1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  28 #include "gc/g1/heapRegion.hpp"
  29 #include "gc/shared/barrierSet.hpp"
  30 #include "gc/shared/cardTableModRefBS.hpp"
  31 #include "gc/shared/collectedHeap.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "opto/addnode.hpp"
  34 #include "opto/castnode.hpp"
  35 #include "opto/convertnode.hpp"
  36 #include "opto/graphKit.hpp"
  37 #include "opto/idealKit.hpp"
  38 #include "opto/intrinsicnode.hpp"
  39 #include "opto/locknode.hpp"
  40 #include "opto/machnode.hpp"
  41 #include "opto/opaquenode.hpp"
  42 #include "opto/parse.hpp"
  43 #include "opto/rootnode.hpp"
  44 #include "opto/runtime.hpp"
  45 #include "runtime/deoptimization.hpp"
  46 #include "runtime/sharedRuntime.hpp"
  47 
  48 //----------------------------GraphKit-----------------------------------------
  49 // Main utility constructor.
  50 GraphKit::GraphKit(JVMState* jvms)
  51   : Phase(Phase::Parser),
  52     _env(C->env()),
  53     _gvn(*C->initial_gvn())
  54 {
  55   _exceptions = jvms->map()->next_exception();
  56   if (_exceptions != NULL)  jvms->map()->set_next_exception(NULL);
  57   set_jvms(jvms);
  58 }
  59 
  60 // Private constructor for parser.
  61 GraphKit::GraphKit()
  62   : Phase(Phase::Parser),
  63     _env(C->env()),
  64     _gvn(*C->initial_gvn())
  65 {
  66   _exceptions = NULL;
  67   set_map(NULL);
  68   debug_only(_sp = -99);
  69   debug_only(set_bci(-99));
  70 }
  71 
  72 
  73 
  74 //---------------------------clean_stack---------------------------------------
  75 // Clear away rubbish from the stack area of the JVM state.
  76 // This destroys any arguments that may be waiting on the stack.
  77 void GraphKit::clean_stack(int from_sp) {
  78   SafePointNode* map      = this->map();
  79   JVMState*      jvms     = this->jvms();
  80   int            stk_size = jvms->stk_size();
  81   int            stkoff   = jvms->stkoff();
  82   Node*          top      = this->top();
  83   for (int i = from_sp; i < stk_size; i++) {
  84     if (map->in(stkoff + i) != top) {
  85       map->set_req(stkoff + i, top);
  86     }
  87   }
  88 }
  89 
  90 
  91 //--------------------------------sync_jvms-----------------------------------
  92 // Make sure our current jvms agrees with our parse state.
  93 JVMState* GraphKit::sync_jvms() const {
  94   JVMState* jvms = this->jvms();
  95   jvms->set_bci(bci());       // Record the new bci in the JVMState
  96   jvms->set_sp(sp());         // Record the new sp in the JVMState
  97   assert(jvms_in_sync(), "jvms is now in sync");
  98   return jvms;
  99 }
 100 
 101 //--------------------------------sync_jvms_for_reexecute---------------------
 102 // Make sure our current jvms agrees with our parse state.  This version
 103 // uses the reexecute_sp for reexecuting bytecodes.
 104 JVMState* GraphKit::sync_jvms_for_reexecute() {
 105   JVMState* jvms = this->jvms();
 106   jvms->set_bci(bci());          // Record the new bci in the JVMState
 107   jvms->set_sp(reexecute_sp());  // Record the new sp in the JVMState
 108   return jvms;
 109 }
 110 
 111 #ifdef ASSERT
 112 bool GraphKit::jvms_in_sync() const {
 113   Parse* parse = is_Parse();
 114   if (parse == NULL) {
 115     if (bci() !=      jvms()->bci())          return false;
 116     if (sp()  != (int)jvms()->sp())           return false;
 117     return true;
 118   }
 119   if (jvms()->method() != parse->method())    return false;
 120   if (jvms()->bci()    != parse->bci())       return false;
 121   int jvms_sp = jvms()->sp();
 122   if (jvms_sp          != parse->sp())        return false;
 123   int jvms_depth = jvms()->depth();
 124   if (jvms_depth       != parse->depth())     return false;
 125   return true;
 126 }
 127 
 128 // Local helper checks for special internal merge points
 129 // used to accumulate and merge exception states.
 130 // They are marked by the region's in(0) edge being the map itself.
 131 // Such merge points must never "escape" into the parser at large,
 132 // until they have been handed to gvn.transform.
 133 static bool is_hidden_merge(Node* reg) {
 134   if (reg == NULL)  return false;
 135   if (reg->is_Phi()) {
 136     reg = reg->in(0);
 137     if (reg == NULL)  return false;
 138   }
 139   return reg->is_Region() && reg->in(0) != NULL && reg->in(0)->is_Root();
 140 }
 141 
 142 void GraphKit::verify_map() const {
 143   if (map() == NULL)  return;  // null map is OK
 144   assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
 145   assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
 146   assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
 147 }
 148 
 149 void GraphKit::verify_exception_state(SafePointNode* ex_map) {
 150   assert(ex_map->next_exception() == NULL, "not already part of a chain");
 151   assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
 152 }
 153 #endif
 154 
 155 //---------------------------stop_and_kill_map---------------------------------
 156 // Set _map to NULL, signalling a stop to further bytecode execution.
 157 // First smash the current map's control to a constant, to mark it dead.
 158 void GraphKit::stop_and_kill_map() {
 159   SafePointNode* dead_map = stop();
 160   if (dead_map != NULL) {
 161     dead_map->disconnect_inputs(NULL, C); // Mark the map as killed.
 162     assert(dead_map->is_killed(), "must be so marked");
 163   }
 164 }
 165 
 166 
 167 //--------------------------------stopped--------------------------------------
 168 // Tell if _map is NULL, or control is top.
 169 bool GraphKit::stopped() {
 170   if (map() == NULL)           return true;
 171   else if (control() == top()) return true;
 172   else                         return false;
 173 }
 174 
 175 
 176 //-----------------------------has_ex_handler----------------------------------
 177 // Tell if this method or any caller method has exception handlers.
 178 bool GraphKit::has_ex_handler() {
 179   for (JVMState* jvmsp = jvms(); jvmsp != NULL; jvmsp = jvmsp->caller()) {
 180     if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
 181       return true;
 182     }
 183   }
 184   return false;
 185 }
 186 
 187 //------------------------------save_ex_oop------------------------------------
 188 // Save an exception without blowing stack contents or other JVM state.
 189 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
 190   assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
 191   ex_map->add_req(ex_oop);
 192   debug_only(verify_exception_state(ex_map));
 193 }
 194 
 195 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
 196   assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
 197   Node* ex_oop = ex_map->in(ex_map->req()-1);
 198   if (clear_it)  ex_map->del_req(ex_map->req()-1);
 199   return ex_oop;
 200 }
 201 
 202 //-----------------------------saved_ex_oop------------------------------------
 203 // Recover a saved exception from its map.
 204 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
 205   return common_saved_ex_oop(ex_map, false);
 206 }
 207 
 208 //--------------------------clear_saved_ex_oop---------------------------------
 209 // Erase a previously saved exception from its map.
 210 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
 211   return common_saved_ex_oop(ex_map, true);
 212 }
 213 
 214 #ifdef ASSERT
 215 //---------------------------has_saved_ex_oop----------------------------------
 216 // Erase a previously saved exception from its map.
 217 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
 218   return ex_map->req() == ex_map->jvms()->endoff()+1;
 219 }
 220 #endif
 221 
 222 //-------------------------make_exception_state--------------------------------
 223 // Turn the current JVM state into an exception state, appending the ex_oop.
 224 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
 225   sync_jvms();
 226   SafePointNode* ex_map = stop();  // do not manipulate this map any more
 227   set_saved_ex_oop(ex_map, ex_oop);
 228   return ex_map;
 229 }
 230 
 231 
 232 //--------------------------add_exception_state--------------------------------
 233 // Add an exception to my list of exceptions.
 234 void GraphKit::add_exception_state(SafePointNode* ex_map) {
 235   if (ex_map == NULL || ex_map->control() == top()) {
 236     return;
 237   }
 238 #ifdef ASSERT
 239   verify_exception_state(ex_map);
 240   if (has_exceptions()) {
 241     assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
 242   }
 243 #endif
 244 
 245   // If there is already an exception of exactly this type, merge with it.
 246   // In particular, null-checks and other low-level exceptions common up here.
 247   Node*       ex_oop  = saved_ex_oop(ex_map);
 248   const Type* ex_type = _gvn.type(ex_oop);
 249   if (ex_oop == top()) {
 250     // No action needed.
 251     return;
 252   }
 253   assert(ex_type->isa_instptr(), "exception must be an instance");
 254   for (SafePointNode* e2 = _exceptions; e2 != NULL; e2 = e2->next_exception()) {
 255     const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
 256     // We check sp also because call bytecodes can generate exceptions
 257     // both before and after arguments are popped!
 258     if (ex_type2 == ex_type
 259         && e2->_jvms->sp() == ex_map->_jvms->sp()) {
 260       combine_exception_states(ex_map, e2);
 261       return;
 262     }
 263   }
 264 
 265   // No pre-existing exception of the same type.  Chain it on the list.
 266   push_exception_state(ex_map);
 267 }
 268 
 269 //-----------------------add_exception_states_from-----------------------------
 270 void GraphKit::add_exception_states_from(JVMState* jvms) {
 271   SafePointNode* ex_map = jvms->map()->next_exception();
 272   if (ex_map != NULL) {
 273     jvms->map()->set_next_exception(NULL);
 274     for (SafePointNode* next_map; ex_map != NULL; ex_map = next_map) {
 275       next_map = ex_map->next_exception();
 276       ex_map->set_next_exception(NULL);
 277       add_exception_state(ex_map);
 278     }
 279   }
 280 }
 281 
 282 //-----------------------transfer_exceptions_into_jvms-------------------------
 283 JVMState* GraphKit::transfer_exceptions_into_jvms() {
 284   if (map() == NULL) {
 285     // We need a JVMS to carry the exceptions, but the map has gone away.
 286     // Create a scratch JVMS, cloned from any of the exception states...
 287     if (has_exceptions()) {
 288       _map = _exceptions;
 289       _map = clone_map();
 290       _map->set_next_exception(NULL);
 291       clear_saved_ex_oop(_map);
 292       debug_only(verify_map());
 293     } else {
 294       // ...or created from scratch
 295       JVMState* jvms = new (C) JVMState(_method, NULL);
 296       jvms->set_bci(_bci);
 297       jvms->set_sp(_sp);
 298       jvms->set_map(new SafePointNode(TypeFunc::Parms, jvms));
 299       set_jvms(jvms);
 300       for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
 301       set_all_memory(top());
 302       while (map()->req() < jvms->endoff())  map()->add_req(top());
 303     }
 304     // (This is a kludge, in case you didn't notice.)
 305     set_control(top());
 306   }
 307   JVMState* jvms = sync_jvms();
 308   assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
 309   jvms->map()->set_next_exception(_exceptions);
 310   _exceptions = NULL;   // done with this set of exceptions
 311   return jvms;
 312 }
 313 
 314 static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
 315   assert(is_hidden_merge(dstphi), "must be a special merge node");
 316   assert(is_hidden_merge(srcphi), "must be a special merge node");
 317   uint limit = srcphi->req();
 318   for (uint i = PhiNode::Input; i < limit; i++) {
 319     dstphi->add_req(srcphi->in(i));
 320   }
 321 }
 322 static inline void add_one_req(Node* dstphi, Node* src) {
 323   assert(is_hidden_merge(dstphi), "must be a special merge node");
 324   assert(!is_hidden_merge(src), "must not be a special merge node");
 325   dstphi->add_req(src);
 326 }
 327 
 328 //-----------------------combine_exception_states------------------------------
 329 // This helper function combines exception states by building phis on a
 330 // specially marked state-merging region.  These regions and phis are
 331 // untransformed, and can build up gradually.  The region is marked by
 332 // having a control input of its exception map, rather than NULL.  Such
 333 // regions do not appear except in this function, and in use_exception_state.
 334 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
 335   if (failing())  return;  // dying anyway...
 336   JVMState* ex_jvms = ex_map->_jvms;
 337   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
 338   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
 339   assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
 340   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
 341   assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
 342   assert(ex_map->req() == phi_map->req(), "matching maps");
 343   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
 344   Node*         hidden_merge_mark = root();
 345   Node*         region  = phi_map->control();
 346   MergeMemNode* phi_mem = phi_map->merged_memory();
 347   MergeMemNode* ex_mem  = ex_map->merged_memory();
 348   if (region->in(0) != hidden_merge_mark) {
 349     // The control input is not (yet) a specially-marked region in phi_map.
 350     // Make it so, and build some phis.
 351     region = new RegionNode(2);
 352     _gvn.set_type(region, Type::CONTROL);
 353     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
 354     region->init_req(1, phi_map->control());
 355     phi_map->set_control(region);
 356     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
 357     record_for_igvn(io_phi);
 358     _gvn.set_type(io_phi, Type::ABIO);
 359     phi_map->set_i_o(io_phi);
 360     for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
 361       Node* m = mms.memory();
 362       Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
 363       record_for_igvn(m_phi);
 364       _gvn.set_type(m_phi, Type::MEMORY);
 365       mms.set_memory(m_phi);
 366     }
 367   }
 368 
 369   // Either or both of phi_map and ex_map might already be converted into phis.
 370   Node* ex_control = ex_map->control();
 371   // if there is special marking on ex_map also, we add multiple edges from src
 372   bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
 373   // how wide was the destination phi_map, originally?
 374   uint orig_width = region->req();
 375 
 376   if (add_multiple) {
 377     add_n_reqs(region, ex_control);
 378     add_n_reqs(phi_map->i_o(), ex_map->i_o());
 379   } else {
 380     // ex_map has no merges, so we just add single edges everywhere
 381     add_one_req(region, ex_control);
 382     add_one_req(phi_map->i_o(), ex_map->i_o());
 383   }
 384   for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
 385     if (mms.is_empty()) {
 386       // get a copy of the base memory, and patch some inputs into it
 387       const TypePtr* adr_type = mms.adr_type(C);
 388       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
 389       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
 390       mms.set_memory(phi);
 391       // Prepare to append interesting stuff onto the newly sliced phi:
 392       while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
 393     }
 394     // Append stuff from ex_map:
 395     if (add_multiple) {
 396       add_n_reqs(mms.memory(), mms.memory2());
 397     } else {
 398       add_one_req(mms.memory(), mms.memory2());
 399     }
 400   }
 401   uint limit = ex_map->req();
 402   for (uint i = TypeFunc::Parms; i < limit; i++) {
 403     // Skip everything in the JVMS after tos.  (The ex_oop follows.)
 404     if (i == tos)  i = ex_jvms->monoff();
 405     Node* src = ex_map->in(i);
 406     Node* dst = phi_map->in(i);
 407     if (src != dst) {
 408       PhiNode* phi;
 409       if (dst->in(0) != region) {
 410         dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
 411         record_for_igvn(phi);
 412         _gvn.set_type(phi, phi->type());
 413         phi_map->set_req(i, dst);
 414         // Prepare to append interesting stuff onto the new phi:
 415         while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
 416       } else {
 417         assert(dst->is_Phi(), "nobody else uses a hidden region");
 418         phi = dst->as_Phi();
 419       }
 420       if (add_multiple && src->in(0) == ex_control) {
 421         // Both are phis.
 422         add_n_reqs(dst, src);
 423       } else {
 424         while (dst->req() < region->req())  add_one_req(dst, src);
 425       }
 426       const Type* srctype = _gvn.type(src);
 427       if (phi->type() != srctype) {
 428         const Type* dsttype = phi->type()->meet_speculative(srctype);
 429         if (phi->type() != dsttype) {
 430           phi->set_type(dsttype);
 431           _gvn.set_type(phi, dsttype);
 432         }
 433       }
 434     }
 435   }
 436   phi_map->merge_replaced_nodes_with(ex_map);
 437 }
 438 
 439 //--------------------------use_exception_state--------------------------------
 440 Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
 441   if (failing()) { stop(); return top(); }
 442   Node* region = phi_map->control();
 443   Node* hidden_merge_mark = root();
 444   assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
 445   Node* ex_oop = clear_saved_ex_oop(phi_map);
 446   if (region->in(0) == hidden_merge_mark) {
 447     // Special marking for internal ex-states.  Process the phis now.
 448     region->set_req(0, region);  // now it's an ordinary region
 449     set_jvms(phi_map->jvms());   // ...so now we can use it as a map
 450     // Note: Setting the jvms also sets the bci and sp.
 451     set_control(_gvn.transform(region));
 452     uint tos = jvms()->stkoff() + sp();
 453     for (uint i = 1; i < tos; i++) {
 454       Node* x = phi_map->in(i);
 455       if (x->in(0) == region) {
 456         assert(x->is_Phi(), "expected a special phi");
 457         phi_map->set_req(i, _gvn.transform(x));
 458       }
 459     }
 460     for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
 461       Node* x = mms.memory();
 462       if (x->in(0) == region) {
 463         assert(x->is_Phi(), "nobody else uses a hidden region");
 464         mms.set_memory(_gvn.transform(x));
 465       }
 466     }
 467     if (ex_oop->in(0) == region) {
 468       assert(ex_oop->is_Phi(), "expected a special phi");
 469       ex_oop = _gvn.transform(ex_oop);
 470     }
 471   } else {
 472     set_jvms(phi_map->jvms());
 473   }
 474 
 475   assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
 476   assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
 477   return ex_oop;
 478 }
 479 
 480 //---------------------------------java_bc-------------------------------------
 481 Bytecodes::Code GraphKit::java_bc() const {
 482   ciMethod* method = this->method();
 483   int       bci    = this->bci();
 484   if (method != NULL && bci != InvocationEntryBci)
 485     return method->java_code_at_bci(bci);
 486   else
 487     return Bytecodes::_illegal;
 488 }
 489 
 490 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,
 491                                                           bool must_throw) {
 492     // if the exception capability is set, then we will generate code
 493     // to check the JavaThread.should_post_on_exceptions flag to see
 494     // if we actually need to report exception events (for this
 495     // thread).  If we don't need to report exception events, we will
 496     // take the normal fast path provided by add_exception_events.  If
 497     // exception event reporting is enabled for this thread, we will
 498     // take the uncommon_trap in the BuildCutout below.
 499 
 500     // first must access the should_post_on_exceptions_flag in this thread's JavaThread
 501     Node* jthread = _gvn.transform(new ThreadLocalNode());
 502     Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset()));
 503     Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, MemNode::unordered);
 504 
 505     // Test the should_post_on_exceptions_flag vs. 0
 506     Node* chk = _gvn.transform( new CmpINode(should_post_flag, intcon(0)) );
 507     Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
 508 
 509     // Branch to slow_path if should_post_on_exceptions_flag was true
 510     { BuildCutout unless(this, tst, PROB_MAX);
 511       // Do not try anything fancy if we're notifying the VM on every throw.
 512       // Cf. case Bytecodes::_athrow in parse2.cpp.
 513       uncommon_trap(reason, Deoptimization::Action_none,
 514                     (ciKlass*)NULL, (char*)NULL, must_throw);
 515     }
 516 
 517 }
 518 
 519 //------------------------------builtin_throw----------------------------------
 520 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, Node* arg) {
 521   bool must_throw = true;
 522 
 523   if (env()->jvmti_can_post_on_exceptions()) {
 524     // check if we must post exception events, take uncommon trap if so
 525     uncommon_trap_if_should_post_on_exceptions(reason, must_throw);
 526     // here if should_post_on_exceptions is false
 527     // continue on with the normal codegen
 528   }
 529 
 530   // If this particular condition has not yet happened at this
 531   // bytecode, then use the uncommon trap mechanism, and allow for
 532   // a future recompilation if several traps occur here.
 533   // If the throw is hot, try to use a more complicated inline mechanism
 534   // which keeps execution inside the compiled code.
 535   bool treat_throw_as_hot = false;
 536   ciMethodData* md = method()->method_data();
 537 
 538   if (ProfileTraps) {
 539     if (too_many_traps(reason)) {
 540       treat_throw_as_hot = true;
 541     }
 542     // (If there is no MDO at all, assume it is early in
 543     // execution, and that any deopts are part of the
 544     // startup transient, and don't need to be remembered.)
 545 
 546     // Also, if there is a local exception handler, treat all throws
 547     // as hot if there has been at least one in this method.
 548     if (C->trap_count(reason) != 0
 549         && method()->method_data()->trap_count(reason) != 0
 550         && has_ex_handler()) {
 551         treat_throw_as_hot = true;
 552     }
 553   }
 554 
 555   // If this throw happens frequently, an uncommon trap might cause
 556   // a performance pothole.  If there is a local exception handler,
 557   // and if this particular bytecode appears to be deoptimizing often,
 558   // let us handle the throw inline, with a preconstructed instance.
 559   // Note:   If the deopt count has blown up, the uncommon trap
 560   // runtime is going to flush this nmethod, not matter what.
 561   if (treat_throw_as_hot
 562       && (!StackTraceInThrowable || OmitStackTraceInFastThrow)) {
 563     // If the throw is local, we use a pre-existing instance and
 564     // punt on the backtrace.  This would lead to a missing backtrace
 565     // (a repeat of 4292742) if the backtrace object is ever asked
 566     // for its backtrace.
 567     // Fixing this remaining case of 4292742 requires some flavor of
 568     // escape analysis.  Leave that for the future.
 569     ciInstance* ex_obj = NULL;
 570     switch (reason) {
 571     case Deoptimization::Reason_null_check:
 572       ex_obj = env()->NullPointerException_instance();
 573       break;
 574     case Deoptimization::Reason_div0_check:
 575       ex_obj = env()->ArithmeticException_instance();
 576       break;
 577     case Deoptimization::Reason_range_check:
 578       ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
 579       break;
 580     case Deoptimization::Reason_class_check:
 581       if (java_bc() == Bytecodes::_aastore) {
 582         ex_obj = env()->ArrayStoreException_instance();
 583       } else {
 584         ex_obj = env()->ClassCastException_instance();
 585       }
 586       break;
 587     default:
 588       break;
 589     }
 590     if (failing()) { stop(); return; }  // exception allocation might fail
 591     if (ex_obj != NULL) {
 592       // Cheat with a preallocated exception object.
 593       if (C->log() != NULL)
 594         C->log()->elem("hot_throw preallocated='1' reason='%s'",
 595                        Deoptimization::trap_reason_name(reason));
 596       const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
 597       Node*              ex_node = _gvn.transform(ConNode::make(ex_con));
 598 
 599       // Clear the detail message of the preallocated exception object.
 600       // Weblogic sometimes mutates the detail message of exceptions
 601       // using reflection.
 602       int offset = java_lang_Throwable::get_detailMessage_offset();
 603       const TypePtr* adr_typ = ex_con->add_offset(offset);
 604 
 605       Node *adr = basic_plus_adr(ex_node, ex_node, offset);
 606       const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass());
 607       // Conservatively release stores of object references.
 608       Node *store = store_oop_to_object(control(), ex_node, adr, adr_typ, null(), val_type, T_OBJECT, MemNode::release);
 609 
 610       add_exception_state(make_exception_state(ex_node));
 611       return;
 612     }
 613   }
 614 
 615   // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
 616   // It won't be much cheaper than bailing to the interp., since we'll
 617   // have to pass up all the debug-info, and the runtime will have to
 618   // create the stack trace.
 619 
 620   // Usual case:  Bail to interpreter.
 621   // Reserve the right to recompile if we haven't seen anything yet.
 622 
 623   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? C->method() : NULL;
 624   Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
 625   if (treat_throw_as_hot
 626       && (method()->method_data()->trap_recompiled_at(bci(), m)
 627           || C->too_many_traps(reason))) {
 628     // We cannot afford to take more traps here.  Suffer in the interpreter.
 629     if (C->log() != NULL)
 630       C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
 631                      Deoptimization::trap_reason_name(reason),
 632                      C->trap_count(reason));
 633     action = Deoptimization::Action_none;
 634   }
 635 
 636   // "must_throw" prunes the JVM state to include only the stack, if there
 637   // are no local exception handlers.  This should cut down on register
 638   // allocation time and code size, by drastically reducing the number
 639   // of in-edges on the call to the uncommon trap.
 640 
 641   uncommon_trap(reason, action, (ciKlass*)NULL, (char*)NULL, must_throw);
 642 }
 643 
 644 
 645 //----------------------------PreserveJVMState---------------------------------
 646 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
 647   debug_only(kit->verify_map());
 648   _kit    = kit;
 649   _map    = kit->map();   // preserve the map
 650   _sp     = kit->sp();
 651   kit->set_map(clone_map ? kit->clone_map() : NULL);
 652 #ifdef ASSERT
 653   _bci    = kit->bci();
 654   Parse* parser = kit->is_Parse();
 655   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 656   _block  = block;
 657 #endif
 658 }
 659 PreserveJVMState::~PreserveJVMState() {
 660   GraphKit* kit = _kit;
 661 #ifdef ASSERT
 662   assert(kit->bci() == _bci, "bci must not shift");
 663   Parse* parser = kit->is_Parse();
 664   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 665   assert(block == _block,    "block must not shift");
 666 #endif
 667   kit->set_map(_map);
 668   kit->set_sp(_sp);
 669 }
 670 
 671 
 672 //-----------------------------BuildCutout-------------------------------------
 673 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
 674   : PreserveJVMState(kit)
 675 {
 676   assert(p->is_Con() || p->is_Bool(), "test must be a bool");
 677   SafePointNode* outer_map = _map;   // preserved map is caller's
 678   SafePointNode* inner_map = kit->map();
 679   IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
 680   outer_map->set_control(kit->gvn().transform( new IfTrueNode(iff) ));
 681   inner_map->set_control(kit->gvn().transform( new IfFalseNode(iff) ));
 682 }
 683 BuildCutout::~BuildCutout() {
 684   GraphKit* kit = _kit;
 685   assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
 686 }
 687 
 688 //---------------------------PreserveReexecuteState----------------------------
 689 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
 690   assert(!kit->stopped(), "must call stopped() before");
 691   _kit    =    kit;
 692   _sp     =    kit->sp();
 693   _reexecute = kit->jvms()->_reexecute;
 694 }
 695 PreserveReexecuteState::~PreserveReexecuteState() {
 696   if (_kit->stopped()) return;
 697   _kit->jvms()->_reexecute = _reexecute;
 698   _kit->set_sp(_sp);
 699 }
 700 
 701 //------------------------------clone_map--------------------------------------
 702 // Implementation of PreserveJVMState
 703 //
 704 // Only clone_map(...) here. If this function is only used in the
 705 // PreserveJVMState class we may want to get rid of this extra
 706 // function eventually and do it all there.
 707 
 708 SafePointNode* GraphKit::clone_map() {
 709   if (map() == NULL)  return NULL;
 710 
 711   // Clone the memory edge first
 712   Node* mem = MergeMemNode::make(map()->memory());
 713   gvn().set_type_bottom(mem);
 714 
 715   SafePointNode *clonemap = (SafePointNode*)map()->clone();
 716   JVMState* jvms = this->jvms();
 717   JVMState* clonejvms = jvms->clone_shallow(C);
 718   clonemap->set_memory(mem);
 719   clonemap->set_jvms(clonejvms);
 720   clonejvms->set_map(clonemap);
 721   record_for_igvn(clonemap);
 722   gvn().set_type_bottom(clonemap);
 723   return clonemap;
 724 }
 725 
 726 
 727 //-----------------------------set_map_clone-----------------------------------
 728 void GraphKit::set_map_clone(SafePointNode* m) {
 729   _map = m;
 730   _map = clone_map();
 731   _map->set_next_exception(NULL);
 732   debug_only(verify_map());
 733 }
 734 
 735 
 736 //----------------------------kill_dead_locals---------------------------------
 737 // Detect any locals which are known to be dead, and force them to top.
 738 void GraphKit::kill_dead_locals() {
 739   // Consult the liveness information for the locals.  If any
 740   // of them are unused, then they can be replaced by top().  This
 741   // should help register allocation time and cut down on the size
 742   // of the deoptimization information.
 743 
 744   // This call is made from many of the bytecode handling
 745   // subroutines called from the Big Switch in do_one_bytecode.
 746   // Every bytecode which might include a slow path is responsible
 747   // for killing its dead locals.  The more consistent we
 748   // are about killing deads, the fewer useless phis will be
 749   // constructed for them at various merge points.
 750 
 751   // bci can be -1 (InvocationEntryBci).  We return the entry
 752   // liveness for the method.
 753 
 754   if (method() == NULL || method()->code_size() == 0) {
 755     // We are building a graph for a call to a native method.
 756     // All locals are live.
 757     return;
 758   }
 759 
 760   ResourceMark rm;
 761 
 762   // Consult the liveness information for the locals.  If any
 763   // of them are unused, then they can be replaced by top().  This
 764   // should help register allocation time and cut down on the size
 765   // of the deoptimization information.
 766   MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
 767 
 768   int len = (int)live_locals.size();
 769   assert(len <= jvms()->loc_size(), "too many live locals");
 770   for (int local = 0; local < len; local++) {
 771     if (!live_locals.at(local)) {
 772       set_local(local, top());
 773     }
 774   }
 775 }
 776 
 777 #ifdef ASSERT
 778 //-------------------------dead_locals_are_killed------------------------------
 779 // Return true if all dead locals are set to top in the map.
 780 // Used to assert "clean" debug info at various points.
 781 bool GraphKit::dead_locals_are_killed() {
 782   if (method() == NULL || method()->code_size() == 0) {
 783     // No locals need to be dead, so all is as it should be.
 784     return true;
 785   }
 786 
 787   // Make sure somebody called kill_dead_locals upstream.
 788   ResourceMark rm;
 789   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
 790     if (jvms->loc_size() == 0)  continue;  // no locals to consult
 791     SafePointNode* map = jvms->map();
 792     ciMethod* method = jvms->method();
 793     int       bci    = jvms->bci();
 794     if (jvms == this->jvms()) {
 795       bci = this->bci();  // it might not yet be synched
 796     }
 797     MethodLivenessResult live_locals = method->liveness_at_bci(bci);
 798     int len = (int)live_locals.size();
 799     if (!live_locals.is_valid() || len == 0)
 800       // This method is trivial, or is poisoned by a breakpoint.
 801       return true;
 802     assert(len == jvms->loc_size(), "live map consistent with locals map");
 803     for (int local = 0; local < len; local++) {
 804       if (!live_locals.at(local) && map->local(jvms, local) != top()) {
 805         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 806           tty->print_cr("Zombie local %d: ", local);
 807           jvms->dump();
 808         }
 809         return false;
 810       }
 811     }
 812   }
 813   return true;
 814 }
 815 
 816 #endif //ASSERT
 817 
 818 // Helper function for enforcing certain bytecodes to reexecute if
 819 // deoptimization happens
 820 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 821   ciMethod* cur_method = jvms->method();
 822   int       cur_bci   = jvms->bci();
 823   if (cur_method != NULL && cur_bci != InvocationEntryBci) {
 824     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 825     return Interpreter::bytecode_should_reexecute(code) ||
 826            (is_anewarray && code == Bytecodes::_multianewarray);
 827     // Reexecute _multianewarray bytecode which was replaced with
 828     // sequence of [a]newarray. See Parse::do_multianewarray().
 829     //
 830     // Note: interpreter should not have it set since this optimization
 831     // is limited by dimensions and guarded by flag so in some cases
 832     // multianewarray() runtime calls will be generated and
 833     // the bytecode should not be reexecutes (stack will not be reset).
 834   } else
 835     return false;
 836 }
 837 
 838 // Helper function for adding JVMState and debug information to node
 839 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 840   // Add the safepoint edges to the call (or other safepoint).
 841 
 842   // Make sure dead locals are set to top.  This
 843   // should help register allocation time and cut down on the size
 844   // of the deoptimization information.
 845   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
 846 
 847   // Walk the inline list to fill in the correct set of JVMState's
 848   // Also fill in the associated edges for each JVMState.
 849 
 850   // If the bytecode needs to be reexecuted we need to put
 851   // the arguments back on the stack.
 852   const bool should_reexecute = jvms()->should_reexecute();
 853   JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms();
 854 
 855   // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to
 856   // undefined if the bci is different.  This is normal for Parse but it
 857   // should not happen for LibraryCallKit because only one bci is processed.
 858   assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute),
 859          "in LibraryCallKit the reexecute bit should not change");
 860 
 861   // If we are guaranteed to throw, we can prune everything but the
 862   // input to the current bytecode.
 863   bool can_prune_locals = false;
 864   uint stack_slots_not_pruned = 0;
 865   int inputs = 0, depth = 0;
 866   if (must_throw) {
 867     assert(method() == youngest_jvms->method(), "sanity");
 868     if (compute_stack_effects(inputs, depth)) {
 869       can_prune_locals = true;
 870       stack_slots_not_pruned = inputs;
 871     }
 872   }
 873 
 874   if (env()->should_retain_local_variables()) {
 875     // At any safepoint, this method can get breakpointed, which would
 876     // then require an immediate deoptimization.
 877     can_prune_locals = false;  // do not prune locals
 878     stack_slots_not_pruned = 0;
 879   }
 880 
 881   // do not scribble on the input jvms
 882   JVMState* out_jvms = youngest_jvms->clone_deep(C);
 883   call->set_jvms(out_jvms); // Start jvms list for call node
 884 
 885   // For a known set of bytecodes, the interpreter should reexecute them if
 886   // deoptimization happens. We set the reexecute state for them here
 887   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
 888       should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
 889     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
 890   }
 891 
 892   // Presize the call:
 893   DEBUG_ONLY(uint non_debug_edges = call->req());
 894   call->add_req_batch(top(), youngest_jvms->debug_depth());
 895   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 896 
 897   // Set up edges so that the call looks like this:
 898   //  Call [state:] ctl io mem fptr retadr
 899   //       [parms:] parm0 ... parmN
 900   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 901   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 902   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 903   // Note that caller debug info precedes callee debug info.
 904 
 905   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 906   uint debug_ptr = call->req();
 907 
 908   // Loop over the map input edges associated with jvms, add them
 909   // to the call node, & reset all offsets to match call node array.
 910   for (JVMState* in_jvms = youngest_jvms; in_jvms != NULL; ) {
 911     uint debug_end   = debug_ptr;
 912     uint debug_start = debug_ptr - in_jvms->debug_size();
 913     debug_ptr = debug_start;  // back up the ptr
 914 
 915     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 916     uint j, k, l;
 917     SafePointNode* in_map = in_jvms->map();
 918     out_jvms->set_map(call);
 919 
 920     if (can_prune_locals) {
 921       assert(in_jvms->method() == out_jvms->method(), "sanity");
 922       // If the current throw can reach an exception handler in this JVMS,
 923       // then we must keep everything live that can reach that handler.
 924       // As a quick and dirty approximation, we look for any handlers at all.
 925       if (in_jvms->method()->has_exception_handlers()) {
 926         can_prune_locals = false;
 927       }
 928     }
 929 
 930     // Add the Locals
 931     k = in_jvms->locoff();
 932     l = in_jvms->loc_size();
 933     out_jvms->set_locoff(p);
 934     if (!can_prune_locals) {
 935       for (j = 0; j < l; j++)
 936         call->set_req(p++, in_map->in(k+j));
 937     } else {
 938       p += l;  // already set to top above by add_req_batch
 939     }
 940 
 941     // Add the Expression Stack
 942     k = in_jvms->stkoff();
 943     l = in_jvms->sp();
 944     out_jvms->set_stkoff(p);
 945     if (!can_prune_locals) {
 946       for (j = 0; j < l; j++)
 947         call->set_req(p++, in_map->in(k+j));
 948     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
 949       // Divide stack into {S0,...,S1}, where S0 is set to top.
 950       uint s1 = stack_slots_not_pruned;
 951       stack_slots_not_pruned = 0;  // for next iteration
 952       if (s1 > l)  s1 = l;
 953       uint s0 = l - s1;
 954       p += s0;  // skip the tops preinstalled by add_req_batch
 955       for (j = s0; j < l; j++)
 956         call->set_req(p++, in_map->in(k+j));
 957     } else {
 958       p += l;  // already set to top above by add_req_batch
 959     }
 960 
 961     // Add the Monitors
 962     k = in_jvms->monoff();
 963     l = in_jvms->mon_size();
 964     out_jvms->set_monoff(p);
 965     for (j = 0; j < l; j++)
 966       call->set_req(p++, in_map->in(k+j));
 967 
 968     // Copy any scalar object fields.
 969     k = in_jvms->scloff();
 970     l = in_jvms->scl_size();
 971     out_jvms->set_scloff(p);
 972     for (j = 0; j < l; j++)
 973       call->set_req(p++, in_map->in(k+j));
 974 
 975     // Finish the new jvms.
 976     out_jvms->set_endoff(p);
 977 
 978     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
 979     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
 980     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
 981     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
 982     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
 983     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
 984 
 985     // Update the two tail pointers in parallel.
 986     out_jvms = out_jvms->caller();
 987     in_jvms  = in_jvms->caller();
 988   }
 989 
 990   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
 991 
 992   // Test the correctness of JVMState::debug_xxx accessors:
 993   assert(call->jvms()->debug_start() == non_debug_edges, "");
 994   assert(call->jvms()->debug_end()   == call->req(), "");
 995   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
 996 }
 997 
 998 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
 999   Bytecodes::Code code = java_bc();
1000   if (code == Bytecodes::_wide) {
1001     code = method()->java_code_at_bci(bci() + 1);
1002   }
1003 
1004   BasicType rtype = T_ILLEGAL;
1005   int       rsize = 0;
1006 
1007   if (code != Bytecodes::_illegal) {
1008     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
1009     rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
1010     if (rtype < T_CONFLICT)
1011       rsize = type2size[rtype];
1012   }
1013 
1014   switch (code) {
1015   case Bytecodes::_illegal:
1016     return false;
1017 
1018   case Bytecodes::_ldc:
1019   case Bytecodes::_ldc_w:
1020   case Bytecodes::_ldc2_w:
1021     inputs = 0;
1022     break;
1023 
1024   case Bytecodes::_dup:         inputs = 1;  break;
1025   case Bytecodes::_dup_x1:      inputs = 2;  break;
1026   case Bytecodes::_dup_x2:      inputs = 3;  break;
1027   case Bytecodes::_dup2:        inputs = 2;  break;
1028   case Bytecodes::_dup2_x1:     inputs = 3;  break;
1029   case Bytecodes::_dup2_x2:     inputs = 4;  break;
1030   case Bytecodes::_swap:        inputs = 2;  break;
1031   case Bytecodes::_arraylength: inputs = 1;  break;
1032 
1033   case Bytecodes::_getstatic:
1034   case Bytecodes::_putstatic:
1035   case Bytecodes::_getfield:
1036   case Bytecodes::_putfield:
1037     {
1038       bool ignored_will_link;
1039       ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
1040       int      size  = field->type()->size();
1041       bool is_get = (depth >= 0), is_static = (depth & 1);
1042       inputs = (is_static ? 0 : 1);
1043       if (is_get) {
1044         depth = size - inputs;
1045       } else {
1046         inputs += size;        // putxxx pops the value from the stack
1047         depth = - inputs;
1048       }
1049     }
1050     break;
1051 
1052   case Bytecodes::_invokevirtual:
1053   case Bytecodes::_invokespecial:
1054   case Bytecodes::_invokestatic:
1055   case Bytecodes::_invokedynamic:
1056   case Bytecodes::_invokeinterface:
1057     {
1058       bool ignored_will_link;
1059       ciSignature* declared_signature = NULL;
1060       ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
1061       assert(declared_signature != NULL, "cannot be null");
1062       inputs   = declared_signature->arg_size_for_bc(code);
1063       int size = declared_signature->return_type()->size();
1064       depth = size - inputs;
1065     }
1066     break;
1067 
1068   case Bytecodes::_multianewarray:
1069     {
1070       ciBytecodeStream iter(method());
1071       iter.reset_to_bci(bci());
1072       iter.next();
1073       inputs = iter.get_dimensions();
1074       assert(rsize == 1, "");
1075       depth = rsize - inputs;
1076     }
1077     break;
1078 
1079   case Bytecodes::_ireturn:
1080   case Bytecodes::_lreturn:
1081   case Bytecodes::_freturn:
1082   case Bytecodes::_dreturn:
1083   case Bytecodes::_areturn:
1084     assert(rsize == -depth, "");
1085     inputs = rsize;
1086     break;
1087 
1088   case Bytecodes::_jsr:
1089   case Bytecodes::_jsr_w:
1090     inputs = 0;
1091     depth  = 1;                  // S.B. depth=1, not zero
1092     break;
1093 
1094   default:
1095     // bytecode produces a typed result
1096     inputs = rsize - depth;
1097     assert(inputs >= 0, "");
1098     break;
1099   }
1100 
1101 #ifdef ASSERT
1102   // spot check
1103   int outputs = depth + inputs;
1104   assert(outputs >= 0, "sanity");
1105   switch (code) {
1106   case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
1107   case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
1108   case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
1109   case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
1110   case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
1111   }
1112 #endif //ASSERT
1113 
1114   return true;
1115 }
1116 
1117 
1118 
1119 //------------------------------basic_plus_adr---------------------------------
1120 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
1121   // short-circuit a common case
1122   if (offset == intcon(0))  return ptr;
1123   return _gvn.transform( new AddPNode(base, ptr, offset) );
1124 }
1125 
1126 Node* GraphKit::ConvI2L(Node* offset) {
1127   // short-circuit a common case
1128   jint offset_con = find_int_con(offset, Type::OffsetBot);
1129   if (offset_con != Type::OffsetBot) {
1130     return longcon((jlong) offset_con);
1131   }
1132   return _gvn.transform( new ConvI2LNode(offset));
1133 }
1134 
1135 Node* GraphKit::ConvI2UL(Node* offset) {
1136   juint offset_con = (juint) find_int_con(offset, Type::OffsetBot);
1137   if (offset_con != (juint) Type::OffsetBot) {
1138     return longcon((julong) offset_con);
1139   }
1140   Node* conv = _gvn.transform( new ConvI2LNode(offset));
1141   Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1142   return _gvn.transform( new AndLNode(conv, mask) );
1143 }
1144 
1145 Node* GraphKit::ConvL2I(Node* offset) {
1146   // short-circuit a common case
1147   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1148   if (offset_con != (jlong)Type::OffsetBot) {
1149     return intcon((int) offset_con);
1150   }
1151   return _gvn.transform( new ConvL2INode(offset));
1152 }
1153 
1154 //-------------------------load_object_klass-----------------------------------
1155 Node* GraphKit::load_object_klass(Node* obj) {
1156   // Special-case a fresh allocation to avoid building nodes:
1157   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1158   if (akls != NULL)  return akls;
1159   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1160   return _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), k_adr, TypeInstPtr::KLASS));
1161 }
1162 
1163 //-------------------------load_array_length-----------------------------------
1164 Node* GraphKit::load_array_length(Node* array) {
1165   // Special-case a fresh allocation to avoid building nodes:
1166   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn);
1167   Node *alen;
1168   if (alloc == NULL) {
1169     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1170     alen = _gvn.transform( new LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
1171   } else {
1172     alen = alloc->Ideal_length();
1173     Node* ccast = alloc->make_ideal_length(_gvn.type(array)->is_oopptr(), &_gvn);
1174     if (ccast != alen) {
1175       alen = _gvn.transform(ccast);
1176     }
1177   }
1178   return alen;
1179 }
1180 
1181 //------------------------------do_null_check----------------------------------
1182 // Helper function to do a NULL pointer check.  Returned value is
1183 // the incoming address with NULL casted away.  You are allowed to use the
1184 // not-null value only if you are control dependent on the test.
1185 #ifndef PRODUCT
1186 extern int explicit_null_checks_inserted,
1187            explicit_null_checks_elided;
1188 #endif
1189 Node* GraphKit::null_check_common(Node* value, BasicType type,
1190                                   // optional arguments for variations:
1191                                   bool assert_null,
1192                                   Node* *null_control,
1193                                   bool speculative) {
1194   assert(!assert_null || null_control == NULL, "not both at once");
1195   if (stopped())  return top();
1196   NOT_PRODUCT(explicit_null_checks_inserted++);
1197 
1198   // Construct NULL check
1199   Node *chk = NULL;
1200   switch(type) {
1201     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1202     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1203     case T_ARRAY  : // fall through
1204       type = T_OBJECT;  // simplify further tests
1205     case T_OBJECT : {
1206       const Type *t = _gvn.type( value );
1207 
1208       const TypeOopPtr* tp = t->isa_oopptr();
1209       if (tp != NULL && tp->klass() != NULL && !tp->klass()->is_loaded()
1210           // Only for do_null_check, not any of its siblings:
1211           && !assert_null && null_control == NULL) {
1212         // Usually, any field access or invocation on an unloaded oop type
1213         // will simply fail to link, since the statically linked class is
1214         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1215         // the static class is loaded but the sharper oop type is not.
1216         // Rather than checking for this obscure case in lots of places,
1217         // we simply observe that a null check on an unloaded class
1218         // will always be followed by a nonsense operation, so we
1219         // can just issue the uncommon trap here.
1220         // Our access to the unloaded class will only be correct
1221         // after it has been loaded and initialized, which requires
1222         // a trip through the interpreter.
1223 #ifndef PRODUCT
1224         if (WizardMode) { tty->print("Null check of unloaded "); tp->klass()->print(); tty->cr(); }
1225 #endif
1226         uncommon_trap(Deoptimization::Reason_unloaded,
1227                       Deoptimization::Action_reinterpret,
1228                       tp->klass(), "!loaded");
1229         return top();
1230       }
1231 
1232       if (assert_null) {
1233         // See if the type is contained in NULL_PTR.
1234         // If so, then the value is already null.
1235         if (t->higher_equal(TypePtr::NULL_PTR)) {
1236           NOT_PRODUCT(explicit_null_checks_elided++);
1237           return value;           // Elided null assert quickly!
1238         }
1239       } else {
1240         // See if mixing in the NULL pointer changes type.
1241         // If so, then the NULL pointer was not allowed in the original
1242         // type.  In other words, "value" was not-null.
1243         if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) {
1244           // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
1245           NOT_PRODUCT(explicit_null_checks_elided++);
1246           return value;           // Elided null check quickly!
1247         }
1248       }
1249       chk = new CmpPNode( value, null() );
1250       break;
1251     }
1252 
1253     default:
1254       fatal("unexpected type: %s", type2name(type));
1255   }
1256   assert(chk != NULL, "sanity check");
1257   chk = _gvn.transform(chk);
1258 
1259   BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
1260   BoolNode *btst = new BoolNode( chk, btest);
1261   Node   *tst = _gvn.transform( btst );
1262 
1263   //-----------
1264   // if peephole optimizations occurred, a prior test existed.
1265   // If a prior test existed, maybe it dominates as we can avoid this test.
1266   if (tst != btst && type == T_OBJECT) {
1267     // At this point we want to scan up the CFG to see if we can
1268     // find an identical test (and so avoid this test altogether).
1269     Node *cfg = control();
1270     int depth = 0;
1271     while( depth < 16 ) {       // Limit search depth for speed
1272       if( cfg->Opcode() == Op_IfTrue &&
1273           cfg->in(0)->in(1) == tst ) {
1274         // Found prior test.  Use "cast_not_null" to construct an identical
1275         // CastPP (and hence hash to) as already exists for the prior test.
1276         // Return that casted value.
1277         if (assert_null) {
1278           replace_in_map(value, null());
1279           return null();  // do not issue the redundant test
1280         }
1281         Node *oldcontrol = control();
1282         set_control(cfg);
1283         Node *res = cast_not_null(value);
1284         set_control(oldcontrol);
1285         NOT_PRODUCT(explicit_null_checks_elided++);
1286         return res;
1287       }
1288       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1289       if (cfg == NULL)  break;  // Quit at region nodes
1290       depth++;
1291     }
1292   }
1293 
1294   //-----------
1295   // Branch to failure if null
1296   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1297   Deoptimization::DeoptReason reason;
1298   if (assert_null) {
1299     reason = Deoptimization::reason_null_assert(speculative);
1300   } else if (type == T_OBJECT) {
1301     reason = Deoptimization::reason_null_check(speculative);
1302   } else {
1303     reason = Deoptimization::Reason_div0_check;
1304   }
1305   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1306   // ciMethodData::has_trap_at will return a conservative -1 if any
1307   // must-be-null assertion has failed.  This could cause performance
1308   // problems for a method after its first do_null_assert failure.
1309   // Consider using 'Reason_class_check' instead?
1310 
1311   // To cause an implicit null check, we set the not-null probability
1312   // to the maximum (PROB_MAX).  For an explicit check the probability
1313   // is set to a smaller value.
1314   if (null_control != NULL || too_many_traps(reason)) {
1315     // probability is less likely
1316     ok_prob =  PROB_LIKELY_MAG(3);
1317   } else if (!assert_null &&
1318              (ImplicitNullCheckThreshold > 0) &&
1319              method() != NULL &&
1320              (method()->method_data()->trap_count(reason)
1321               >= (uint)ImplicitNullCheckThreshold)) {
1322     ok_prob =  PROB_LIKELY_MAG(3);
1323   }
1324 
1325   if (null_control != NULL) {
1326     IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
1327     Node* null_true = _gvn.transform( new IfFalseNode(iff));
1328     set_control(      _gvn.transform( new IfTrueNode(iff)));
1329 #ifndef PRODUCT
1330     if (null_true == top()) {
1331       explicit_null_checks_elided++;
1332     }
1333 #endif
1334     (*null_control) = null_true;
1335   } else {
1336     BuildCutout unless(this, tst, ok_prob);
1337     // Check for optimizer eliding test at parse time
1338     if (stopped()) {
1339       // Failure not possible; do not bother making uncommon trap.
1340       NOT_PRODUCT(explicit_null_checks_elided++);
1341     } else if (assert_null) {
1342       uncommon_trap(reason,
1343                     Deoptimization::Action_make_not_entrant,
1344                     NULL, "assert_null");
1345     } else {
1346       replace_in_map(value, zerocon(type));
1347       builtin_throw(reason);
1348     }
1349   }
1350 
1351   // Must throw exception, fall-thru not possible?
1352   if (stopped()) {
1353     return top();               // No result
1354   }
1355 
1356   if (assert_null) {
1357     // Cast obj to null on this path.
1358     replace_in_map(value, zerocon(type));
1359     return zerocon(type);
1360   }
1361 
1362   // Cast obj to not-null on this path, if there is no null_control.
1363   // (If there is a null_control, a non-null value may come back to haunt us.)
1364   if (type == T_OBJECT) {
1365     Node* cast = cast_not_null(value, false);
1366     if (null_control == NULL || (*null_control) == top())
1367       replace_in_map(value, cast);
1368     value = cast;
1369   }
1370 
1371   return value;
1372 }
1373 
1374 
1375 //------------------------------cast_not_null----------------------------------
1376 // Cast obj to not-null on this path
1377 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1378   const Type *t = _gvn.type(obj);
1379   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1380   // Object is already not-null?
1381   if( t == t_not_null ) return obj;
1382 
1383   Node *cast = new CastPPNode(obj,t_not_null);
1384   cast->init_req(0, control());
1385   cast = _gvn.transform( cast );
1386 
1387   // Scan for instances of 'obj' in the current JVM mapping.
1388   // These instances are known to be not-null after the test.
1389   if (do_replace_in_map)
1390     replace_in_map(obj, cast);
1391 
1392   return cast;                  // Return casted value
1393 }
1394 
1395 // Sometimes in intrinsics, we implicitly know an object is not null
1396 // (there's no actual null check) so we can cast it to not null. In
1397 // the course of optimizations, the input to the cast can become null.
1398 // In that case that data path will die and we need the control path
1399 // to become dead as well to keep the graph consistent. So we have to
1400 // add a check for null for which one branch can't be taken. It uses
1401 // an Opaque4 node that will cause the check to be removed after loop
1402 // opts so the test goes away and the compiled code doesn't execute a
1403 // useless check.
1404 Node* GraphKit::must_be_not_null(Node* value, bool do_replace_in_map) {
1405   Node* chk = _gvn.transform(new CmpPNode(value, null()));
1406   Node *tst = _gvn.transform(new BoolNode(chk, BoolTest::ne));
1407   Node* opaq = _gvn.transform(new Opaque4Node(C, tst, intcon(1)));
1408   IfNode *iff = new IfNode(control(), opaq, PROB_MAX, COUNT_UNKNOWN);
1409   _gvn.set_type(iff, iff->Value(&_gvn));
1410   Node *if_f = _gvn.transform(new IfFalseNode(iff));
1411   Node *frame = _gvn.transform(new ParmNode(C->start(), TypeFunc::FramePtr));
1412   Node *halt = _gvn.transform(new HaltNode(if_f, frame));
1413   C->root()->add_req(halt);
1414   Node *if_t = _gvn.transform(new IfTrueNode(iff));
1415   set_control(if_t);
1416   return cast_not_null(value, do_replace_in_map);
1417 }
1418 
1419 
1420 //--------------------------replace_in_map-------------------------------------
1421 void GraphKit::replace_in_map(Node* old, Node* neww) {
1422   if (old == neww) {
1423     return;
1424   }
1425 
1426   map()->replace_edge(old, neww);
1427 
1428   // Note: This operation potentially replaces any edge
1429   // on the map.  This includes locals, stack, and monitors
1430   // of the current (innermost) JVM state.
1431 
1432   // don't let inconsistent types from profiling escape this
1433   // method
1434 
1435   const Type* told = _gvn.type(old);
1436   const Type* tnew = _gvn.type(neww);
1437 
1438   if (!tnew->higher_equal(told)) {
1439     return;
1440   }
1441 
1442   map()->record_replaced_node(old, neww);
1443 }
1444 
1445 
1446 //=============================================================================
1447 //--------------------------------memory---------------------------------------
1448 Node* GraphKit::memory(uint alias_idx) {
1449   MergeMemNode* mem = merged_memory();
1450   Node* p = mem->memory_at(alias_idx);
1451   _gvn.set_type(p, Type::MEMORY);  // must be mapped
1452   return p;
1453 }
1454 
1455 //-----------------------------reset_memory------------------------------------
1456 Node* GraphKit::reset_memory() {
1457   Node* mem = map()->memory();
1458   // do not use this node for any more parsing!
1459   debug_only( map()->set_memory((Node*)NULL) );
1460   return _gvn.transform( mem );
1461 }
1462 
1463 //------------------------------set_all_memory---------------------------------
1464 void GraphKit::set_all_memory(Node* newmem) {
1465   Node* mergemem = MergeMemNode::make(newmem);
1466   gvn().set_type_bottom(mergemem);
1467   map()->set_memory(mergemem);
1468 }
1469 
1470 //------------------------------set_all_memory_call----------------------------
1471 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) {
1472   Node* newmem = _gvn.transform( new ProjNode(call, TypeFunc::Memory, separate_io_proj) );
1473   set_all_memory(newmem);
1474 }
1475 
1476 //=============================================================================
1477 //
1478 // parser factory methods for MemNodes
1479 //
1480 // These are layered on top of the factory methods in LoadNode and StoreNode,
1481 // and integrate with the parser's memory state and _gvn engine.
1482 //
1483 
1484 // factory methods in "int adr_idx"
1485 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1486                           int adr_idx,
1487                           MemNode::MemOrd mo,
1488                           LoadNode::ControlDependency control_dependency,
1489                           bool require_atomic_access,
1490                           bool unaligned,
1491                           bool mismatched) {
1492   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1493   const TypePtr* adr_type = NULL; // debug-mode-only argument
1494   debug_only(adr_type = C->get_adr_type(adr_idx));
1495   Node* mem = memory(adr_idx);
1496   Node* ld;
1497   if (require_atomic_access && bt == T_LONG) {
1498     ld = LoadLNode::make_atomic(ctl, mem, adr, adr_type, t, mo, control_dependency, unaligned, mismatched);
1499   } else if (require_atomic_access && bt == T_DOUBLE) {
1500     ld = LoadDNode::make_atomic(ctl, mem, adr, adr_type, t, mo, control_dependency, unaligned, mismatched);
1501   } else {
1502     ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, unaligned, mismatched);
1503   }
1504   ld = _gvn.transform(ld);
1505   if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) {
1506     // Improve graph before escape analysis and boxing elimination.
1507     record_for_igvn(ld);
1508   }
1509   return ld;
1510 }
1511 
1512 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1513                                 int adr_idx,
1514                                 MemNode::MemOrd mo,
1515                                 bool require_atomic_access,
1516                                 bool unaligned,
1517                                 bool mismatched) {
1518   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1519   const TypePtr* adr_type = NULL;
1520   debug_only(adr_type = C->get_adr_type(adr_idx));
1521   Node *mem = memory(adr_idx);
1522   Node* st;
1523   if (require_atomic_access && bt == T_LONG) {
1524     st = StoreLNode::make_atomic(ctl, mem, adr, adr_type, val, mo);
1525   } else if (require_atomic_access && bt == T_DOUBLE) {
1526     st = StoreDNode::make_atomic(ctl, mem, adr, adr_type, val, mo);
1527   } else {
1528     st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo);
1529   }
1530   if (unaligned) {
1531     st->as_Store()->set_unaligned_access();
1532   }
1533   if (mismatched) {
1534     st->as_Store()->set_mismatched_access();
1535   }
1536   st = _gvn.transform(st);
1537   set_memory(st, adr_idx);
1538   // Back-to-back stores can only remove intermediate store with DU info
1539   // so push on worklist for optimizer.
1540   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1541     record_for_igvn(st);
1542 
1543   return st;
1544 }
1545 
1546 
1547 void GraphKit::pre_barrier(bool do_load,
1548                            Node* ctl,
1549                            Node* obj,
1550                            Node* adr,
1551                            uint  adr_idx,
1552                            Node* val,
1553                            const TypeOopPtr* val_type,
1554                            Node* pre_val,
1555                            BasicType bt) {
1556 
1557   BarrierSet* bs = Universe::heap()->barrier_set();
1558   set_control(ctl);
1559   switch (bs->kind()) {
1560     case BarrierSet::G1SATBCTLogging:
1561       g1_write_barrier_pre(do_load, obj, adr, adr_idx, val, val_type, pre_val, bt);
1562       break;
1563 
1564     case BarrierSet::CardTableForRS:
1565     case BarrierSet::CardTableExtension:
1566     case BarrierSet::ModRef:
1567       break;
1568 
1569     default      :
1570       ShouldNotReachHere();
1571 
1572   }
1573 }
1574 
1575 bool GraphKit::can_move_pre_barrier() const {
1576   BarrierSet* bs = Universe::heap()->barrier_set();
1577   switch (bs->kind()) {
1578     case BarrierSet::G1SATBCTLogging:
1579       return true; // Can move it if no safepoint
1580 
1581     case BarrierSet::CardTableForRS:
1582     case BarrierSet::CardTableExtension:
1583     case BarrierSet::ModRef:
1584       return true; // There is no pre-barrier
1585 
1586     default      :
1587       ShouldNotReachHere();
1588   }
1589   return false;
1590 }
1591 
1592 void GraphKit::post_barrier(Node* ctl,
1593                             Node* store,
1594                             Node* obj,
1595                             Node* adr,
1596                             uint  adr_idx,
1597                             Node* val,
1598                             BasicType bt,
1599                             bool use_precise) {
1600   BarrierSet* bs = Universe::heap()->barrier_set();
1601   set_control(ctl);
1602   switch (bs->kind()) {
1603     case BarrierSet::G1SATBCTLogging:
1604       g1_write_barrier_post(store, obj, adr, adr_idx, val, bt, use_precise);
1605       break;
1606 
1607     case BarrierSet::CardTableForRS:
1608     case BarrierSet::CardTableExtension:
1609       write_barrier_post(store, obj, adr, adr_idx, val, use_precise);
1610       break;
1611 
1612     case BarrierSet::ModRef:
1613       break;
1614 
1615     default      :
1616       ShouldNotReachHere();
1617 
1618   }
1619 }
1620 
1621 Node* GraphKit::store_oop(Node* ctl,
1622                           Node* obj,
1623                           Node* adr,
1624                           const TypePtr* adr_type,
1625                           Node* val,
1626                           const TypeOopPtr* val_type,
1627                           BasicType bt,
1628                           bool use_precise,
1629                           MemNode::MemOrd mo,
1630                           bool mismatched) {
1631   // Transformation of a value which could be NULL pointer (CastPP #NULL)
1632   // could be delayed during Parse (for example, in adjust_map_after_if()).
1633   // Execute transformation here to avoid barrier generation in such case.
1634   if (_gvn.type(val) == TypePtr::NULL_PTR)
1635     val = _gvn.makecon(TypePtr::NULL_PTR);
1636 
1637   set_control(ctl);
1638   if (stopped()) return top(); // Dead path ?
1639 
1640   assert(bt == T_OBJECT, "sanity");
1641   assert(val != NULL, "not dead path");
1642   uint adr_idx = C->get_alias_index(adr_type);
1643   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1644 
1645   pre_barrier(true /* do_load */,
1646               control(), obj, adr, adr_idx, val, val_type,
1647               NULL /* pre_val */,
1648               bt);
1649 
1650   Node* store = store_to_memory(control(), adr, val, bt, adr_idx, mo, mismatched);
1651   post_barrier(control(), store, obj, adr, adr_idx, val, bt, use_precise);
1652   return store;
1653 }
1654 
1655 // Could be an array or object we don't know at compile time (unsafe ref.)
1656 Node* GraphKit::store_oop_to_unknown(Node* ctl,
1657                              Node* obj,   // containing obj
1658                              Node* adr,  // actual adress to store val at
1659                              const TypePtr* adr_type,
1660                              Node* val,
1661                              BasicType bt,
1662                              MemNode::MemOrd mo,
1663                              bool mismatched) {
1664   Compile::AliasType* at = C->alias_type(adr_type);
1665   const TypeOopPtr* val_type = NULL;
1666   if (adr_type->isa_instptr()) {
1667     if (at->field() != NULL) {
1668       // known field.  This code is a copy of the do_put_xxx logic.
1669       ciField* field = at->field();
1670       if (!field->type()->is_loaded()) {
1671         val_type = TypeInstPtr::BOTTOM;
1672       } else {
1673         val_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
1674       }
1675     }
1676   } else if (adr_type->isa_aryptr()) {
1677     val_type = adr_type->is_aryptr()->elem()->make_oopptr();
1678   }
1679   if (val_type == NULL) {
1680     val_type = TypeInstPtr::BOTTOM;
1681   }
1682   return store_oop(ctl, obj, adr, adr_type, val, val_type, bt, true, mo, mismatched);
1683 }
1684 
1685 
1686 //-------------------------array_element_address-------------------------
1687 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1688                                       const TypeInt* sizetype, Node* ctrl) {
1689   uint shift  = exact_log2(type2aelembytes(elembt));
1690   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1691 
1692   // short-circuit a common case (saves lots of confusing waste motion)
1693   jint idx_con = find_int_con(idx, -1);
1694   if (idx_con >= 0) {
1695     intptr_t offset = header + ((intptr_t)idx_con << shift);
1696     return basic_plus_adr(ary, offset);
1697   }
1698 
1699   // must be correct type for alignment purposes
1700   Node* base  = basic_plus_adr(ary, header);
1701   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1702   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1703   return basic_plus_adr(ary, base, scale);
1704 }
1705 
1706 //-------------------------load_array_element-------------------------
1707 Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype) {
1708   const Type* elemtype = arytype->elem();
1709   BasicType elembt = elemtype->array_element_basic_type();
1710   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1711   if (elembt == T_NARROWOOP) {
1712     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1713   }
1714   Node* ld = make_load(ctl, adr, elemtype, elembt, arytype, MemNode::unordered);
1715   return ld;
1716 }
1717 
1718 //-------------------------set_arguments_for_java_call-------------------------
1719 // Arguments (pre-popped from the stack) are taken from the JVMS.
1720 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
1721   // Add the call arguments:
1722   uint nargs = call->method()->arg_size();
1723   for (uint i = 0; i < nargs; i++) {
1724     Node* arg = argument(i);
1725     call->init_req(i + TypeFunc::Parms, arg);
1726   }
1727 }
1728 
1729 //---------------------------set_edges_for_java_call---------------------------
1730 // Connect a newly created call into the current JVMS.
1731 // A return value node (if any) is returned from set_edges_for_java_call.
1732 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1733 
1734   // Add the predefined inputs:
1735   call->init_req( TypeFunc::Control, control() );
1736   call->init_req( TypeFunc::I_O    , i_o() );
1737   call->init_req( TypeFunc::Memory , reset_memory() );
1738   call->init_req( TypeFunc::FramePtr, frameptr() );
1739   call->init_req( TypeFunc::ReturnAdr, top() );
1740 
1741   add_safepoint_edges(call, must_throw);
1742 
1743   Node* xcall = _gvn.transform(call);
1744 
1745   if (xcall == top()) {
1746     set_control(top());
1747     return;
1748   }
1749   assert(xcall == call, "call identity is stable");
1750 
1751   // Re-use the current map to produce the result.
1752 
1753   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1754   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1755   set_all_memory_call(xcall, separate_io_proj);
1756 
1757   //return xcall;   // no need, caller already has it
1758 }
1759 
1760 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj) {
1761   if (stopped())  return top();  // maybe the call folded up?
1762 
1763   // Capture the return value, if any.
1764   Node* ret;
1765   if (call->method() == NULL ||
1766       call->method()->return_type()->basic_type() == T_VOID)
1767         ret = top();
1768   else  ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1769 
1770   // Note:  Since any out-of-line call can produce an exception,
1771   // we always insert an I_O projection from the call into the result.
1772 
1773   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj);
1774 
1775   if (separate_io_proj) {
1776     // The caller requested separate projections be used by the fall
1777     // through and exceptional paths, so replace the projections for
1778     // the fall through path.
1779     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1780     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1781   }
1782   return ret;
1783 }
1784 
1785 //--------------------set_predefined_input_for_runtime_call--------------------
1786 // Reading and setting the memory state is way conservative here.
1787 // The real problem is that I am not doing real Type analysis on memory,
1788 // so I cannot distinguish card mark stores from other stores.  Across a GC
1789 // point the Store Barrier and the card mark memory has to agree.  I cannot
1790 // have a card mark store and its barrier split across the GC point from
1791 // either above or below.  Here I get that to happen by reading ALL of memory.
1792 // A better answer would be to separate out card marks from other memory.
1793 // For now, return the input memory state, so that it can be reused
1794 // after the call, if this call has restricted memory effects.
1795 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call) {
1796   // Set fixed predefined input arguments
1797   Node* memory = reset_memory();
1798   call->init_req( TypeFunc::Control,   control()  );
1799   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
1800   call->init_req( TypeFunc::Memory,    memory     ); // may gc ptrs
1801   call->init_req( TypeFunc::FramePtr,  frameptr() );
1802   call->init_req( TypeFunc::ReturnAdr, top()      );
1803   return memory;
1804 }
1805 
1806 //-------------------set_predefined_output_for_runtime_call--------------------
1807 // Set control and memory (not i_o) from the call.
1808 // If keep_mem is not NULL, use it for the output state,
1809 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
1810 // If hook_mem is NULL, this call produces no memory effects at all.
1811 // If hook_mem is a Java-visible memory slice (such as arraycopy operands),
1812 // then only that memory slice is taken from the call.
1813 // In the last case, we must put an appropriate memory barrier before
1814 // the call, so as to create the correct anti-dependencies on loads
1815 // preceding the call.
1816 void GraphKit::set_predefined_output_for_runtime_call(Node* call,
1817                                                       Node* keep_mem,
1818                                                       const TypePtr* hook_mem) {
1819   // no i/o
1820   set_control(_gvn.transform( new ProjNode(call,TypeFunc::Control) ));
1821   if (keep_mem) {
1822     // First clone the existing memory state
1823     set_all_memory(keep_mem);
1824     if (hook_mem != NULL) {
1825       // Make memory for the call
1826       Node* mem = _gvn.transform( new ProjNode(call, TypeFunc::Memory) );
1827       // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
1828       // We also use hook_mem to extract specific effects from arraycopy stubs.
1829       set_memory(mem, hook_mem);
1830     }
1831     // ...else the call has NO memory effects.
1832 
1833     // Make sure the call advertises its memory effects precisely.
1834     // This lets us build accurate anti-dependences in gcm.cpp.
1835     assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
1836            "call node must be constructed correctly");
1837   } else {
1838     assert(hook_mem == NULL, "");
1839     // This is not a "slow path" call; all memory comes from the call.
1840     set_all_memory_call(call);
1841   }
1842 }
1843 
1844 
1845 // Replace the call with the current state of the kit.
1846 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes) {
1847   JVMState* ejvms = NULL;
1848   if (has_exceptions()) {
1849     ejvms = transfer_exceptions_into_jvms();
1850   }
1851 
1852   ReplacedNodes replaced_nodes = map()->replaced_nodes();
1853   ReplacedNodes replaced_nodes_exception;
1854   Node* ex_ctl = top();
1855 
1856   SafePointNode* final_state = stop();
1857 
1858   // Find all the needed outputs of this call
1859   CallProjections callprojs;
1860   call->extract_projections(&callprojs, true);
1861 
1862   Node* init_mem = call->in(TypeFunc::Memory);
1863   Node* final_mem = final_state->in(TypeFunc::Memory);
1864   Node* final_ctl = final_state->in(TypeFunc::Control);
1865   Node* final_io = final_state->in(TypeFunc::I_O);
1866 
1867   // Replace all the old call edges with the edges from the inlining result
1868   if (callprojs.fallthrough_catchproj != NULL) {
1869     C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl);
1870   }
1871   if (callprojs.fallthrough_memproj != NULL) {
1872     if (final_mem->is_MergeMem()) {
1873       // Parser's exits MergeMem was not transformed but may be optimized
1874       final_mem = _gvn.transform(final_mem);
1875     }
1876     C->gvn_replace_by(callprojs.fallthrough_memproj,   final_mem);
1877   }
1878   if (callprojs.fallthrough_ioproj != NULL) {
1879     C->gvn_replace_by(callprojs.fallthrough_ioproj,    final_io);
1880   }
1881 
1882   // Replace the result with the new result if it exists and is used
1883   if (callprojs.resproj != NULL && result != NULL) {
1884     C->gvn_replace_by(callprojs.resproj, result);
1885   }
1886 
1887   if (ejvms == NULL) {
1888     // No exception edges to simply kill off those paths
1889     if (callprojs.catchall_catchproj != NULL) {
1890       C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
1891     }
1892     if (callprojs.catchall_memproj != NULL) {
1893       C->gvn_replace_by(callprojs.catchall_memproj,   C->top());
1894     }
1895     if (callprojs.catchall_ioproj != NULL) {
1896       C->gvn_replace_by(callprojs.catchall_ioproj,    C->top());
1897     }
1898     // Replace the old exception object with top
1899     if (callprojs.exobj != NULL) {
1900       C->gvn_replace_by(callprojs.exobj, C->top());
1901     }
1902   } else {
1903     GraphKit ekit(ejvms);
1904 
1905     // Load my combined exception state into the kit, with all phis transformed:
1906     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
1907     replaced_nodes_exception = ex_map->replaced_nodes();
1908 
1909     Node* ex_oop = ekit.use_exception_state(ex_map);
1910 
1911     if (callprojs.catchall_catchproj != NULL) {
1912       C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
1913       ex_ctl = ekit.control();
1914     }
1915     if (callprojs.catchall_memproj != NULL) {
1916       C->gvn_replace_by(callprojs.catchall_memproj,   ekit.reset_memory());
1917     }
1918     if (callprojs.catchall_ioproj != NULL) {
1919       C->gvn_replace_by(callprojs.catchall_ioproj,    ekit.i_o());
1920     }
1921 
1922     // Replace the old exception object with the newly created one
1923     if (callprojs.exobj != NULL) {
1924       C->gvn_replace_by(callprojs.exobj, ex_oop);
1925     }
1926   }
1927 
1928   // Disconnect the call from the graph
1929   call->disconnect_inputs(NULL, C);
1930   C->gvn_replace_by(call, C->top());
1931 
1932   // Clean up any MergeMems that feed other MergeMems since the
1933   // optimizer doesn't like that.
1934   if (final_mem->is_MergeMem()) {
1935     Node_List wl;
1936     for (SimpleDUIterator i(final_mem); i.has_next(); i.next()) {
1937       Node* m = i.get();
1938       if (m->is_MergeMem() && !wl.contains(m)) {
1939         wl.push(m);
1940       }
1941     }
1942     while (wl.size()  > 0) {
1943       _gvn.transform(wl.pop());
1944     }
1945   }
1946 
1947   if (callprojs.fallthrough_catchproj != NULL && !final_ctl->is_top() && do_replaced_nodes) {
1948     replaced_nodes.apply(C, final_ctl);
1949   }
1950   if (!ex_ctl->is_top() && do_replaced_nodes) {
1951     replaced_nodes_exception.apply(C, ex_ctl);
1952   }
1953 }
1954 
1955 
1956 //------------------------------increment_counter------------------------------
1957 // for statistics: increment a VM counter by 1
1958 
1959 void GraphKit::increment_counter(address counter_addr) {
1960   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
1961   increment_counter(adr1);
1962 }
1963 
1964 void GraphKit::increment_counter(Node* counter_addr) {
1965   int adr_type = Compile::AliasIdxRaw;
1966   Node* ctrl = control();
1967   Node* cnt  = make_load(ctrl, counter_addr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
1968   Node* incr = _gvn.transform(new AddINode(cnt, _gvn.intcon(1)));
1969   store_to_memory(ctrl, counter_addr, incr, T_INT, adr_type, MemNode::unordered);
1970 }
1971 
1972 
1973 //------------------------------uncommon_trap----------------------------------
1974 // Bail out to the interpreter in mid-method.  Implemented by calling the
1975 // uncommon_trap blob.  This helper function inserts a runtime call with the
1976 // right debug info.
1977 void GraphKit::uncommon_trap(int trap_request,
1978                              ciKlass* klass, const char* comment,
1979                              bool must_throw,
1980                              bool keep_exact_action) {
1981   if (failing())  stop();
1982   if (stopped())  return; // trap reachable?
1983 
1984   // Note:  If ProfileTraps is true, and if a deopt. actually
1985   // occurs here, the runtime will make sure an MDO exists.  There is
1986   // no need to call method()->ensure_method_data() at this point.
1987 
1988   // Set the stack pointer to the right value for reexecution:
1989   set_sp(reexecute_sp());
1990 
1991 #ifdef ASSERT
1992   if (!must_throw) {
1993     // Make sure the stack has at least enough depth to execute
1994     // the current bytecode.
1995     int inputs, ignored_depth;
1996     if (compute_stack_effects(inputs, ignored_depth)) {
1997       assert(sp() >= inputs, "must have enough JVMS stack to execute %s: sp=%d, inputs=%d",
1998              Bytecodes::name(java_bc()), sp(), inputs);
1999     }
2000   }
2001 #endif
2002 
2003   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
2004   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
2005 
2006   switch (action) {
2007   case Deoptimization::Action_maybe_recompile:
2008   case Deoptimization::Action_reinterpret:
2009     // Temporary fix for 6529811 to allow virtual calls to be sure they
2010     // get the chance to go from mono->bi->mega
2011     if (!keep_exact_action &&
2012         Deoptimization::trap_request_index(trap_request) < 0 &&
2013         too_many_recompiles(reason)) {
2014       // This BCI is causing too many recompilations.
2015       if (C->log() != NULL) {
2016         C->log()->elem("observe that='trap_action_change' reason='%s' from='%s' to='none'",
2017                 Deoptimization::trap_reason_name(reason),
2018                 Deoptimization::trap_action_name(action));
2019       }
2020       action = Deoptimization::Action_none;
2021       trap_request = Deoptimization::make_trap_request(reason, action);
2022     } else {
2023       C->set_trap_can_recompile(true);
2024     }
2025     break;
2026   case Deoptimization::Action_make_not_entrant:
2027     C->set_trap_can_recompile(true);
2028     break;
2029   case Deoptimization::Action_none:
2030   case Deoptimization::Action_make_not_compilable:
2031     break;
2032   default:
2033 #ifdef ASSERT
2034     fatal("unknown action %d: %s", action, Deoptimization::trap_action_name(action));
2035 #endif
2036     break;
2037   }
2038 
2039   if (TraceOptoParse) {
2040     char buf[100];
2041     tty->print_cr("Uncommon trap %s at bci:%d",
2042                   Deoptimization::format_trap_request(buf, sizeof(buf),
2043                                                       trap_request), bci());
2044   }
2045 
2046   CompileLog* log = C->log();
2047   if (log != NULL) {
2048     int kid = (klass == NULL)? -1: log->identify(klass);
2049     log->begin_elem("uncommon_trap bci='%d'", bci());
2050     char buf[100];
2051     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
2052                                                           trap_request));
2053     if (kid >= 0)         log->print(" klass='%d'", kid);
2054     if (comment != NULL)  log->print(" comment='%s'", comment);
2055     log->end_elem();
2056   }
2057 
2058   // Make sure any guarding test views this path as very unlikely
2059   Node *i0 = control()->in(0);
2060   if (i0 != NULL && i0->is_If()) {        // Found a guarding if test?
2061     IfNode *iff = i0->as_If();
2062     float f = iff->_prob;   // Get prob
2063     if (control()->Opcode() == Op_IfTrue) {
2064       if (f > PROB_UNLIKELY_MAG(4))
2065         iff->_prob = PROB_MIN;
2066     } else {
2067       if (f < PROB_LIKELY_MAG(4))
2068         iff->_prob = PROB_MAX;
2069     }
2070   }
2071 
2072   // Clear out dead values from the debug info.
2073   kill_dead_locals();
2074 
2075   // Now insert the uncommon trap subroutine call
2076   address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point();
2077   const TypePtr* no_memory_effects = NULL;
2078   // Pass the index of the class to be loaded
2079   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
2080                                  (must_throw ? RC_MUST_THROW : 0),
2081                                  OptoRuntime::uncommon_trap_Type(),
2082                                  call_addr, "uncommon_trap", no_memory_effects,
2083                                  intcon(trap_request));
2084   assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
2085          "must extract request correctly from the graph");
2086   assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
2087 
2088   call->set_req(TypeFunc::ReturnAdr, returnadr());
2089   // The debug info is the only real input to this call.
2090 
2091   // Halt-and-catch fire here.  The above call should never return!
2092   HaltNode* halt = new HaltNode(control(), frameptr());
2093   _gvn.set_type_bottom(halt);
2094   root()->add_req(halt);
2095 
2096   stop_and_kill_map();
2097 }
2098 
2099 
2100 //--------------------------just_allocated_object------------------------------
2101 // Report the object that was just allocated.
2102 // It must be the case that there are no intervening safepoints.
2103 // We use this to determine if an object is so "fresh" that
2104 // it does not require card marks.
2105 Node* GraphKit::just_allocated_object(Node* current_control) {
2106   if (C->recent_alloc_ctl() == current_control)
2107     return C->recent_alloc_obj();
2108   return NULL;
2109 }
2110 
2111 
2112 void GraphKit::round_double_arguments(ciMethod* dest_method) {
2113   // (Note:  TypeFunc::make has a cache that makes this fast.)
2114   const TypeFunc* tf    = TypeFunc::make(dest_method);
2115   int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2116   for (int j = 0; j < nargs; j++) {
2117     const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2118     if( targ->basic_type() == T_DOUBLE ) {
2119       // If any parameters are doubles, they must be rounded before
2120       // the call, dstore_rounding does gvn.transform
2121       Node *arg = argument(j);
2122       arg = dstore_rounding(arg);
2123       set_argument(j, arg);
2124     }
2125   }
2126 }
2127 
2128 /**
2129  * Record profiling data exact_kls for Node n with the type system so
2130  * that it can propagate it (speculation)
2131  *
2132  * @param n          node that the type applies to
2133  * @param exact_kls  type from profiling
2134  * @param maybe_null did profiling see null?
2135  *
2136  * @return           node with improved type
2137  */
2138 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) {
2139   const Type* current_type = _gvn.type(n);
2140   assert(UseTypeSpeculation, "type speculation must be on");
2141 
2142   const TypePtr* speculative = current_type->speculative();
2143 
2144   // Should the klass from the profile be recorded in the speculative type?
2145   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2146     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls);
2147     const TypeOopPtr* xtype = tklass->as_instance_type();
2148     assert(xtype->klass_is_exact(), "Should be exact");
2149     // Any reason to believe n is not null (from this profiling or a previous one)?
2150     assert(ptr_kind != ProfileAlwaysNull, "impossible here");
2151     const TypePtr* ptr = (ptr_kind == ProfileMaybeNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2152     // record the new speculative type's depth
2153     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2154     speculative = speculative->with_inline_depth(jvms()->depth());
2155   } else if (current_type->would_improve_ptr(ptr_kind)) {
2156     // Profiling report that null was never seen so we can change the
2157     // speculative type to non null ptr.
2158     if (ptr_kind == ProfileAlwaysNull) {
2159       speculative = TypePtr::NULL_PTR;
2160     } else {
2161       assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2162       const TypePtr* ptr = TypePtr::NOTNULL;
2163       if (speculative != NULL) {
2164         speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2165       } else {
2166         speculative = ptr;
2167       }
2168     }
2169   }
2170 
2171   if (speculative != current_type->speculative()) {
2172     // Build a type with a speculative type (what we think we know
2173     // about the type but will need a guard when we use it)
2174     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::OffsetBot, TypeOopPtr::InstanceBot, speculative);
2175     // We're changing the type, we need a new CheckCast node to carry
2176     // the new type. The new type depends on the control: what
2177     // profiling tells us is only valid from here as far as we can
2178     // tell.
2179     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2180     cast = _gvn.transform(cast);
2181     replace_in_map(n, cast);
2182     n = cast;
2183   }
2184 
2185   return n;
2186 }
2187 
2188 /**
2189  * Record profiling data from receiver profiling at an invoke with the
2190  * type system so that it can propagate it (speculation)
2191  *
2192  * @param n  receiver node
2193  *
2194  * @return   node with improved type
2195  */
2196 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2197   if (!UseTypeSpeculation) {
2198     return n;
2199   }
2200   ciKlass* exact_kls = profile_has_unique_klass();
2201   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2202   if ((java_bc() == Bytecodes::_checkcast ||
2203        java_bc() == Bytecodes::_instanceof ||
2204        java_bc() == Bytecodes::_aastore) &&
2205       method()->method_data()->is_mature()) {
2206     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2207     if (data != NULL) {
2208       if (!data->as_BitData()->null_seen()) {
2209         ptr_kind = ProfileNeverNull;
2210       } else {
2211         assert(data->is_ReceiverTypeData(), "bad profile data type");
2212         ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
2213         uint i = 0;
2214         for (; i < call->row_limit(); i++) {
2215           ciKlass* receiver = call->receiver(i);
2216           if (receiver != NULL) {
2217             break;
2218           }
2219         }
2220         ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2221       }
2222     }
2223   }
2224   return record_profile_for_speculation(n, exact_kls, ptr_kind);
2225 }
2226 
2227 /**
2228  * Record profiling data from argument profiling at an invoke with the
2229  * type system so that it can propagate it (speculation)
2230  *
2231  * @param dest_method  target method for the call
2232  * @param bc           what invoke bytecode is this?
2233  */
2234 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2235   if (!UseTypeSpeculation) {
2236     return;
2237   }
2238   const TypeFunc* tf    = TypeFunc::make(dest_method);
2239   int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2240   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2241   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2242     const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2243     if (targ->basic_type() == T_OBJECT || targ->basic_type() == T_ARRAY) {
2244       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2245       ciKlass* better_type = NULL;
2246       if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2247         record_profile_for_speculation(argument(j), better_type, ptr_kind);
2248       }
2249       i++;
2250     }
2251   }
2252 }
2253 
2254 /**
2255  * Record profiling data from parameter profiling at an invoke with
2256  * the type system so that it can propagate it (speculation)
2257  */
2258 void GraphKit::record_profiled_parameters_for_speculation() {
2259   if (!UseTypeSpeculation) {
2260     return;
2261   }
2262   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {
2263     if (_gvn.type(local(i))->isa_oopptr()) {
2264       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2265       ciKlass* better_type = NULL;
2266       if (method()->parameter_profiled_type(j, better_type, ptr_kind)) {
2267         record_profile_for_speculation(local(i), better_type, ptr_kind);
2268       }
2269       j++;
2270     }
2271   }
2272 }
2273 
2274 /**
2275  * Record profiling data from return value profiling at an invoke with
2276  * the type system so that it can propagate it (speculation)
2277  */
2278 void GraphKit::record_profiled_return_for_speculation() {
2279   if (!UseTypeSpeculation) {
2280     return;
2281   }
2282   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2283   ciKlass* better_type = NULL;
2284   if (method()->return_profiled_type(bci(), better_type, ptr_kind)) {
2285     // If profiling reports a single type for the return value,
2286     // feed it to the type system so it can propagate it as a
2287     // speculative type
2288     record_profile_for_speculation(stack(sp()-1), better_type, ptr_kind);
2289   }
2290 }
2291 
2292 void GraphKit::round_double_result(ciMethod* dest_method) {
2293   // A non-strict method may return a double value which has an extended
2294   // exponent, but this must not be visible in a caller which is 'strict'
2295   // If a strict caller invokes a non-strict callee, round a double result
2296 
2297   BasicType result_type = dest_method->return_type()->basic_type();
2298   assert( method() != NULL, "must have caller context");
2299   if( result_type == T_DOUBLE && method()->is_strict() && !dest_method->is_strict() ) {
2300     // Destination method's return value is on top of stack
2301     // dstore_rounding() does gvn.transform
2302     Node *result = pop_pair();
2303     result = dstore_rounding(result);
2304     push_pair(result);
2305   }
2306 }
2307 
2308 // rounding for strict float precision conformance
2309 Node* GraphKit::precision_rounding(Node* n) {
2310   return UseStrictFP && _method->flags().is_strict()
2311     && UseSSE == 0 && Matcher::strict_fp_requires_explicit_rounding
2312     ? _gvn.transform( new RoundFloatNode(0, n) )
2313     : n;
2314 }
2315 
2316 // rounding for strict double precision conformance
2317 Node* GraphKit::dprecision_rounding(Node *n) {
2318   return UseStrictFP && _method->flags().is_strict()
2319     && UseSSE <= 1 && Matcher::strict_fp_requires_explicit_rounding
2320     ? _gvn.transform( new RoundDoubleNode(0, n) )
2321     : n;
2322 }
2323 
2324 // rounding for non-strict double stores
2325 Node* GraphKit::dstore_rounding(Node* n) {
2326   return Matcher::strict_fp_requires_explicit_rounding
2327     && UseSSE <= 1
2328     ? _gvn.transform( new RoundDoubleNode(0, n) )
2329     : n;
2330 }
2331 
2332 //=============================================================================
2333 // Generate a fast path/slow path idiom.  Graph looks like:
2334 // [foo] indicates that 'foo' is a parameter
2335 //
2336 //              [in]     NULL
2337 //                 \    /
2338 //                  CmpP
2339 //                  Bool ne
2340 //                   If
2341 //                  /  \
2342 //              True    False-<2>
2343 //              / |
2344 //             /  cast_not_null
2345 //           Load  |    |   ^
2346 //        [fast_test]   |   |
2347 // gvn to   opt_test    |   |
2348 //          /    \      |  <1>
2349 //      True     False  |
2350 //        |         \\  |
2351 //   [slow_call]     \[fast_result]
2352 //    Ctl   Val       \      \
2353 //     |               \      \
2354 //    Catch       <1>   \      \
2355 //   /    \        ^     \      \
2356 //  Ex    No_Ex    |      \      \
2357 //  |       \   \  |       \ <2>  \
2358 //  ...      \  [slow_res] |  |    \   [null_result]
2359 //            \         \--+--+---  |  |
2360 //             \           | /    \ | /
2361 //              --------Region     Phi
2362 //
2363 //=============================================================================
2364 // Code is structured as a series of driver functions all called 'do_XXX' that
2365 // call a set of helper functions.  Helper functions first, then drivers.
2366 
2367 //------------------------------null_check_oop---------------------------------
2368 // Null check oop.  Set null-path control into Region in slot 3.
2369 // Make a cast-not-nullness use the other not-null control.  Return cast.
2370 Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
2371                                bool never_see_null,
2372                                bool safe_for_replace,
2373                                bool speculative) {
2374   // Initial NULL check taken path
2375   (*null_control) = top();
2376   Node* cast = null_check_common(value, T_OBJECT, false, null_control, speculative);
2377 
2378   // Generate uncommon_trap:
2379   if (never_see_null && (*null_control) != top()) {
2380     // If we see an unexpected null at a check-cast we record it and force a
2381     // recompile; the offending check-cast will be compiled to handle NULLs.
2382     // If we see more than one offending BCI, then all checkcasts in the
2383     // method will be compiled to handle NULLs.
2384     PreserveJVMState pjvms(this);
2385     set_control(*null_control);
2386     replace_in_map(value, null());
2387     Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculative);
2388     uncommon_trap(reason,
2389                   Deoptimization::Action_make_not_entrant);
2390     (*null_control) = top();    // NULL path is dead
2391   }
2392   if ((*null_control) == top() && safe_for_replace) {
2393     replace_in_map(value, cast);
2394   }
2395 
2396   // Cast away null-ness on the result
2397   return cast;
2398 }
2399 
2400 //------------------------------opt_iff----------------------------------------
2401 // Optimize the fast-check IfNode.  Set the fast-path region slot 2.
2402 // Return slow-path control.
2403 Node* GraphKit::opt_iff(Node* region, Node* iff) {
2404   IfNode *opt_iff = _gvn.transform(iff)->as_If();
2405 
2406   // Fast path taken; set region slot 2
2407   Node *fast_taken = _gvn.transform( new IfFalseNode(opt_iff) );
2408   region->init_req(2,fast_taken); // Capture fast-control
2409 
2410   // Fast path not-taken, i.e. slow path
2411   Node *slow_taken = _gvn.transform( new IfTrueNode(opt_iff) );
2412   return slow_taken;
2413 }
2414 
2415 //-----------------------------make_runtime_call-------------------------------
2416 Node* GraphKit::make_runtime_call(int flags,
2417                                   const TypeFunc* call_type, address call_addr,
2418                                   const char* call_name,
2419                                   const TypePtr* adr_type,
2420                                   // The following parms are all optional.
2421                                   // The first NULL ends the list.
2422                                   Node* parm0, Node* parm1,
2423                                   Node* parm2, Node* parm3,
2424                                   Node* parm4, Node* parm5,
2425                                   Node* parm6, Node* parm7) {
2426   // Slow-path call
2427   bool is_leaf = !(flags & RC_NO_LEAF);
2428   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2429   if (call_name == NULL) {
2430     assert(!is_leaf, "must supply name for leaf");
2431     call_name = OptoRuntime::stub_name(call_addr);
2432   }
2433   CallNode* call;
2434   if (!is_leaf) {
2435     call = new CallStaticJavaNode(call_type, call_addr, call_name,
2436                                            bci(), adr_type);
2437   } else if (flags & RC_NO_FP) {
2438     call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2439   } else {
2440     call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2441   }
2442 
2443   // The following is similar to set_edges_for_java_call,
2444   // except that the memory effects of the call are restricted to AliasIdxRaw.
2445 
2446   // Slow path call has no side-effects, uses few values
2447   bool wide_in  = !(flags & RC_NARROW_MEM);
2448   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2449 
2450   Node* prev_mem = NULL;
2451   if (wide_in) {
2452     prev_mem = set_predefined_input_for_runtime_call(call);
2453   } else {
2454     assert(!wide_out, "narrow in => narrow out");
2455     Node* narrow_mem = memory(adr_type);
2456     prev_mem = reset_memory();
2457     map()->set_memory(narrow_mem);
2458     set_predefined_input_for_runtime_call(call);
2459   }
2460 
2461   // Hook each parm in order.  Stop looking at the first NULL.
2462   if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0);
2463   if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1);
2464   if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2);
2465   if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3);
2466   if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4);
2467   if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5);
2468   if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6);
2469   if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7);
2470     /* close each nested if ===> */  } } } } } } } }
2471   assert(call->in(call->req()-1) != NULL, "must initialize all parms");
2472 
2473   if (!is_leaf) {
2474     // Non-leaves can block and take safepoints:
2475     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2476   }
2477   // Non-leaves can throw exceptions:
2478   if (has_io) {
2479     call->set_req(TypeFunc::I_O, i_o());
2480   }
2481 
2482   if (flags & RC_UNCOMMON) {
2483     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2484     // (An "if" probability corresponds roughly to an unconditional count.
2485     // Sort of.)
2486     call->set_cnt(PROB_UNLIKELY_MAG(4));
2487   }
2488 
2489   Node* c = _gvn.transform(call);
2490   assert(c == call, "cannot disappear");
2491 
2492   if (wide_out) {
2493     // Slow path call has full side-effects.
2494     set_predefined_output_for_runtime_call(call);
2495   } else {
2496     // Slow path call has few side-effects, and/or sets few values.
2497     set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
2498   }
2499 
2500   if (has_io) {
2501     set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2502   }
2503   return call;
2504 
2505 }
2506 
2507 //------------------------------merge_memory-----------------------------------
2508 // Merge memory from one path into the current memory state.
2509 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2510   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2511     Node* old_slice = mms.force_memory();
2512     Node* new_slice = mms.memory2();
2513     if (old_slice != new_slice) {
2514       PhiNode* phi;
2515       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2516         if (mms.is_empty()) {
2517           // clone base memory Phi's inputs for this memory slice
2518           assert(old_slice == mms.base_memory(), "sanity");
2519           phi = PhiNode::make(region, NULL, Type::MEMORY, mms.adr_type(C));
2520           _gvn.set_type(phi, Type::MEMORY);
2521           for (uint i = 1; i < phi->req(); i++) {
2522             phi->init_req(i, old_slice->in(i));
2523           }
2524         } else {
2525           phi = old_slice->as_Phi(); // Phi was generated already
2526         }
2527       } else {
2528         phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
2529         _gvn.set_type(phi, Type::MEMORY);
2530       }
2531       phi->set_req(new_path, new_slice);
2532       mms.set_memory(phi);
2533     }
2534   }
2535 }
2536 
2537 //------------------------------make_slow_call_ex------------------------------
2538 // Make the exception handler hookups for the slow call
2539 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj, bool deoptimize) {
2540   if (stopped())  return;
2541 
2542   // Make a catch node with just two handlers:  fall-through and catch-all
2543   Node* i_o  = _gvn.transform( new ProjNode(call, TypeFunc::I_O, separate_io_proj) );
2544   Node* catc = _gvn.transform( new CatchNode(control(), i_o, 2) );
2545   Node* norm = _gvn.transform( new CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci) );
2546   Node* excp = _gvn.transform( new CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
2547 
2548   { PreserveJVMState pjvms(this);
2549     set_control(excp);
2550     set_i_o(i_o);
2551 
2552     if (excp != top()) {
2553       if (deoptimize) {
2554         // Deoptimize if an exception is caught. Don't construct exception state in this case.
2555         uncommon_trap(Deoptimization::Reason_unhandled,
2556                       Deoptimization::Action_none);
2557       } else {
2558         // Create an exception state also.
2559         // Use an exact type if the caller has specified a specific exception.
2560         const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
2561         Node*       ex_oop  = new CreateExNode(ex_type, control(), i_o);
2562         add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
2563       }
2564     }
2565   }
2566 
2567   // Get the no-exception control from the CatchNode.
2568   set_control(norm);
2569 }
2570 
2571 static IfNode* gen_subtype_check_compare(Node* ctrl, Node* in1, Node* in2, BoolTest::mask test, float p, PhaseGVN* gvn, BasicType bt) {
2572   Node* cmp = NULL;
2573   switch(bt) {
2574   case T_INT: cmp = new CmpINode(in1, in2); break;
2575   case T_ADDRESS: cmp = new CmpPNode(in1, in2); break;
2576   default: fatal("unexpected comparison type %s", type2name(bt));
2577   }
2578   gvn->transform(cmp);
2579   Node* bol = gvn->transform(new BoolNode(cmp, test));
2580   IfNode* iff = new IfNode(ctrl, bol, p, COUNT_UNKNOWN);
2581   gvn->transform(iff);
2582   if (!bol->is_Con()) gvn->record_for_igvn(iff);
2583   return iff;
2584 }
2585 
2586 
2587 //-------------------------------gen_subtype_check-----------------------------
2588 // Generate a subtyping check.  Takes as input the subtype and supertype.
2589 // Returns 2 values: sets the default control() to the true path and returns
2590 // the false path.  Only reads invariant memory; sets no (visible) memory.
2591 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2592 // but that's not exposed to the optimizer.  This call also doesn't take in an
2593 // Object; if you wish to check an Object you need to load the Object's class
2594 // prior to coming here.
2595 Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, MergeMemNode* mem, PhaseGVN* gvn) {
2596   Compile* C = gvn->C;
2597 
2598   if ((*ctrl)->is_top()) {
2599     return C->top();
2600   }
2601 
2602   // Fast check for identical types, perhaps identical constants.
2603   // The types can even be identical non-constants, in cases
2604   // involving Array.newInstance, Object.clone, etc.
2605   if (subklass == superklass)
2606     return C->top();             // false path is dead; no test needed.
2607 
2608   if (gvn->type(superklass)->singleton()) {
2609     ciKlass* superk = gvn->type(superklass)->is_klassptr()->klass();
2610     ciKlass* subk   = gvn->type(subklass)->is_klassptr()->klass();
2611 
2612     // In the common case of an exact superklass, try to fold up the
2613     // test before generating code.  You may ask, why not just generate
2614     // the code and then let it fold up?  The answer is that the generated
2615     // code will necessarily include null checks, which do not always
2616     // completely fold away.  If they are also needless, then they turn
2617     // into a performance loss.  Example:
2618     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2619     // Here, the type of 'fa' is often exact, so the store check
2620     // of fa[1]=x will fold up, without testing the nullness of x.
2621     switch (C->static_subtype_check(superk, subk)) {
2622     case Compile::SSC_always_false:
2623       {
2624         Node* always_fail = *ctrl;
2625         *ctrl = gvn->C->top();
2626         return always_fail;
2627       }
2628     case Compile::SSC_always_true:
2629       return C->top();
2630     case Compile::SSC_easy_test:
2631       {
2632         // Just do a direct pointer compare and be done.
2633         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS);
2634         *ctrl = gvn->transform(new IfTrueNode(iff));
2635         return gvn->transform(new IfFalseNode(iff));
2636       }
2637     case Compile::SSC_full_test:
2638       break;
2639     default:
2640       ShouldNotReachHere();
2641     }
2642   }
2643 
2644   // %%% Possible further optimization:  Even if the superklass is not exact,
2645   // if the subklass is the unique subtype of the superklass, the check
2646   // will always succeed.  We could leave a dependency behind to ensure this.
2647 
2648   // First load the super-klass's check-offset
2649   Node *p1 = gvn->transform(new AddPNode(superklass, superklass, gvn->MakeConX(in_bytes(Klass::super_check_offset_offset()))));
2650   Node* m = mem->memory_at(C->get_alias_index(gvn->type(p1)->is_ptr()));
2651   Node *chk_off = gvn->transform(new LoadINode(NULL, m, p1, gvn->type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered));
2652   int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
2653   bool might_be_cache = (gvn->find_int_con(chk_off, cacheoff_con) == cacheoff_con);
2654 
2655   // Load from the sub-klass's super-class display list, or a 1-word cache of
2656   // the secondary superclass list, or a failing value with a sentinel offset
2657   // if the super-klass is an interface or exceptionally deep in the Java
2658   // hierarchy and we have to scan the secondary superclass list the hard way.
2659   // Worst-case type is a little odd: NULL is allowed as a result (usually
2660   // klass loads can never produce a NULL).
2661   Node *chk_off_X = chk_off;
2662 #ifdef _LP64
2663   chk_off_X = gvn->transform(new ConvI2LNode(chk_off_X));
2664 #endif
2665   Node *p2 = gvn->transform(new AddPNode(subklass,subklass,chk_off_X));
2666   // For some types like interfaces the following loadKlass is from a 1-word
2667   // cache which is mutable so can't use immutable memory.  Other
2668   // types load from the super-class display table which is immutable.
2669   m = mem->memory_at(C->get_alias_index(gvn->type(p2)->is_ptr()));
2670   Node *kmem = might_be_cache ? m : C->immutable_memory();
2671   Node *nkls = gvn->transform(LoadKlassNode::make(*gvn, NULL, kmem, p2, gvn->type(p2)->is_ptr(), TypeKlassPtr::OBJECT_OR_NULL));
2672 
2673   // Compile speed common case: ARE a subtype and we canNOT fail
2674   if( superklass == nkls )
2675     return C->top();             // false path is dead; no test needed.
2676 
2677   // See if we get an immediate positive hit.  Happens roughly 83% of the
2678   // time.  Test to see if the value loaded just previously from the subklass
2679   // is exactly the superklass.
2680   IfNode *iff1 = gen_subtype_check_compare(*ctrl, superklass, nkls, BoolTest::eq, PROB_LIKELY(0.83f), gvn, T_ADDRESS);
2681   Node *iftrue1 = gvn->transform( new IfTrueNode (iff1));
2682   *ctrl = gvn->transform(new IfFalseNode(iff1));
2683 
2684   // Compile speed common case: Check for being deterministic right now.  If
2685   // chk_off is a constant and not equal to cacheoff then we are NOT a
2686   // subklass.  In this case we need exactly the 1 test above and we can
2687   // return those results immediately.
2688   if (!might_be_cache) {
2689     Node* not_subtype_ctrl = *ctrl;
2690     *ctrl = iftrue1; // We need exactly the 1 test above
2691     return not_subtype_ctrl;
2692   }
2693 
2694   // Gather the various success & failures here
2695   RegionNode *r_ok_subtype = new RegionNode(4);
2696   gvn->record_for_igvn(r_ok_subtype);
2697   RegionNode *r_not_subtype = new RegionNode(3);
2698   gvn->record_for_igvn(r_not_subtype);
2699 
2700   r_ok_subtype->init_req(1, iftrue1);
2701 
2702   // Check for immediate negative hit.  Happens roughly 11% of the time (which
2703   // is roughly 63% of the remaining cases).  Test to see if the loaded
2704   // check-offset points into the subklass display list or the 1-element
2705   // cache.  If it points to the display (and NOT the cache) and the display
2706   // missed then it's not a subtype.
2707   Node *cacheoff = gvn->intcon(cacheoff_con);
2708   IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT);
2709   r_not_subtype->init_req(1, gvn->transform(new IfTrueNode (iff2)));
2710   *ctrl = gvn->transform(new IfFalseNode(iff2));
2711 
2712   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
2713   // No performance impact (too rare) but allows sharing of secondary arrays
2714   // which has some footprint reduction.
2715   IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS);
2716   r_ok_subtype->init_req(2, gvn->transform(new IfTrueNode(iff3)));
2717   *ctrl = gvn->transform(new IfFalseNode(iff3));
2718 
2719   // -- Roads not taken here: --
2720   // We could also have chosen to perform the self-check at the beginning
2721   // of this code sequence, as the assembler does.  This would not pay off
2722   // the same way, since the optimizer, unlike the assembler, can perform
2723   // static type analysis to fold away many successful self-checks.
2724   // Non-foldable self checks work better here in second position, because
2725   // the initial primary superclass check subsumes a self-check for most
2726   // types.  An exception would be a secondary type like array-of-interface,
2727   // which does not appear in its own primary supertype display.
2728   // Finally, we could have chosen to move the self-check into the
2729   // PartialSubtypeCheckNode, and from there out-of-line in a platform
2730   // dependent manner.  But it is worthwhile to have the check here,
2731   // where it can be perhaps be optimized.  The cost in code space is
2732   // small (register compare, branch).
2733 
2734   // Now do a linear scan of the secondary super-klass array.  Again, no real
2735   // performance impact (too rare) but it's gotta be done.
2736   // Since the code is rarely used, there is no penalty for moving it
2737   // out of line, and it can only improve I-cache density.
2738   // The decision to inline or out-of-line this final check is platform
2739   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2740   Node* psc = gvn->transform(
2741     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
2742 
2743   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn->zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
2744   r_not_subtype->init_req(2, gvn->transform(new IfTrueNode (iff4)));
2745   r_ok_subtype ->init_req(3, gvn->transform(new IfFalseNode(iff4)));
2746 
2747   // Return false path; set default control to true path.
2748   *ctrl = gvn->transform(r_ok_subtype);
2749   return gvn->transform(r_not_subtype);
2750 }
2751 
2752 // Profile-driven exact type check:
2753 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2754                                     float prob,
2755                                     Node* *casted_receiver) {
2756   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
2757   Node* recv_klass = load_object_klass(receiver);
2758   Node* want_klass = makecon(tklass);
2759   Node* cmp = _gvn.transform( new CmpPNode(recv_klass, want_klass) );
2760   Node* bol = _gvn.transform( new BoolNode(cmp, BoolTest::eq) );
2761   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2762   set_control( _gvn.transform( new IfTrueNode (iff) ));
2763   Node* fail = _gvn.transform( new IfFalseNode(iff) );
2764 
2765   const TypeOopPtr* recv_xtype = tklass->as_instance_type();
2766   assert(recv_xtype->klass_is_exact(), "");
2767 
2768   // Subsume downstream occurrences of receiver with a cast to
2769   // recv_xtype, since now we know what the type will be.
2770   Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype);
2771   (*casted_receiver) = _gvn.transform(cast);
2772   // (User must make the replace_in_map call.)
2773 
2774   return fail;
2775 }
2776 
2777 
2778 //------------------------------seems_never_null-------------------------------
2779 // Use null_seen information if it is available from the profile.
2780 // If we see an unexpected null at a type check we record it and force a
2781 // recompile; the offending check will be recompiled to handle NULLs.
2782 // If we see several offending BCIs, then all checks in the
2783 // method will be recompiled.
2784 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
2785   speculating = !_gvn.type(obj)->speculative_maybe_null();
2786   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
2787   if (UncommonNullCast               // Cutout for this technique
2788       && obj != null()               // And not the -Xcomp stupid case?
2789       && !too_many_traps(reason)
2790       ) {
2791     if (speculating) {
2792       return true;
2793     }
2794     if (data == NULL)
2795       // Edge case:  no mature data.  Be optimistic here.
2796       return true;
2797     // If the profile has not seen a null, assume it won't happen.
2798     assert(java_bc() == Bytecodes::_checkcast ||
2799            java_bc() == Bytecodes::_instanceof ||
2800            java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
2801     return !data->as_BitData()->null_seen();
2802   }
2803   speculating = false;
2804   return false;
2805 }
2806 
2807 //------------------------maybe_cast_profiled_receiver-------------------------
2808 // If the profile has seen exactly one type, narrow to exactly that type.
2809 // Subsequent type checks will always fold up.
2810 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
2811                                              ciKlass* require_klass,
2812                                              ciKlass* spec_klass,
2813                                              bool safe_for_replace) {
2814   if (!UseTypeProfile || !TypeProfileCasts) return NULL;
2815 
2816   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != NULL);
2817 
2818   // Make sure we haven't already deoptimized from this tactic.
2819   if (too_many_traps(reason) || too_many_recompiles(reason))
2820     return NULL;
2821 
2822   // (No, this isn't a call, but it's enough like a virtual call
2823   // to use the same ciMethod accessor to get the profile info...)
2824   // If we have a speculative type use it instead of profiling (which
2825   // may not help us)
2826   ciKlass* exact_kls = spec_klass == NULL ? profile_has_unique_klass() : spec_klass;
2827   if (exact_kls != NULL) {// no cast failures here
2828     if (require_klass == NULL ||
2829         C->static_subtype_check(require_klass, exact_kls) == Compile::SSC_always_true) {
2830       // If we narrow the type to match what the type profile sees or
2831       // the speculative type, we can then remove the rest of the
2832       // cast.
2833       // This is a win, even if the exact_kls is very specific,
2834       // because downstream operations, such as method calls,
2835       // will often benefit from the sharper type.
2836       Node* exact_obj = not_null_obj; // will get updated in place...
2837       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2838                                             &exact_obj);
2839       { PreserveJVMState pjvms(this);
2840         set_control(slow_ctl);
2841         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
2842       }
2843       if (safe_for_replace) {
2844         replace_in_map(not_null_obj, exact_obj);
2845       }
2846       return exact_obj;
2847     }
2848     // assert(ssc == Compile::SSC_always_true)... except maybe the profile lied to us.
2849   }
2850 
2851   return NULL;
2852 }
2853 
2854 /**
2855  * Cast obj to type and emit guard unless we had too many traps here
2856  * already
2857  *
2858  * @param obj       node being casted
2859  * @param type      type to cast the node to
2860  * @param not_null  true if we know node cannot be null
2861  */
2862 Node* GraphKit::maybe_cast_profiled_obj(Node* obj,
2863                                         ciKlass* type,
2864                                         bool not_null) {
2865   if (stopped()) {
2866     return obj;
2867   }
2868 
2869   // type == NULL if profiling tells us this object is always null
2870   if (type != NULL) {
2871     Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check;
2872     Deoptimization::DeoptReason null_reason = Deoptimization::Reason_speculate_null_check;
2873 
2874     if (!too_many_traps(null_reason) && !too_many_recompiles(null_reason) &&
2875         !too_many_traps(class_reason) &&
2876         !too_many_recompiles(class_reason)) {
2877       Node* not_null_obj = NULL;
2878       // not_null is true if we know the object is not null and
2879       // there's no need for a null check
2880       if (!not_null) {
2881         Node* null_ctl = top();
2882         not_null_obj = null_check_oop(obj, &null_ctl, true, true, true);
2883         assert(null_ctl->is_top(), "no null control here");
2884       } else {
2885         not_null_obj = obj;
2886       }
2887 
2888       Node* exact_obj = not_null_obj;
2889       ciKlass* exact_kls = type;
2890       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2891                                             &exact_obj);
2892       {
2893         PreserveJVMState pjvms(this);
2894         set_control(slow_ctl);
2895         uncommon_trap_exact(class_reason, Deoptimization::Action_maybe_recompile);
2896       }
2897       replace_in_map(not_null_obj, exact_obj);
2898       obj = exact_obj;
2899     }
2900   } else {
2901     if (!too_many_traps(Deoptimization::Reason_null_assert) &&
2902         !too_many_recompiles(Deoptimization::Reason_null_assert)) {
2903       Node* exact_obj = null_assert(obj);
2904       replace_in_map(obj, exact_obj);
2905       obj = exact_obj;
2906     }
2907   }
2908   return obj;
2909 }
2910 
2911 //-------------------------------gen_instanceof--------------------------------
2912 // Generate an instance-of idiom.  Used by both the instance-of bytecode
2913 // and the reflective instance-of call.
2914 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) {
2915   kill_dead_locals();           // Benefit all the uncommon traps
2916   assert( !stopped(), "dead parse path should be checked in callers" );
2917   assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
2918          "must check for not-null not-dead klass in callers");
2919 
2920   // Make the merge point
2921   enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
2922   RegionNode* region = new RegionNode(PATH_LIMIT);
2923   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
2924   C->set_has_split_ifs(true); // Has chance for split-if optimization
2925 
2926   ciProfileData* data = NULL;
2927   if (java_bc() == Bytecodes::_instanceof) {  // Only for the bytecode
2928     data = method()->method_data()->bci_to_data(bci());
2929   }
2930   bool speculative_not_null = false;
2931   bool never_see_null = (ProfileDynamicTypes  // aggressive use of profile
2932                          && seems_never_null(obj, data, speculative_not_null));
2933 
2934   // Null check; get casted pointer; set region slot 3
2935   Node* null_ctl = top();
2936   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
2937 
2938   // If not_null_obj is dead, only null-path is taken
2939   if (stopped()) {              // Doing instance-of on a NULL?
2940     set_control(null_ctl);
2941     return intcon(0);
2942   }
2943   region->init_req(_null_path, null_ctl);
2944   phi   ->init_req(_null_path, intcon(0)); // Set null path value
2945   if (null_ctl == top()) {
2946     // Do this eagerly, so that pattern matches like is_diamond_phi
2947     // will work even during parsing.
2948     assert(_null_path == PATH_LIMIT-1, "delete last");
2949     region->del_req(_null_path);
2950     phi   ->del_req(_null_path);
2951   }
2952 
2953   // Do we know the type check always succeed?
2954   bool known_statically = false;
2955   if (_gvn.type(superklass)->singleton()) {
2956     ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
2957     ciKlass* subk = _gvn.type(obj)->is_oopptr()->klass();
2958     if (subk != NULL && subk->is_loaded()) {
2959       int static_res = C->static_subtype_check(superk, subk);
2960       known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
2961     }
2962   }
2963 
2964   if (!known_statically) {
2965     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
2966     // We may not have profiling here or it may not help us. If we
2967     // have a speculative type use it to perform an exact cast.
2968     ciKlass* spec_obj_type = obj_type->speculative_type();
2969     if (spec_obj_type != NULL || (ProfileDynamicTypes && data != NULL)) {
2970       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, NULL, spec_obj_type, safe_for_replace);
2971       if (stopped()) {            // Profile disagrees with this path.
2972         set_control(null_ctl);    // Null is the only remaining possibility.
2973         return intcon(0);
2974       }
2975       if (cast_obj != NULL) {
2976         not_null_obj = cast_obj;
2977       }
2978     }
2979   }
2980 
2981   // Load the object's klass
2982   Node* obj_klass = load_object_klass(not_null_obj);
2983 
2984   // Generate the subtype check
2985   Node* not_subtype_ctrl = gen_subtype_check(obj_klass, superklass);
2986 
2987   // Plug in the success path to the general merge in slot 1.
2988   region->init_req(_obj_path, control());
2989   phi   ->init_req(_obj_path, intcon(1));
2990 
2991   // Plug in the failing path to the general merge in slot 2.
2992   region->init_req(_fail_path, not_subtype_ctrl);
2993   phi   ->init_req(_fail_path, intcon(0));
2994 
2995   // Return final merged results
2996   set_control( _gvn.transform(region) );
2997   record_for_igvn(region);
2998 
2999   // If we know the type check always succeeds then we don't use the
3000   // profiling data at this bytecode. Don't lose it, feed it to the
3001   // type system as a speculative type.
3002   if (safe_for_replace) {
3003     Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3004     replace_in_map(obj, casted_obj);
3005   }
3006 
3007   return _gvn.transform(phi);
3008 }
3009 
3010 //-------------------------------gen_checkcast---------------------------------
3011 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
3012 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
3013 // uncommon-trap paths work.  Adjust stack after this call.
3014 // If failure_control is supplied and not null, it is filled in with
3015 // the control edge for the cast failure.  Otherwise, an appropriate
3016 // uncommon trap or exception is thrown.
3017 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
3018                               Node* *failure_control) {
3019   kill_dead_locals();           // Benefit all the uncommon traps
3020   const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr();
3021   const Type *toop = TypeOopPtr::make_from_klass(tk->klass());
3022 
3023   // Fast cutout:  Check the case that the cast is vacuously true.
3024   // This detects the common cases where the test will short-circuit
3025   // away completely.  We do this before we perform the null check,
3026   // because if the test is going to turn into zero code, we don't
3027   // want a residual null check left around.  (Causes a slowdown,
3028   // for example, in some objArray manipulations, such as a[i]=a[j].)
3029   if (tk->singleton()) {
3030     const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
3031     if (objtp != NULL && objtp->klass() != NULL) {
3032       switch (C->static_subtype_check(tk->klass(), objtp->klass())) {
3033       case Compile::SSC_always_true:
3034         // If we know the type check always succeed then we don't use
3035         // the profiling data at this bytecode. Don't lose it, feed it
3036         // to the type system as a speculative type.
3037         return record_profiled_receiver_for_speculation(obj);
3038       case Compile::SSC_always_false:
3039         // It needs a null check because a null will *pass* the cast check.
3040         // A non-null value will always produce an exception.
3041         return null_assert(obj);
3042       }
3043     }
3044   }
3045 
3046   ciProfileData* data = NULL;
3047   bool safe_for_replace = false;
3048   if (failure_control == NULL) {        // use MDO in regular case only
3049     assert(java_bc() == Bytecodes::_aastore ||
3050            java_bc() == Bytecodes::_checkcast,
3051            "interpreter profiles type checks only for these BCs");
3052     data = method()->method_data()->bci_to_data(bci());
3053     safe_for_replace = true;
3054   }
3055 
3056   // Make the merge point
3057   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3058   RegionNode* region = new RegionNode(PATH_LIMIT);
3059   Node*       phi    = new PhiNode(region, toop);
3060   C->set_has_split_ifs(true); // Has chance for split-if optimization
3061 
3062   // Use null-cast information if it is available
3063   bool speculative_not_null = false;
3064   bool never_see_null = ((failure_control == NULL)  // regular case only
3065                          && seems_never_null(obj, data, speculative_not_null));
3066 
3067   // Null check; get casted pointer; set region slot 3
3068   Node* null_ctl = top();
3069   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3070 
3071   // If not_null_obj is dead, only null-path is taken
3072   if (stopped()) {              // Doing instance-of on a NULL?
3073     set_control(null_ctl);
3074     return null();
3075   }
3076   region->init_req(_null_path, null_ctl);
3077   phi   ->init_req(_null_path, null());  // Set null path value
3078   if (null_ctl == top()) {
3079     // Do this eagerly, so that pattern matches like is_diamond_phi
3080     // will work even during parsing.
3081     assert(_null_path == PATH_LIMIT-1, "delete last");
3082     region->del_req(_null_path);
3083     phi   ->del_req(_null_path);
3084   }
3085 
3086   Node* cast_obj = NULL;
3087   if (tk->klass_is_exact()) {
3088     // The following optimization tries to statically cast the speculative type of the object
3089     // (for example obtained during profiling) to the type of the superklass and then do a
3090     // dynamic check that the type of the object is what we expect. To work correctly
3091     // for checkcast and aastore the type of superklass should be exact.
3092     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3093     // We may not have profiling here or it may not help us. If we have
3094     // a speculative type use it to perform an exact cast.
3095     ciKlass* spec_obj_type = obj_type->speculative_type();
3096     if (spec_obj_type != NULL || data != NULL) {
3097       cast_obj = maybe_cast_profiled_receiver(not_null_obj, tk->klass(), spec_obj_type, safe_for_replace);
3098       if (cast_obj != NULL) {
3099         if (failure_control != NULL) // failure is now impossible
3100           (*failure_control) = top();
3101         // adjust the type of the phi to the exact klass:
3102         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3103       }
3104     }
3105   }
3106 
3107   if (cast_obj == NULL) {
3108     // Load the object's klass
3109     Node* obj_klass = load_object_klass(not_null_obj);
3110 
3111     // Generate the subtype check
3112     Node* not_subtype_ctrl = gen_subtype_check( obj_klass, superklass );
3113 
3114     // Plug in success path into the merge
3115     cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3116     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3117     if (failure_control == NULL) {
3118       if (not_subtype_ctrl != top()) { // If failure is possible
3119         PreserveJVMState pjvms(this);
3120         set_control(not_subtype_ctrl);
3121         builtin_throw(Deoptimization::Reason_class_check, obj_klass);
3122       }
3123     } else {
3124       (*failure_control) = not_subtype_ctrl;
3125     }
3126   }
3127 
3128   region->init_req(_obj_path, control());
3129   phi   ->init_req(_obj_path, cast_obj);
3130 
3131   // A merge of NULL or Casted-NotNull obj
3132   Node* res = _gvn.transform(phi);
3133 
3134   // Note I do NOT always 'replace_in_map(obj,result)' here.
3135   //  if( tk->klass()->can_be_primary_super()  )
3136     // This means that if I successfully store an Object into an array-of-String
3137     // I 'forget' that the Object is really now known to be a String.  I have to
3138     // do this because we don't have true union types for interfaces - if I store
3139     // a Baz into an array-of-Interface and then tell the optimizer it's an
3140     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3141     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3142   //  replace_in_map( obj, res );
3143 
3144   // Return final merged results
3145   set_control( _gvn.transform(region) );
3146   record_for_igvn(region);
3147 
3148   return record_profiled_receiver_for_speculation(res);
3149 }
3150 
3151 //------------------------------next_monitor-----------------------------------
3152 // What number should be given to the next monitor?
3153 int GraphKit::next_monitor() {
3154   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3155   int next = current + C->sync_stack_slots();
3156   // Keep the toplevel high water mark current:
3157   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3158   return current;
3159 }
3160 
3161 //------------------------------insert_mem_bar---------------------------------
3162 // Memory barrier to avoid floating things around
3163 // The membar serves as a pinch point between both control and all memory slices.
3164 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3165   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3166   mb->init_req(TypeFunc::Control, control());
3167   mb->init_req(TypeFunc::Memory,  reset_memory());
3168   Node* membar = _gvn.transform(mb);
3169   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3170   set_all_memory_call(membar);
3171   return membar;
3172 }
3173 
3174 //-------------------------insert_mem_bar_volatile----------------------------
3175 // Memory barrier to avoid floating things around
3176 // The membar serves as a pinch point between both control and memory(alias_idx).
3177 // If you want to make a pinch point on all memory slices, do not use this
3178 // function (even with AliasIdxBot); use insert_mem_bar() instead.
3179 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
3180   // When Parse::do_put_xxx updates a volatile field, it appends a series
3181   // of MemBarVolatile nodes, one for *each* volatile field alias category.
3182   // The first membar is on the same memory slice as the field store opcode.
3183   // This forces the membar to follow the store.  (Bug 6500685 broke this.)
3184   // All the other membars (for other volatile slices, including AliasIdxBot,
3185   // which stands for all unknown volatile slices) are control-dependent
3186   // on the first membar.  This prevents later volatile loads or stores
3187   // from sliding up past the just-emitted store.
3188 
3189   MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
3190   mb->set_req(TypeFunc::Control,control());
3191   if (alias_idx == Compile::AliasIdxBot) {
3192     mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
3193   } else {
3194     assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
3195     mb->set_req(TypeFunc::Memory, memory(alias_idx));
3196   }
3197   Node* membar = _gvn.transform(mb);
3198   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3199   if (alias_idx == Compile::AliasIdxBot) {
3200     merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)));
3201   } else {
3202     set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx);
3203   }
3204   return membar;
3205 }
3206 
3207 //------------------------------shared_lock------------------------------------
3208 // Emit locking code.
3209 FastLockNode* GraphKit::shared_lock(Node* obj) {
3210   // bci is either a monitorenter bc or InvocationEntryBci
3211   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3212   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3213 
3214   if( !GenerateSynchronizationCode )
3215     return NULL;                // Not locking things?
3216   if (stopped())                // Dead monitor?
3217     return NULL;
3218 
3219   assert(dead_locals_are_killed(), "should kill locals before sync. point");
3220 
3221   // Box the stack location
3222   Node* box = _gvn.transform(new BoxLockNode(next_monitor()));
3223   Node* mem = reset_memory();
3224 
3225   FastLockNode * flock = _gvn.transform(new FastLockNode(0, obj, box) )->as_FastLock();
3226   if (UseBiasedLocking && PrintPreciseBiasedLockingStatistics) {
3227     // Create the counters for this fast lock.
3228     flock->create_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3229   }
3230 
3231   // Create the rtm counters for this fast lock if needed.
3232   flock->create_rtm_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3233 
3234   // Add monitor to debug info for the slow path.  If we block inside the
3235   // slow path and de-opt, we need the monitor hanging around
3236   map()->push_monitor( flock );
3237 
3238   const TypeFunc *tf = LockNode::lock_type();
3239   LockNode *lock = new LockNode(C, tf);
3240 
3241   lock->init_req( TypeFunc::Control, control() );
3242   lock->init_req( TypeFunc::Memory , mem );
3243   lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3244   lock->init_req( TypeFunc::FramePtr, frameptr() );
3245   lock->init_req( TypeFunc::ReturnAdr, top() );
3246 
3247   lock->init_req(TypeFunc::Parms + 0, obj);
3248   lock->init_req(TypeFunc::Parms + 1, box);
3249   lock->init_req(TypeFunc::Parms + 2, flock);
3250   add_safepoint_edges(lock);
3251 
3252   lock = _gvn.transform( lock )->as_Lock();
3253 
3254   // lock has no side-effects, sets few values
3255   set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
3256 
3257   insert_mem_bar(Op_MemBarAcquireLock);
3258 
3259   // Add this to the worklist so that the lock can be eliminated
3260   record_for_igvn(lock);
3261 
3262 #ifndef PRODUCT
3263   if (PrintLockStatistics) {
3264     // Update the counter for this lock.  Don't bother using an atomic
3265     // operation since we don't require absolute accuracy.
3266     lock->create_lock_counter(map()->jvms());
3267     increment_counter(lock->counter()->addr());
3268   }
3269 #endif
3270 
3271   return flock;
3272 }
3273 
3274 
3275 //------------------------------shared_unlock----------------------------------
3276 // Emit unlocking code.
3277 void GraphKit::shared_unlock(Node* box, Node* obj) {
3278   // bci is either a monitorenter bc or InvocationEntryBci
3279   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3280   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3281 
3282   if( !GenerateSynchronizationCode )
3283     return;
3284   if (stopped()) {               // Dead monitor?
3285     map()->pop_monitor();        // Kill monitor from debug info
3286     return;
3287   }
3288 
3289   // Memory barrier to avoid floating things down past the locked region
3290   insert_mem_bar(Op_MemBarReleaseLock);
3291 
3292   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3293   UnlockNode *unlock = new UnlockNode(C, tf);
3294 #ifdef ASSERT
3295   unlock->set_dbg_jvms(sync_jvms());
3296 #endif
3297   uint raw_idx = Compile::AliasIdxRaw;
3298   unlock->init_req( TypeFunc::Control, control() );
3299   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3300   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3301   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3302   unlock->init_req( TypeFunc::ReturnAdr, top() );
3303 
3304   unlock->init_req(TypeFunc::Parms + 0, obj);
3305   unlock->init_req(TypeFunc::Parms + 1, box);
3306   unlock = _gvn.transform(unlock)->as_Unlock();
3307 
3308   Node* mem = reset_memory();
3309 
3310   // unlock has no side-effects, sets few values
3311   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3312 
3313   // Kill monitor from debug info
3314   map()->pop_monitor( );
3315 }
3316 
3317 //-------------------------------get_layout_helper-----------------------------
3318 // If the given klass is a constant or known to be an array,
3319 // fetch the constant layout helper value into constant_value
3320 // and return (Node*)NULL.  Otherwise, load the non-constant
3321 // layout helper value, and return the node which represents it.
3322 // This two-faced routine is useful because allocation sites
3323 // almost always feature constant types.
3324 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3325   const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr();
3326   if (!StressReflectiveCode && inst_klass != NULL) {
3327     ciKlass* klass = inst_klass->klass();
3328     bool    xklass = inst_klass->klass_is_exact();
3329     if (xklass || klass->is_array_klass()) {
3330       jint lhelper = klass->layout_helper();
3331       if (lhelper != Klass::_lh_neutral_value) {
3332         constant_value = lhelper;
3333         return (Node*) NULL;
3334       }
3335     }
3336   }
3337   constant_value = Klass::_lh_neutral_value;  // put in a known value
3338   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3339   return make_load(NULL, lhp, TypeInt::INT, T_INT, MemNode::unordered);
3340 }
3341 
3342 // We just put in an allocate/initialize with a big raw-memory effect.
3343 // Hook selected additional alias categories on the initialization.
3344 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3345                                 MergeMemNode* init_in_merge,
3346                                 Node* init_out_raw) {
3347   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3348   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3349 
3350   Node* prevmem = kit.memory(alias_idx);
3351   init_in_merge->set_memory_at(alias_idx, prevmem);
3352   kit.set_memory(init_out_raw, alias_idx);
3353 }
3354 
3355 //---------------------------set_output_for_allocation-------------------------
3356 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
3357                                           const TypeOopPtr* oop_type,
3358                                           bool deoptimize_on_exception) {
3359   int rawidx = Compile::AliasIdxRaw;
3360   alloc->set_req( TypeFunc::FramePtr, frameptr() );
3361   add_safepoint_edges(alloc);
3362   Node* allocx = _gvn.transform(alloc);
3363   set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
3364   // create memory projection for i_o
3365   set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
3366   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
3367 
3368   // create a memory projection as for the normal control path
3369   Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
3370   set_memory(malloc, rawidx);
3371 
3372   // a normal slow-call doesn't change i_o, but an allocation does
3373   // we create a separate i_o projection for the normal control path
3374   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
3375   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
3376 
3377   // put in an initialization barrier
3378   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
3379                                                  rawoop)->as_Initialize();
3380   assert(alloc->initialization() == init,  "2-way macro link must work");
3381   assert(init ->allocation()     == alloc, "2-way macro link must work");
3382   {
3383     // Extract memory strands which may participate in the new object's
3384     // initialization, and source them from the new InitializeNode.
3385     // This will allow us to observe initializations when they occur,
3386     // and link them properly (as a group) to the InitializeNode.
3387     assert(init->in(InitializeNode::Memory) == malloc, "");
3388     MergeMemNode* minit_in = MergeMemNode::make(malloc);
3389     init->set_req(InitializeNode::Memory, minit_in);
3390     record_for_igvn(minit_in); // fold it up later, if possible
3391     Node* minit_out = memory(rawidx);
3392     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3393     if (oop_type->isa_aryptr()) {
3394       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
3395       int            elemidx  = C->get_alias_index(telemref);
3396       hook_memory_on_init(*this, elemidx, minit_in, minit_out);
3397     } else if (oop_type->isa_instptr()) {
3398       ciInstanceKlass* ik = oop_type->klass()->as_instance_klass();
3399       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
3400         ciField* field = ik->nonstatic_field_at(i);
3401         if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
3402           continue;  // do not bother to track really large numbers of fields
3403         // Find (or create) the alias category for this field:
3404         int fieldidx = C->alias_type(field)->index();
3405         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
3406       }
3407     }
3408   }
3409 
3410   // Cast raw oop to the real thing...
3411   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
3412   javaoop = _gvn.transform(javaoop);
3413   C->set_recent_alloc(control(), javaoop);
3414   assert(just_allocated_object(control()) == javaoop, "just allocated");
3415 
3416 #ifdef ASSERT
3417   { // Verify that the AllocateNode::Ideal_allocation recognizers work:
3418     assert(AllocateNode::Ideal_allocation(rawoop, &_gvn) == alloc,
3419            "Ideal_allocation works");
3420     assert(AllocateNode::Ideal_allocation(javaoop, &_gvn) == alloc,
3421            "Ideal_allocation works");
3422     if (alloc->is_AllocateArray()) {
3423       assert(AllocateArrayNode::Ideal_array_allocation(rawoop, &_gvn) == alloc->as_AllocateArray(),
3424              "Ideal_allocation works");
3425       assert(AllocateArrayNode::Ideal_array_allocation(javaoop, &_gvn) == alloc->as_AllocateArray(),
3426              "Ideal_allocation works");
3427     } else {
3428       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
3429     }
3430   }
3431 #endif //ASSERT
3432 
3433   return javaoop;
3434 }
3435 
3436 //---------------------------new_instance--------------------------------------
3437 // This routine takes a klass_node which may be constant (for a static type)
3438 // or may be non-constant (for reflective code).  It will work equally well
3439 // for either, and the graph will fold nicely if the optimizer later reduces
3440 // the type to a constant.
3441 // The optional arguments are for specialized use by intrinsics:
3442 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
3443 //  - If 'return_size_val', report the the total object size to the caller.
3444 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
3445 Node* GraphKit::new_instance(Node* klass_node,
3446                              Node* extra_slow_test,
3447                              Node* *return_size_val,
3448                              bool deoptimize_on_exception) {
3449   // Compute size in doublewords
3450   // The size is always an integral number of doublewords, represented
3451   // as a positive bytewise size stored in the klass's layout_helper.
3452   // The layout_helper also encodes (in a low bit) the need for a slow path.
3453   jint  layout_con = Klass::_lh_neutral_value;
3454   Node* layout_val = get_layout_helper(klass_node, layout_con);
3455   int   layout_is_con = (layout_val == NULL);
3456 
3457   if (extra_slow_test == NULL)  extra_slow_test = intcon(0);
3458   // Generate the initial go-slow test.  It's either ALWAYS (return a
3459   // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective
3460   // case) a computed value derived from the layout_helper.
3461   Node* initial_slow_test = NULL;
3462   if (layout_is_con) {
3463     assert(!StressReflectiveCode, "stress mode does not use these paths");
3464     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
3465     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
3466   } else {   // reflective case
3467     // This reflective path is used by Unsafe.allocateInstance.
3468     // (It may be stress-tested by specifying StressReflectiveCode.)
3469     // Basically, we want to get into the VM is there's an illegal argument.
3470     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
3471     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
3472     if (extra_slow_test != intcon(0)) {
3473       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
3474     }
3475     // (Macro-expander will further convert this to a Bool, if necessary.)
3476   }
3477 
3478   // Find the size in bytes.  This is easy; it's the layout_helper.
3479   // The size value must be valid even if the slow path is taken.
3480   Node* size = NULL;
3481   if (layout_is_con) {
3482     size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
3483   } else {   // reflective case
3484     // This reflective path is used by clone and Unsafe.allocateInstance.
3485     size = ConvI2X(layout_val);
3486 
3487     // Clear the low bits to extract layout_helper_size_in_bytes:
3488     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
3489     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
3490     size = _gvn.transform( new AndXNode(size, mask) );
3491   }
3492   if (return_size_val != NULL) {
3493     (*return_size_val) = size;
3494   }
3495 
3496   // This is a precise notnull oop of the klass.
3497   // (Actually, it need not be precise if this is a reflective allocation.)
3498   // It's what we cast the result to.
3499   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
3500   if (!tklass)  tklass = TypeKlassPtr::OBJECT;
3501   const TypeOopPtr* oop_type = tklass->as_instance_type();
3502 
3503   // Now generate allocation code
3504 
3505   // The entire memory state is needed for slow path of the allocation
3506   // since GC and deoptimization can happened.
3507   Node *mem = reset_memory();
3508   set_all_memory(mem); // Create new memory state
3509 
3510   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
3511                                          control(), mem, i_o(),
3512                                          size, klass_node,
3513                                          initial_slow_test);
3514 
3515   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
3516 }
3517 
3518 //-------------------------------new_array-------------------------------------
3519 // helper for both newarray and anewarray
3520 // The 'length' parameter is (obviously) the length of the array.
3521 // See comments on new_instance for the meaning of the other arguments.
3522 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
3523                           Node* length,         // number of array elements
3524                           int   nargs,          // number of arguments to push back for uncommon trap
3525                           Node* *return_size_val,
3526                           bool deoptimize_on_exception) {
3527   jint  layout_con = Klass::_lh_neutral_value;
3528   Node* layout_val = get_layout_helper(klass_node, layout_con);
3529   int   layout_is_con = (layout_val == NULL);
3530 
3531   if (!layout_is_con && !StressReflectiveCode &&
3532       !too_many_traps(Deoptimization::Reason_class_check)) {
3533     // This is a reflective array creation site.
3534     // Optimistically assume that it is a subtype of Object[],
3535     // so that we can fold up all the address arithmetic.
3536     layout_con = Klass::array_layout_helper(T_OBJECT);
3537     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
3538     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
3539     { BuildCutout unless(this, bol_lh, PROB_MAX);
3540       inc_sp(nargs);
3541       uncommon_trap(Deoptimization::Reason_class_check,
3542                     Deoptimization::Action_maybe_recompile);
3543     }
3544     layout_val = NULL;
3545     layout_is_con = true;
3546   }
3547 
3548   // Generate the initial go-slow test.  Make sure we do not overflow
3549   // if length is huge (near 2Gig) or negative!  We do not need
3550   // exact double-words here, just a close approximation of needed
3551   // double-words.  We can't add any offset or rounding bits, lest we
3552   // take a size -1 of bytes and make it positive.  Use an unsigned
3553   // compare, so negative sizes look hugely positive.
3554   int fast_size_limit = FastAllocateSizeLimit;
3555   if (layout_is_con) {
3556     assert(!StressReflectiveCode, "stress mode does not use these paths");
3557     // Increase the size limit if we have exact knowledge of array type.
3558     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
3559     fast_size_limit <<= (LogBytesPerLong - log2_esize);
3560   }
3561 
3562   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
3563   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
3564 
3565   // --- Size Computation ---
3566   // array_size = round_to_heap(array_header + (length << elem_shift));
3567   // where round_to_heap(x) == round_to(x, MinObjAlignmentInBytes)
3568   // and round_to(x, y) == ((x + y-1) & ~(y-1))
3569   // The rounding mask is strength-reduced, if possible.
3570   int round_mask = MinObjAlignmentInBytes - 1;
3571   Node* header_size = NULL;
3572   int   header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
3573   // (T_BYTE has the weakest alignment and size restrictions...)
3574   if (layout_is_con) {
3575     int       hsize  = Klass::layout_helper_header_size(layout_con);
3576     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
3577     BasicType etype  = Klass::layout_helper_element_type(layout_con);
3578     if ((round_mask & ~right_n_bits(eshift)) == 0)
3579       round_mask = 0;  // strength-reduce it if it goes away completely
3580     assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
3581     assert(header_size_min <= hsize, "generic minimum is smallest");
3582     header_size_min = hsize;
3583     header_size = intcon(hsize + round_mask);
3584   } else {
3585     Node* hss   = intcon(Klass::_lh_header_size_shift);
3586     Node* hsm   = intcon(Klass::_lh_header_size_mask);
3587     Node* hsize = _gvn.transform( new URShiftINode(layout_val, hss) );
3588     hsize       = _gvn.transform( new AndINode(hsize, hsm) );
3589     Node* mask  = intcon(round_mask);
3590     header_size = _gvn.transform( new AddINode(hsize, mask) );
3591   }
3592 
3593   Node* elem_shift = NULL;
3594   if (layout_is_con) {
3595     int eshift = Klass::layout_helper_log2_element_size(layout_con);
3596     if (eshift != 0)
3597       elem_shift = intcon(eshift);
3598   } else {
3599     // There is no need to mask or shift this value.
3600     // The semantics of LShiftINode include an implicit mask to 0x1F.
3601     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
3602     elem_shift = layout_val;
3603   }
3604 
3605   // Transition to native address size for all offset calculations:
3606   Node* lengthx = ConvI2X(length);
3607   Node* headerx = ConvI2X(header_size);
3608 #ifdef _LP64
3609   { const TypeInt* tilen = _gvn.find_int_type(length);
3610     if (tilen != NULL && tilen->_lo < 0) {
3611       // Add a manual constraint to a positive range.  Cf. array_element_address.
3612       jint size_max = fast_size_limit;
3613       if (size_max > tilen->_hi)  size_max = tilen->_hi;
3614       const TypeInt* tlcon = TypeInt::make(0, size_max, Type::WidenMin);
3615 
3616       // Only do a narrow I2L conversion if the range check passed.
3617       IfNode* iff = new IfNode(control(), initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
3618       _gvn.transform(iff);
3619       RegionNode* region = new RegionNode(3);
3620       _gvn.set_type(region, Type::CONTROL);
3621       lengthx = new PhiNode(region, TypeLong::LONG);
3622       _gvn.set_type(lengthx, TypeLong::LONG);
3623 
3624       // Range check passed. Use ConvI2L node with narrow type.
3625       Node* passed = IfFalse(iff);
3626       region->init_req(1, passed);
3627       // Make I2L conversion control dependent to prevent it from
3628       // floating above the range check during loop optimizations.
3629       lengthx->init_req(1, C->constrained_convI2L(&_gvn, length, tlcon, passed));
3630 
3631       // Range check failed. Use ConvI2L with wide type because length may be invalid.
3632       region->init_req(2, IfTrue(iff));
3633       lengthx->init_req(2, ConvI2X(length));
3634 
3635       set_control(region);
3636       record_for_igvn(region);
3637       record_for_igvn(lengthx);
3638     }
3639   }
3640 #endif
3641 
3642   // Combine header size (plus rounding) and body size.  Then round down.
3643   // This computation cannot overflow, because it is used only in two
3644   // places, one where the length is sharply limited, and the other
3645   // after a successful allocation.
3646   Node* abody = lengthx;
3647   if (elem_shift != NULL)
3648     abody     = _gvn.transform( new LShiftXNode(lengthx, elem_shift) );
3649   Node* size  = _gvn.transform( new AddXNode(headerx, abody) );
3650   if (round_mask != 0) {
3651     Node* mask = MakeConX(~round_mask);
3652     size       = _gvn.transform( new AndXNode(size, mask) );
3653   }
3654   // else if round_mask == 0, the size computation is self-rounding
3655 
3656   if (return_size_val != NULL) {
3657     // This is the size
3658     (*return_size_val) = size;
3659   }
3660 
3661   // Now generate allocation code
3662 
3663   // The entire memory state is needed for slow path of the allocation
3664   // since GC and deoptimization can happened.
3665   Node *mem = reset_memory();
3666   set_all_memory(mem); // Create new memory state
3667 
3668   if (initial_slow_test->is_Bool()) {
3669     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
3670     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
3671   }
3672 
3673   // Create the AllocateArrayNode and its result projections
3674   AllocateArrayNode* alloc
3675     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
3676                             control(), mem, i_o(),
3677                             size, klass_node,
3678                             initial_slow_test,
3679                             length);
3680 
3681   // Cast to correct type.  Note that the klass_node may be constant or not,
3682   // and in the latter case the actual array type will be inexact also.
3683   // (This happens via a non-constant argument to inline_native_newArray.)
3684   // In any case, the value of klass_node provides the desired array type.
3685   const TypeInt* length_type = _gvn.find_int_type(length);
3686   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();
3687   if (ary_type->isa_aryptr() && length_type != NULL) {
3688     // Try to get a better type than POS for the size
3689     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
3690   }
3691 
3692   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
3693 
3694   // Cast length on remaining path to be as narrow as possible
3695   if (map()->find_edge(length) >= 0) {
3696     Node* ccast = alloc->make_ideal_length(ary_type, &_gvn);
3697     if (ccast != length) {
3698       _gvn.set_type_bottom(ccast);
3699       record_for_igvn(ccast);
3700       replace_in_map(length, ccast);
3701     }
3702   }
3703 
3704   return javaoop;
3705 }
3706 
3707 // The following "Ideal_foo" functions are placed here because they recognize
3708 // the graph shapes created by the functions immediately above.
3709 
3710 //---------------------------Ideal_allocation----------------------------------
3711 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
3712 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase) {
3713   if (ptr == NULL) {     // reduce dumb test in callers
3714     return NULL;
3715   }
3716   if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast
3717     ptr = ptr->in(1);
3718     if (ptr == NULL) return NULL;
3719   }
3720   // Return NULL for allocations with several casts:
3721   //   j.l.reflect.Array.newInstance(jobject, jint)
3722   //   Object.clone()
3723   // to keep more precise type from last cast.
3724   if (ptr->is_Proj()) {
3725     Node* allo = ptr->in(0);
3726     if (allo != NULL && allo->is_Allocate()) {
3727       return allo->as_Allocate();
3728     }
3729   }
3730   // Report failure to match.
3731   return NULL;
3732 }
3733 
3734 // Fancy version which also strips off an offset (and reports it to caller).
3735 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase,
3736                                              intptr_t& offset) {
3737   Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
3738   if (base == NULL)  return NULL;
3739   return Ideal_allocation(base, phase);
3740 }
3741 
3742 // Trace Initialize <- Proj[Parm] <- Allocate
3743 AllocateNode* InitializeNode::allocation() {
3744   Node* rawoop = in(InitializeNode::RawAddress);
3745   if (rawoop->is_Proj()) {
3746     Node* alloc = rawoop->in(0);
3747     if (alloc->is_Allocate()) {
3748       return alloc->as_Allocate();
3749     }
3750   }
3751   return NULL;
3752 }
3753 
3754 // Trace Allocate -> Proj[Parm] -> Initialize
3755 InitializeNode* AllocateNode::initialization() {
3756   ProjNode* rawoop = proj_out(AllocateNode::RawAddress);
3757   if (rawoop == NULL)  return NULL;
3758   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
3759     Node* init = rawoop->fast_out(i);
3760     if (init->is_Initialize()) {
3761       assert(init->as_Initialize()->allocation() == this, "2-way link");
3762       return init->as_Initialize();
3763     }
3764   }
3765   return NULL;
3766 }
3767 
3768 //----------------------------- loop predicates ---------------------------
3769 
3770 //------------------------------add_predicate_impl----------------------------
3771 void GraphKit::add_predicate_impl(Deoptimization::DeoptReason reason, int nargs) {
3772   // Too many traps seen?
3773   if (too_many_traps(reason)) {
3774 #ifdef ASSERT
3775     if (TraceLoopPredicate) {
3776       int tc = C->trap_count(reason);
3777       tty->print("too many traps=%s tcount=%d in ",
3778                     Deoptimization::trap_reason_name(reason), tc);
3779       method()->print(); // which method has too many predicate traps
3780       tty->cr();
3781     }
3782 #endif
3783     // We cannot afford to take more traps here,
3784     // do not generate predicate.
3785     return;
3786   }
3787 
3788   Node *cont    = _gvn.intcon(1);
3789   Node* opq     = _gvn.transform(new Opaque1Node(C, cont));
3790   Node *bol     = _gvn.transform(new Conv2BNode(opq));
3791   IfNode* iff   = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
3792   Node* iffalse = _gvn.transform(new IfFalseNode(iff));
3793   C->add_predicate_opaq(opq);
3794   {
3795     PreserveJVMState pjvms(this);
3796     set_control(iffalse);
3797     inc_sp(nargs);
3798     uncommon_trap(reason, Deoptimization::Action_maybe_recompile);
3799   }
3800   Node* iftrue = _gvn.transform(new IfTrueNode(iff));
3801   set_control(iftrue);
3802 }
3803 
3804 //------------------------------add_predicate---------------------------------
3805 void GraphKit::add_predicate(int nargs) {
3806   if (UseLoopPredicate) {
3807     add_predicate_impl(Deoptimization::Reason_predicate, nargs);
3808   }
3809   // loop's limit check predicate should be near the loop.
3810   add_predicate_impl(Deoptimization::Reason_loop_limit_check, nargs);
3811 }
3812 
3813 //----------------------------- store barriers ----------------------------
3814 #define __ ideal.
3815 
3816 void GraphKit::sync_kit(IdealKit& ideal) {
3817   set_all_memory(__ merged_memory());
3818   set_i_o(__ i_o());
3819   set_control(__ ctrl());
3820 }
3821 
3822 void GraphKit::final_sync(IdealKit& ideal) {
3823   // Final sync IdealKit and graphKit.
3824   sync_kit(ideal);
3825 }
3826 
3827 Node* GraphKit::byte_map_base_node() {
3828   // Get base of card map
3829   CardTableModRefBS* ct =
3830     barrier_set_cast<CardTableModRefBS>(Universe::heap()->barrier_set());
3831   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust users of this code");
3832   if (ct->byte_map_base != NULL) {
3833     return makecon(TypeRawPtr::make((address)ct->byte_map_base));
3834   } else {
3835     return null();
3836   }
3837 }
3838 
3839 // vanilla/CMS post barrier
3840 // Insert a write-barrier store.  This is to let generational GC work; we have
3841 // to flag all oop-stores before the next GC point.
3842 void GraphKit::write_barrier_post(Node* oop_store,
3843                                   Node* obj,
3844                                   Node* adr,
3845                                   uint  adr_idx,
3846                                   Node* val,
3847                                   bool use_precise) {
3848   // No store check needed if we're storing a NULL or an old object
3849   // (latter case is probably a string constant). The concurrent
3850   // mark sweep garbage collector, however, needs to have all nonNull
3851   // oop updates flagged via card-marks.
3852   if (val != NULL && val->is_Con()) {
3853     // must be either an oop or NULL
3854     const Type* t = val->bottom_type();
3855     if (t == TypePtr::NULL_PTR || t == Type::TOP)
3856       // stores of null never (?) need barriers
3857       return;
3858   }
3859 
3860   if (use_ReduceInitialCardMarks()
3861       && obj == just_allocated_object(control())) {
3862     // We can skip marks on a freshly-allocated object in Eden.
3863     // Keep this code in sync with new_store_pre_barrier() in runtime.cpp.
3864     // That routine informs GC to take appropriate compensating steps,
3865     // upon a slow-path allocation, so as to make this card-mark
3866     // elision safe.
3867     return;
3868   }
3869 
3870   if (!use_precise) {
3871     // All card marks for a (non-array) instance are in one place:
3872     adr = obj;
3873   }
3874   // (Else it's an array (or unknown), and we want more precise card marks.)
3875   assert(adr != NULL, "");
3876 
3877   IdealKit ideal(this, true);
3878 
3879   // Convert the pointer to an int prior to doing math on it
3880   Node* cast = __ CastPX(__ ctrl(), adr);
3881 
3882   // Divide by card size
3883   assert(Universe::heap()->barrier_set()->is_a(BarrierSet::CardTableModRef),
3884          "Only one we handle so far.");
3885   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
3886 
3887   // Combine card table base and card offset
3888   Node* card_adr = __ AddP(__ top(), byte_map_base_node(), card_offset );
3889 
3890   // Get the alias_index for raw card-mark memory
3891   int adr_type = Compile::AliasIdxRaw;
3892   Node*   zero = __ ConI(0); // Dirty card value
3893   BasicType bt = T_BYTE;
3894 
3895   if (UseConcMarkSweepGC && UseCondCardMark) {
3896     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
3897     __ sync_kit(this);
3898   }
3899 
3900   if (UseCondCardMark) {
3901     // The classic GC reference write barrier is typically implemented
3902     // as a store into the global card mark table.  Unfortunately
3903     // unconditional stores can result in false sharing and excessive
3904     // coherence traffic as well as false transactional aborts.
3905     // UseCondCardMark enables MP "polite" conditional card mark
3906     // stores.  In theory we could relax the load from ctrl() to
3907     // no_ctrl, but that doesn't buy much latitude.
3908     Node* card_val = __ load( __ ctrl(), card_adr, TypeInt::BYTE, bt, adr_type);
3909     __ if_then(card_val, BoolTest::ne, zero);
3910   }
3911 
3912   // Smash zero into card
3913   if( !UseConcMarkSweepGC ) {
3914     __ store(__ ctrl(), card_adr, zero, bt, adr_type, MemNode::unordered);
3915   } else {
3916     // Specialized path for CM store barrier
3917     __ storeCM(__ ctrl(), card_adr, zero, oop_store, adr_idx, bt, adr_type);
3918   }
3919 
3920   if (UseCondCardMark) {
3921     __ end_if();
3922   }
3923 
3924   // Final sync IdealKit and GraphKit.
3925   final_sync(ideal);
3926 }
3927 /*
3928  * Determine if the G1 pre-barrier can be removed. The pre-barrier is
3929  * required by SATB to make sure all objects live at the start of the
3930  * marking are kept alive, all reference updates need to any previous
3931  * reference stored before writing.
3932  *
3933  * If the previous value is NULL there is no need to save the old value.
3934  * References that are NULL are filtered during runtime by the barrier
3935  * code to avoid unnecessary queuing.
3936  *
3937  * However in the case of newly allocated objects it might be possible to
3938  * prove that the reference about to be overwritten is NULL during compile
3939  * time and avoid adding the barrier code completely.
3940  *
3941  * The compiler needs to determine that the object in which a field is about
3942  * to be written is newly allocated, and that no prior store to the same field
3943  * has happened since the allocation.
3944  *
3945  * Returns true if the pre-barrier can be removed
3946  */
3947 bool GraphKit::g1_can_remove_pre_barrier(PhaseTransform* phase, Node* adr,
3948                                          BasicType bt, uint adr_idx) {
3949   intptr_t offset = 0;
3950   Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
3951   AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase);
3952 
3953   if (offset == Type::OffsetBot) {
3954     return false; // cannot unalias unless there are precise offsets
3955   }
3956 
3957   if (alloc == NULL) {
3958     return false; // No allocation found
3959   }
3960 
3961   intptr_t size_in_bytes = type2aelembytes(bt);
3962 
3963   Node* mem = memory(adr_idx); // start searching here...
3964 
3965   for (int cnt = 0; cnt < 50; cnt++) {
3966 
3967     if (mem->is_Store()) {
3968 
3969       Node* st_adr = mem->in(MemNode::Address);
3970       intptr_t st_offset = 0;
3971       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
3972 
3973       if (st_base == NULL) {
3974         break; // inscrutable pointer
3975       }
3976 
3977       // Break we have found a store with same base and offset as ours so break
3978       if (st_base == base && st_offset == offset) {
3979         break;
3980       }
3981 
3982       if (st_offset != offset && st_offset != Type::OffsetBot) {
3983         const int MAX_STORE = BytesPerLong;
3984         if (st_offset >= offset + size_in_bytes ||
3985             st_offset <= offset - MAX_STORE ||
3986             st_offset <= offset - mem->as_Store()->memory_size()) {
3987           // Success:  The offsets are provably independent.
3988           // (You may ask, why not just test st_offset != offset and be done?
3989           // The answer is that stores of different sizes can co-exist
3990           // in the same sequence of RawMem effects.  We sometimes initialize
3991           // a whole 'tile' of array elements with a single jint or jlong.)
3992           mem = mem->in(MemNode::Memory);
3993           continue; // advance through independent store memory
3994         }
3995       }
3996 
3997       if (st_base != base
3998           && MemNode::detect_ptr_independence(base, alloc, st_base,
3999                                               AllocateNode::Ideal_allocation(st_base, phase),
4000                                               phase)) {
4001         // Success:  The bases are provably independent.
4002         mem = mem->in(MemNode::Memory);
4003         continue; // advance through independent store memory
4004       }
4005     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
4006 
4007       InitializeNode* st_init = mem->in(0)->as_Initialize();
4008       AllocateNode* st_alloc = st_init->allocation();
4009 
4010       // Make sure that we are looking at the same allocation site.
4011       // The alloc variable is guaranteed to not be null here from earlier check.
4012       if (alloc == st_alloc) {
4013         // Check that the initialization is storing NULL so that no previous store
4014         // has been moved up and directly write a reference
4015         Node* captured_store = st_init->find_captured_store(offset,
4016                                                             type2aelembytes(T_OBJECT),
4017                                                             phase);
4018         if (captured_store == NULL || captured_store == st_init->zero_memory()) {
4019           return true;
4020         }
4021       }
4022     }
4023 
4024     // Unless there is an explicit 'continue', we must bail out here,
4025     // because 'mem' is an inscrutable memory state (e.g., a call).
4026     break;
4027   }
4028 
4029   return false;
4030 }
4031 
4032 // G1 pre/post barriers
4033 void GraphKit::g1_write_barrier_pre(bool do_load,
4034                                     Node* obj,
4035                                     Node* adr,
4036                                     uint alias_idx,
4037                                     Node* val,
4038                                     const TypeOopPtr* val_type,
4039                                     Node* pre_val,
4040                                     BasicType bt) {
4041 
4042   // Some sanity checks
4043   // Note: val is unused in this routine.
4044 
4045   if (do_load) {
4046     // We need to generate the load of the previous value
4047     assert(obj != NULL, "must have a base");
4048     assert(adr != NULL, "where are loading from?");
4049     assert(pre_val == NULL, "loaded already?");
4050     assert(val_type != NULL, "need a type");
4051 
4052     if (use_ReduceInitialCardMarks()
4053         && g1_can_remove_pre_barrier(&_gvn, adr, bt, alias_idx)) {
4054       return;
4055     }
4056 
4057   } else {
4058     // In this case both val_type and alias_idx are unused.
4059     assert(pre_val != NULL, "must be loaded already");
4060     // Nothing to be done if pre_val is null.
4061     if (pre_val->bottom_type() == TypePtr::NULL_PTR) return;
4062     assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
4063   }
4064   assert(bt == T_OBJECT, "or we shouldn't be here");
4065 
4066   IdealKit ideal(this, true);
4067 
4068   Node* tls = __ thread(); // ThreadLocalStorage
4069 
4070   Node* no_ctrl = NULL;
4071   Node* no_base = __ top();
4072   Node* zero  = __ ConI(0);
4073   Node* zeroX = __ ConX(0);
4074 
4075   float likely  = PROB_LIKELY(0.999);
4076   float unlikely  = PROB_UNLIKELY(0.999);
4077 
4078   BasicType active_type = in_bytes(SATBMarkQueue::byte_width_of_active()) == 4 ? T_INT : T_BYTE;
4079   assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 4 || in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "flag width");
4080 
4081   // Offsets into the thread
4082   const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +  // 648
4083                                           SATBMarkQueue::byte_offset_of_active());
4084   const int index_offset   = in_bytes(JavaThread::satb_mark_queue_offset() +  // 656
4085                                           SATBMarkQueue::byte_offset_of_index());
4086   const int buffer_offset  = in_bytes(JavaThread::satb_mark_queue_offset() +  // 652
4087                                           SATBMarkQueue::byte_offset_of_buf());
4088 
4089   // Now the actual pointers into the thread
4090   Node* marking_adr = __ AddP(no_base, tls, __ ConX(marking_offset));
4091   Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
4092   Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
4093 
4094   // Now some of the values
4095   Node* marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw);
4096 
4097   // if (!marking)
4098   __ if_then(marking, BoolTest::ne, zero, unlikely); {
4099     BasicType index_bt = TypeX_X->basic_type();
4100     assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 SATBMarkQueue::_index with wrong size.");
4101     Node* index   = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw);
4102 
4103     if (do_load) {
4104       // load original value
4105       // alias_idx correct??
4106       pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx);
4107     }
4108 
4109     // if (pre_val != NULL)
4110     __ if_then(pre_val, BoolTest::ne, null()); {
4111       Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
4112 
4113       // is the queue for this thread full?
4114       __ if_then(index, BoolTest::ne, zeroX, likely); {
4115 
4116         // decrement the index
4117         Node* next_index = _gvn.transform(new SubXNode(index, __ ConX(sizeof(intptr_t))));
4118 
4119         // Now get the buffer location we will log the previous value into and store it
4120         Node *log_addr = __ AddP(no_base, buffer, next_index);
4121         __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered);
4122         // update the index
4123         __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered);
4124 
4125       } __ else_(); {
4126 
4127         // logging buffer is full, call the runtime
4128         const TypeFunc *tf = OptoRuntime::g1_wb_pre_Type();
4129         __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), "g1_wb_pre", pre_val, tls);
4130       } __ end_if();  // (!index)
4131     } __ end_if();  // (pre_val != NULL)
4132   } __ end_if();  // (!marking)
4133 
4134   // Final sync IdealKit and GraphKit.
4135   final_sync(ideal);
4136 }
4137 
4138 /*
4139  * G1 similar to any GC with a Young Generation requires a way to keep track of
4140  * references from Old Generation to Young Generation to make sure all live
4141  * objects are found. G1 also requires to keep track of object references
4142  * between different regions to enable evacuation of old regions, which is done
4143  * as part of mixed collections. References are tracked in remembered sets and
4144  * is continuously updated as reference are written to with the help of the
4145  * post-barrier.
4146  *
4147  * To reduce the number of updates to the remembered set the post-barrier
4148  * filters updates to fields in objects located in the Young Generation,
4149  * the same region as the reference, when the NULL is being written or
4150  * if the card is already marked as dirty by an earlier write.
4151  *
4152  * Under certain circumstances it is possible to avoid generating the
4153  * post-barrier completely if it is possible during compile time to prove
4154  * the object is newly allocated and that no safepoint exists between the
4155  * allocation and the store.
4156  *
4157  * In the case of slow allocation the allocation code must handle the barrier
4158  * as part of the allocation in the case the allocated object is not located
4159  * in the nursery, this would happen for humongous objects. This is similar to
4160  * how CMS is required to handle this case, see the comments for the method
4161  * CollectedHeap::new_store_pre_barrier and OptoRuntime::new_store_pre_barrier.
4162  * A deferred card mark is required for these objects and handled in the above
4163  * mentioned methods.
4164  *
4165  * Returns true if the post barrier can be removed
4166  */
4167 bool GraphKit::g1_can_remove_post_barrier(PhaseTransform* phase, Node* store,
4168                                           Node* adr) {
4169   intptr_t      offset = 0;
4170   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
4171   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
4172 
4173   if (offset == Type::OffsetBot) {
4174     return false; // cannot unalias unless there are precise offsets
4175   }
4176 
4177   if (alloc == NULL) {
4178      return false; // No allocation found
4179   }
4180 
4181   // Start search from Store node
4182   Node* mem = store->in(MemNode::Control);
4183   if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
4184 
4185     InitializeNode* st_init = mem->in(0)->as_Initialize();
4186     AllocateNode*  st_alloc = st_init->allocation();
4187 
4188     // Make sure we are looking at the same allocation
4189     if (alloc == st_alloc) {
4190       return true;
4191     }
4192   }
4193 
4194   return false;
4195 }
4196 
4197 //
4198 // Update the card table and add card address to the queue
4199 //
4200 void GraphKit::g1_mark_card(IdealKit& ideal,
4201                             Node* card_adr,
4202                             Node* oop_store,
4203                             uint oop_alias_idx,
4204                             Node* index,
4205                             Node* index_adr,
4206                             Node* buffer,
4207                             const TypeFunc* tf) {
4208 
4209   Node* zero  = __ ConI(0);
4210   Node* zeroX = __ ConX(0);
4211   Node* no_base = __ top();
4212   BasicType card_bt = T_BYTE;
4213   // Smash zero into card. MUST BE ORDERED WRT TO STORE
4214   __ storeCM(__ ctrl(), card_adr, zero, oop_store, oop_alias_idx, card_bt, Compile::AliasIdxRaw);
4215 
4216   //  Now do the queue work
4217   __ if_then(index, BoolTest::ne, zeroX); {
4218 
4219     Node* next_index = _gvn.transform(new SubXNode(index, __ ConX(sizeof(intptr_t))));
4220     Node* log_addr = __ AddP(no_base, buffer, next_index);
4221 
4222     // Order, see storeCM.
4223     __ store(__ ctrl(), log_addr, card_adr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
4224     __ store(__ ctrl(), index_adr, next_index, TypeX_X->basic_type(), Compile::AliasIdxRaw, MemNode::unordered);
4225 
4226   } __ else_(); {
4227     __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), "g1_wb_post", card_adr, __ thread());
4228   } __ end_if();
4229 
4230 }
4231 
4232 void GraphKit::g1_write_barrier_post(Node* oop_store,
4233                                      Node* obj,
4234                                      Node* adr,
4235                                      uint alias_idx,
4236                                      Node* val,
4237                                      BasicType bt,
4238                                      bool use_precise) {
4239   // If we are writing a NULL then we need no post barrier
4240 
4241   if (val != NULL && val->is_Con() && val->bottom_type() == TypePtr::NULL_PTR) {
4242     // Must be NULL
4243     const Type* t = val->bottom_type();
4244     assert(t == Type::TOP || t == TypePtr::NULL_PTR, "must be NULL");
4245     // No post barrier if writing NULLx
4246     return;
4247   }
4248 
4249   if (use_ReduceInitialCardMarks() && obj == just_allocated_object(control())) {
4250     // We can skip marks on a freshly-allocated object in Eden.
4251     // Keep this code in sync with new_store_pre_barrier() in runtime.cpp.
4252     // That routine informs GC to take appropriate compensating steps,
4253     // upon a slow-path allocation, so as to make this card-mark
4254     // elision safe.
4255     return;
4256   }
4257 
4258   if (use_ReduceInitialCardMarks()
4259       && g1_can_remove_post_barrier(&_gvn, oop_store, adr)) {
4260     return;
4261   }
4262 
4263   if (!use_precise) {
4264     // All card marks for a (non-array) instance are in one place:
4265     adr = obj;
4266   }
4267   // (Else it's an array (or unknown), and we want more precise card marks.)
4268   assert(adr != NULL, "");
4269 
4270   IdealKit ideal(this, true);
4271 
4272   Node* tls = __ thread(); // ThreadLocalStorage
4273 
4274   Node* no_base = __ top();
4275   float likely  = PROB_LIKELY(0.999);
4276   float unlikely  = PROB_UNLIKELY(0.999);
4277   Node* young_card = __ ConI((jint)G1SATBCardTableModRefBS::g1_young_card_val());
4278   Node* dirty_card = __ ConI((jint)CardTableModRefBS::dirty_card_val());
4279   Node* zeroX = __ ConX(0);
4280 
4281   // Get the alias_index for raw card-mark memory
4282   const TypePtr* card_type = TypeRawPtr::BOTTOM;
4283 
4284   const TypeFunc *tf = OptoRuntime::g1_wb_post_Type();
4285 
4286   // Offsets into the thread
4287   const int index_offset  = in_bytes(JavaThread::dirty_card_queue_offset() +
4288                                      DirtyCardQueue::byte_offset_of_index());
4289   const int buffer_offset = in_bytes(JavaThread::dirty_card_queue_offset() +
4290                                      DirtyCardQueue::byte_offset_of_buf());
4291 
4292   // Pointers into the thread
4293 
4294   Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset));
4295   Node* index_adr =  __ AddP(no_base, tls, __ ConX(index_offset));
4296 
4297   // Now some values
4298   // Use ctrl to avoid hoisting these values past a safepoint, which could
4299   // potentially reset these fields in the JavaThread.
4300   Node* index  = __ load(__ ctrl(), index_adr, TypeX_X, TypeX_X->basic_type(), Compile::AliasIdxRaw);
4301   Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
4302 
4303   // Convert the store obj pointer to an int prior to doing math on it
4304   // Must use ctrl to prevent "integerized oop" existing across safepoint
4305   Node* cast =  __ CastPX(__ ctrl(), adr);
4306 
4307   // Divide pointer by card size
4308   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
4309 
4310   // Combine card table base and card offset
4311   Node* card_adr = __ AddP(no_base, byte_map_base_node(), card_offset );
4312 
4313   // If we know the value being stored does it cross regions?
4314 
4315   if (val != NULL) {
4316     // Does the store cause us to cross regions?
4317 
4318     // Should be able to do an unsigned compare of region_size instead of
4319     // and extra shift. Do we have an unsigned compare??
4320     // Node* region_size = __ ConI(1 << HeapRegion::LogOfHRGrainBytes);
4321     Node* xor_res =  __ URShiftX ( __ XorX( cast,  __ CastPX(__ ctrl(), val)), __ ConI(HeapRegion::LogOfHRGrainBytes));
4322 
4323     // if (xor_res == 0) same region so skip
4324     __ if_then(xor_res, BoolTest::ne, zeroX); {
4325 
4326       // No barrier if we are storing a NULL
4327       __ if_then(val, BoolTest::ne, null(), unlikely); {
4328 
4329         // Ok must mark the card if not already dirty
4330 
4331         // load the original value of the card
4332         Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
4333 
4334         __ if_then(card_val, BoolTest::ne, young_card); {
4335           sync_kit(ideal);
4336           // Use Op_MemBarVolatile to achieve the effect of a StoreLoad barrier.
4337           insert_mem_bar(Op_MemBarVolatile, oop_store);
4338           __ sync_kit(this);
4339 
4340           Node* card_val_reload = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
4341           __ if_then(card_val_reload, BoolTest::ne, dirty_card); {
4342             g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
4343           } __ end_if();
4344         } __ end_if();
4345       } __ end_if();
4346     } __ end_if();
4347   } else {
4348     // The Object.clone() intrinsic uses this path if !ReduceInitialCardMarks.
4349     // We don't need a barrier here if the destination is a newly allocated object
4350     // in Eden. Otherwise, GC verification breaks because we assume that cards in Eden
4351     // are set to 'g1_young_gen' (see G1SATBCardTableModRefBS::verify_g1_young_region()).
4352     assert(!use_ReduceInitialCardMarks(), "can only happen with card marking");
4353     Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
4354     __ if_then(card_val, BoolTest::ne, young_card); {
4355       g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
4356     } __ end_if();
4357   }
4358 
4359   // Final sync IdealKit and GraphKit.
4360   final_sync(ideal);
4361 }
4362 #undef __
4363 
4364 
4365 Node* GraphKit::load_String_length(Node* ctrl, Node* str) {
4366   Node* len = load_array_length(load_String_value(ctrl, str));
4367   Node* coder = load_String_coder(ctrl, str);
4368   // Divide length by 2 if coder is UTF16
4369   return _gvn.transform(new RShiftINode(len, coder));
4370 }
4371 
4372 Node* GraphKit::load_String_value(Node* ctrl, Node* str) {
4373   int value_offset = java_lang_String::value_offset_in_bytes();
4374   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4375                                                      false, NULL, 0);
4376   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4377   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
4378                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS),
4379                                                   ciTypeArrayKlass::make(T_BYTE), true, 0);
4380   int value_field_idx = C->get_alias_index(value_field_type);
4381   Node* load = make_load(ctrl, basic_plus_adr(str, str, value_offset),
4382                          value_type, T_OBJECT, value_field_idx, MemNode::unordered);
4383   // String.value field is known to be @Stable.
4384   if (UseImplicitStableValues) {
4385     load = cast_array_to_stable(load, value_type);
4386   }
4387   return load;
4388 }
4389 
4390 Node* GraphKit::load_String_coder(Node* ctrl, Node* str) {
4391   if (!CompactStrings) {
4392     return intcon(java_lang_String::CODER_UTF16);
4393   }
4394   int coder_offset = java_lang_String::coder_offset_in_bytes();
4395   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4396                                                      false, NULL, 0);
4397   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4398   int coder_field_idx = C->get_alias_index(coder_field_type);
4399   return make_load(ctrl, basic_plus_adr(str, str, coder_offset),
4400                    TypeInt::BYTE, T_BYTE, coder_field_idx, MemNode::unordered);
4401 }
4402 
4403 void GraphKit::store_String_value(Node* ctrl, Node* str, Node* value) {
4404   int value_offset = java_lang_String::value_offset_in_bytes();
4405   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4406                                                      false, NULL, 0);
4407   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4408   store_oop_to_object(ctrl, str,  basic_plus_adr(str, value_offset), value_field_type,
4409       value, TypeAryPtr::BYTES, T_OBJECT, MemNode::unordered);
4410 }
4411 
4412 void GraphKit::store_String_coder(Node* ctrl, Node* str, Node* value) {
4413   int coder_offset = java_lang_String::coder_offset_in_bytes();
4414   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4415                                                      false, NULL, 0);
4416   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4417   int coder_field_idx = C->get_alias_index(coder_field_type);
4418   store_to_memory(ctrl, basic_plus_adr(str, coder_offset),
4419                   value, T_BYTE, coder_field_idx, MemNode::unordered);
4420 }
4421 
4422 // Capture src and dst memory state with a MergeMemNode
4423 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4424   if (src_type == dst_type) {
4425     // Types are equal, we don't need a MergeMemNode
4426     return memory(src_type);
4427   }
4428   MergeMemNode* merge = MergeMemNode::make(map()->memory());
4429   record_for_igvn(merge); // fold it up later, if possible
4430   int src_idx = C->get_alias_index(src_type);
4431   int dst_idx = C->get_alias_index(dst_type);
4432   merge->set_memory_at(src_idx, memory(src_idx));
4433   merge->set_memory_at(dst_idx, memory(dst_idx));
4434   return merge;
4435 }
4436 
4437 Node* GraphKit::compress_string(Node* src, const TypeAryPtr* src_type, Node* dst, Node* count) {
4438   assert(Matcher::match_rule_supported(Op_StrCompressedCopy), "Intrinsic not supported");
4439   assert(src_type == TypeAryPtr::BYTES || src_type == TypeAryPtr::CHARS, "invalid source type");
4440   // If input and output memory types differ, capture both states to preserve
4441   // the dependency between preceding and subsequent loads/stores.
4442   // For example, the following program:
4443   //  StoreB
4444   //  compress_string
4445   //  LoadB
4446   // has this memory graph (use->def):
4447   //  LoadB -> compress_string -> CharMem
4448   //             ... -> StoreB -> ByteMem
4449   // The intrinsic hides the dependency between LoadB and StoreB, causing
4450   // the load to read from memory not containing the result of the StoreB.
4451   // The correct memory graph should look like this:
4452   //  LoadB -> compress_string -> MergeMem(CharMem, StoreB(ByteMem))
4453   Node* mem = capture_memory(src_type, TypeAryPtr::BYTES);
4454   StrCompressedCopyNode* str = new StrCompressedCopyNode(control(), mem, src, dst, count);
4455   Node* res_mem = _gvn.transform(new SCMemProjNode(str));
4456   set_memory(res_mem, TypeAryPtr::BYTES);
4457   return str;
4458 }
4459 
4460 void GraphKit::inflate_string(Node* src, Node* dst, const TypeAryPtr* dst_type, Node* count) {
4461   assert(Matcher::match_rule_supported(Op_StrInflatedCopy), "Intrinsic not supported");
4462   assert(dst_type == TypeAryPtr::BYTES || dst_type == TypeAryPtr::CHARS, "invalid dest type");
4463   // Capture src and dst memory (see comment in 'compress_string').
4464   Node* mem = capture_memory(TypeAryPtr::BYTES, dst_type);
4465   StrInflatedCopyNode* str = new StrInflatedCopyNode(control(), mem, src, dst, count);
4466   set_memory(_gvn.transform(str), dst_type);
4467 }
4468 
4469 void GraphKit::inflate_string_slow(Node* src, Node* dst, Node* start, Node* count) {
4470   /**
4471    * int i_char = start;
4472    * for (int i_byte = 0; i_byte < count; i_byte++) {
4473    *   dst[i_char++] = (char)(src[i_byte] & 0xff);
4474    * }
4475    */
4476   add_predicate();
4477   RegionNode* head = new RegionNode(3);
4478   head->init_req(1, control());
4479   gvn().set_type(head, Type::CONTROL);
4480   record_for_igvn(head);
4481 
4482   Node* i_byte = new PhiNode(head, TypeInt::INT);
4483   i_byte->init_req(1, intcon(0));
4484   gvn().set_type(i_byte, TypeInt::INT);
4485   record_for_igvn(i_byte);
4486 
4487   Node* i_char = new PhiNode(head, TypeInt::INT);
4488   i_char->init_req(1, start);
4489   gvn().set_type(i_char, TypeInt::INT);
4490   record_for_igvn(i_char);
4491 
4492   Node* mem = PhiNode::make(head, memory(TypeAryPtr::BYTES), Type::MEMORY, TypeAryPtr::BYTES);
4493   gvn().set_type(mem, Type::MEMORY);
4494   record_for_igvn(mem);
4495   set_control(head);
4496   set_memory(mem, TypeAryPtr::BYTES);
4497   Node* ch = load_array_element(control(), src, i_byte, TypeAryPtr::BYTES);
4498   Node* st = store_to_memory(control(), array_element_address(dst, i_char, T_BYTE),
4499                              AndI(ch, intcon(0xff)), T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
4500                              false, false, true /* mismatched */);
4501 
4502   IfNode* iff = create_and_map_if(head, Bool(CmpI(i_byte, count), BoolTest::lt), PROB_FAIR, COUNT_UNKNOWN);
4503   head->init_req(2, IfTrue(iff));
4504   mem->init_req(2, st);
4505   i_byte->init_req(2, AddI(i_byte, intcon(1)));
4506   i_char->init_req(2, AddI(i_char, intcon(2)));
4507 
4508   set_control(IfFalse(iff));
4509   set_memory(st, TypeAryPtr::BYTES);
4510 }
4511 
4512 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4513   if (!field->is_constant()) {
4514     return NULL; // Field not marked as constant.
4515   }
4516   ciInstance* holder = NULL;
4517   if (!field->is_static()) {
4518     ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4519     if (const_oop != NULL && const_oop->is_instance()) {
4520       holder = const_oop->as_instance();
4521     }
4522   }
4523   const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4524                                                         /*is_unsigned_load=*/false);
4525   if (con_type != NULL) {
4526     return makecon(con_type);
4527   }
4528   return NULL;
4529 }
4530 
4531 Node* GraphKit::cast_array_to_stable(Node* ary, const TypeAryPtr* ary_type) {
4532   // Reify the property as a CastPP node in Ideal graph to comply with monotonicity
4533   // assumption of CCP analysis.
4534   return _gvn.transform(new CastPPNode(ary, ary_type->cast_to_stable(true)));
4535 }