1 /*
   2  * Copyright (c) 2005, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciArrayKlass.hpp"
  27 #include "ci/ciEnv.hpp"
  28 #include "ci/ciKlass.hpp"
  29 #include "ci/ciMethod.hpp"
  30 #include "classfile/javaClasses.inline.hpp"
  31 #include "code/dependencies.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/oop.inline.hpp"
  35 #include "oops/objArrayKlass.hpp"
  36 #include "runtime/handles.hpp"
  37 #include "runtime/handles.inline.hpp"
  38 #include "runtime/thread.inline.hpp"
  39 #include "utilities/copy.hpp"
  40 
  41 
  42 #ifdef ASSERT
  43 static bool must_be_in_vm() {
  44   Thread* thread = Thread::current();
  45   if (thread->is_Java_thread())
  46     return ((JavaThread*)thread)->thread_state() == _thread_in_vm;
  47   else
  48     return true;  //something like this: thread->is_VM_thread();
  49 }
  50 #endif //ASSERT
  51 
  52 void Dependencies::initialize(ciEnv* env) {
  53   Arena* arena = env->arena();
  54   _oop_recorder = env->oop_recorder();
  55   _log = env->log();
  56   _dep_seen = new(arena) GrowableArray<int>(arena, 500, 0, 0);
  57 #if INCLUDE_JVMCI
  58   _using_dep_values = false;
  59 #endif
  60   DEBUG_ONLY(_deps[end_marker] = NULL);
  61   for (int i = (int)FIRST_TYPE; i < (int)TYPE_LIMIT; i++) {
  62     _deps[i] = new(arena) GrowableArray<ciBaseObject*>(arena, 10, 0, 0);
  63   }
  64   _content_bytes = NULL;
  65   _size_in_bytes = (size_t)-1;
  66 
  67   assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT), "sanity");
  68 }
  69 
  70 void Dependencies::assert_evol_method(ciMethod* m) {
  71   assert_common_1(evol_method, m);
  72 }
  73 
  74 void Dependencies::assert_leaf_type(ciKlass* ctxk) {
  75   if (ctxk->is_array_klass()) {
  76     // As a special case, support this assertion on an array type,
  77     // which reduces to an assertion on its element type.
  78     // Note that this cannot be done with assertions that
  79     // relate to concreteness or abstractness.
  80     ciType* elemt = ctxk->as_array_klass()->base_element_type();
  81     if (!elemt->is_instance_klass())  return;   // Ex:  int[][]
  82     ctxk = elemt->as_instance_klass();
  83     //if (ctxk->is_final())  return;            // Ex:  String[][]
  84   }
  85   check_ctxk(ctxk);
  86   assert_common_1(leaf_type, ctxk);
  87 }
  88 
  89 void Dependencies::assert_abstract_with_unique_concrete_subtype(ciKlass* ctxk, ciKlass* conck) {
  90   check_ctxk_abstract(ctxk);
  91   assert_common_2(abstract_with_unique_concrete_subtype, ctxk, conck);
  92 }
  93 
  94 void Dependencies::assert_abstract_with_no_concrete_subtype(ciKlass* ctxk) {
  95   check_ctxk_abstract(ctxk);
  96   assert_common_1(abstract_with_no_concrete_subtype, ctxk);
  97 }
  98 
  99 void Dependencies::assert_concrete_with_no_concrete_subtype(ciKlass* ctxk) {
 100   check_ctxk_concrete(ctxk);
 101   assert_common_1(concrete_with_no_concrete_subtype, ctxk);
 102 }
 103 
 104 void Dependencies::assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm) {
 105   check_ctxk(ctxk);
 106   assert_common_2(unique_concrete_method, ctxk, uniqm);
 107 }
 108 
 109 void Dependencies::assert_abstract_with_exclusive_concrete_subtypes(ciKlass* ctxk, ciKlass* k1, ciKlass* k2) {
 110   check_ctxk(ctxk);
 111   assert_common_3(abstract_with_exclusive_concrete_subtypes_2, ctxk, k1, k2);
 112 }
 113 
 114 void Dependencies::assert_exclusive_concrete_methods(ciKlass* ctxk, ciMethod* m1, ciMethod* m2) {
 115   check_ctxk(ctxk);
 116   assert_common_3(exclusive_concrete_methods_2, ctxk, m1, m2);
 117 }
 118 
 119 void Dependencies::assert_has_no_finalizable_subclasses(ciKlass* ctxk) {
 120   check_ctxk(ctxk);
 121   assert_common_1(no_finalizable_subclasses, ctxk);
 122 }
 123 
 124 void Dependencies::assert_call_site_target_value(ciCallSite* call_site, ciMethodHandle* method_handle) {
 125   assert_common_2(call_site_target_value, call_site, method_handle);
 126 }
 127 
 128 #if INCLUDE_JVMCI
 129 
 130 Dependencies::Dependencies(Arena* arena, OopRecorder* oop_recorder, CompileLog* log) {
 131   _oop_recorder = oop_recorder;
 132   _log = log;
 133   _dep_seen = new(arena) GrowableArray<int>(arena, 500, 0, 0);
 134   _using_dep_values = true;
 135   DEBUG_ONLY(_dep_values[end_marker] = NULL);
 136   for (int i = (int)FIRST_TYPE; i < (int)TYPE_LIMIT; i++) {
 137     _dep_values[i] = new(arena) GrowableArray<DepValue>(arena, 10, 0, DepValue());
 138   }
 139   _content_bytes = NULL;
 140   _size_in_bytes = (size_t)-1;
 141 
 142   assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT), "sanity");
 143 }
 144 
 145 void Dependencies::assert_evol_method(Method* m) {
 146   assert_common_1(evol_method, DepValue(_oop_recorder, m));
 147 }
 148 
 149 void Dependencies::assert_has_no_finalizable_subclasses(Klass* ctxk) {
 150   check_ctxk(ctxk);
 151   assert_common_1(no_finalizable_subclasses, DepValue(_oop_recorder, ctxk));
 152 }
 153 
 154 void Dependencies::assert_leaf_type(Klass* ctxk) {
 155   if (ctxk->is_array_klass()) {
 156     // As a special case, support this assertion on an array type,
 157     // which reduces to an assertion on its element type.
 158     // Note that this cannot be done with assertions that
 159     // relate to concreteness or abstractness.
 160     BasicType elemt = ArrayKlass::cast(ctxk)->element_type();
 161     if (is_java_primitive(elemt))  return;   // Ex:  int[][]
 162     ctxk = ObjArrayKlass::cast(ctxk)->bottom_klass();
 163     //if (ctxk->is_final())  return;            // Ex:  String[][]
 164   }
 165   check_ctxk(ctxk);
 166   assert_common_1(leaf_type, DepValue(_oop_recorder, ctxk));
 167 }
 168 
 169 void Dependencies::assert_abstract_with_unique_concrete_subtype(Klass* ctxk, Klass* conck) {
 170   check_ctxk_abstract(ctxk);
 171   DepValue ctxk_dv(_oop_recorder, ctxk);
 172   DepValue conck_dv(_oop_recorder, conck, &ctxk_dv);
 173   assert_common_2(abstract_with_unique_concrete_subtype, ctxk_dv, conck_dv);
 174 }
 175 
 176 void Dependencies::assert_unique_concrete_method(Klass* ctxk, Method* uniqm) {
 177   check_ctxk(ctxk);
 178   assert_common_2(unique_concrete_method, DepValue(_oop_recorder, ctxk), DepValue(_oop_recorder, uniqm));
 179 }
 180 
 181 void Dependencies::assert_call_site_target_value(oop call_site, oop method_handle) {
 182   assert_common_2(call_site_target_value, DepValue(_oop_recorder, JNIHandles::make_local(call_site)), DepValue(_oop_recorder, JNIHandles::make_local(method_handle)));
 183 }
 184 
 185 #endif // INCLUDE_JVMCI
 186 
 187 
 188 // Helper function.  If we are adding a new dep. under ctxk2,
 189 // try to find an old dep. under a broader* ctxk1.  If there is
 190 //
 191 bool Dependencies::maybe_merge_ctxk(GrowableArray<ciBaseObject*>* deps,
 192                                     int ctxk_i, ciKlass* ctxk2) {
 193   ciKlass* ctxk1 = deps->at(ctxk_i)->as_metadata()->as_klass();
 194   if (ctxk2->is_subtype_of(ctxk1)) {
 195     return true;  // success, and no need to change
 196   } else if (ctxk1->is_subtype_of(ctxk2)) {
 197     // new context class fully subsumes previous one
 198     deps->at_put(ctxk_i, ctxk2);
 199     return true;
 200   } else {
 201     return false;
 202   }
 203 }
 204 
 205 void Dependencies::assert_common_1(DepType dept, ciBaseObject* x) {
 206   assert(dep_args(dept) == 1, "sanity");
 207   log_dependency(dept, x);
 208   GrowableArray<ciBaseObject*>* deps = _deps[dept];
 209 
 210   // see if the same (or a similar) dep is already recorded
 211   if (note_dep_seen(dept, x)) {
 212     assert(deps->find(x) >= 0, "sanity");
 213   } else {
 214     deps->append(x);
 215   }
 216 }
 217 
 218 void Dependencies::assert_common_2(DepType dept,
 219                                    ciBaseObject* x0, ciBaseObject* x1) {
 220   assert(dep_args(dept) == 2, "sanity");
 221   log_dependency(dept, x0, x1);
 222   GrowableArray<ciBaseObject*>* deps = _deps[dept];
 223 
 224   // see if the same (or a similar) dep is already recorded
 225   bool has_ctxk = has_explicit_context_arg(dept);
 226   if (has_ctxk) {
 227     assert(dep_context_arg(dept) == 0, "sanity");
 228     if (note_dep_seen(dept, x1)) {
 229       // look in this bucket for redundant assertions
 230       const int stride = 2;
 231       for (int i = deps->length(); (i -= stride) >= 0; ) {
 232         ciBaseObject* y1 = deps->at(i+1);
 233         if (x1 == y1) {  // same subject; check the context
 234           if (maybe_merge_ctxk(deps, i+0, x0->as_metadata()->as_klass())) {
 235             return;
 236           }
 237         }
 238       }
 239     }
 240   } else {
 241     if (note_dep_seen(dept, x0) && note_dep_seen(dept, x1)) {
 242       // look in this bucket for redundant assertions
 243       const int stride = 2;
 244       for (int i = deps->length(); (i -= stride) >= 0; ) {
 245         ciBaseObject* y0 = deps->at(i+0);
 246         ciBaseObject* y1 = deps->at(i+1);
 247         if (x0 == y0 && x1 == y1) {
 248           return;
 249         }
 250       }
 251     }
 252   }
 253 
 254   // append the assertion in the correct bucket:
 255   deps->append(x0);
 256   deps->append(x1);
 257 }
 258 
 259 void Dependencies::assert_common_3(DepType dept,
 260                                    ciKlass* ctxk, ciBaseObject* x, ciBaseObject* x2) {
 261   assert(dep_context_arg(dept) == 0, "sanity");
 262   assert(dep_args(dept) == 3, "sanity");
 263   log_dependency(dept, ctxk, x, x2);
 264   GrowableArray<ciBaseObject*>* deps = _deps[dept];
 265 
 266   // try to normalize an unordered pair:
 267   bool swap = false;
 268   switch (dept) {
 269   case abstract_with_exclusive_concrete_subtypes_2:
 270     swap = (x->ident() > x2->ident() && x->as_metadata()->as_klass() != ctxk);
 271     break;
 272   case exclusive_concrete_methods_2:
 273     swap = (x->ident() > x2->ident() && x->as_metadata()->as_method()->holder() != ctxk);
 274     break;
 275   }
 276   if (swap) { ciBaseObject* t = x; x = x2; x2 = t; }
 277 
 278   // see if the same (or a similar) dep is already recorded
 279   if (note_dep_seen(dept, x) && note_dep_seen(dept, x2)) {
 280     // look in this bucket for redundant assertions
 281     const int stride = 3;
 282     for (int i = deps->length(); (i -= stride) >= 0; ) {
 283       ciBaseObject* y  = deps->at(i+1);
 284       ciBaseObject* y2 = deps->at(i+2);
 285       if (x == y && x2 == y2) {  // same subjects; check the context
 286         if (maybe_merge_ctxk(deps, i+0, ctxk)) {
 287           return;
 288         }
 289       }
 290     }
 291   }
 292   // append the assertion in the correct bucket:
 293   deps->append(ctxk);
 294   deps->append(x);
 295   deps->append(x2);
 296 }
 297 
 298 #if INCLUDE_JVMCI
 299 bool Dependencies::maybe_merge_ctxk(GrowableArray<DepValue>* deps,
 300                                     int ctxk_i, DepValue ctxk2_dv) {
 301   Klass* ctxk1 = deps->at(ctxk_i).as_klass(_oop_recorder);
 302   Klass* ctxk2 = ctxk2_dv.as_klass(_oop_recorder);
 303   if (ctxk2->is_subtype_of(ctxk1)) {
 304     return true;  // success, and no need to change
 305   } else if (ctxk1->is_subtype_of(ctxk2)) {
 306     // new context class fully subsumes previous one
 307     deps->at_put(ctxk_i, ctxk2_dv);
 308     return true;
 309   } else {
 310     return false;
 311   }
 312 }
 313 
 314 void Dependencies::assert_common_1(DepType dept, DepValue x) {
 315   assert(dep_args(dept) == 1, "sanity");
 316   //log_dependency(dept, x);
 317   GrowableArray<DepValue>* deps = _dep_values[dept];
 318 
 319   // see if the same (or a similar) dep is already recorded
 320   if (note_dep_seen(dept, x)) {
 321     assert(deps->find(x) >= 0, "sanity");
 322   } else {
 323     deps->append(x);
 324   }
 325 }
 326 
 327 void Dependencies::assert_common_2(DepType dept,
 328                                    DepValue x0, DepValue x1) {
 329   assert(dep_args(dept) == 2, "sanity");
 330   //log_dependency(dept, x0, x1);
 331   GrowableArray<DepValue>* deps = _dep_values[dept];
 332 
 333   // see if the same (or a similar) dep is already recorded
 334   bool has_ctxk = has_explicit_context_arg(dept);
 335   if (has_ctxk) {
 336     assert(dep_context_arg(dept) == 0, "sanity");
 337     if (note_dep_seen(dept, x1)) {
 338       // look in this bucket for redundant assertions
 339       const int stride = 2;
 340       for (int i = deps->length(); (i -= stride) >= 0; ) {
 341         DepValue y1 = deps->at(i+1);
 342         if (x1 == y1) {  // same subject; check the context
 343           if (maybe_merge_ctxk(deps, i+0, x0)) {
 344             return;
 345           }
 346         }
 347       }
 348     }
 349   } else {
 350     if (note_dep_seen(dept, x0) && note_dep_seen(dept, x1)) {
 351       // look in this bucket for redundant assertions
 352       const int stride = 2;
 353       for (int i = deps->length(); (i -= stride) >= 0; ) {
 354         DepValue y0 = deps->at(i+0);
 355         DepValue y1 = deps->at(i+1);
 356         if (x0 == y0 && x1 == y1) {
 357           return;
 358         }
 359       }
 360     }
 361   }
 362 
 363   // append the assertion in the correct bucket:
 364   deps->append(x0);
 365   deps->append(x1);
 366 }
 367 #endif // INCLUDE_JVMCI
 368 
 369 /// Support for encoding dependencies into an nmethod:
 370 
 371 void Dependencies::copy_to(nmethod* nm) {
 372   address beg = nm->dependencies_begin();
 373   address end = nm->dependencies_end();
 374   guarantee(end - beg >= (ptrdiff_t) size_in_bytes(), "bad sizing");
 375   Copy::disjoint_words((HeapWord*) content_bytes(),
 376                        (HeapWord*) beg,
 377                        size_in_bytes() / sizeof(HeapWord));
 378   assert(size_in_bytes() % sizeof(HeapWord) == 0, "copy by words");
 379 }
 380 
 381 static int sort_dep(ciBaseObject** p1, ciBaseObject** p2, int narg) {
 382   for (int i = 0; i < narg; i++) {
 383     int diff = p1[i]->ident() - p2[i]->ident();
 384     if (diff != 0)  return diff;
 385   }
 386   return 0;
 387 }
 388 static int sort_dep_arg_1(ciBaseObject** p1, ciBaseObject** p2)
 389 { return sort_dep(p1, p2, 1); }
 390 static int sort_dep_arg_2(ciBaseObject** p1, ciBaseObject** p2)
 391 { return sort_dep(p1, p2, 2); }
 392 static int sort_dep_arg_3(ciBaseObject** p1, ciBaseObject** p2)
 393 { return sort_dep(p1, p2, 3); }
 394 
 395 #if INCLUDE_JVMCI
 396 // metadata deps are sorted before object deps
 397 static int sort_dep_value(Dependencies::DepValue* p1, Dependencies::DepValue* p2, int narg) {
 398   for (int i = 0; i < narg; i++) {
 399     int diff = p1[i].sort_key() - p2[i].sort_key();
 400     if (diff != 0)  return diff;
 401   }
 402   return 0;
 403 }
 404 static int sort_dep_value_arg_1(Dependencies::DepValue* p1, Dependencies::DepValue* p2)
 405 { return sort_dep_value(p1, p2, 1); }
 406 static int sort_dep_value_arg_2(Dependencies::DepValue* p1, Dependencies::DepValue* p2)
 407 { return sort_dep_value(p1, p2, 2); }
 408 static int sort_dep_value_arg_3(Dependencies::DepValue* p1, Dependencies::DepValue* p2)
 409 { return sort_dep_value(p1, p2, 3); }
 410 #endif // INCLUDE_JVMCI
 411 
 412 void Dependencies::sort_all_deps() {
 413 #if INCLUDE_JVMCI
 414   if (_using_dep_values) {
 415     for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 416       DepType dept = (DepType)deptv;
 417       GrowableArray<DepValue>* deps = _dep_values[dept];
 418       if (deps->length() <= 1)  continue;
 419       switch (dep_args(dept)) {
 420       case 1: deps->sort(sort_dep_value_arg_1, 1); break;
 421       case 2: deps->sort(sort_dep_value_arg_2, 2); break;
 422       case 3: deps->sort(sort_dep_value_arg_3, 3); break;
 423       default: ShouldNotReachHere();
 424       }
 425     }
 426     return;
 427   }
 428 #endif // INCLUDE_JVMCI
 429   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 430     DepType dept = (DepType)deptv;
 431     GrowableArray<ciBaseObject*>* deps = _deps[dept];
 432     if (deps->length() <= 1)  continue;
 433     switch (dep_args(dept)) {
 434     case 1: deps->sort(sort_dep_arg_1, 1); break;
 435     case 2: deps->sort(sort_dep_arg_2, 2); break;
 436     case 3: deps->sort(sort_dep_arg_3, 3); break;
 437     default: ShouldNotReachHere();
 438     }
 439   }
 440 }
 441 
 442 size_t Dependencies::estimate_size_in_bytes() {
 443   size_t est_size = 100;
 444 #if INCLUDE_JVMCI
 445   if (_using_dep_values) {
 446     for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 447       DepType dept = (DepType)deptv;
 448       GrowableArray<DepValue>* deps = _dep_values[dept];
 449       est_size += deps->length() * 2;  // tags and argument(s)
 450     }
 451     return est_size;
 452   }
 453 #endif // INCLUDE_JVMCI
 454   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 455     DepType dept = (DepType)deptv;
 456     GrowableArray<ciBaseObject*>* deps = _deps[dept];
 457     est_size += deps->length()*2;  // tags and argument(s)
 458   }
 459   return est_size;
 460 }
 461 
 462 ciKlass* Dependencies::ctxk_encoded_as_null(DepType dept, ciBaseObject* x) {
 463   switch (dept) {
 464   case abstract_with_exclusive_concrete_subtypes_2:
 465     return x->as_metadata()->as_klass();
 466   case unique_concrete_method:
 467   case exclusive_concrete_methods_2:
 468     return x->as_metadata()->as_method()->holder();
 469   }
 470   return NULL;  // let NULL be NULL
 471 }
 472 
 473 Klass* Dependencies::ctxk_encoded_as_null(DepType dept, Metadata* x) {
 474   assert(must_be_in_vm(), "raw oops here");
 475   switch (dept) {
 476   case abstract_with_exclusive_concrete_subtypes_2:
 477     assert(x->is_klass(), "sanity");
 478     return (Klass*) x;
 479   case unique_concrete_method:
 480   case exclusive_concrete_methods_2:
 481     assert(x->is_method(), "sanity");
 482     return ((Method*)x)->method_holder();
 483   }
 484   return NULL;  // let NULL be NULL
 485 }
 486 
 487 void Dependencies::encode_content_bytes() {
 488   sort_all_deps();
 489 
 490   // cast is safe, no deps can overflow INT_MAX
 491   CompressedWriteStream bytes((int)estimate_size_in_bytes());
 492 
 493 #if INCLUDE_JVMCI
 494   if (_using_dep_values) {
 495     for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 496       DepType dept = (DepType)deptv;
 497       GrowableArray<DepValue>* deps = _dep_values[dept];
 498       if (deps->length() == 0)  continue;
 499       int stride = dep_args(dept);
 500       int ctxkj  = dep_context_arg(dept);  // -1 if no context arg
 501       assert(stride > 0, "sanity");
 502       for (int i = 0; i < deps->length(); i += stride) {
 503         jbyte code_byte = (jbyte)dept;
 504         int skipj = -1;
 505         if (ctxkj >= 0 && ctxkj+1 < stride) {
 506           Klass*  ctxk = deps->at(i+ctxkj+0).as_klass(_oop_recorder);
 507           DepValue x = deps->at(i+ctxkj+1);  // following argument
 508           if (ctxk == ctxk_encoded_as_null(dept, x.as_metadata(_oop_recorder))) {
 509             skipj = ctxkj;  // we win:  maybe one less oop to keep track of
 510             code_byte |= default_context_type_bit;
 511           }
 512         }
 513         bytes.write_byte(code_byte);
 514         for (int j = 0; j < stride; j++) {
 515           if (j == skipj)  continue;
 516           DepValue v = deps->at(i+j);
 517           int idx = v.index();
 518           bytes.write_int(idx);
 519         }
 520       }
 521     }
 522   } else {
 523 #endif // INCLUDE_JVMCI
 524   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 525     DepType dept = (DepType)deptv;
 526     GrowableArray<ciBaseObject*>* deps = _deps[dept];
 527     if (deps->length() == 0)  continue;
 528     int stride = dep_args(dept);
 529     int ctxkj  = dep_context_arg(dept);  // -1 if no context arg
 530     assert(stride > 0, "sanity");
 531     for (int i = 0; i < deps->length(); i += stride) {
 532       jbyte code_byte = (jbyte)dept;
 533       int skipj = -1;
 534       if (ctxkj >= 0 && ctxkj+1 < stride) {
 535         ciKlass*  ctxk = deps->at(i+ctxkj+0)->as_metadata()->as_klass();
 536         ciBaseObject* x     = deps->at(i+ctxkj+1);  // following argument
 537         if (ctxk == ctxk_encoded_as_null(dept, x)) {
 538           skipj = ctxkj;  // we win:  maybe one less oop to keep track of
 539           code_byte |= default_context_type_bit;
 540         }
 541       }
 542       bytes.write_byte(code_byte);
 543       for (int j = 0; j < stride; j++) {
 544         if (j == skipj)  continue;
 545         ciBaseObject* v = deps->at(i+j);
 546         int idx;
 547         if (v->is_object()) {
 548           idx = _oop_recorder->find_index(v->as_object()->constant_encoding());
 549         } else {
 550           ciMetadata* meta = v->as_metadata();
 551           idx = _oop_recorder->find_index(meta->constant_encoding());
 552         }
 553         bytes.write_int(idx);
 554       }
 555     }
 556   }
 557 #if INCLUDE_JVMCI
 558   }
 559 #endif
 560 
 561   // write a sentinel byte to mark the end
 562   bytes.write_byte(end_marker);
 563 
 564   // round it out to a word boundary
 565   while (bytes.position() % sizeof(HeapWord) != 0) {
 566     bytes.write_byte(end_marker);
 567   }
 568 
 569   // check whether the dept byte encoding really works
 570   assert((jbyte)default_context_type_bit != 0, "byte overflow");
 571 
 572   _content_bytes = bytes.buffer();
 573   _size_in_bytes = bytes.position();
 574 }
 575 
 576 
 577 const char* Dependencies::_dep_name[TYPE_LIMIT] = {
 578   "end_marker",
 579   "evol_method",
 580   "leaf_type",
 581   "abstract_with_unique_concrete_subtype",
 582   "abstract_with_no_concrete_subtype",
 583   "concrete_with_no_concrete_subtype",
 584   "unique_concrete_method",
 585   "abstract_with_exclusive_concrete_subtypes_2",
 586   "exclusive_concrete_methods_2",
 587   "no_finalizable_subclasses",
 588   "call_site_target_value"
 589 };
 590 
 591 int Dependencies::_dep_args[TYPE_LIMIT] = {
 592   -1,// end_marker
 593   1, // evol_method m
 594   1, // leaf_type ctxk
 595   2, // abstract_with_unique_concrete_subtype ctxk, k
 596   1, // abstract_with_no_concrete_subtype ctxk
 597   1, // concrete_with_no_concrete_subtype ctxk
 598   2, // unique_concrete_method ctxk, m
 599   3, // unique_concrete_subtypes_2 ctxk, k1, k2
 600   3, // unique_concrete_methods_2 ctxk, m1, m2
 601   1, // no_finalizable_subclasses ctxk
 602   2  // call_site_target_value call_site, method_handle
 603 };
 604 
 605 const char* Dependencies::dep_name(Dependencies::DepType dept) {
 606   if (!dept_in_mask(dept, all_types))  return "?bad-dep?";
 607   return _dep_name[dept];
 608 }
 609 
 610 int Dependencies::dep_args(Dependencies::DepType dept) {
 611   if (!dept_in_mask(dept, all_types))  return -1;
 612   return _dep_args[dept];
 613 }
 614 
 615 void Dependencies::check_valid_dependency_type(DepType dept) {
 616   guarantee(FIRST_TYPE <= dept && dept < TYPE_LIMIT, "invalid dependency type: %d", (int) dept);
 617 }
 618 
 619 // for the sake of the compiler log, print out current dependencies:
 620 void Dependencies::log_all_dependencies() {
 621   if (log() == NULL)  return;
 622   ResourceMark rm;
 623   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 624     DepType dept = (DepType)deptv;
 625     GrowableArray<ciBaseObject*>* deps = _deps[dept];
 626     int deplen = deps->length();
 627     if (deplen == 0) {
 628       continue;
 629     }
 630     int stride = dep_args(dept);
 631     GrowableArray<ciBaseObject*>* ciargs = new GrowableArray<ciBaseObject*>(stride);
 632     for (int i = 0; i < deps->length(); i += stride) {
 633       for (int j = 0; j < stride; j++) {
 634         // flush out the identities before printing
 635         ciargs->push(deps->at(i+j));
 636       }
 637       write_dependency_to(log(), dept, ciargs);
 638       ciargs->clear();
 639     }
 640     guarantee(deplen == deps->length(), "deps array cannot grow inside nested ResoureMark scope");
 641   }
 642 }
 643 
 644 void Dependencies::write_dependency_to(CompileLog* log,
 645                                        DepType dept,
 646                                        GrowableArray<DepArgument>* args,
 647                                        Klass* witness) {
 648   if (log == NULL) {
 649     return;
 650   }
 651   ResourceMark rm;
 652   ciEnv* env = ciEnv::current();
 653   GrowableArray<ciBaseObject*>* ciargs = new GrowableArray<ciBaseObject*>(args->length());
 654   for (GrowableArrayIterator<DepArgument> it = args->begin(); it != args->end(); ++it) {
 655     DepArgument arg = *it;
 656     if (arg.is_oop()) {
 657       ciargs->push(env->get_object(arg.oop_value()));
 658     } else {
 659       ciargs->push(env->get_metadata(arg.metadata_value()));
 660     }
 661   }
 662   int argslen = ciargs->length();
 663   Dependencies::write_dependency_to(log, dept, ciargs, witness);
 664   guarantee(argslen == ciargs->length(), "ciargs array cannot grow inside nested ResoureMark scope");
 665 }
 666 
 667 void Dependencies::write_dependency_to(CompileLog* log,
 668                                        DepType dept,
 669                                        GrowableArray<ciBaseObject*>* args,
 670                                        Klass* witness) {
 671   if (log == NULL) {
 672     return;
 673   }
 674   ResourceMark rm;
 675   GrowableArray<int>* argids = new GrowableArray<int>(args->length());
 676   for (GrowableArrayIterator<ciBaseObject*> it = args->begin(); it != args->end(); ++it) {
 677     ciBaseObject* obj = *it;
 678     if (obj->is_object()) {
 679       argids->push(log->identify(obj->as_object()));
 680     } else {
 681       argids->push(log->identify(obj->as_metadata()));
 682     }
 683   }
 684   if (witness != NULL) {
 685     log->begin_elem("dependency_failed");
 686   } else {
 687     log->begin_elem("dependency");
 688   }
 689   log->print(" type='%s'", dep_name(dept));
 690   const int ctxkj = dep_context_arg(dept);  // -1 if no context arg
 691   if (ctxkj >= 0 && ctxkj < argids->length()) {
 692     log->print(" ctxk='%d'", argids->at(ctxkj));
 693   }
 694   // write remaining arguments, if any.
 695   for (int j = 0; j < argids->length(); j++) {
 696     if (j == ctxkj)  continue;  // already logged
 697     if (j == 1) {
 698       log->print(  " x='%d'",    argids->at(j));
 699     } else {
 700       log->print(" x%d='%d'", j, argids->at(j));
 701     }
 702   }
 703   if (witness != NULL) {
 704     log->object("witness", witness);
 705     log->stamp();
 706   }
 707   log->end_elem();
 708 }
 709 
 710 void Dependencies::write_dependency_to(xmlStream* xtty,
 711                                        DepType dept,
 712                                        GrowableArray<DepArgument>* args,
 713                                        Klass* witness) {
 714   if (xtty == NULL) {
 715     return;
 716   }
 717   Thread* thread = Thread::current();
 718   HandleMark rm(thread);
 719   ttyLocker ttyl;
 720   int ctxkj = dep_context_arg(dept);  // -1 if no context arg
 721   if (witness != NULL) {
 722     xtty->begin_elem("dependency_failed");
 723   } else {
 724     xtty->begin_elem("dependency");
 725   }
 726   xtty->print(" type='%s'", dep_name(dept));
 727   if (ctxkj >= 0) {
 728     xtty->object("ctxk", args->at(ctxkj).metadata_value());
 729   }
 730   // write remaining arguments, if any.
 731   for (int j = 0; j < args->length(); j++) {
 732     if (j == ctxkj)  continue;  // already logged
 733     DepArgument arg = args->at(j);
 734     if (j == 1) {
 735       if (arg.is_oop()) {
 736         xtty->object("x", Handle(thread, arg.oop_value()));
 737       } else {
 738         xtty->object("x", arg.metadata_value());
 739       }
 740     } else {
 741       char xn[10]; sprintf(xn, "x%d", j);
 742       if (arg.is_oop()) {
 743         xtty->object(xn, Handle(thread, arg.oop_value()));
 744       } else {
 745         xtty->object(xn, arg.metadata_value());
 746       }
 747     }
 748   }
 749   if (witness != NULL) {
 750     xtty->object("witness", witness);
 751     xtty->stamp();
 752   }
 753   xtty->end_elem();
 754 }
 755 
 756 void Dependencies::print_dependency(DepType dept, GrowableArray<DepArgument>* args,
 757                                     Klass* witness, outputStream* st) {
 758   ResourceMark rm;
 759   ttyLocker ttyl;   // keep the following output all in one block
 760   st->print_cr("%s of type %s",
 761                 (witness == NULL)? "Dependency": "Failed dependency",
 762                 dep_name(dept));
 763   // print arguments
 764   int ctxkj = dep_context_arg(dept);  // -1 if no context arg
 765   for (int j = 0; j < args->length(); j++) {
 766     DepArgument arg = args->at(j);
 767     bool put_star = false;
 768     if (arg.is_null())  continue;
 769     const char* what;
 770     if (j == ctxkj) {
 771       assert(arg.is_metadata(), "must be");
 772       what = "context";
 773       put_star = !Dependencies::is_concrete_klass((Klass*)arg.metadata_value());
 774     } else if (arg.is_method()) {
 775       what = "method ";
 776       put_star = !Dependencies::is_concrete_method((Method*)arg.metadata_value(), NULL);
 777     } else if (arg.is_klass()) {
 778       what = "class  ";
 779     } else {
 780       what = "object ";
 781     }
 782     st->print("  %s = %s", what, (put_star? "*": ""));
 783     if (arg.is_klass()) {
 784       st->print("%s", ((Klass*)arg.metadata_value())->external_name());
 785     } else if (arg.is_method()) {
 786       ((Method*)arg.metadata_value())->print_value_on(st);
 787     } else if (arg.is_oop()) {
 788       arg.oop_value()->print_value_on(st);
 789     } else {
 790       ShouldNotReachHere(); // Provide impl for this type.
 791     }
 792 
 793     st->cr();
 794   }
 795   if (witness != NULL) {
 796     bool put_star = !Dependencies::is_concrete_klass(witness);
 797     st->print_cr("  witness = %s%s",
 798                   (put_star? "*": ""),
 799                   witness->external_name());
 800   }
 801 }
 802 
 803 void Dependencies::DepStream::log_dependency(Klass* witness) {
 804   if (_deps == NULL && xtty == NULL)  return;  // fast cutout for runtime
 805   ResourceMark rm;
 806   const int nargs = argument_count();
 807   GrowableArray<DepArgument>* args = new GrowableArray<DepArgument>(nargs);
 808   for (int j = 0; j < nargs; j++) {
 809     if (is_oop_argument(j)) {
 810       args->push(argument_oop(j));
 811     } else {
 812       args->push(argument(j));
 813     }
 814   }
 815   int argslen = args->length();
 816   if (_deps != NULL && _deps->log() != NULL) {
 817     if (ciEnv::current() != NULL) {
 818       Dependencies::write_dependency_to(_deps->log(), type(), args, witness);
 819     } else {
 820       // Treat the CompileLog as an xmlstream instead
 821       Dependencies::write_dependency_to((xmlStream*)_deps->log(), type(), args, witness);
 822     }
 823   } else {
 824     Dependencies::write_dependency_to(xtty, type(), args, witness);
 825   }
 826   guarantee(argslen == args->length(), "args array cannot grow inside nested ResoureMark scope");
 827 }
 828 
 829 void Dependencies::DepStream::print_dependency(Klass* witness, bool verbose, outputStream* st) {
 830   ResourceMark rm;
 831   int nargs = argument_count();
 832   GrowableArray<DepArgument>* args = new GrowableArray<DepArgument>(nargs);
 833   for (int j = 0; j < nargs; j++) {
 834     if (is_oop_argument(j)) {
 835       args->push(argument_oop(j));
 836     } else {
 837       args->push(argument(j));
 838     }
 839   }
 840   int argslen = args->length();
 841   Dependencies::print_dependency(type(), args, witness, st);
 842   if (verbose) {
 843     if (_code != NULL) {
 844       st->print("  code: ");
 845       _code->print_value_on(st);
 846       st->cr();
 847     }
 848   }
 849   guarantee(argslen == args->length(), "args array cannot grow inside nested ResoureMark scope");
 850 }
 851 
 852 
 853 /// Dependency stream support (decodes dependencies from an nmethod):
 854 
 855 #ifdef ASSERT
 856 void Dependencies::DepStream::initial_asserts(size_t byte_limit) {
 857   assert(must_be_in_vm(), "raw oops here");
 858   _byte_limit = byte_limit;
 859   _type       = (DepType)(end_marker-1);  // defeat "already at end" assert
 860   assert((_code!=NULL) + (_deps!=NULL) == 1, "one or t'other");
 861 }
 862 #endif //ASSERT
 863 
 864 bool Dependencies::DepStream::next() {
 865   assert(_type != end_marker, "already at end");
 866   if (_bytes.position() == 0 && _code != NULL
 867       && _code->dependencies_size() == 0) {
 868     // Method has no dependencies at all.
 869     return false;
 870   }
 871   int code_byte = (_bytes.read_byte() & 0xFF);
 872   if (code_byte == end_marker) {
 873     DEBUG_ONLY(_type = end_marker);
 874     return false;
 875   } else {
 876     int ctxk_bit = (code_byte & Dependencies::default_context_type_bit);
 877     code_byte -= ctxk_bit;
 878     DepType dept = (DepType)code_byte;
 879     _type = dept;
 880     Dependencies::check_valid_dependency_type(dept);
 881     int stride = _dep_args[dept];
 882     assert(stride == dep_args(dept), "sanity");
 883     int skipj = -1;
 884     if (ctxk_bit != 0) {
 885       skipj = 0;  // currently the only context argument is at zero
 886       assert(skipj == dep_context_arg(dept), "zero arg always ctxk");
 887     }
 888     for (int j = 0; j < stride; j++) {
 889       _xi[j] = (j == skipj)? 0: _bytes.read_int();
 890     }
 891     DEBUG_ONLY(_xi[stride] = -1);   // help detect overruns
 892     return true;
 893   }
 894 }
 895 
 896 inline Metadata* Dependencies::DepStream::recorded_metadata_at(int i) {
 897   Metadata* o = NULL;
 898   if (_code != NULL) {
 899     o = _code->metadata_at(i);
 900   } else {
 901     o = _deps->oop_recorder()->metadata_at(i);
 902   }
 903   return o;
 904 }
 905 
 906 inline oop Dependencies::DepStream::recorded_oop_at(int i) {
 907   return (_code != NULL)
 908          ? _code->oop_at(i)
 909     : JNIHandles::resolve(_deps->oop_recorder()->oop_at(i));
 910 }
 911 
 912 Metadata* Dependencies::DepStream::argument(int i) {
 913   Metadata* result = recorded_metadata_at(argument_index(i));
 914 
 915   if (result == NULL) { // Explicit context argument can be compressed
 916     int ctxkj = dep_context_arg(type());  // -1 if no explicit context arg
 917     if (ctxkj >= 0 && i == ctxkj && ctxkj+1 < argument_count()) {
 918       result = ctxk_encoded_as_null(type(), argument(ctxkj+1));
 919     }
 920   }
 921 
 922   assert(result == NULL || result->is_klass() || result->is_method(), "must be");
 923   return result;
 924 }
 925 
 926 /**
 927  * Returns a unique identifier for each dependency argument.
 928  */
 929 uintptr_t Dependencies::DepStream::get_identifier(int i) {
 930   if (is_oop_argument(i)) {
 931     return (uintptr_t)(oopDesc*)argument_oop(i);
 932   } else {
 933     return (uintptr_t)argument(i);
 934   }
 935 }
 936 
 937 oop Dependencies::DepStream::argument_oop(int i) {
 938   oop result = recorded_oop_at(argument_index(i));
 939   assert(result == NULL || result->is_oop(), "must be");
 940   return result;
 941 }
 942 
 943 Klass* Dependencies::DepStream::context_type() {
 944   assert(must_be_in_vm(), "raw oops here");
 945 
 946   // Most dependencies have an explicit context type argument.
 947   {
 948     int ctxkj = dep_context_arg(type());  // -1 if no explicit context arg
 949     if (ctxkj >= 0) {
 950       Metadata* k = argument(ctxkj);
 951       assert(k != NULL && k->is_klass(), "type check");
 952       return (Klass*)k;
 953     }
 954   }
 955 
 956   // Some dependencies are using the klass of the first object
 957   // argument as implicit context type.
 958   {
 959     int ctxkj = dep_implicit_context_arg(type());
 960     if (ctxkj >= 0) {
 961       Klass* k = argument_oop(ctxkj)->klass();
 962       assert(k != NULL && k->is_klass(), "type check");
 963       return (Klass*) k;
 964     }
 965   }
 966 
 967   // And some dependencies don't have a context type at all,
 968   // e.g. evol_method.
 969   return NULL;
 970 }
 971 
 972 // ----------------- DependencySignature --------------------------------------
 973 bool DependencySignature::equals(DependencySignature const& s1, DependencySignature const& s2) {
 974   if ((s1.type() != s2.type()) || (s1.args_count() != s2.args_count())) {
 975     return false;
 976   }
 977 
 978   for (int i = 0; i < s1.args_count(); i++) {
 979     if (s1.arg(i) != s2.arg(i)) {
 980       return false;
 981     }
 982   }
 983   return true;
 984 }
 985 
 986 /// Checking dependencies:
 987 
 988 // This hierarchy walker inspects subtypes of a given type,
 989 // trying to find a "bad" class which breaks a dependency.
 990 // Such a class is called a "witness" to the broken dependency.
 991 // While searching around, we ignore "participants", which
 992 // are already known to the dependency.
 993 class ClassHierarchyWalker {
 994  public:
 995   enum { PARTICIPANT_LIMIT = 3 };
 996 
 997  private:
 998   // optional method descriptor to check for:
 999   Symbol* _name;
1000   Symbol* _signature;
1001 
1002   // special classes which are not allowed to be witnesses:
1003   Klass*    _participants[PARTICIPANT_LIMIT+1];
1004   int       _num_participants;
1005 
1006   // cache of method lookups
1007   Method* _found_methods[PARTICIPANT_LIMIT+1];
1008 
1009   // if non-zero, tells how many witnesses to convert to participants
1010   int       _record_witnesses;
1011 
1012   void initialize(Klass* participant) {
1013     _record_witnesses = 0;
1014     _participants[0]  = participant;
1015     _found_methods[0] = NULL;
1016     _num_participants = 0;
1017     if (participant != NULL) {
1018       // Terminating NULL.
1019       _participants[1] = NULL;
1020       _found_methods[1] = NULL;
1021       _num_participants = 1;
1022     }
1023   }
1024 
1025   void initialize_from_method(Method* m) {
1026     assert(m != NULL && m->is_method(), "sanity");
1027     _name      = m->name();
1028     _signature = m->signature();
1029   }
1030 
1031  public:
1032   // The walker is initialized to recognize certain methods and/or types
1033   // as friendly participants.
1034   ClassHierarchyWalker(Klass* participant, Method* m) {
1035     initialize_from_method(m);
1036     initialize(participant);
1037   }
1038   ClassHierarchyWalker(Method* m) {
1039     initialize_from_method(m);
1040     initialize(NULL);
1041   }
1042   ClassHierarchyWalker(Klass* participant = NULL) {
1043     _name      = NULL;
1044     _signature = NULL;
1045     initialize(participant);
1046   }
1047 
1048   // This is common code for two searches:  One for concrete subtypes,
1049   // the other for concrete method implementations and overrides.
1050   bool doing_subtype_search() {
1051     return _name == NULL;
1052   }
1053 
1054   int num_participants() { return _num_participants; }
1055   Klass* participant(int n) {
1056     assert((uint)n <= (uint)_num_participants, "oob");
1057     return _participants[n];
1058   }
1059 
1060   // Note:  If n==num_participants, returns NULL.
1061   Method* found_method(int n) {
1062     assert((uint)n <= (uint)_num_participants, "oob");
1063     Method* fm = _found_methods[n];
1064     assert(n == _num_participants || fm != NULL, "proper usage");
1065     if (fm != NULL && fm->method_holder() != _participants[n]) {
1066       // Default methods from interfaces can be added to classes. In
1067       // that case the holder of the method is not the class but the
1068       // interface where it's defined.
1069       assert(fm->is_default_method(), "sanity");
1070       return NULL;
1071     }
1072     return fm;
1073   }
1074 
1075 #ifdef ASSERT
1076   // Assert that m is inherited into ctxk, without intervening overrides.
1077   // (May return true even if this is not true, in corner cases where we punt.)
1078   bool check_method_context(Klass* ctxk, Method* m) {
1079     if (m->method_holder() == ctxk)
1080       return true;  // Quick win.
1081     if (m->is_private())
1082       return false; // Quick lose.  Should not happen.
1083     if (!(m->is_public() || m->is_protected()))
1084       // The override story is complex when packages get involved.
1085       return true;  // Must punt the assertion to true.
1086     Method* lm = ctxk->lookup_method(m->name(), m->signature());
1087     if (lm == NULL && ctxk->is_instance_klass()) {
1088       // It might be an interface method
1089       lm = InstanceKlass::cast(ctxk)->lookup_method_in_ordered_interfaces(m->name(),
1090                                                                           m->signature());
1091     }
1092     if (lm == m)
1093       // Method m is inherited into ctxk.
1094       return true;
1095     if (lm != NULL) {
1096       if (!(lm->is_public() || lm->is_protected())) {
1097         // Method is [package-]private, so the override story is complex.
1098         return true;  // Must punt the assertion to true.
1099       }
1100       if (lm->is_static()) {
1101         // Static methods don't override non-static so punt
1102         return true;
1103       }
1104       if (!Dependencies::is_concrete_method(lm, ctxk) &&
1105           !Dependencies::is_concrete_method(m, ctxk)) {
1106         // They are both non-concrete
1107         if (lm->method_holder()->is_subtype_of(m->method_holder())) {
1108           // Method m is overridden by lm, but both are non-concrete.
1109           return true;
1110         }
1111         if (lm->method_holder()->is_interface() && m->method_holder()->is_interface() &&
1112             ctxk->is_subtype_of(m->method_holder()) && ctxk->is_subtype_of(lm->method_holder())) {
1113           // Interface method defined in multiple super interfaces
1114           return true;
1115         }
1116       }
1117     }
1118     ResourceMark rm;
1119     tty->print_cr("Dependency method not found in the associated context:");
1120     tty->print_cr("  context = %s", ctxk->external_name());
1121     tty->print(   "  method = "); m->print_short_name(tty); tty->cr();
1122     if (lm != NULL) {
1123       tty->print( "  found = "); lm->print_short_name(tty); tty->cr();
1124     }
1125     return false;
1126   }
1127 #endif
1128 
1129   void add_participant(Klass* participant) {
1130     assert(_num_participants + _record_witnesses < PARTICIPANT_LIMIT, "oob");
1131     int np = _num_participants++;
1132     _participants[np] = participant;
1133     _participants[np+1] = NULL;
1134     _found_methods[np+1] = NULL;
1135   }
1136 
1137   void record_witnesses(int add) {
1138     if (add > PARTICIPANT_LIMIT)  add = PARTICIPANT_LIMIT;
1139     assert(_num_participants + add < PARTICIPANT_LIMIT, "oob");
1140     _record_witnesses = add;
1141   }
1142 
1143   bool is_witness(Klass* k) {
1144     if (doing_subtype_search()) {
1145       return Dependencies::is_concrete_klass(k);
1146     } else if (!k->is_instance_klass()) {
1147       return false; // no methods to find in an array type
1148     } else {
1149       // Search class hierarchy first.
1150       Method* m = InstanceKlass::cast(k)->find_instance_method(_name, _signature);
1151       if (!Dependencies::is_concrete_method(m, k)) {
1152         // Check interface defaults also, if any exist.
1153         Array<Method*>* default_methods = InstanceKlass::cast(k)->default_methods();
1154         if (default_methods == NULL)
1155             return false;
1156         m = InstanceKlass::cast(k)->find_method(default_methods, _name, _signature);
1157         if (!Dependencies::is_concrete_method(m, NULL))
1158             return false;
1159       }
1160       _found_methods[_num_participants] = m;
1161       // Note:  If add_participant(k) is called,
1162       // the method m will already be memoized for it.
1163       return true;
1164     }
1165   }
1166 
1167   bool is_participant(Klass* k) {
1168     if (k == _participants[0]) {
1169       return true;
1170     } else if (_num_participants <= 1) {
1171       return false;
1172     } else {
1173       return in_list(k, &_participants[1]);
1174     }
1175   }
1176   bool ignore_witness(Klass* witness) {
1177     if (_record_witnesses == 0) {
1178       return false;
1179     } else {
1180       --_record_witnesses;
1181       add_participant(witness);
1182       return true;
1183     }
1184   }
1185   static bool in_list(Klass* x, Klass** list) {
1186     for (int i = 0; ; i++) {
1187       Klass* y = list[i];
1188       if (y == NULL)  break;
1189       if (y == x)  return true;
1190     }
1191     return false;  // not in list
1192   }
1193 
1194  private:
1195   // the actual search method:
1196   Klass* find_witness_anywhere(Klass* context_type,
1197                                  bool participants_hide_witnesses,
1198                                  bool top_level_call = true);
1199   // the spot-checking version:
1200   Klass* find_witness_in(KlassDepChange& changes,
1201                          Klass* context_type,
1202                            bool participants_hide_witnesses);
1203  public:
1204   Klass* find_witness_subtype(Klass* context_type, KlassDepChange* changes = NULL) {
1205     assert(doing_subtype_search(), "must set up a subtype search");
1206     // When looking for unexpected concrete types,
1207     // do not look beneath expected ones.
1208     const bool participants_hide_witnesses = true;
1209     // CX > CC > C' is OK, even if C' is new.
1210     // CX > { CC,  C' } is not OK if C' is new, and C' is the witness.
1211     if (changes != NULL) {
1212       return find_witness_in(*changes, context_type, participants_hide_witnesses);
1213     } else {
1214       return find_witness_anywhere(context_type, participants_hide_witnesses);
1215     }
1216   }
1217   Klass* find_witness_definer(Klass* context_type, KlassDepChange* changes = NULL) {
1218     assert(!doing_subtype_search(), "must set up a method definer search");
1219     // When looking for unexpected concrete methods,
1220     // look beneath expected ones, to see if there are overrides.
1221     const bool participants_hide_witnesses = true;
1222     // CX.m > CC.m > C'.m is not OK, if C'.m is new, and C' is the witness.
1223     if (changes != NULL) {
1224       return find_witness_in(*changes, context_type, !participants_hide_witnesses);
1225     } else {
1226       return find_witness_anywhere(context_type, !participants_hide_witnesses);
1227     }
1228   }
1229 };
1230 
1231 #ifndef PRODUCT
1232 static int deps_find_witness_calls = 0;
1233 static int deps_find_witness_steps = 0;
1234 static int deps_find_witness_recursions = 0;
1235 static int deps_find_witness_singles = 0;
1236 static int deps_find_witness_print = 0; // set to -1 to force a final print
1237 static bool count_find_witness_calls() {
1238   if (TraceDependencies || LogCompilation) {
1239     int pcount = deps_find_witness_print + 1;
1240     bool final_stats      = (pcount == 0);
1241     bool initial_call     = (pcount == 1);
1242     bool occasional_print = ((pcount & ((1<<10) - 1)) == 0);
1243     if (pcount < 0)  pcount = 1; // crude overflow protection
1244     deps_find_witness_print = pcount;
1245     if (VerifyDependencies && initial_call) {
1246       tty->print_cr("Warning:  TraceDependencies results may be inflated by VerifyDependencies");
1247     }
1248     if (occasional_print || final_stats) {
1249       // Every now and then dump a little info about dependency searching.
1250       if (xtty != NULL) {
1251        ttyLocker ttyl;
1252        xtty->elem("deps_find_witness calls='%d' steps='%d' recursions='%d' singles='%d'",
1253                    deps_find_witness_calls,
1254                    deps_find_witness_steps,
1255                    deps_find_witness_recursions,
1256                    deps_find_witness_singles);
1257       }
1258       if (final_stats || (TraceDependencies && WizardMode)) {
1259         ttyLocker ttyl;
1260         tty->print_cr("Dependency check (find_witness) "
1261                       "calls=%d, steps=%d (avg=%.1f), recursions=%d, singles=%d",
1262                       deps_find_witness_calls,
1263                       deps_find_witness_steps,
1264                       (double)deps_find_witness_steps / deps_find_witness_calls,
1265                       deps_find_witness_recursions,
1266                       deps_find_witness_singles);
1267       }
1268     }
1269     return true;
1270   }
1271   return false;
1272 }
1273 #else
1274 #define count_find_witness_calls() (0)
1275 #endif //PRODUCT
1276 
1277 
1278 Klass* ClassHierarchyWalker::find_witness_in(KlassDepChange& changes,
1279                                                Klass* context_type,
1280                                                bool participants_hide_witnesses) {
1281   assert(changes.involves_context(context_type), "irrelevant dependency");
1282   Klass* new_type = changes.new_type();
1283 
1284   (void)count_find_witness_calls();
1285   NOT_PRODUCT(deps_find_witness_singles++);
1286 
1287   // Current thread must be in VM (not native mode, as in CI):
1288   assert(must_be_in_vm(), "raw oops here");
1289   // Must not move the class hierarchy during this check:
1290   assert_locked_or_safepoint(Compile_lock);
1291 
1292   int nof_impls = InstanceKlass::cast(context_type)->nof_implementors();
1293   if (nof_impls > 1) {
1294     // Avoid this case: *I.m > { A.m, C }; B.m > C
1295     // %%% Until this is fixed more systematically, bail out.
1296     // See corresponding comment in find_witness_anywhere.
1297     return context_type;
1298   }
1299 
1300   assert(!is_participant(new_type), "only old classes are participants");
1301   if (participants_hide_witnesses) {
1302     // If the new type is a subtype of a participant, we are done.
1303     for (int i = 0; i < num_participants(); i++) {
1304       Klass* part = participant(i);
1305       if (part == NULL)  continue;
1306       assert(changes.involves_context(part) == new_type->is_subtype_of(part),
1307              "correct marking of participants, b/c new_type is unique");
1308       if (changes.involves_context(part)) {
1309         // new guy is protected from this check by previous participant
1310         return NULL;
1311       }
1312     }
1313   }
1314 
1315   if (is_witness(new_type) &&
1316       !ignore_witness(new_type)) {
1317     return new_type;
1318   }
1319 
1320   return NULL;
1321 }
1322 
1323 
1324 // Walk hierarchy under a context type, looking for unexpected types.
1325 // Do not report participant types, and recursively walk beneath
1326 // them only if participants_hide_witnesses is false.
1327 // If top_level_call is false, skip testing the context type,
1328 // because the caller has already considered it.
1329 Klass* ClassHierarchyWalker::find_witness_anywhere(Klass* context_type,
1330                                                      bool participants_hide_witnesses,
1331                                                      bool top_level_call) {
1332   // Current thread must be in VM (not native mode, as in CI):
1333   assert(must_be_in_vm(), "raw oops here");
1334   // Must not move the class hierarchy during this check:
1335   assert_locked_or_safepoint(Compile_lock);
1336 
1337   bool do_counts = count_find_witness_calls();
1338 
1339   // Check the root of the sub-hierarchy first.
1340   if (top_level_call) {
1341     if (do_counts) {
1342       NOT_PRODUCT(deps_find_witness_calls++);
1343       NOT_PRODUCT(deps_find_witness_steps++);
1344     }
1345     if (is_participant(context_type)) {
1346       if (participants_hide_witnesses)  return NULL;
1347       // else fall through to search loop...
1348     } else if (is_witness(context_type) && !ignore_witness(context_type)) {
1349       // The context is an abstract class or interface, to start with.
1350       return context_type;
1351     }
1352   }
1353 
1354   // Now we must check each implementor and each subclass.
1355   // Use a short worklist to avoid blowing the stack.
1356   // Each worklist entry is a *chain* of subklass siblings to process.
1357   const int CHAINMAX = 100;  // >= 1 + InstanceKlass::implementors_limit
1358   Klass* chains[CHAINMAX];
1359   int    chaini = 0;  // index into worklist
1360   Klass* chain;       // scratch variable
1361 #define ADD_SUBCLASS_CHAIN(k)                     {  \
1362     assert(chaini < CHAINMAX, "oob");                \
1363     chain = k->subklass();                           \
1364     if (chain != NULL)  chains[chaini++] = chain;    }
1365 
1366   // Look for non-abstract subclasses.
1367   // (Note:  Interfaces do not have subclasses.)
1368   ADD_SUBCLASS_CHAIN(context_type);
1369 
1370   // If it is an interface, search its direct implementors.
1371   // (Their subclasses are additional indirect implementors.
1372   // See InstanceKlass::add_implementor.)
1373   // (Note:  nof_implementors is always zero for non-interfaces.)
1374   if (top_level_call) {
1375     int nof_impls = InstanceKlass::cast(context_type)->nof_implementors();
1376     if (nof_impls > 1) {
1377       // Avoid this case: *I.m > { A.m, C }; B.m > C
1378       // Here, I.m has 2 concrete implementations, but m appears unique
1379       // as A.m, because the search misses B.m when checking C.
1380       // The inherited method B.m was getting missed by the walker
1381       // when interface 'I' was the starting point.
1382       // %%% Until this is fixed more systematically, bail out.
1383       // (Old CHA had the same limitation.)
1384       return context_type;
1385     }
1386     if (nof_impls > 0) {
1387       Klass* impl = InstanceKlass::cast(context_type)->implementor();
1388       assert(impl != NULL, "just checking");
1389       // If impl is the same as the context_type, then more than one
1390       // implementor has seen. No exact info in this case.
1391       if (impl == context_type) {
1392         return context_type;  // report an inexact witness to this sad affair
1393       }
1394       if (do_counts)
1395         { NOT_PRODUCT(deps_find_witness_steps++); }
1396       if (is_participant(impl)) {
1397         if (!participants_hide_witnesses) {
1398           ADD_SUBCLASS_CHAIN(impl);
1399         }
1400       } else if (is_witness(impl) && !ignore_witness(impl)) {
1401         return impl;
1402       } else {
1403         ADD_SUBCLASS_CHAIN(impl);
1404       }
1405     }
1406   }
1407 
1408   // Recursively process each non-trivial sibling chain.
1409   while (chaini > 0) {
1410     Klass* chain = chains[--chaini];
1411     for (Klass* sub = chain; sub != NULL; sub = sub->next_sibling()) {
1412       if (do_counts) { NOT_PRODUCT(deps_find_witness_steps++); }
1413       if (is_participant(sub)) {
1414         if (participants_hide_witnesses)  continue;
1415         // else fall through to process this guy's subclasses
1416       } else if (is_witness(sub) && !ignore_witness(sub)) {
1417         return sub;
1418       }
1419       if (chaini < (VerifyDependencies? 2: CHAINMAX)) {
1420         // Fast path.  (Partially disabled if VerifyDependencies.)
1421         ADD_SUBCLASS_CHAIN(sub);
1422       } else {
1423         // Worklist overflow.  Do a recursive call.  Should be rare.
1424         // The recursive call will have its own worklist, of course.
1425         // (Note that sub has already been tested, so that there is
1426         // no need for the recursive call to re-test.  That's handy,
1427         // since the recursive call sees sub as the context_type.)
1428         if (do_counts) { NOT_PRODUCT(deps_find_witness_recursions++); }
1429         Klass* witness = find_witness_anywhere(sub,
1430                                                  participants_hide_witnesses,
1431                                                  /*top_level_call=*/ false);
1432         if (witness != NULL)  return witness;
1433       }
1434     }
1435   }
1436 
1437   // No witness found.  The dependency remains unbroken.
1438   return NULL;
1439 #undef ADD_SUBCLASS_CHAIN
1440 }
1441 
1442 
1443 bool Dependencies::is_concrete_klass(Klass* k) {
1444   if (k->is_abstract())  return false;
1445   // %%% We could treat classes which are concrete but
1446   // have not yet been instantiated as virtually abstract.
1447   // This would require a deoptimization barrier on first instantiation.
1448   //if (k->is_not_instantiated())  return false;
1449   return true;
1450 }
1451 
1452 bool Dependencies::is_concrete_method(Method* m, Klass * k) {
1453   // NULL is not a concrete method,
1454   // statics are irrelevant to virtual call sites,
1455   // abstract methods are not concrete,
1456   // overpass (error) methods are not concrete if k is abstract
1457   //
1458   // note "true" is conservative answer --
1459   //     overpass clause is false if k == NULL, implies return true if
1460   //     answer depends on overpass clause.
1461   return ! ( m == NULL || m -> is_static() || m -> is_abstract() ||
1462              m->is_overpass() && k != NULL && k -> is_abstract() );
1463 }
1464 
1465 
1466 Klass* Dependencies::find_finalizable_subclass(Klass* k) {
1467   if (k->is_interface())  return NULL;
1468   if (k->has_finalizer()) return k;
1469   k = k->subklass();
1470   while (k != NULL) {
1471     Klass* result = find_finalizable_subclass(k);
1472     if (result != NULL) return result;
1473     k = k->next_sibling();
1474   }
1475   return NULL;
1476 }
1477 
1478 
1479 bool Dependencies::is_concrete_klass(ciInstanceKlass* k) {
1480   if (k->is_abstract())  return false;
1481   // We could also return false if k does not yet appear to be
1482   // instantiated, if the VM version supports this distinction also.
1483   //if (k->is_not_instantiated())  return false;
1484   return true;
1485 }
1486 
1487 bool Dependencies::has_finalizable_subclass(ciInstanceKlass* k) {
1488   return k->has_finalizable_subclass();
1489 }
1490 
1491 
1492 // Any use of the contents (bytecodes) of a method must be
1493 // marked by an "evol_method" dependency, if those contents
1494 // can change.  (Note: A method is always dependent on itself.)
1495 Klass* Dependencies::check_evol_method(Method* m) {
1496   assert(must_be_in_vm(), "raw oops here");
1497   // Did somebody do a JVMTI RedefineClasses while our backs were turned?
1498   // Or is there a now a breakpoint?
1499   // (Assumes compiled code cannot handle bkpts; change if UseFastBreakpoints.)
1500   if (m->is_old()
1501       || m->number_of_breakpoints() > 0) {
1502     return m->method_holder();
1503   } else {
1504     return NULL;
1505   }
1506 }
1507 
1508 // This is a strong assertion:  It is that the given type
1509 // has no subtypes whatever.  It is most useful for
1510 // optimizing checks on reflected types or on array types.
1511 // (Checks on types which are derived from real instances
1512 // can be optimized more strongly than this, because we
1513 // know that the checked type comes from a concrete type,
1514 // and therefore we can disregard abstract types.)
1515 Klass* Dependencies::check_leaf_type(Klass* ctxk) {
1516   assert(must_be_in_vm(), "raw oops here");
1517   assert_locked_or_safepoint(Compile_lock);
1518   InstanceKlass* ctx = InstanceKlass::cast(ctxk);
1519   Klass* sub = ctx->subklass();
1520   if (sub != NULL) {
1521     return sub;
1522   } else if (ctx->nof_implementors() != 0) {
1523     // if it is an interface, it must be unimplemented
1524     // (if it is not an interface, nof_implementors is always zero)
1525     Klass* impl = ctx->implementor();
1526     assert(impl != NULL, "must be set");
1527     return impl;
1528   } else {
1529     return NULL;
1530   }
1531 }
1532 
1533 // Test the assertion that conck is the only concrete subtype* of ctxk.
1534 // The type conck itself is allowed to have have further concrete subtypes.
1535 // This allows the compiler to narrow occurrences of ctxk by conck,
1536 // when dealing with the types of actual instances.
1537 Klass* Dependencies::check_abstract_with_unique_concrete_subtype(Klass* ctxk,
1538                                                                    Klass* conck,
1539                                                                    KlassDepChange* changes) {
1540   ClassHierarchyWalker wf(conck);
1541   return wf.find_witness_subtype(ctxk, changes);
1542 }
1543 
1544 // If a non-concrete class has no concrete subtypes, it is not (yet)
1545 // instantiatable.  This can allow the compiler to make some paths go
1546 // dead, if they are gated by a test of the type.
1547 Klass* Dependencies::check_abstract_with_no_concrete_subtype(Klass* ctxk,
1548                                                                KlassDepChange* changes) {
1549   // Find any concrete subtype, with no participants:
1550   ClassHierarchyWalker wf;
1551   return wf.find_witness_subtype(ctxk, changes);
1552 }
1553 
1554 
1555 // If a concrete class has no concrete subtypes, it can always be
1556 // exactly typed.  This allows the use of a cheaper type test.
1557 Klass* Dependencies::check_concrete_with_no_concrete_subtype(Klass* ctxk,
1558                                                                KlassDepChange* changes) {
1559   // Find any concrete subtype, with only the ctxk as participant:
1560   ClassHierarchyWalker wf(ctxk);
1561   return wf.find_witness_subtype(ctxk, changes);
1562 }
1563 
1564 
1565 // Find the unique concrete proper subtype of ctxk, or NULL if there
1566 // is more than one concrete proper subtype.  If there are no concrete
1567 // proper subtypes, return ctxk itself, whether it is concrete or not.
1568 // The returned subtype is allowed to have have further concrete subtypes.
1569 // That is, return CC1 for CX > CC1 > CC2, but NULL for CX > { CC1, CC2 }.
1570 Klass* Dependencies::find_unique_concrete_subtype(Klass* ctxk) {
1571   ClassHierarchyWalker wf(ctxk);   // Ignore ctxk when walking.
1572   wf.record_witnesses(1);          // Record one other witness when walking.
1573   Klass* wit = wf.find_witness_subtype(ctxk);
1574   if (wit != NULL)  return NULL;   // Too many witnesses.
1575   Klass* conck = wf.participant(0);
1576   if (conck == NULL) {
1577 #ifndef PRODUCT
1578     // Make sure the dependency mechanism will pass this discovery:
1579     if (VerifyDependencies) {
1580       // Turn off dependency tracing while actually testing deps.
1581       FlagSetting fs(TraceDependencies, false);
1582       if (!Dependencies::is_concrete_klass(ctxk)) {
1583         guarantee(NULL ==
1584                   (void *)check_abstract_with_no_concrete_subtype(ctxk),
1585                   "verify dep.");
1586       } else {
1587         guarantee(NULL ==
1588                   (void *)check_concrete_with_no_concrete_subtype(ctxk),
1589                   "verify dep.");
1590       }
1591     }
1592 #endif //PRODUCT
1593     return ctxk;                   // Return ctxk as a flag for "no subtypes".
1594   } else {
1595 #ifndef PRODUCT
1596     // Make sure the dependency mechanism will pass this discovery:
1597     if (VerifyDependencies) {
1598       // Turn off dependency tracing while actually testing deps.
1599       FlagSetting fs(TraceDependencies, false);
1600       if (!Dependencies::is_concrete_klass(ctxk)) {
1601         guarantee(NULL == (void *)
1602                   check_abstract_with_unique_concrete_subtype(ctxk, conck),
1603                   "verify dep.");
1604       }
1605     }
1606 #endif //PRODUCT
1607     return conck;
1608   }
1609 }
1610 
1611 // Test the assertion that the k[12] are the only concrete subtypes of ctxk,
1612 // except possibly for further subtypes of k[12] themselves.
1613 // The context type must be abstract.  The types k1 and k2 are themselves
1614 // allowed to have further concrete subtypes.
1615 Klass* Dependencies::check_abstract_with_exclusive_concrete_subtypes(
1616                                                 Klass* ctxk,
1617                                                 Klass* k1,
1618                                                 Klass* k2,
1619                                                 KlassDepChange* changes) {
1620   ClassHierarchyWalker wf;
1621   wf.add_participant(k1);
1622   wf.add_participant(k2);
1623   return wf.find_witness_subtype(ctxk, changes);
1624 }
1625 
1626 // Search ctxk for concrete implementations.  If there are klen or fewer,
1627 // pack them into the given array and return the number.
1628 // Otherwise, return -1, meaning the given array would overflow.
1629 // (Note that a return of 0 means there are exactly no concrete subtypes.)
1630 // In this search, if ctxk is concrete, it will be reported alone.
1631 // For any type CC reported, no proper subtypes of CC will be reported.
1632 int Dependencies::find_exclusive_concrete_subtypes(Klass* ctxk,
1633                                                    int klen,
1634                                                    Klass* karray[]) {
1635   ClassHierarchyWalker wf;
1636   wf.record_witnesses(klen);
1637   Klass* wit = wf.find_witness_subtype(ctxk);
1638   if (wit != NULL)  return -1;  // Too many witnesses.
1639   int num = wf.num_participants();
1640   assert(num <= klen, "oob");
1641   // Pack the result array with the good news.
1642   for (int i = 0; i < num; i++)
1643     karray[i] = wf.participant(i);
1644 #ifndef PRODUCT
1645   // Make sure the dependency mechanism will pass this discovery:
1646   if (VerifyDependencies) {
1647     // Turn off dependency tracing while actually testing deps.
1648     FlagSetting fs(TraceDependencies, false);
1649     switch (Dependencies::is_concrete_klass(ctxk)? -1: num) {
1650     case -1: // ctxk was itself concrete
1651       guarantee(num == 1 && karray[0] == ctxk, "verify dep.");
1652       break;
1653     case 0:
1654       guarantee(NULL == (void *)check_abstract_with_no_concrete_subtype(ctxk),
1655                 "verify dep.");
1656       break;
1657     case 1:
1658       guarantee(NULL == (void *)
1659                 check_abstract_with_unique_concrete_subtype(ctxk, karray[0]),
1660                 "verify dep.");
1661       break;
1662     case 2:
1663       guarantee(NULL == (void *)
1664                 check_abstract_with_exclusive_concrete_subtypes(ctxk,
1665                                                                 karray[0],
1666                                                                 karray[1]),
1667                 "verify dep.");
1668       break;
1669     default:
1670       ShouldNotReachHere();  // klen > 2 yet supported
1671     }
1672   }
1673 #endif //PRODUCT
1674   return num;
1675 }
1676 
1677 // If a class (or interface) has a unique concrete method uniqm, return NULL.
1678 // Otherwise, return a class that contains an interfering method.
1679 Klass* Dependencies::check_unique_concrete_method(Klass* ctxk, Method* uniqm,
1680                                                     KlassDepChange* changes) {
1681   // Here is a missing optimization:  If uniqm->is_final(),
1682   // we don't really need to search beneath it for overrides.
1683   // This is probably not important, since we don't use dependencies
1684   // to track final methods.  (They can't be "definalized".)
1685   ClassHierarchyWalker wf(uniqm->method_holder(), uniqm);
1686   return wf.find_witness_definer(ctxk, changes);
1687 }
1688 
1689 // Find the set of all non-abstract methods under ctxk that match m.
1690 // (The method m must be defined or inherited in ctxk.)
1691 // Include m itself in the set, unless it is abstract.
1692 // If this set has exactly one element, return that element.
1693 Method* Dependencies::find_unique_concrete_method(Klass* ctxk, Method* m) {
1694   // Return NULL if m is marked old; must have been a redefined method.
1695   if (m->is_old()) {
1696     return NULL;
1697   }
1698   ClassHierarchyWalker wf(m);
1699   assert(wf.check_method_context(ctxk, m), "proper context");
1700   wf.record_witnesses(1);
1701   Klass* wit = wf.find_witness_definer(ctxk);
1702   if (wit != NULL)  return NULL;  // Too many witnesses.
1703   Method* fm = wf.found_method(0);  // Will be NULL if num_parts == 0.
1704   if (Dependencies::is_concrete_method(m, ctxk)) {
1705     if (fm == NULL) {
1706       // It turns out that m was always the only implementation.
1707       fm = m;
1708     } else if (fm != m) {
1709       // Two conflicting implementations after all.
1710       // (This can happen if m is inherited into ctxk and fm overrides it.)
1711       return NULL;
1712     }
1713   }
1714 #ifndef PRODUCT
1715   // Make sure the dependency mechanism will pass this discovery:
1716   if (VerifyDependencies && fm != NULL) {
1717     guarantee(NULL == (void *)check_unique_concrete_method(ctxk, fm),
1718               "verify dep.");
1719   }
1720 #endif //PRODUCT
1721   return fm;
1722 }
1723 
1724 Klass* Dependencies::check_exclusive_concrete_methods(Klass* ctxk,
1725                                                         Method* m1,
1726                                                         Method* m2,
1727                                                         KlassDepChange* changes) {
1728   ClassHierarchyWalker wf(m1);
1729   wf.add_participant(m1->method_holder());
1730   wf.add_participant(m2->method_holder());
1731   return wf.find_witness_definer(ctxk, changes);
1732 }
1733 
1734 Klass* Dependencies::check_has_no_finalizable_subclasses(Klass* ctxk, KlassDepChange* changes) {
1735   Klass* search_at = ctxk;
1736   if (changes != NULL)
1737     search_at = changes->new_type(); // just look at the new bit
1738   return find_finalizable_subclass(search_at);
1739 }
1740 
1741 Klass* Dependencies::check_call_site_target_value(oop call_site, oop method_handle, CallSiteDepChange* changes) {
1742   assert(!oopDesc::is_null(call_site), "sanity");
1743   assert(!oopDesc::is_null(method_handle), "sanity");
1744   assert(call_site->is_a(SystemDictionary::CallSite_klass()),     "sanity");
1745 
1746   if (changes == NULL) {
1747     // Validate all CallSites
1748     if (java_lang_invoke_CallSite::target(call_site) != method_handle)
1749       return call_site->klass();  // assertion failed
1750   } else {
1751     // Validate the given CallSite
1752     if (call_site == changes->call_site() && java_lang_invoke_CallSite::target(call_site) != changes->method_handle()) {
1753       assert(method_handle != changes->method_handle(), "must be");
1754       return call_site->klass();  // assertion failed
1755     }
1756   }
1757   return NULL;  // assertion still valid
1758 }
1759 
1760 void Dependencies::DepStream::trace_and_log_witness(Klass* witness) {
1761   if (witness != NULL) {
1762     if (TraceDependencies) {
1763       print_dependency(witness, /*verbose=*/ true);
1764     }
1765     // The following is a no-op unless logging is enabled:
1766     log_dependency(witness);
1767   }
1768 }
1769 
1770 
1771 Klass* Dependencies::DepStream::check_klass_dependency(KlassDepChange* changes) {
1772   assert_locked_or_safepoint(Compile_lock);
1773   Dependencies::check_valid_dependency_type(type());
1774 
1775   Klass* witness = NULL;
1776   switch (type()) {
1777   case evol_method:
1778     witness = check_evol_method(method_argument(0));
1779     break;
1780   case leaf_type:
1781     witness = check_leaf_type(context_type());
1782     break;
1783   case abstract_with_unique_concrete_subtype:
1784     witness = check_abstract_with_unique_concrete_subtype(context_type(), type_argument(1), changes);
1785     break;
1786   case abstract_with_no_concrete_subtype:
1787     witness = check_abstract_with_no_concrete_subtype(context_type(), changes);
1788     break;
1789   case concrete_with_no_concrete_subtype:
1790     witness = check_concrete_with_no_concrete_subtype(context_type(), changes);
1791     break;
1792   case unique_concrete_method:
1793     witness = check_unique_concrete_method(context_type(), method_argument(1), changes);
1794     break;
1795   case abstract_with_exclusive_concrete_subtypes_2:
1796     witness = check_abstract_with_exclusive_concrete_subtypes(context_type(), type_argument(1), type_argument(2), changes);
1797     break;
1798   case exclusive_concrete_methods_2:
1799     witness = check_exclusive_concrete_methods(context_type(), method_argument(1), method_argument(2), changes);
1800     break;
1801   case no_finalizable_subclasses:
1802     witness = check_has_no_finalizable_subclasses(context_type(), changes);
1803     break;
1804   default:
1805     witness = NULL;
1806     break;
1807   }
1808   trace_and_log_witness(witness);
1809   return witness;
1810 }
1811 
1812 
1813 Klass* Dependencies::DepStream::check_call_site_dependency(CallSiteDepChange* changes) {
1814   assert_locked_or_safepoint(Compile_lock);
1815   Dependencies::check_valid_dependency_type(type());
1816 
1817   Klass* witness = NULL;
1818   switch (type()) {
1819   case call_site_target_value:
1820     witness = check_call_site_target_value(argument_oop(0), argument_oop(1), changes);
1821     break;
1822   default:
1823     witness = NULL;
1824     break;
1825   }
1826   trace_and_log_witness(witness);
1827   return witness;
1828 }
1829 
1830 
1831 Klass* Dependencies::DepStream::spot_check_dependency_at(DepChange& changes) {
1832   // Handle klass dependency
1833   if (changes.is_klass_change() && changes.as_klass_change()->involves_context(context_type()))
1834     return check_klass_dependency(changes.as_klass_change());
1835 
1836   // Handle CallSite dependency
1837   if (changes.is_call_site_change())
1838     return check_call_site_dependency(changes.as_call_site_change());
1839 
1840   // irrelevant dependency; skip it
1841   return NULL;
1842 }
1843 
1844 
1845 void DepChange::print() {
1846   int nsup = 0, nint = 0;
1847   for (ContextStream str(*this); str.next(); ) {
1848     Klass* k = str.klass();
1849     switch (str.change_type()) {
1850     case Change_new_type:
1851       tty->print_cr("  dependee = %s", k->external_name());
1852       break;
1853     case Change_new_sub:
1854       if (!WizardMode) {
1855         ++nsup;
1856       } else {
1857         tty->print_cr("  context super = %s", k->external_name());
1858       }
1859       break;
1860     case Change_new_impl:
1861       if (!WizardMode) {
1862         ++nint;
1863       } else {
1864         tty->print_cr("  context interface = %s", k->external_name());
1865       }
1866       break;
1867     }
1868   }
1869   if (nsup + nint != 0) {
1870     tty->print_cr("  context supers = %d, interfaces = %d", nsup, nint);
1871   }
1872 }
1873 
1874 void DepChange::ContextStream::start() {
1875   Klass* new_type = _changes.is_klass_change() ? _changes.as_klass_change()->new_type() : (Klass*) NULL;
1876   _change_type = (new_type == NULL ? NO_CHANGE : Start_Klass);
1877   _klass = new_type;
1878   _ti_base = NULL;
1879   _ti_index = 0;
1880   _ti_limit = 0;
1881 }
1882 
1883 bool DepChange::ContextStream::next() {
1884   switch (_change_type) {
1885   case Start_Klass:             // initial state; _klass is the new type
1886     _ti_base = InstanceKlass::cast(_klass)->transitive_interfaces();
1887     _ti_index = 0;
1888     _change_type = Change_new_type;
1889     return true;
1890   case Change_new_type:
1891     // fall through:
1892     _change_type = Change_new_sub;
1893   case Change_new_sub:
1894     // 6598190: brackets workaround Sun Studio C++ compiler bug 6629277
1895     {
1896       _klass = _klass->super();
1897       if (_klass != NULL) {
1898         return true;
1899       }
1900     }
1901     // else set up _ti_limit and fall through:
1902     _ti_limit = (_ti_base == NULL) ? 0 : _ti_base->length();
1903     _change_type = Change_new_impl;
1904   case Change_new_impl:
1905     if (_ti_index < _ti_limit) {
1906       _klass = _ti_base->at(_ti_index++);
1907       return true;
1908     }
1909     // fall through:
1910     _change_type = NO_CHANGE;  // iterator is exhausted
1911   case NO_CHANGE:
1912     break;
1913   default:
1914     ShouldNotReachHere();
1915   }
1916   return false;
1917 }
1918 
1919 void KlassDepChange::initialize() {
1920   // entire transaction must be under this lock:
1921   assert_lock_strong(Compile_lock);
1922 
1923   // Mark all dependee and all its superclasses
1924   // Mark transitive interfaces
1925   for (ContextStream str(*this); str.next(); ) {
1926     Klass* d = str.klass();
1927     assert(!InstanceKlass::cast(d)->is_marked_dependent(), "checking");
1928     InstanceKlass::cast(d)->set_is_marked_dependent(true);
1929   }
1930 }
1931 
1932 KlassDepChange::~KlassDepChange() {
1933   // Unmark all dependee and all its superclasses
1934   // Unmark transitive interfaces
1935   for (ContextStream str(*this); str.next(); ) {
1936     Klass* d = str.klass();
1937     InstanceKlass::cast(d)->set_is_marked_dependent(false);
1938   }
1939 }
1940 
1941 bool KlassDepChange::involves_context(Klass* k) {
1942   if (k == NULL || !k->is_instance_klass()) {
1943     return false;
1944   }
1945   InstanceKlass* ik = InstanceKlass::cast(k);
1946   bool is_contained = ik->is_marked_dependent();
1947   assert(is_contained == new_type()->is_subtype_of(k),
1948          "correct marking of potential context types");
1949   return is_contained;
1950 }
1951 
1952 #ifndef PRODUCT
1953 void Dependencies::print_statistics() {
1954   if (deps_find_witness_print != 0) {
1955     // Call one final time, to flush out the data.
1956     deps_find_witness_print = -1;
1957     count_find_witness_calls();
1958   }
1959 }
1960 #endif
1961 
1962 CallSiteDepChange::CallSiteDepChange(Handle call_site, Handle method_handle) :
1963   _call_site(call_site),
1964   _method_handle(method_handle) {
1965   assert(_call_site()->is_a(SystemDictionary::CallSite_klass()), "must be");
1966   assert(_method_handle.is_null() || _method_handle()->is_a(SystemDictionary::MethodHandle_klass()), "must be");
1967 }