_fpu_stack_top(in); do_rename(in, res); new_res = to_fpu_stack_top(res); } break; } case lir_convert: { Bytecodes::Code bc = op1->as_OpConvert()->bytecode(); switch (bc) { case Bytecodes::_d2f: case Bytecodes::_f2d: assert(res->is_fpu_register(), "must be"); assert(in->is_fpu_register(), "must be"); if (!in->is_xmm_register() && !res->is_xmm_register()) { // this is quite the same as a move from fpu-register to fpu-register // Note: input and result operands must have different types if (fpu_num(in) == fpu_num(res)) { // nothing to do new_in = to_fpu_stack(in); } else if (in->is_last_use()) { insert_free_if_dead(res);//, in); new_in = to_fpu_stack(in); do_rename(in, res); } else { insert_free_if_dead(res); insert_copy(in, res); new_in = to_fpu_stack_top(in, true); } new_res = to_fpu_stack(res); } break; case Bytecodes::_i2f: case Bytecodes::_l2f: case Bytecodes::_i2d: case Bytecodes::_l2d: assert(res->is_fpu_register(), "must be"); if (!res->is_xmm_register()) { insert_free_if_dead(res); do_push(res); new_res = to_fpu_stack_top(res); } break; case Bytecodes::_f2i: case Bytecodes::_d2i: assert(in->is_fpu_register(), "must be"); if (!in->is_xmm_register()) { insert_exchange(in); new_in = to_fpu_stack_top(in); // TODO: update registes of stub } break; case Bytecodes::_f2l: case Bytecodes::_d2l: assert(in->is_fpu_register(), "must be"); if (!in->is_xmm_register()) { insert_exchange(in); new_in = to_fpu_stack_top(in); pop_always(op1, in); } break; case Bytecodes::_i2l: case Bytecodes::_l2i: case Bytecodes::_i2b: case Bytecodes::_i2c: case Bytecodes::_i2s: // no fpu operands break; default: ShouldNotReachHere(); } break; } case lir_roundfp: { assert(in->is_fpu_register() && !in->is_xmm_register(), "input must be in register"); assert(res->is_stack(), "result must be on stack"); insert_exchange(in); new_in = to_fpu_stack_top(in); pop_if_last_use(op1, in); break; } default: { assert(!in->is_float_kind() && !res->is_float_kind(), "missed a fpu-operation"); } } op1->set_in_opr(new_in); op1->set_result_opr(new_res); } void FpuStackAllocator::handle_op2(LIR_Op2* op2) { LIR_Opr left = op2->in_opr1(); if (!left->is_float_kind()) { return; } if (left->is_xmm_register()) { return; } LIR_Opr right = op2->in_opr2(); LIR_Opr res = op2->result_opr(); LIR_Opr new_left = left; // new operands relative to the actual fpu stack top LIR_Opr new_right = right; LIR_Opr new_res = res; assert(!left->is_xmm_register() && !right->is_xmm_register() && !res->is_xmm_register(), "not for xmm registers"); switch (op2->code()) { case lir_cmp: case lir_cmp_fd2i: case lir_ucmp_fd2i: case lir_assert: { assert(left->is_fpu_register(), "invalid LIR"); assert(right->is_fpu_register(), "invalid LIR"); // the left-hand side must be on top of stack. // the right-hand side is never popped, even if is_last_use is set insert_exchange(left); new_left = to_fpu_stack_top(left); new_right = to_fpu_stack(right); pop_if_last_use(op2, left); break; } case lir_mul_strictfp: case lir_div_strictfp: { assert(op2->tmp1_opr()->is_fpu_register(), "strict operations need temporary fpu stack slot"); insert_free_if_dead(op2->tmp1_opr()); assert(sim()->stack_size() <= 7, "at least one stack slot must be free"); // fall-through: continue with the normal handling of lir_mul and lir_div } case lir_add: case lir_sub: case lir_mul: case lir_div: { assert(left->is_fpu_register(), "must be"); assert(res->is_fpu_register(), "must be"); assert(left->is_equal(res), "must be"); // either the left-hand or the right-hand side must be on top of stack // (if right is not a register, left must be on top) if (!right->is_fpu_register()) { insert_exchange(left); new_left = to_fpu_stack_top(left); } else { // no exchange necessary if right is alredy on top of stack if (tos_offset(right) == 0) { new_left = to_fpu_stack(left); new_right = to_fpu_stack_top(right); } else { insert_exchange(left); new_left = to_fpu_stack_top(left); new_right = to_fpu_stack(right); } if (right->is_last_use()) { op2->set_fpu_pop_count(1); if (tos_offset(right) == 0) { sim()->pop(); } else { // if left is on top of stack, the result is placed in the stack // slot of right, so a renaming from right to res is necessary assert(tos_offset(left) == 0, "must be"); sim()->pop(); do_rename(right, res); } } } new_res = to_fpu_stack(res); break; } case lir_rem: { assert(left->is_fpu_register(), "must be"); assert(right->is_fpu_register(), "must be"); assert(res->is_fpu_register(), "must be"); assert(left->is_equal(res), "must be"); // Must bring both operands to top of stack with following operand ordering: // * fpu stack before rem: ... right left // * fpu stack after rem: ... left if (tos_offset(right) != 1) { insert_exchange(right); insert_exchange(1); } insert_exchange(left); assert(tos_offset(right) == 1, "check"); assert(tos_offset(left) == 0, "check"); new_left = to_fpu_stack_top(left); new_right = to_fpu_stack(right); op2->set_fpu_pop_count(1); sim()->pop(); do_rename(right, res); new_res = to_fpu_stack_top(res); break; } case lir_abs: case lir_sqrt: { // Right argument appears to be unused assert(right->is_illegal(), "must be"); assert(left->is_fpu_register(), "must be"); assert(res->is_fpu_register(), "must be"); assert(left->is_last_use(), "old value gets destroyed"); insert_free_if_dead(res, left); insert_exchange(left); do_rename(left, res); new_left = to_fpu_stack_top(res); new_res = new_left; op2->set_fpu_stack_size(sim()->stack_size()); break; } default: { assert(false, "missed a fpu-operation"); } } op2->set_in_opr1(new_left); op2->set_in_opr2(new_right); op2->set_result_opr(new_res); } void FpuStackAllocator::handle_opCall(LIR_OpCall* opCall) { LIR_Opr res = opCall->result_opr(); // clear fpu-stack before call // it may contain dead values that could not have been remved by previous operations clear_fpu_stack(LIR_OprFact::illegalOpr); assert(sim()->is_empty(), "fpu stack must be empty now"); // compute debug information before (possible) fpu result is pushed compute_debug_information(opCall); if (res->is_fpu_register() && !res->is_xmm_register()) { do_push(res); opCall->set_result_opr(to_fpu_stack_top(res)); } } #ifndef PRODUCT void FpuStackAllocator::check_invalid_lir_op(LIR_Op* op) { switch (op->code()) { case lir_24bit_FPU: case lir_reset_FPU: case lir_ffree: assert(false, "operations not allowed in lir. If one of these operations is needed, check if they have fpu operands"); break; case lir_fpop_raw: case lir_fxch: case lir_fld: assert(false, "operations only inserted by FpuStackAllocator"); break; default: break; } } #endif void FpuStackAllocator::merge_insert_add(LIR_List* instrs, FpuStackSim* cur_sim, int reg) { LIR_Op1* move = new LIR_Op1(lir_move, LIR_OprFact::doubleConst(0), LIR_OprFact::double_fpu(reg)->make_fpu_stack_offset()); instrs->instructions_list()->push(move); cur_sim->push(reg); move->set_result_opr(to_fpu_stack(move->result_opr())); #ifndef PRODUCT if (TraceFPUStack) { tty->print("Added new register: %d New state: ", reg); cur_sim->print(); tty->cr(); } #endif } void FpuStackAllocator::merge_insert_xchg(LIR_List* instrs, FpuStackSim* cur_sim, int slot) { assert(slot > 0, "no exchange necessary"); LIR_Op1* fxch = new LIR_Op1(lir_fxch, LIR_OprFact::intConst(slot)); instrs->instructions_list()->push(fxch); cur_sim->swap(slot); #ifndef PRODUCT if (TraceFPUStack) { tty->print("Exchanged register: %d New state: ", cur_sim->get_slot(slot)); cur_sim->print(); tty->cr(); } #endif } void FpuStackAllocator::merge_insert_pop(LIR_List* instrs, FpuStackSim* cur_sim) { int reg = cur_sim->get_slot(0); LIR_Op* fpop = new LIR_Op0(lir_fpop_raw); instrs->instructions_list()->push(fpop); cur_sim->pop(reg); #ifndef PRODUCT if (TraceFPUStack) { tty->print("Removed register: %d New state: ", reg); cur_sim->print(); tty->cr(); } #endif } bool FpuStackAllocator::merge_rename(FpuStackSim* cur_sim, FpuStackSim* sux_sim, int start_slot, int change_slot) { int reg = cur_sim->get_slot(change_slot); for (int slot = start_slot; slot >= 0; slot--) { int new_reg = sux_sim->get_slot(slot); if (!cur_sim->contains(new_reg)) { cur_sim->set_slot(change_slot, new_reg); #ifndef PRODUCT if (TraceFPUStack) { tty->print("Renamed register %d to %d New state: ", reg, new_reg); cur_sim->print(); tty->cr(); } #endif return true; } } return false; } void FpuStackAllocator::merge_fpu_stack(LIR_List* instrs, FpuStackSim* cur_sim, FpuStackSim* sux_sim) { #ifndef PRODUCT if (TraceFPUStack) { tty->cr(); tty->print("before merging: pred: "); cur_sim->print(); tty->cr(); tty->print(" sux: "); sux_sim->print(); tty->cr(); } int slot; for (slot = 0; slot < cur_sim->stack_size(); slot++) { assert(!cur_sim->slot_is_empty(slot), "not handled by algorithm"); } for (slot = 0; slot < sux_sim->stack_size(); slot++) { assert(!sux_sim->slot_is_empty(slot), "not handled by algorithm"); } #endif // size difference between cur and sux that must be resolved by adding or removing values form the stack int size_diff = cur_sim->stack_size() - sux_sim->stack_size(); if (!ComputeExactFPURegisterUsage) { // add slots that are currently free, but used in successor // When the exact FPU register usage is computed, the stack does // not contain dead values at merging -> no values must be added int sux_slot = sux_sim->stack_size() - 1; while (size_diff < 0) { assert(sux_slot >= 0, "slot out of bounds -> error in algorithm"); int reg = sux_sim->get_slot(sux_slot); if (!cur_sim->contains(reg)) { merge_insert_add(instrs, cur_sim, reg); size_diff++; if (sux_slot + size_diff != 0) { merge_insert_xchg(instrs, cur_sim, sux_slot + size_diff); } } sux_slot--; } } assert(cur_sim->stack_size() >= sux_sim->stack_size(), "stack size must be equal or greater now"); assert(size_diff == cur_sim->stack_size() - sux_sim->stack_size(), "must be"); // stack merge algorithm: // 1) as long as the current stack top is not in the right location (that meens // it should not be on the stack top), exchange it into the right location // 2) if the stack top is right, but the remaining stack is not ordered correctly, // the stack top is exchanged away to get another value on top -> // now step 1) can be continued // the stack can also contain unused items -> these items are removed from stack int finished_slot = sux_sim->stack_size() - 1; while (finished_slot >= 0 || size_diff > 0) { while (size_diff > 0 || (cur_sim->stack_size() > 0 && cur_sim->get_slot(0) != sux_sim->get_slot(0))) { int reg = cur_sim->get_slot(0); if (sux_sim->contains(reg)) { int sux_slot = sux_sim->offset_from_tos(reg); merge_insert_xchg(instrs, cur_sim, sux_slot + size_diff); } else if (!merge_rename(cur_sim, sux_sim, finished_slot, 0)) { assert(size_diff > 0, "must be"); merge_insert_pop(instrs, cur_sim); size_diff--; } assert(cur_sim->stack_size() == 0 || cur_sim->get_slot(0) != reg, "register must have been changed"); } while (finished_slot >= 0 && cur_sim->get_slot(finished_slot) == sux_sim->get_slot(finished_slot)) { finished_slot--; } if (finished_slot >= 0) { int reg = cur_sim->get_slot(finished_slot); if (sux_sim->contains(reg) || !merge_rename(cur_sim, sux_sim, finished_slot, finished_slot)) { assert(sux_sim->contains(reg) || size_diff > 0, "must be"); merge_insert_xchg(instrs, cur_sim, finished_slot); } assert(cur_sim->get_slot(finished_slot) != reg, "register must have been changed"); } } #ifndef PRODUCT if (TraceFPUStack) { tty->print("after merging: pred: "); cur_sim->print(); tty->cr(); tty->print(" sux: "); sux_sim->print(); tty->cr(); tty->cr(); } #endif assert(cur_sim->stack_size() == sux_sim->stack_size(), "stack size must be equal now"); } void FpuStackAllocator::merge_cleanup_fpu_stack(LIR_List* instrs, FpuStackSim* cur_sim, BitMap& live_fpu_regs) { #ifndef PRODUCT if (TraceFPUStack) { tty->cr(); tty->print("before cleanup: state: "); cur_sim->print(); tty->cr(); tty->print(" live: "); live_fpu_regs.print_on(tty); tty->cr(); } #endif int slot = 0; while (slot < cur_sim->stack_size()) { int reg = cur_sim->get_slot(slot); if (!live_fpu_regs.at(reg)) { if (slot != 0) { merge_insert_xchg(instrs, cur_sim, slot); } merge_insert_pop(instrs, cur_sim); } else { slot++; } } #ifndef PRODUCT if (TraceFPUStack) { tty->print("after cleanup: state: "); cur_sim->print(); tty->cr(); tty->print(" live: "); live_fpu_regs.print_on(tty); tty->cr(); tty->cr(); } // check if fpu stack only contains live registers for (unsigned int i = 0; i < live_fpu_regs.size(); i++) { if (live_fpu_regs.at(i) != cur_sim->contains(i)) { tty->print_cr("mismatch between required and actual stack content"); break; } } #endif } bool FpuStackAllocator::merge_fpu_stack_with_successors(BlockBegin* block) { #ifndef PRODUCT if (TraceFPUStack) { tty->print_cr("Propagating FPU stack state for B%d at LIR_Op position %d to successors:", block->block_id(), pos()); sim()->print(); tty->cr(); } #endif bool changed = false; int number_of_sux = block->number_of_sux(); if (number_of_sux == 1 && block->sux_at(0)->number_of_preds() > 1) { // The successor has at least two incoming edges, so a stack merge will be necessary // If this block is the first predecessor, cleanup the current stack and propagate it // If this block is not the first predecessor, a stack merge will be necessary BlockBegin* sux = block->sux_at(0); intArray* state = sux->fpu_stack_state(); LIR_List* instrs = new LIR_List(_compilation); if (state != NULL) { // Merge with a successors that already has a FPU stack state // the block must only have one successor because critical edges must been split FpuStackSim* cur_sim = sim(); FpuStackSim* sux_sim = temp_sim(); sux_sim->read_state(state); merge_fpu_stack(instrs, cur_sim, sux_sim); } else { // propagate current FPU stack state to successor without state // clean up stack first so that there are no dead values on the stack if (ComputeExactFPURegisterUsage) { FpuStackSim* cur_sim = sim(); ResourceBitMap live_fpu_regs = block->sux_at(0)->fpu_register_usage(); assert(live_fpu_regs.size() == FrameMap::nof_fpu_regs, "missing register usage"); merge_cleanup_fpu_stack(instrs, cur_sim, live_fpu_regs); } intArray* state = sim()->write_state(); if (TraceFPUStack) { tty->print_cr("Setting FPU stack state of B%d (merge path)", sux->block_id()); sim()->print(); tty->cr(); } sux->set_fpu_stack_state(state); } if (instrs->instructions_list()->length() > 0) { lir()->insert_before(pos(), instrs); set_pos(instrs->instructions_list()->length() + pos()); changed = true; } } else { // Propagate unmodified Stack to successors where a stack merge is not necessary intArray* state = sim()->write_state(); for (int i = 0; i < number_of_sux; i++) { BlockBegin* sux = block->sux_at(i); #ifdef ASSERT for (int j = 0; j < sux->number_of_preds(); j++) { assert(block == sux->pred_at(j), "all critical edges must be broken"); } // check if new state is same if (sux->fpu_stack_state() != NULL) { intArray* sux_state = sux->fpu_stack_state(); assert(state->length() == sux_state->length(), "overwriting existing stack state"); for (int j = 0; j < state->length(); j++) { assert(state->at(j) == sux_state->at(j), "overwriting existing stack state"); } } #endif #ifndef PRODUCT if (TraceFPUStack) { tty->print_cr("Setting FPU stack state of B%d", sux->block_id()); sim()->print(); tty->cr(); } #endif sux->set_fpu_stack_state(state); } } #ifndef PRODUCT // assertions that FPU stack state conforms to all successors' states intArray* cur_state = sim()->write_state(); for (int i = 0; i < number_of_sux; i++) { BlockBegin* sux = block->sux_at(i); intArray* sux_state = sux->fpu_stack_state(); assert(sux_state != NULL, "no fpu state"); assert(cur_state->length() == sux_state->length(), "incorrect length"); for (int i = 0; i < cur_state->length(); i++) { assert(cur_state->at(i) == sux_state->at(i), "element not equal"); } } #endif return changed; }