1 /*
   2  * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "oops/objArrayKlass.hpp"
  33 #include "opto/addnode.hpp"
  34 #include "opto/arraycopynode.hpp"
  35 #include "opto/c2compiler.hpp"
  36 #include "opto/callGenerator.hpp"
  37 #include "opto/castnode.hpp"
  38 #include "opto/cfgnode.hpp"
  39 #include "opto/convertnode.hpp"
  40 #include "opto/countbitsnode.hpp"
  41 #include "opto/intrinsicnode.hpp"
  42 #include "opto/idealKit.hpp"
  43 #include "opto/mathexactnode.hpp"
  44 #include "opto/movenode.hpp"
  45 #include "opto/mulnode.hpp"
  46 #include "opto/narrowptrnode.hpp"
  47 #include "opto/opaquenode.hpp"
  48 #include "opto/parse.hpp"
  49 #include "opto/runtime.hpp"
  50 #include "opto/rootnode.hpp"
  51 #include "opto/subnode.hpp"
  52 #include "prims/nativeLookup.hpp"
  53 #include "prims/unsafe.hpp"
  54 #include "runtime/sharedRuntime.hpp"
  55 #ifdef TRACE_HAVE_INTRINSICS
  56 #include "trace/traceMacros.hpp"
  57 #endif
  58 
  59 class LibraryIntrinsic : public InlineCallGenerator {
  60   // Extend the set of intrinsics known to the runtime:
  61  public:
  62  private:
  63   bool             _is_virtual;
  64   bool             _does_virtual_dispatch;
  65   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  66   int8_t           _last_predicate; // Last generated predicate
  67   vmIntrinsics::ID _intrinsic_id;
  68 
  69  public:
  70   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  71     : InlineCallGenerator(m),
  72       _is_virtual(is_virtual),
  73       _does_virtual_dispatch(does_virtual_dispatch),
  74       _predicates_count((int8_t)predicates_count),
  75       _last_predicate((int8_t)-1),
  76       _intrinsic_id(id)
  77   {
  78   }
  79   virtual bool is_intrinsic() const { return true; }
  80   virtual bool is_virtual()   const { return _is_virtual; }
  81   virtual bool is_predicated() const { return _predicates_count > 0; }
  82   virtual int  predicates_count() const { return _predicates_count; }
  83   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  84   virtual JVMState* generate(JVMState* jvms);
  85   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  86   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  87 };
  88 
  89 
  90 // Local helper class for LibraryIntrinsic:
  91 class LibraryCallKit : public GraphKit {
  92  private:
  93   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  94   Node*             _result;        // the result node, if any
  95   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  96 
  97   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type);
  98 
  99  public:
 100   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
 101     : GraphKit(jvms),
 102       _intrinsic(intrinsic),
 103       _result(NULL)
 104   {
 105     // Check if this is a root compile.  In that case we don't have a caller.
 106     if (!jvms->has_method()) {
 107       _reexecute_sp = sp();
 108     } else {
 109       // Find out how many arguments the interpreter needs when deoptimizing
 110       // and save the stack pointer value so it can used by uncommon_trap.
 111       // We find the argument count by looking at the declared signature.
 112       bool ignored_will_link;
 113       ciSignature* declared_signature = NULL;
 114       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 115       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 116       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 117     }
 118   }
 119 
 120   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 121 
 122   ciMethod*         caller()    const    { return jvms()->method(); }
 123   int               bci()       const    { return jvms()->bci(); }
 124   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 125   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 126   ciMethod*         callee()    const    { return _intrinsic->method(); }
 127 
 128   bool  try_to_inline(int predicate);
 129   Node* try_to_predicate(int predicate);
 130 
 131   void push_result() {
 132     // Push the result onto the stack.
 133     if (!stopped() && result() != NULL) {
 134       BasicType bt = result()->bottom_type()->basic_type();
 135       push_node(bt, result());
 136     }
 137   }
 138 
 139  private:
 140   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 141     fatal("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid));
 142   }
 143 
 144   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 145   void  set_result(RegionNode* region, PhiNode* value);
 146   Node*     result() { return _result; }
 147 
 148   virtual int reexecute_sp() { return _reexecute_sp; }
 149 
 150   // Helper functions to inline natives
 151   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 152   Node* generate_slow_guard(Node* test, RegionNode* region);
 153   Node* generate_fair_guard(Node* test, RegionNode* region);
 154   Node* generate_negative_guard(Node* index, RegionNode* region,
 155                                 // resulting CastII of index:
 156                                 Node* *pos_index = NULL);
 157   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 158                              Node* array_length,
 159                              RegionNode* region);
 160   void  generate_string_range_check(Node* array, Node* offset,
 161                                     Node* length, bool char_count);
 162   Node* generate_current_thread(Node* &tls_output);
 163   Node* load_mirror_from_klass(Node* klass);
 164   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 165                                       RegionNode* region, int null_path,
 166                                       int offset);
 167   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 168                                RegionNode* region, int null_path) {
 169     int offset = java_lang_Class::klass_offset_in_bytes();
 170     return load_klass_from_mirror_common(mirror, never_see_null,
 171                                          region, null_path,
 172                                          offset);
 173   }
 174   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 175                                      RegionNode* region, int null_path) {
 176     int offset = java_lang_Class::array_klass_offset_in_bytes();
 177     return load_klass_from_mirror_common(mirror, never_see_null,
 178                                          region, null_path,
 179                                          offset);
 180   }
 181   Node* generate_access_flags_guard(Node* kls,
 182                                     int modifier_mask, int modifier_bits,
 183                                     RegionNode* region);
 184   Node* generate_interface_guard(Node* kls, RegionNode* region);
 185   Node* generate_array_guard(Node* kls, RegionNode* region) {
 186     return generate_array_guard_common(kls, region, false, false);
 187   }
 188   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 189     return generate_array_guard_common(kls, region, false, true);
 190   }
 191   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 192     return generate_array_guard_common(kls, region, true, false);
 193   }
 194   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 195     return generate_array_guard_common(kls, region, true, true);
 196   }
 197   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 198                                     bool obj_array, bool not_array);
 199   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 200   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 201                                      bool is_virtual = false, bool is_static = false);
 202   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 203     return generate_method_call(method_id, false, true);
 204   }
 205   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 206     return generate_method_call(method_id, true, false);
 207   }
 208   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 209   Node * field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 210 
 211   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae);
 212   bool inline_string_compareTo(StrIntrinsicNode::ArgEnc ae);
 213   bool inline_string_indexOf(StrIntrinsicNode::ArgEnc ae);
 214   bool inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae);
 215   Node* make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
 216                           RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae);
 217   bool inline_string_indexOfChar();
 218   bool inline_string_equals(StrIntrinsicNode::ArgEnc ae);
 219   bool inline_string_toBytesU();
 220   bool inline_string_getCharsU();
 221   bool inline_string_copy(bool compress);
 222   bool inline_string_char_access(bool is_store);
 223   Node* round_double_node(Node* n);
 224   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 225   bool inline_math_native(vmIntrinsics::ID id);
 226   bool inline_math(vmIntrinsics::ID id);
 227   template <typename OverflowOp>
 228   bool inline_math_overflow(Node* arg1, Node* arg2);
 229   void inline_math_mathExact(Node* math, Node* test);
 230   bool inline_math_addExactI(bool is_increment);
 231   bool inline_math_addExactL(bool is_increment);
 232   bool inline_math_multiplyExactI();
 233   bool inline_math_multiplyExactL();
 234   bool inline_math_negateExactI();
 235   bool inline_math_negateExactL();
 236   bool inline_math_subtractExactI(bool is_decrement);
 237   bool inline_math_subtractExactL(bool is_decrement);
 238   bool inline_min_max(vmIntrinsics::ID id);
 239   bool inline_notify(vmIntrinsics::ID id);
 240   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 241   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 242   int classify_unsafe_addr(Node* &base, Node* &offset, BasicType type);
 243   Node* make_unsafe_address(Node*& base, Node* offset, BasicType type = T_ILLEGAL, bool can_cast = false);
 244   // Helper for inline_unsafe_access.
 245   // Generates the guards that check whether the result of
 246   // Unsafe.getObject should be recorded in an SATB log buffer.
 247   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 248 
 249   typedef enum { Relaxed, Opaque, Volatile, Acquire, Release } AccessKind;
 250   bool inline_unsafe_access(bool is_store, BasicType type, AccessKind kind, bool is_unaligned);
 251   static bool klass_needs_init_guard(Node* kls);
 252   bool inline_unsafe_allocate();
 253   bool inline_unsafe_newArray(bool uninitialized);
 254   bool inline_unsafe_copyMemory();
 255   bool inline_native_currentThread();
 256 
 257   bool inline_native_time_funcs(address method, const char* funcName);
 258 #ifdef TRACE_HAVE_INTRINSICS
 259   bool inline_native_classID();
 260   bool inline_native_getBufferWriter();
 261 #endif
 262   bool inline_native_isInterrupted();
 263   bool inline_native_Class_query(vmIntrinsics::ID id);
 264   bool inline_native_subtype_check();
 265   bool inline_native_getLength();
 266   bool inline_array_copyOf(bool is_copyOfRange);
 267   bool inline_array_equals(StrIntrinsicNode::ArgEnc ae);
 268   bool inline_preconditions_checkIndex();
 269   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 270   bool inline_native_clone(bool is_virtual);
 271   bool inline_native_Reflection_getCallerClass();
 272   // Helper function for inlining native object hash method
 273   bool inline_native_hashcode(bool is_virtual, bool is_static);
 274   bool inline_native_getClass();
 275 
 276   // Helper functions for inlining arraycopy
 277   bool inline_arraycopy();
 278   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 279                                                 RegionNode* slow_region);
 280   JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp);
 281   void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp,
 282                                       uint new_idx);
 283 
 284   typedef enum { LS_get_add, LS_get_set, LS_cmp_swap, LS_cmp_swap_weak, LS_cmp_exchange } LoadStoreKind;
 285   MemNode::MemOrd access_kind_to_memord_LS(AccessKind access_kind, bool is_store);
 286   MemNode::MemOrd access_kind_to_memord(AccessKind access_kind);
 287   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind, AccessKind access_kind);
 288   bool inline_unsafe_fence(vmIntrinsics::ID id);
 289   bool inline_onspinwait();
 290   bool inline_fp_conversions(vmIntrinsics::ID id);
 291   bool inline_number_methods(vmIntrinsics::ID id);
 292   bool inline_reference_get();
 293   bool inline_Class_cast();
 294   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 295   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 296   bool inline_counterMode_AESCrypt(vmIntrinsics::ID id);
 297   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 298   Node* inline_counterMode_AESCrypt_predicate();
 299   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 300   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 301   bool inline_ghash_processBlocks();
 302   bool inline_sha_implCompress(vmIntrinsics::ID id);
 303   bool inline_digestBase_implCompressMB(int predicate);
 304   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 305                                  bool long_state, address stubAddr, const char *stubName,
 306                                  Node* src_start, Node* ofs, Node* limit);
 307   Node* get_state_from_sha_object(Node *sha_object);
 308   Node* get_state_from_sha5_object(Node *sha_object);
 309   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 310   bool inline_encodeISOArray();
 311   bool inline_updateCRC32();
 312   bool inline_updateBytesCRC32();
 313   bool inline_updateByteBufferCRC32();
 314   Node* get_table_from_crc32c_class(ciInstanceKlass *crc32c_class);
 315   bool inline_updateBytesCRC32C();
 316   bool inline_updateDirectByteBufferCRC32C();
 317   bool inline_updateBytesAdler32();
 318   bool inline_updateByteBufferAdler32();
 319   bool inline_multiplyToLen();
 320   bool inline_hasNegatives();
 321   bool inline_squareToLen();
 322   bool inline_mulAdd();
 323   bool inline_montgomeryMultiply();
 324   bool inline_montgomerySquare();
 325   bool inline_vectorizedMismatch();
 326   bool inline_fma(vmIntrinsics::ID id);
 327 
 328   bool inline_profileBoolean();
 329   bool inline_isCompileConstant();
 330 };
 331 
 332 //---------------------------make_vm_intrinsic----------------------------
 333 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 334   vmIntrinsics::ID id = m->intrinsic_id();
 335   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 336 
 337   if (!m->is_loaded()) {
 338     // Do not attempt to inline unloaded methods.
 339     return NULL;
 340   }
 341 
 342   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
 343   bool is_available = false;
 344 
 345   {
 346     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
 347     // the compiler must transition to '_thread_in_vm' state because both
 348     // methods access VM-internal data.
 349     VM_ENTRY_MARK;
 350     methodHandle mh(THREAD, m->get_Method());
 351     is_available = compiler != NULL && compiler->is_intrinsic_supported(mh, is_virtual) &&
 352                    !C->directive()->is_intrinsic_disabled(mh) &&
 353                    !vmIntrinsics::is_disabled_by_flags(mh);
 354 
 355   }
 356 
 357   if (is_available) {
 358     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 359     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 360     return new LibraryIntrinsic(m, is_virtual,
 361                                 vmIntrinsics::predicates_needed(id),
 362                                 vmIntrinsics::does_virtual_dispatch(id),
 363                                 (vmIntrinsics::ID) id);
 364   } else {
 365     return NULL;
 366   }
 367 }
 368 
 369 //----------------------register_library_intrinsics-----------------------
 370 // Initialize this file's data structures, for each Compile instance.
 371 void Compile::register_library_intrinsics() {
 372   // Nothing to do here.
 373 }
 374 
 375 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 376   LibraryCallKit kit(jvms, this);
 377   Compile* C = kit.C;
 378   int nodes = C->unique();
 379 #ifndef PRODUCT
 380   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 381     char buf[1000];
 382     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 383     tty->print_cr("Intrinsic %s", str);
 384   }
 385 #endif
 386   ciMethod* callee = kit.callee();
 387   const int bci    = kit.bci();
 388 
 389   // Try to inline the intrinsic.
 390   if ((CheckIntrinsics ? callee->intrinsic_candidate() : true) &&
 391       kit.try_to_inline(_last_predicate)) {
 392     const char *inline_msg = is_virtual() ? "(intrinsic, virtual)"
 393                                           : "(intrinsic)";
 394     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg);
 395     if (C->print_intrinsics() || C->print_inlining()) {
 396       C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg);
 397     }
 398     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 399     if (C->log()) {
 400       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 401                      vmIntrinsics::name_at(intrinsic_id()),
 402                      (is_virtual() ? " virtual='1'" : ""),
 403                      C->unique() - nodes);
 404     }
 405     // Push the result from the inlined method onto the stack.
 406     kit.push_result();
 407     C->print_inlining_update(this);
 408     return kit.transfer_exceptions_into_jvms();
 409   }
 410 
 411   // The intrinsic bailed out
 412   if (jvms->has_method()) {
 413     // Not a root compile.
 414     const char* msg;
 415     if (callee->intrinsic_candidate()) {
 416       msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 417     } else {
 418       msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
 419                          : "failed to inline (intrinsic), method not annotated";
 420     }
 421     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, msg);
 422     if (C->print_intrinsics() || C->print_inlining()) {
 423       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 424     }
 425   } else {
 426     // Root compile
 427     ResourceMark rm;
 428     stringStream msg_stream;
 429     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 430                      vmIntrinsics::name_at(intrinsic_id()),
 431                      is_virtual() ? " (virtual)" : "", bci);
 432     const char *msg = msg_stream.as_string();
 433     log_debug(jit, inlining)("%s", msg);
 434     if (C->print_intrinsics() || C->print_inlining()) {
 435       tty->print("%s", msg);
 436     }
 437   }
 438   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 439   C->print_inlining_update(this);
 440   return NULL;
 441 }
 442 
 443 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 444   LibraryCallKit kit(jvms, this);
 445   Compile* C = kit.C;
 446   int nodes = C->unique();
 447   _last_predicate = predicate;
 448 #ifndef PRODUCT
 449   assert(is_predicated() && predicate < predicates_count(), "sanity");
 450   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 451     char buf[1000];
 452     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 453     tty->print_cr("Predicate for intrinsic %s", str);
 454   }
 455 #endif
 456   ciMethod* callee = kit.callee();
 457   const int bci    = kit.bci();
 458 
 459   Node* slow_ctl = kit.try_to_predicate(predicate);
 460   if (!kit.failing()) {
 461     const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)"
 462                                           : "(intrinsic, predicate)";
 463     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg);
 464     if (C->print_intrinsics() || C->print_inlining()) {
 465       C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg);
 466     }
 467     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 468     if (C->log()) {
 469       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 470                      vmIntrinsics::name_at(intrinsic_id()),
 471                      (is_virtual() ? " virtual='1'" : ""),
 472                      C->unique() - nodes);
 473     }
 474     return slow_ctl; // Could be NULL if the check folds.
 475   }
 476 
 477   // The intrinsic bailed out
 478   if (jvms->has_method()) {
 479     // Not a root compile.
 480     const char* msg = "failed to generate predicate for intrinsic";
 481     CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, msg);
 482     if (C->print_intrinsics() || C->print_inlining()) {
 483       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 484     }
 485   } else {
 486     // Root compile
 487     ResourceMark rm;
 488     stringStream msg_stream;
 489     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 490                      vmIntrinsics::name_at(intrinsic_id()),
 491                      is_virtual() ? " (virtual)" : "", bci);
 492     const char *msg = msg_stream.as_string();
 493     log_debug(jit, inlining)("%s", msg);
 494     if (C->print_intrinsics() || C->print_inlining()) {
 495       C->print_inlining_stream()->print("%s", msg);
 496     }
 497   }
 498   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 499   return NULL;
 500 }
 501 
 502 bool LibraryCallKit::try_to_inline(int predicate) {
 503   // Handle symbolic names for otherwise undistinguished boolean switches:
 504   const bool is_store       = true;
 505   const bool is_compress    = true;
 506   const bool is_static      = true;
 507   const bool is_volatile    = true;
 508 
 509   if (!jvms()->has_method()) {
 510     // Root JVMState has a null method.
 511     assert(map()->memory()->Opcode() == Op_Parm, "");
 512     // Insert the memory aliasing node
 513     set_all_memory(reset_memory());
 514   }
 515   assert(merged_memory(), "");
 516 
 517 
 518   switch (intrinsic_id()) {
 519   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 520   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 521   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 522 
 523   case vmIntrinsics::_dsin:
 524   case vmIntrinsics::_dcos:
 525   case vmIntrinsics::_dtan:
 526   case vmIntrinsics::_dabs:
 527   case vmIntrinsics::_datan2:
 528   case vmIntrinsics::_dsqrt:
 529   case vmIntrinsics::_dexp:
 530   case vmIntrinsics::_dlog:
 531   case vmIntrinsics::_dlog10:
 532   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 533 
 534   case vmIntrinsics::_min:
 535   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 536 
 537   case vmIntrinsics::_notify:
 538   case vmIntrinsics::_notifyAll:
 539     if (InlineNotify) {
 540       return inline_notify(intrinsic_id());
 541     }
 542     return false;
 543 
 544   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 545   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 546   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 547   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 548   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 549   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 550   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 551   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 552   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 553   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 554   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 555   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 556 
 557   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 558 
 559   case vmIntrinsics::_compareToL:               return inline_string_compareTo(StrIntrinsicNode::LL);
 560   case vmIntrinsics::_compareToU:               return inline_string_compareTo(StrIntrinsicNode::UU);
 561   case vmIntrinsics::_compareToLU:              return inline_string_compareTo(StrIntrinsicNode::LU);
 562   case vmIntrinsics::_compareToUL:              return inline_string_compareTo(StrIntrinsicNode::UL);
 563 
 564   case vmIntrinsics::_indexOfL:                 return inline_string_indexOf(StrIntrinsicNode::LL);
 565   case vmIntrinsics::_indexOfU:                 return inline_string_indexOf(StrIntrinsicNode::UU);
 566   case vmIntrinsics::_indexOfUL:                return inline_string_indexOf(StrIntrinsicNode::UL);
 567   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 568   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 569   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 570   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar();
 571 
 572   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 573   case vmIntrinsics::_equalsU:                  return inline_string_equals(StrIntrinsicNode::UU);
 574 
 575   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 576   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 577   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 578   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 579 
 580   case vmIntrinsics::_compressStringC:
 581   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 582   case vmIntrinsics::_inflateStringC:
 583   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 584 
 585   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 586   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 587   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 588   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 589   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 590   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 591   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 592   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 593   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);
 594 
 595   case vmIntrinsics::_putObject:                return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 596   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 597   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 598   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 599   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 600   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 601   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 602   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 603   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);
 604 
 605   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 606   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 607   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 608   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 609   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 610   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 611   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 612   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 613   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 614 
 615   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 616   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 617   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 618   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 619   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 620   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 621   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 622   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 623   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);
 624 
 625   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, true);
 626   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, true);
 627   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_store, T_INT,      Relaxed, true);
 628   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_store, T_LONG,     Relaxed, true);
 629 
 630   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access( is_store, T_SHORT,    Relaxed, true);
 631   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access( is_store, T_CHAR,     Relaxed, true);
 632   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access( is_store, T_INT,      Relaxed, true);
 633   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access( is_store, T_LONG,     Relaxed, true);
 634 
 635   case vmIntrinsics::_getObjectAcquire:         return inline_unsafe_access(!is_store, T_OBJECT,   Acquire, false);
 636   case vmIntrinsics::_getBooleanAcquire:        return inline_unsafe_access(!is_store, T_BOOLEAN,  Acquire, false);
 637   case vmIntrinsics::_getByteAcquire:           return inline_unsafe_access(!is_store, T_BYTE,     Acquire, false);
 638   case vmIntrinsics::_getShortAcquire:          return inline_unsafe_access(!is_store, T_SHORT,    Acquire, false);
 639   case vmIntrinsics::_getCharAcquire:           return inline_unsafe_access(!is_store, T_CHAR,     Acquire, false);
 640   case vmIntrinsics::_getIntAcquire:            return inline_unsafe_access(!is_store, T_INT,      Acquire, false);
 641   case vmIntrinsics::_getLongAcquire:           return inline_unsafe_access(!is_store, T_LONG,     Acquire, false);
 642   case vmIntrinsics::_getFloatAcquire:          return inline_unsafe_access(!is_store, T_FLOAT,    Acquire, false);
 643   case vmIntrinsics::_getDoubleAcquire:         return inline_unsafe_access(!is_store, T_DOUBLE,   Acquire, false);
 644 
 645   case vmIntrinsics::_putObjectRelease:         return inline_unsafe_access( is_store, T_OBJECT,   Release, false);
 646   case vmIntrinsics::_putBooleanRelease:        return inline_unsafe_access( is_store, T_BOOLEAN,  Release, false);
 647   case vmIntrinsics::_putByteRelease:           return inline_unsafe_access( is_store, T_BYTE,     Release, false);
 648   case vmIntrinsics::_putShortRelease:          return inline_unsafe_access( is_store, T_SHORT,    Release, false);
 649   case vmIntrinsics::_putCharRelease:           return inline_unsafe_access( is_store, T_CHAR,     Release, false);
 650   case vmIntrinsics::_putIntRelease:            return inline_unsafe_access( is_store, T_INT,      Release, false);
 651   case vmIntrinsics::_putLongRelease:           return inline_unsafe_access( is_store, T_LONG,     Release, false);
 652   case vmIntrinsics::_putFloatRelease:          return inline_unsafe_access( is_store, T_FLOAT,    Release, false);
 653   case vmIntrinsics::_putDoubleRelease:         return inline_unsafe_access( is_store, T_DOUBLE,   Release, false);
 654 
 655   case vmIntrinsics::_getObjectOpaque:          return inline_unsafe_access(!is_store, T_OBJECT,   Opaque, false);
 656   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_store, T_BOOLEAN,  Opaque, false);
 657   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_store, T_BYTE,     Opaque, false);
 658   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_store, T_SHORT,    Opaque, false);
 659   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_store, T_CHAR,     Opaque, false);
 660   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_store, T_INT,      Opaque, false);
 661   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_store, T_LONG,     Opaque, false);
 662   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_store, T_FLOAT,    Opaque, false);
 663   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_store, T_DOUBLE,   Opaque, false);
 664 
 665   case vmIntrinsics::_putObjectOpaque:          return inline_unsafe_access( is_store, T_OBJECT,   Opaque, false);
 666   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access( is_store, T_BOOLEAN,  Opaque, false);
 667   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access( is_store, T_BYTE,     Opaque, false);
 668   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access( is_store, T_SHORT,    Opaque, false);
 669   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access( is_store, T_CHAR,     Opaque, false);
 670   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access( is_store, T_INT,      Opaque, false);
 671   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access( is_store, T_LONG,     Opaque, false);
 672   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access( is_store, T_FLOAT,    Opaque, false);
 673   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access( is_store, T_DOUBLE,   Opaque, false);
 674 
 675   case vmIntrinsics::_compareAndSetObject:              return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 676   case vmIntrinsics::_compareAndSetByte:                return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap,      Volatile);
 677   case vmIntrinsics::_compareAndSetShort:               return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap,      Volatile);
 678   case vmIntrinsics::_compareAndSetInt:                 return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 679   case vmIntrinsics::_compareAndSetLong:                return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 680 
 681   case vmIntrinsics::_weakCompareAndSetObjectPlain:     return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 682   case vmIntrinsics::_weakCompareAndSetObjectAcquire:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 683   case vmIntrinsics::_weakCompareAndSetObjectRelease:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 684   case vmIntrinsics::_weakCompareAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
 685   case vmIntrinsics::_weakCompareAndSetBytePlain:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Relaxed);
 686   case vmIntrinsics::_weakCompareAndSetByteAcquire:     return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Acquire);
 687   case vmIntrinsics::_weakCompareAndSetByteRelease:     return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Release);
 688   case vmIntrinsics::_weakCompareAndSetByte:            return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Volatile);
 689   case vmIntrinsics::_weakCompareAndSetShortPlain:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Relaxed);
 690   case vmIntrinsics::_weakCompareAndSetShortAcquire:    return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Acquire);
 691   case vmIntrinsics::_weakCompareAndSetShortRelease:    return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Release);
 692   case vmIntrinsics::_weakCompareAndSetShort:           return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Volatile);
 693   case vmIntrinsics::_weakCompareAndSetIntPlain:        return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 694   case vmIntrinsics::_weakCompareAndSetIntAcquire:      return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);
 695   case vmIntrinsics::_weakCompareAndSetIntRelease:      return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Release);
 696   case vmIntrinsics::_weakCompareAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Volatile);
 697   case vmIntrinsics::_weakCompareAndSetLongPlain:       return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Relaxed);
 698   case vmIntrinsics::_weakCompareAndSetLongAcquire:     return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Acquire);
 699   case vmIntrinsics::_weakCompareAndSetLongRelease:     return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Release);
 700   case vmIntrinsics::_weakCompareAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Volatile);
 701 
 702   case vmIntrinsics::_compareAndExchangeObject:         return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Volatile);
 703   case vmIntrinsics::_compareAndExchangeObjectAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Acquire);
 704   case vmIntrinsics::_compareAndExchangeObjectRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Release);
 705   case vmIntrinsics::_compareAndExchangeByte:           return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Volatile);
 706   case vmIntrinsics::_compareAndExchangeByteAcquire:    return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Acquire);
 707   case vmIntrinsics::_compareAndExchangeByteRelease:    return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Release);
 708   case vmIntrinsics::_compareAndExchangeShort:          return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Volatile);
 709   case vmIntrinsics::_compareAndExchangeShortAcquire:   return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Acquire);
 710   case vmIntrinsics::_compareAndExchangeShortRelease:   return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Release);
 711   case vmIntrinsics::_compareAndExchangeInt:            return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Volatile);
 712   case vmIntrinsics::_compareAndExchangeIntAcquire:     return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Acquire);
 713   case vmIntrinsics::_compareAndExchangeIntRelease:     return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Release);
 714   case vmIntrinsics::_compareAndExchangeLong:           return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Volatile);
 715   case vmIntrinsics::_compareAndExchangeLongAcquire:    return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Acquire);
 716   case vmIntrinsics::_compareAndExchangeLongRelease:    return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Release);
 717 
 718   case vmIntrinsics::_getAndAddByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_add,       Volatile);
 719   case vmIntrinsics::_getAndAddShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_add,       Volatile);
 720   case vmIntrinsics::_getAndAddInt:                     return inline_unsafe_load_store(T_INT,    LS_get_add,       Volatile);
 721   case vmIntrinsics::_getAndAddLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_add,       Volatile);
 722 
 723   case vmIntrinsics::_getAndSetByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_set,       Volatile);
 724   case vmIntrinsics::_getAndSetShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_set,       Volatile);
 725   case vmIntrinsics::_getAndSetInt:                     return inline_unsafe_load_store(T_INT,    LS_get_set,       Volatile);
 726   case vmIntrinsics::_getAndSetLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_set,       Volatile);
 727   case vmIntrinsics::_getAndSetObject:                  return inline_unsafe_load_store(T_OBJECT, LS_get_set,       Volatile);
 728 
 729   case vmIntrinsics::_loadFence:
 730   case vmIntrinsics::_storeFence:
 731   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 732 
 733   case vmIntrinsics::_onSpinWait:               return inline_onspinwait();
 734 
 735   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 736   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 737 
 738 #ifdef TRACE_HAVE_INTRINSICS
 739   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 740   case vmIntrinsics::_getClassId:               return inline_native_classID();
 741   case vmIntrinsics::_getBufferWriter:          return inline_native_getBufferWriter();
 742 #endif
 743   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 744   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 745   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 746   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 747   case vmIntrinsics::_getLength:                return inline_native_getLength();
 748   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 749   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 750   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 751   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 752   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex();
 753   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 754 
 755   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 756   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
 757 
 758   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 759 
 760   case vmIntrinsics::_isInstance:
 761   case vmIntrinsics::_getModifiers:
 762   case vmIntrinsics::_isInterface:
 763   case vmIntrinsics::_isArray:
 764   case vmIntrinsics::_isPrimitive:
 765   case vmIntrinsics::_getSuperclass:
 766   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 767 
 768   case vmIntrinsics::_floatToRawIntBits:
 769   case vmIntrinsics::_floatToIntBits:
 770   case vmIntrinsics::_intBitsToFloat:
 771   case vmIntrinsics::_doubleToRawLongBits:
 772   case vmIntrinsics::_doubleToLongBits:
 773   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 774 
 775   case vmIntrinsics::_numberOfLeadingZeros_i:
 776   case vmIntrinsics::_numberOfLeadingZeros_l:
 777   case vmIntrinsics::_numberOfTrailingZeros_i:
 778   case vmIntrinsics::_numberOfTrailingZeros_l:
 779   case vmIntrinsics::_bitCount_i:
 780   case vmIntrinsics::_bitCount_l:
 781   case vmIntrinsics::_reverseBytes_i:
 782   case vmIntrinsics::_reverseBytes_l:
 783   case vmIntrinsics::_reverseBytes_s:
 784   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 785 
 786   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 787 
 788   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 789 
 790   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 791 
 792   case vmIntrinsics::_aescrypt_encryptBlock:
 793   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 794 
 795   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 796   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 797     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 798 
 799   case vmIntrinsics::_counterMode_AESCrypt:
 800     return inline_counterMode_AESCrypt(intrinsic_id());
 801 
 802   case vmIntrinsics::_sha_implCompress:
 803   case vmIntrinsics::_sha2_implCompress:
 804   case vmIntrinsics::_sha5_implCompress:
 805     return inline_sha_implCompress(intrinsic_id());
 806 
 807   case vmIntrinsics::_digestBase_implCompressMB:
 808     return inline_digestBase_implCompressMB(predicate);
 809 
 810   case vmIntrinsics::_multiplyToLen:
 811     return inline_multiplyToLen();
 812 
 813   case vmIntrinsics::_squareToLen:
 814     return inline_squareToLen();
 815 
 816   case vmIntrinsics::_mulAdd:
 817     return inline_mulAdd();
 818 
 819   case vmIntrinsics::_montgomeryMultiply:
 820     return inline_montgomeryMultiply();
 821   case vmIntrinsics::_montgomerySquare:
 822     return inline_montgomerySquare();
 823 
 824   case vmIntrinsics::_vectorizedMismatch:
 825     return inline_vectorizedMismatch();
 826 
 827   case vmIntrinsics::_ghash_processBlocks:
 828     return inline_ghash_processBlocks();
 829 
 830   case vmIntrinsics::_encodeISOArray:
 831   case vmIntrinsics::_encodeByteISOArray:
 832     return inline_encodeISOArray();
 833 
 834   case vmIntrinsics::_updateCRC32:
 835     return inline_updateCRC32();
 836   case vmIntrinsics::_updateBytesCRC32:
 837     return inline_updateBytesCRC32();
 838   case vmIntrinsics::_updateByteBufferCRC32:
 839     return inline_updateByteBufferCRC32();
 840 
 841   case vmIntrinsics::_updateBytesCRC32C:
 842     return inline_updateBytesCRC32C();
 843   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 844     return inline_updateDirectByteBufferCRC32C();
 845 
 846   case vmIntrinsics::_updateBytesAdler32:
 847     return inline_updateBytesAdler32();
 848   case vmIntrinsics::_updateByteBufferAdler32:
 849     return inline_updateByteBufferAdler32();
 850 
 851   case vmIntrinsics::_profileBoolean:
 852     return inline_profileBoolean();
 853   case vmIntrinsics::_isCompileConstant:
 854     return inline_isCompileConstant();
 855 
 856   case vmIntrinsics::_hasNegatives:
 857     return inline_hasNegatives();
 858 
 859   case vmIntrinsics::_fmaD:
 860   case vmIntrinsics::_fmaF:
 861     return inline_fma(intrinsic_id());
 862 
 863   default:
 864     // If you get here, it may be that someone has added a new intrinsic
 865     // to the list in vmSymbols.hpp without implementing it here.
 866 #ifndef PRODUCT
 867     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 868       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 869                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 870     }
 871 #endif
 872     return false;
 873   }
 874 }
 875 
 876 Node* LibraryCallKit::try_to_predicate(int predicate) {
 877   if (!jvms()->has_method()) {
 878     // Root JVMState has a null method.
 879     assert(map()->memory()->Opcode() == Op_Parm, "");
 880     // Insert the memory aliasing node
 881     set_all_memory(reset_memory());
 882   }
 883   assert(merged_memory(), "");
 884 
 885   switch (intrinsic_id()) {
 886   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 887     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 888   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 889     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 890   case vmIntrinsics::_counterMode_AESCrypt:
 891     return inline_counterMode_AESCrypt_predicate();
 892   case vmIntrinsics::_digestBase_implCompressMB:
 893     return inline_digestBase_implCompressMB_predicate(predicate);
 894 
 895   default:
 896     // If you get here, it may be that someone has added a new intrinsic
 897     // to the list in vmSymbols.hpp without implementing it here.
 898 #ifndef PRODUCT
 899     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 900       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 901                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 902     }
 903 #endif
 904     Node* slow_ctl = control();
 905     set_control(top()); // No fast path instrinsic
 906     return slow_ctl;
 907   }
 908 }
 909 
 910 //------------------------------set_result-------------------------------
 911 // Helper function for finishing intrinsics.
 912 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 913   record_for_igvn(region);
 914   set_control(_gvn.transform(region));
 915   set_result( _gvn.transform(value));
 916   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 917 }
 918 
 919 //------------------------------generate_guard---------------------------
 920 // Helper function for generating guarded fast-slow graph structures.
 921 // The given 'test', if true, guards a slow path.  If the test fails
 922 // then a fast path can be taken.  (We generally hope it fails.)
 923 // In all cases, GraphKit::control() is updated to the fast path.
 924 // The returned value represents the control for the slow path.
 925 // The return value is never 'top'; it is either a valid control
 926 // or NULL if it is obvious that the slow path can never be taken.
 927 // Also, if region and the slow control are not NULL, the slow edge
 928 // is appended to the region.
 929 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 930   if (stopped()) {
 931     // Already short circuited.
 932     return NULL;
 933   }
 934 
 935   // Build an if node and its projections.
 936   // If test is true we take the slow path, which we assume is uncommon.
 937   if (_gvn.type(test) == TypeInt::ZERO) {
 938     // The slow branch is never taken.  No need to build this guard.
 939     return NULL;
 940   }
 941 
 942   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 943 
 944   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 945   if (if_slow == top()) {
 946     // The slow branch is never taken.  No need to build this guard.
 947     return NULL;
 948   }
 949 
 950   if (region != NULL)
 951     region->add_req(if_slow);
 952 
 953   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 954   set_control(if_fast);
 955 
 956   return if_slow;
 957 }
 958 
 959 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 960   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 961 }
 962 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 963   return generate_guard(test, region, PROB_FAIR);
 964 }
 965 
 966 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 967                                                      Node* *pos_index) {
 968   if (stopped())
 969     return NULL;                // already stopped
 970   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 971     return NULL;                // index is already adequately typed
 972   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
 973   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 974   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 975   if (is_neg != NULL && pos_index != NULL) {
 976     // Emulate effect of Parse::adjust_map_after_if.
 977     Node* ccast = new CastIINode(index, TypeInt::POS);
 978     ccast->set_req(0, control());
 979     (*pos_index) = _gvn.transform(ccast);
 980   }
 981   return is_neg;
 982 }
 983 
 984 // Make sure that 'position' is a valid limit index, in [0..length].
 985 // There are two equivalent plans for checking this:
 986 //   A. (offset + copyLength)  unsigned<=  arrayLength
 987 //   B. offset  <=  (arrayLength - copyLength)
 988 // We require that all of the values above, except for the sum and
 989 // difference, are already known to be non-negative.
 990 // Plan A is robust in the face of overflow, if offset and copyLength
 991 // are both hugely positive.
 992 //
 993 // Plan B is less direct and intuitive, but it does not overflow at
 994 // all, since the difference of two non-negatives is always
 995 // representable.  Whenever Java methods must perform the equivalent
 996 // check they generally use Plan B instead of Plan A.
 997 // For the moment we use Plan A.
 998 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 999                                                   Node* subseq_length,
1000                                                   Node* array_length,
1001                                                   RegionNode* region) {
1002   if (stopped())
1003     return NULL;                // already stopped
1004   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1005   if (zero_offset && subseq_length->eqv_uncast(array_length))
1006     return NULL;                // common case of whole-array copy
1007   Node* last = subseq_length;
1008   if (!zero_offset)             // last += offset
1009     last = _gvn.transform(new AddINode(last, offset));
1010   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
1011   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1012   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1013   return is_over;
1014 }
1015 
1016 // Emit range checks for the given String.value byte array
1017 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) {
1018   if (stopped()) {
1019     return; // already stopped
1020   }
1021   RegionNode* bailout = new RegionNode(1);
1022   record_for_igvn(bailout);
1023   if (char_count) {
1024     // Convert char count to byte count
1025     count = _gvn.transform(new LShiftINode(count, intcon(1)));
1026   }
1027 
1028   // Offset and count must not be negative
1029   generate_negative_guard(offset, bailout);
1030   generate_negative_guard(count, bailout);
1031   // Offset + count must not exceed length of array
1032   generate_limit_guard(offset, count, load_array_length(array), bailout);
1033 
1034   if (bailout->req() > 1) {
1035     PreserveJVMState pjvms(this);
1036     set_control(_gvn.transform(bailout));
1037     uncommon_trap(Deoptimization::Reason_intrinsic,
1038                   Deoptimization::Action_maybe_recompile);
1039   }
1040 }
1041 
1042 //--------------------------generate_current_thread--------------------
1043 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1044   ciKlass*    thread_klass = env()->Thread_klass();
1045   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1046   Node* thread = _gvn.transform(new ThreadLocalNode());
1047   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1048   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1049   tls_output = thread;
1050   return threadObj;
1051 }
1052 
1053 
1054 //------------------------------make_string_method_node------------------------
1055 // Helper method for String intrinsic functions. This version is called with
1056 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
1057 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
1058 // containing the lengths of str1 and str2.
1059 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
1060   Node* result = NULL;
1061   switch (opcode) {
1062   case Op_StrIndexOf:
1063     result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
1064                                 str1_start, cnt1, str2_start, cnt2, ae);
1065     break;
1066   case Op_StrComp:
1067     result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
1068                              str1_start, cnt1, str2_start, cnt2, ae);
1069     break;
1070   case Op_StrEquals:
1071     // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals').
1072     // Use the constant length if there is one because optimized match rule may exist.
1073     result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
1074                                str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae);
1075     break;
1076   default:
1077     ShouldNotReachHere();
1078     return NULL;
1079   }
1080 
1081   // All these intrinsics have checks.
1082   C->set_has_split_ifs(true); // Has chance for split-if optimization
1083 
1084   return _gvn.transform(result);
1085 }
1086 
1087 //------------------------------inline_string_compareTo------------------------
1088 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
1089   Node* arg1 = argument(0);
1090   Node* arg2 = argument(1);
1091 
1092   // Get start addr and length of first argument
1093   Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1094   Node* arg1_cnt    = load_array_length(arg1);
1095 
1096   // Get start addr and length of second argument
1097   Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1098   Node* arg2_cnt    = load_array_length(arg2);
1099 
1100   Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1101   set_result(result);
1102   return true;
1103 }
1104 
1105 //------------------------------inline_string_equals------------------------
1106 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
1107   Node* arg1 = argument(0);
1108   Node* arg2 = argument(1);
1109 
1110   // paths (plus control) merge
1111   RegionNode* region = new RegionNode(3);
1112   Node* phi = new PhiNode(region, TypeInt::BOOL);
1113 
1114   if (!stopped()) {
1115     // Get start addr and length of first argument
1116     Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1117     Node* arg1_cnt    = load_array_length(arg1);
1118 
1119     // Get start addr and length of second argument
1120     Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1121     Node* arg2_cnt    = load_array_length(arg2);
1122 
1123     // Check for arg1_cnt != arg2_cnt
1124     Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
1125     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1126     Node* if_ne = generate_slow_guard(bol, NULL);
1127     if (if_ne != NULL) {
1128       phi->init_req(2, intcon(0));
1129       region->init_req(2, if_ne);
1130     }
1131 
1132     // Check for count == 0 is done by assembler code for StrEquals.
1133 
1134     if (!stopped()) {
1135       Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1136       phi->init_req(1, equals);
1137       region->init_req(1, control());
1138     }
1139   }
1140 
1141   // post merge
1142   set_control(_gvn.transform(region));
1143   record_for_igvn(region);
1144 
1145   set_result(_gvn.transform(phi));
1146   return true;
1147 }
1148 
1149 //------------------------------inline_array_equals----------------------------
1150 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
1151   assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
1152   Node* arg1 = argument(0);
1153   Node* arg2 = argument(1);
1154 
1155   const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
1156   set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
1157   return true;
1158 }
1159 
1160 //------------------------------inline_hasNegatives------------------------------
1161 bool LibraryCallKit::inline_hasNegatives() {
1162   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1163     return false;
1164   }
1165 
1166   assert(callee()->signature()->size() == 3, "hasNegatives has 3 parameters");
1167   // no receiver since it is static method
1168   Node* ba         = argument(0);
1169   Node* offset     = argument(1);
1170   Node* len        = argument(2);
1171 
1172   // Range checks
1173   generate_string_range_check(ba, offset, len, false);
1174   if (stopped()) {
1175     return true;
1176   }
1177   Node* ba_start = array_element_address(ba, offset, T_BYTE);
1178   Node* result = new HasNegativesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
1179   set_result(_gvn.transform(result));
1180   return true;
1181 }
1182 
1183 bool LibraryCallKit::inline_preconditions_checkIndex() {
1184   Node* index = argument(0);
1185   Node* length = argument(1);
1186   if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) {
1187     return false;
1188   }
1189 
1190   Node* len_pos_cmp = _gvn.transform(new CmpINode(length, intcon(0)));
1191   Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge));
1192 
1193   {
1194     BuildCutout unless(this, len_pos_bol, PROB_MAX);
1195     uncommon_trap(Deoptimization::Reason_intrinsic,
1196                   Deoptimization::Action_make_not_entrant);
1197   }
1198 
1199   if (stopped()) {
1200     return false;
1201   }
1202 
1203   Node* rc_cmp = _gvn.transform(new CmpUNode(index, length));
1204   BoolTest::mask btest = BoolTest::lt;
1205   Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest));
1206   RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN);
1207   _gvn.set_type(rc, rc->Value(&_gvn));
1208   if (!rc_bool->is_Con()) {
1209     record_for_igvn(rc);
1210   }
1211   set_control(_gvn.transform(new IfTrueNode(rc)));
1212   {
1213     PreserveJVMState pjvms(this);
1214     set_control(_gvn.transform(new IfFalseNode(rc)));
1215     uncommon_trap(Deoptimization::Reason_range_check,
1216                   Deoptimization::Action_make_not_entrant);
1217   }
1218 
1219   if (stopped()) {
1220     return false;
1221   }
1222 
1223   Node* result = new CastIINode(index, TypeInt::make(0, _gvn.type(length)->is_int()->_hi, Type::WidenMax));
1224   result->set_req(0, control());
1225   result = _gvn.transform(result);
1226   set_result(result);
1227   replace_in_map(index, result);
1228   return true;
1229 }
1230 
1231 //------------------------------inline_string_indexOf------------------------
1232 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1233   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1234     return false;
1235   }
1236   Node* src = argument(0);
1237   Node* tgt = argument(1);
1238 
1239   // Make the merge point
1240   RegionNode* result_rgn = new RegionNode(4);
1241   Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1242 
1243   // Get start addr and length of source string
1244   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1245   Node* src_count = load_array_length(src);
1246 
1247   // Get start addr and length of substring
1248   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1249   Node* tgt_count = load_array_length(tgt);
1250 
1251   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1252     // Divide src size by 2 if String is UTF16 encoded
1253     src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1254   }
1255   if (ae == StrIntrinsicNode::UU) {
1256     // Divide substring size by 2 if String is UTF16 encoded
1257     tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1258   }
1259 
1260   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae);
1261   if (result != NULL) {
1262     result_phi->init_req(3, result);
1263     result_rgn->init_req(3, control());
1264   }
1265   set_control(_gvn.transform(result_rgn));
1266   record_for_igvn(result_rgn);
1267   set_result(_gvn.transform(result_phi));
1268 
1269   return true;
1270 }
1271 
1272 //-----------------------------inline_string_indexOf-----------------------
1273 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1274   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1275     return false;
1276   }
1277   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1278     return false;
1279   }
1280   assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1281   Node* src         = argument(0); // byte[]
1282   Node* src_count   = argument(1); // char count
1283   Node* tgt         = argument(2); // byte[]
1284   Node* tgt_count   = argument(3); // char count
1285   Node* from_index  = argument(4); // char index
1286 
1287   // Multiply byte array index by 2 if String is UTF16 encoded
1288   Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1289   src_count = _gvn.transform(new SubINode(src_count, from_index));
1290   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1291   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1292 
1293   // Range checks
1294   generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL);
1295   generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU);
1296   if (stopped()) {
1297     return true;
1298   }
1299 
1300   RegionNode* region = new RegionNode(5);
1301   Node* phi = new PhiNode(region, TypeInt::INT);
1302 
1303   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae);
1304   if (result != NULL) {
1305     // The result is index relative to from_index if substring was found, -1 otherwise.
1306     // Generate code which will fold into cmove.
1307     Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1308     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1309 
1310     Node* if_lt = generate_slow_guard(bol, NULL);
1311     if (if_lt != NULL) {
1312       // result == -1
1313       phi->init_req(3, result);
1314       region->init_req(3, if_lt);
1315     }
1316     if (!stopped()) {
1317       result = _gvn.transform(new AddINode(result, from_index));
1318       phi->init_req(4, result);
1319       region->init_req(4, control());
1320     }
1321   }
1322 
1323   set_control(_gvn.transform(region));
1324   record_for_igvn(region);
1325   set_result(_gvn.transform(phi));
1326 
1327   return true;
1328 }
1329 
1330 // Create StrIndexOfNode with fast path checks
1331 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
1332                                         RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) {
1333   // Check for substr count > string count
1334   Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1335   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1336   Node* if_gt = generate_slow_guard(bol, NULL);
1337   if (if_gt != NULL) {
1338     phi->init_req(1, intcon(-1));
1339     region->init_req(1, if_gt);
1340   }
1341   if (!stopped()) {
1342     // Check for substr count == 0
1343     cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1344     bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1345     Node* if_zero = generate_slow_guard(bol, NULL);
1346     if (if_zero != NULL) {
1347       phi->init_req(2, intcon(0));
1348       region->init_req(2, if_zero);
1349     }
1350   }
1351   if (!stopped()) {
1352     return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1353   }
1354   return NULL;
1355 }
1356 
1357 //-----------------------------inline_string_indexOfChar-----------------------
1358 bool LibraryCallKit::inline_string_indexOfChar() {
1359   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1360     return false;
1361   }
1362   if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) {
1363     return false;
1364   }
1365   assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1366   Node* src         = argument(0); // byte[]
1367   Node* tgt         = argument(1); // tgt is int ch
1368   Node* from_index  = argument(2);
1369   Node* max         = argument(3);
1370 
1371   Node* src_offset = _gvn.transform(new LShiftINode(from_index, intcon(1)));
1372   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1373   Node* src_count = _gvn.transform(new SubINode(max, from_index));
1374 
1375   // Range checks
1376   generate_string_range_check(src, src_offset, src_count, true);
1377   if (stopped()) {
1378     return true;
1379   }
1380 
1381   RegionNode* region = new RegionNode(3);
1382   Node* phi = new PhiNode(region, TypeInt::INT);
1383 
1384   Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, tgt, StrIntrinsicNode::none);
1385   C->set_has_split_ifs(true); // Has chance for split-if optimization
1386   _gvn.transform(result);
1387 
1388   Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1389   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1390 
1391   Node* if_lt = generate_slow_guard(bol, NULL);
1392   if (if_lt != NULL) {
1393     // result == -1
1394     phi->init_req(2, result);
1395     region->init_req(2, if_lt);
1396   }
1397   if (!stopped()) {
1398     result = _gvn.transform(new AddINode(result, from_index));
1399     phi->init_req(1, result);
1400     region->init_req(1, control());
1401   }
1402   set_control(_gvn.transform(region));
1403   record_for_igvn(region);
1404   set_result(_gvn.transform(phi));
1405 
1406   return true;
1407 }
1408 //---------------------------inline_string_copy---------------------
1409 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1410 //   int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1411 //   int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1412 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1413 //   void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1414 //   void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1415 bool LibraryCallKit::inline_string_copy(bool compress) {
1416   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1417     return false;
1418   }
1419   int nargs = 5;  // 2 oops, 3 ints
1420   assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1421 
1422   Node* src         = argument(0);
1423   Node* src_offset  = argument(1);
1424   Node* dst         = argument(2);
1425   Node* dst_offset  = argument(3);
1426   Node* length      = argument(4);
1427 
1428   // Check for allocation before we add nodes that would confuse
1429   // tightly_coupled_allocation()
1430   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1431 
1432   // Figure out the size and type of the elements we will be copying.
1433   const Type* src_type = src->Value(&_gvn);
1434   const Type* dst_type = dst->Value(&_gvn);
1435   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1436   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1437   assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1438          (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1439          "Unsupported array types for inline_string_copy");
1440 
1441   // Convert char[] offsets to byte[] offsets
1442   bool convert_src = (compress && src_elem == T_BYTE);
1443   bool convert_dst = (!compress && dst_elem == T_BYTE);
1444   if (convert_src) {
1445     src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1446   } else if (convert_dst) {
1447     dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1448   }
1449 
1450   // Range checks
1451   generate_string_range_check(src, src_offset, length, convert_src);
1452   generate_string_range_check(dst, dst_offset, length, convert_dst);
1453   if (stopped()) {
1454     return true;
1455   }
1456 
1457   Node* src_start = array_element_address(src, src_offset, src_elem);
1458   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1459   // 'src_start' points to src array + scaled offset
1460   // 'dst_start' points to dst array + scaled offset
1461   Node* count = NULL;
1462   if (compress) {
1463     count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length);
1464   } else {
1465     inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length);
1466   }
1467 
1468   if (alloc != NULL) {
1469     if (alloc->maybe_set_complete(&_gvn)) {
1470       // "You break it, you buy it."
1471       InitializeNode* init = alloc->initialization();
1472       assert(init->is_complete(), "we just did this");
1473       init->set_complete_with_arraycopy();
1474       assert(dst->is_CheckCastPP(), "sanity");
1475       assert(dst->in(0)->in(0) == init, "dest pinned");
1476     }
1477     // Do not let stores that initialize this object be reordered with
1478     // a subsequent store that would make this object accessible by
1479     // other threads.
1480     // Record what AllocateNode this StoreStore protects so that
1481     // escape analysis can go from the MemBarStoreStoreNode to the
1482     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1483     // based on the escape status of the AllocateNode.
1484     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1485   }
1486   if (compress) {
1487     set_result(_gvn.transform(count));
1488   }
1489   return true;
1490 }
1491 
1492 #ifdef _LP64
1493 #define XTOP ,top() /*additional argument*/
1494 #else  //_LP64
1495 #define XTOP        /*no additional argument*/
1496 #endif //_LP64
1497 
1498 //------------------------inline_string_toBytesU--------------------------
1499 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
1500 bool LibraryCallKit::inline_string_toBytesU() {
1501   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1502     return false;
1503   }
1504   // Get the arguments.
1505   Node* value     = argument(0);
1506   Node* offset    = argument(1);
1507   Node* length    = argument(2);
1508 
1509   Node* newcopy = NULL;
1510 
1511   // Set the original stack and the reexecute bit for the interpreter to reexecute
1512   // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1513   { PreserveReexecuteState preexecs(this);
1514     jvms()->set_should_reexecute(true);
1515 
1516     // Check if a null path was taken unconditionally.
1517     value = null_check(value);
1518 
1519     RegionNode* bailout = new RegionNode(1);
1520     record_for_igvn(bailout);
1521 
1522     // Range checks
1523     generate_negative_guard(offset, bailout);
1524     generate_negative_guard(length, bailout);
1525     generate_limit_guard(offset, length, load_array_length(value), bailout);
1526     // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1527     generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1528 
1529     if (bailout->req() > 1) {
1530       PreserveJVMState pjvms(this);
1531       set_control(_gvn.transform(bailout));
1532       uncommon_trap(Deoptimization::Reason_intrinsic,
1533                     Deoptimization::Action_maybe_recompile);
1534     }
1535     if (stopped()) {
1536       return true;
1537     }
1538 
1539     Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1540     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1541     newcopy = new_array(klass_node, size, 0);  // no arguments to push
1542     AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy, NULL);
1543 
1544     // Calculate starting addresses.
1545     Node* src_start = array_element_address(value, offset, T_CHAR);
1546     Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1547 
1548     // Check if src array address is aligned to HeapWordSize (dst is always aligned)
1549     const TypeInt* toffset = gvn().type(offset)->is_int();
1550     bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1551 
1552     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1553     const char* copyfunc_name = "arraycopy";
1554     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1555     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1556                       OptoRuntime::fast_arraycopy_Type(),
1557                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1558                       src_start, dst_start, ConvI2X(length) XTOP);
1559     // Do not let reads from the cloned object float above the arraycopy.
1560     if (alloc != NULL) {
1561       if (alloc->maybe_set_complete(&_gvn)) {
1562         // "You break it, you buy it."
1563         InitializeNode* init = alloc->initialization();
1564         assert(init->is_complete(), "we just did this");
1565         init->set_complete_with_arraycopy();
1566         assert(newcopy->is_CheckCastPP(), "sanity");
1567         assert(newcopy->in(0)->in(0) == init, "dest pinned");
1568       }
1569       // Do not let stores that initialize this object be reordered with
1570       // a subsequent store that would make this object accessible by
1571       // other threads.
1572       // Record what AllocateNode this StoreStore protects so that
1573       // escape analysis can go from the MemBarStoreStoreNode to the
1574       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1575       // based on the escape status of the AllocateNode.
1576       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1577     } else {
1578       insert_mem_bar(Op_MemBarCPUOrder);
1579     }
1580   } // original reexecute is set back here
1581 
1582   C->set_has_split_ifs(true); // Has chance for split-if optimization
1583   if (!stopped()) {
1584     set_result(newcopy);
1585   }
1586   return true;
1587 }
1588 
1589 //------------------------inline_string_getCharsU--------------------------
1590 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin)
1591 bool LibraryCallKit::inline_string_getCharsU() {
1592   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1593     return false;
1594   }
1595 
1596   // Get the arguments.
1597   Node* src       = argument(0);
1598   Node* src_begin = argument(1);
1599   Node* src_end   = argument(2); // exclusive offset (i < src_end)
1600   Node* dst       = argument(3);
1601   Node* dst_begin = argument(4);
1602 
1603   // Check for allocation before we add nodes that would confuse
1604   // tightly_coupled_allocation()
1605   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1606 
1607   // Check if a null path was taken unconditionally.
1608   src = null_check(src);
1609   dst = null_check(dst);
1610   if (stopped()) {
1611     return true;
1612   }
1613 
1614   // Get length and convert char[] offset to byte[] offset
1615   Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1616   src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1617 
1618   // Range checks
1619   generate_string_range_check(src, src_begin, length, true);
1620   generate_string_range_check(dst, dst_begin, length, false);
1621   if (stopped()) {
1622     return true;
1623   }
1624 
1625   if (!stopped()) {
1626     // Calculate starting addresses.
1627     Node* src_start = array_element_address(src, src_begin, T_BYTE);
1628     Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1629 
1630     // Check if array addresses are aligned to HeapWordSize
1631     const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1632     const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1633     bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1634                    tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1635 
1636     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1637     const char* copyfunc_name = "arraycopy";
1638     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1639     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1640                       OptoRuntime::fast_arraycopy_Type(),
1641                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1642                       src_start, dst_start, ConvI2X(length) XTOP);
1643     // Do not let reads from the cloned object float above the arraycopy.
1644     if (alloc != NULL) {
1645       if (alloc->maybe_set_complete(&_gvn)) {
1646         // "You break it, you buy it."
1647         InitializeNode* init = alloc->initialization();
1648         assert(init->is_complete(), "we just did this");
1649         init->set_complete_with_arraycopy();
1650         assert(dst->is_CheckCastPP(), "sanity");
1651         assert(dst->in(0)->in(0) == init, "dest pinned");
1652       }
1653       // Do not let stores that initialize this object be reordered with
1654       // a subsequent store that would make this object accessible by
1655       // other threads.
1656       // Record what AllocateNode this StoreStore protects so that
1657       // escape analysis can go from the MemBarStoreStoreNode to the
1658       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1659       // based on the escape status of the AllocateNode.
1660       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1661     } else {
1662       insert_mem_bar(Op_MemBarCPUOrder);
1663     }
1664   }
1665 
1666   C->set_has_split_ifs(true); // Has chance for split-if optimization
1667   return true;
1668 }
1669 
1670 //----------------------inline_string_char_access----------------------------
1671 // Store/Load char to/from byte[] array.
1672 // static void StringUTF16.putChar(byte[] val, int index, int c)
1673 // static char StringUTF16.getChar(byte[] val, int index)
1674 bool LibraryCallKit::inline_string_char_access(bool is_store) {
1675   Node* value  = argument(0);
1676   Node* index  = argument(1);
1677   Node* ch = is_store ? argument(2) : NULL;
1678 
1679   // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1680   // correctly requires matched array shapes.
1681   assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1682           "sanity: byte[] and char[] bases agree");
1683   assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1684           "sanity: byte[] and char[] scales agree");
1685 
1686   // Bail when getChar over constants is requested: constant folding would
1687   // reject folding mismatched char access over byte[]. A normal inlining for getChar
1688   // Java method would constant fold nicely instead.
1689   if (!is_store && value->is_Con() && index->is_Con()) {
1690     return false;
1691   }
1692 
1693   Node* adr = array_element_address(value, index, T_CHAR);
1694   if (adr->is_top()) {
1695     return false;
1696   }
1697   if (is_store) {
1698     (void) store_to_memory(control(), adr, ch, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
1699                            false, false, true /* mismatched */);
1700   } else {
1701     ch = make_load(control(), adr, TypeInt::CHAR, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
1702                    LoadNode::DependsOnlyOnTest, false, false, true /* mismatched */);
1703     set_result(ch);
1704   }
1705   return true;
1706 }
1707 
1708 //--------------------------round_double_node--------------------------------
1709 // Round a double node if necessary.
1710 Node* LibraryCallKit::round_double_node(Node* n) {
1711   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1712     n = _gvn.transform(new RoundDoubleNode(0, n));
1713   return n;
1714 }
1715 
1716 //------------------------------inline_math-----------------------------------
1717 // public static double Math.abs(double)
1718 // public static double Math.sqrt(double)
1719 // public static double Math.log(double)
1720 // public static double Math.log10(double)
1721 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1722   Node* arg = round_double_node(argument(0));
1723   Node* n = NULL;
1724   switch (id) {
1725   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1726   case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1727   default:  fatal_unexpected_iid(id);  break;
1728   }
1729   set_result(_gvn.transform(n));
1730   return true;
1731 }
1732 
1733 //------------------------------runtime_math-----------------------------
1734 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1735   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1736          "must be (DD)D or (D)D type");
1737 
1738   // Inputs
1739   Node* a = round_double_node(argument(0));
1740   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1741 
1742   const TypePtr* no_memory_effects = NULL;
1743   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1744                                  no_memory_effects,
1745                                  a, top(), b, b ? top() : NULL);
1746   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1747 #ifdef ASSERT
1748   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1749   assert(value_top == top(), "second value must be top");
1750 #endif
1751 
1752   set_result(value);
1753   return true;
1754 }
1755 
1756 //------------------------------inline_math_native-----------------------------
1757 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1758 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1759   switch (id) {
1760     // These intrinsics are not properly supported on all hardware
1761   case vmIntrinsics::_dsin:
1762     return StubRoutines::dsin() != NULL ?
1763       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") :
1764       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1765   case vmIntrinsics::_dcos:
1766     return StubRoutines::dcos() != NULL ?
1767       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") :
1768       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1769   case vmIntrinsics::_dtan:
1770     return StubRoutines::dtan() != NULL ?
1771       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") :
1772       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan), "TAN");
1773   case vmIntrinsics::_dlog:
1774     return StubRoutines::dlog() != NULL ?
1775       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1776       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1777   case vmIntrinsics::_dlog10:
1778     return StubRoutines::dlog10() != NULL ?
1779       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") :
1780       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1781 
1782     // These intrinsics are supported on all hardware
1783   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
1784   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1785 
1786   case vmIntrinsics::_dexp:
1787     return StubRoutines::dexp() != NULL ?
1788       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(),  "dexp") :
1789       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp),  "EXP");
1790   case vmIntrinsics::_dpow:
1791     return StubRoutines::dpow() != NULL ?
1792       runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") :
1793       runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1794 #undef FN_PTR
1795 
1796    // These intrinsics are not yet correctly implemented
1797   case vmIntrinsics::_datan2:
1798     return false;
1799 
1800   default:
1801     fatal_unexpected_iid(id);
1802     return false;
1803   }
1804 }
1805 
1806 static bool is_simple_name(Node* n) {
1807   return (n->req() == 1         // constant
1808           || (n->is_Type() && n->as_Type()->type()->singleton())
1809           || n->is_Proj()       // parameter or return value
1810           || n->is_Phi()        // local of some sort
1811           );
1812 }
1813 
1814 //----------------------------inline_notify-----------------------------------*
1815 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1816   const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1817   address func;
1818   if (id == vmIntrinsics::_notify) {
1819     func = OptoRuntime::monitor_notify_Java();
1820   } else {
1821     func = OptoRuntime::monitor_notifyAll_Java();
1822   }
1823   Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0));
1824   make_slow_call_ex(call, env()->Throwable_klass(), false);
1825   return true;
1826 }
1827 
1828 
1829 //----------------------------inline_min_max-----------------------------------
1830 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1831   set_result(generate_min_max(id, argument(0), argument(1)));
1832   return true;
1833 }
1834 
1835 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1836   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
1837   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1838   Node* fast_path = _gvn.transform( new IfFalseNode(check));
1839   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
1840 
1841   {
1842     PreserveJVMState pjvms(this);
1843     PreserveReexecuteState preexecs(this);
1844     jvms()->set_should_reexecute(true);
1845 
1846     set_control(slow_path);
1847     set_i_o(i_o());
1848 
1849     uncommon_trap(Deoptimization::Reason_intrinsic,
1850                   Deoptimization::Action_none);
1851   }
1852 
1853   set_control(fast_path);
1854   set_result(math);
1855 }
1856 
1857 template <typename OverflowOp>
1858 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
1859   typedef typename OverflowOp::MathOp MathOp;
1860 
1861   MathOp* mathOp = new MathOp(arg1, arg2);
1862   Node* operation = _gvn.transform( mathOp );
1863   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
1864   inline_math_mathExact(operation, ofcheck);
1865   return true;
1866 }
1867 
1868 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
1869   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
1870 }
1871 
1872 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
1873   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
1874 }
1875 
1876 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
1877   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
1878 }
1879 
1880 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
1881   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
1882 }
1883 
1884 bool LibraryCallKit::inline_math_negateExactI() {
1885   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
1886 }
1887 
1888 bool LibraryCallKit::inline_math_negateExactL() {
1889   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
1890 }
1891 
1892 bool LibraryCallKit::inline_math_multiplyExactI() {
1893   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
1894 }
1895 
1896 bool LibraryCallKit::inline_math_multiplyExactL() {
1897   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
1898 }
1899 
1900 Node*
1901 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1902   // These are the candidate return value:
1903   Node* xvalue = x0;
1904   Node* yvalue = y0;
1905 
1906   if (xvalue == yvalue) {
1907     return xvalue;
1908   }
1909 
1910   bool want_max = (id == vmIntrinsics::_max);
1911 
1912   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1913   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1914   if (txvalue == NULL || tyvalue == NULL)  return top();
1915   // This is not really necessary, but it is consistent with a
1916   // hypothetical MaxINode::Value method:
1917   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1918 
1919   // %%% This folding logic should (ideally) be in a different place.
1920   // Some should be inside IfNode, and there to be a more reliable
1921   // transformation of ?: style patterns into cmoves.  We also want
1922   // more powerful optimizations around cmove and min/max.
1923 
1924   // Try to find a dominating comparison of these guys.
1925   // It can simplify the index computation for Arrays.copyOf
1926   // and similar uses of System.arraycopy.
1927   // First, compute the normalized version of CmpI(x, y).
1928   int   cmp_op = Op_CmpI;
1929   Node* xkey = xvalue;
1930   Node* ykey = yvalue;
1931   Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
1932   if (ideal_cmpxy->is_Cmp()) {
1933     // E.g., if we have CmpI(length - offset, count),
1934     // it might idealize to CmpI(length, count + offset)
1935     cmp_op = ideal_cmpxy->Opcode();
1936     xkey = ideal_cmpxy->in(1);
1937     ykey = ideal_cmpxy->in(2);
1938   }
1939 
1940   // Start by locating any relevant comparisons.
1941   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1942   Node* cmpxy = NULL;
1943   Node* cmpyx = NULL;
1944   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1945     Node* cmp = start_from->fast_out(k);
1946     if (cmp->outcnt() > 0 &&            // must have prior uses
1947         cmp->in(0) == NULL &&           // must be context-independent
1948         cmp->Opcode() == cmp_op) {      // right kind of compare
1949       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1950       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1951     }
1952   }
1953 
1954   const int NCMPS = 2;
1955   Node* cmps[NCMPS] = { cmpxy, cmpyx };
1956   int cmpn;
1957   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1958     if (cmps[cmpn] != NULL)  break;     // find a result
1959   }
1960   if (cmpn < NCMPS) {
1961     // Look for a dominating test that tells us the min and max.
1962     int depth = 0;                // Limit search depth for speed
1963     Node* dom = control();
1964     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
1965       if (++depth >= 100)  break;
1966       Node* ifproj = dom;
1967       if (!ifproj->is_Proj())  continue;
1968       Node* iff = ifproj->in(0);
1969       if (!iff->is_If())  continue;
1970       Node* bol = iff->in(1);
1971       if (!bol->is_Bool())  continue;
1972       Node* cmp = bol->in(1);
1973       if (cmp == NULL)  continue;
1974       for (cmpn = 0; cmpn < NCMPS; cmpn++)
1975         if (cmps[cmpn] == cmp)  break;
1976       if (cmpn == NCMPS)  continue;
1977       BoolTest::mask btest = bol->as_Bool()->_test._test;
1978       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
1979       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
1980       // At this point, we know that 'x btest y' is true.
1981       switch (btest) {
1982       case BoolTest::eq:
1983         // They are proven equal, so we can collapse the min/max.
1984         // Either value is the answer.  Choose the simpler.
1985         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
1986           return yvalue;
1987         return xvalue;
1988       case BoolTest::lt:          // x < y
1989       case BoolTest::le:          // x <= y
1990         return (want_max ? yvalue : xvalue);
1991       case BoolTest::gt:          // x > y
1992       case BoolTest::ge:          // x >= y
1993         return (want_max ? xvalue : yvalue);
1994       }
1995     }
1996   }
1997 
1998   // We failed to find a dominating test.
1999   // Let's pick a test that might GVN with prior tests.
2000   Node*          best_bol   = NULL;
2001   BoolTest::mask best_btest = BoolTest::illegal;
2002   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2003     Node* cmp = cmps[cmpn];
2004     if (cmp == NULL)  continue;
2005     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2006       Node* bol = cmp->fast_out(j);
2007       if (!bol->is_Bool())  continue;
2008       BoolTest::mask btest = bol->as_Bool()->_test._test;
2009       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2010       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2011       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2012         best_bol   = bol->as_Bool();
2013         best_btest = btest;
2014       }
2015     }
2016   }
2017 
2018   Node* answer_if_true  = NULL;
2019   Node* answer_if_false = NULL;
2020   switch (best_btest) {
2021   default:
2022     if (cmpxy == NULL)
2023       cmpxy = ideal_cmpxy;
2024     best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
2025     // and fall through:
2026   case BoolTest::lt:          // x < y
2027   case BoolTest::le:          // x <= y
2028     answer_if_true  = (want_max ? yvalue : xvalue);
2029     answer_if_false = (want_max ? xvalue : yvalue);
2030     break;
2031   case BoolTest::gt:          // x > y
2032   case BoolTest::ge:          // x >= y
2033     answer_if_true  = (want_max ? xvalue : yvalue);
2034     answer_if_false = (want_max ? yvalue : xvalue);
2035     break;
2036   }
2037 
2038   jint hi, lo;
2039   if (want_max) {
2040     // We can sharpen the minimum.
2041     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2042     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2043   } else {
2044     // We can sharpen the maximum.
2045     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2046     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2047   }
2048 
2049   // Use a flow-free graph structure, to avoid creating excess control edges
2050   // which could hinder other optimizations.
2051   // Since Math.min/max is often used with arraycopy, we want
2052   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2053   Node* cmov = CMoveNode::make(NULL, best_bol,
2054                                answer_if_false, answer_if_true,
2055                                TypeInt::make(lo, hi, widen));
2056 
2057   return _gvn.transform(cmov);
2058 
2059   /*
2060   // This is not as desirable as it may seem, since Min and Max
2061   // nodes do not have a full set of optimizations.
2062   // And they would interfere, anyway, with 'if' optimizations
2063   // and with CMoveI canonical forms.
2064   switch (id) {
2065   case vmIntrinsics::_min:
2066     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2067   case vmIntrinsics::_max:
2068     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2069   default:
2070     ShouldNotReachHere();
2071   }
2072   */
2073 }
2074 
2075 inline int
2076 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) {
2077   const TypePtr* base_type = TypePtr::NULL_PTR;
2078   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2079   if (base_type == NULL) {
2080     // Unknown type.
2081     return Type::AnyPtr;
2082   } else if (base_type == TypePtr::NULL_PTR) {
2083     // Since this is a NULL+long form, we have to switch to a rawptr.
2084     base   = _gvn.transform(new CastX2PNode(offset));
2085     offset = MakeConX(0);
2086     return Type::RawPtr;
2087   } else if (base_type->base() == Type::RawPtr) {
2088     return Type::RawPtr;
2089   } else if (base_type->isa_oopptr()) {
2090     // Base is never null => always a heap address.
2091     if (!TypePtr::NULL_PTR->higher_equal(base_type)) {
2092       return Type::OopPtr;
2093     }
2094     // Offset is small => always a heap address.
2095     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2096     if (offset_type != NULL &&
2097         base_type->offset() == 0 &&     // (should always be?)
2098         offset_type->_lo >= 0 &&
2099         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2100       return Type::OopPtr;
2101     } else if (type == T_OBJECT) {
2102       // off heap access to an oop doesn't make any sense. Has to be on
2103       // heap.
2104       return Type::OopPtr;
2105     }
2106     // Otherwise, it might either be oop+off or NULL+addr.
2107     return Type::AnyPtr;
2108   } else {
2109     // No information:
2110     return Type::AnyPtr;
2111   }
2112 }
2113 
2114 inline Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) {
2115   Node* uncasted_base = base;
2116   int kind = classify_unsafe_addr(uncasted_base, offset, type);
2117   if (kind == Type::RawPtr) {
2118     return basic_plus_adr(top(), uncasted_base, offset);
2119   } else if (kind == Type::AnyPtr) {
2120     assert(base == uncasted_base, "unexpected base change");
2121     if (can_cast) {
2122       if (!_gvn.type(base)->speculative_maybe_null() &&
2123           !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
2124         // According to profiling, this access is always on
2125         // heap. Casting the base to not null and thus avoiding membars
2126         // around the access should allow better optimizations
2127         Node* null_ctl = top();
2128         base = null_check_oop(base, &null_ctl, true, true, true);
2129         assert(null_ctl->is_top(), "no null control here");
2130         return basic_plus_adr(base, offset);
2131       } else if (_gvn.type(base)->speculative_always_null() &&
2132                  !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
2133         // According to profiling, this access is always off
2134         // heap.
2135         base = null_assert(base);
2136         Node* raw_base = _gvn.transform(new CastX2PNode(offset));
2137         offset = MakeConX(0);
2138         return basic_plus_adr(top(), raw_base, offset);
2139       }
2140     }
2141     // We don't know if it's an on heap or off heap access. Fall back
2142     // to raw memory access.
2143     Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM));
2144     return basic_plus_adr(top(), raw, offset);
2145   } else {
2146     assert(base == uncasted_base, "unexpected base change");
2147     // We know it's an on heap access so base can't be null
2148     if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) {
2149       base = must_be_not_null(base, true);
2150     }
2151     return basic_plus_adr(base, offset);
2152   }
2153 }
2154 
2155 //--------------------------inline_number_methods-----------------------------
2156 // inline int     Integer.numberOfLeadingZeros(int)
2157 // inline int        Long.numberOfLeadingZeros(long)
2158 //
2159 // inline int     Integer.numberOfTrailingZeros(int)
2160 // inline int        Long.numberOfTrailingZeros(long)
2161 //
2162 // inline int     Integer.bitCount(int)
2163 // inline int        Long.bitCount(long)
2164 //
2165 // inline char  Character.reverseBytes(char)
2166 // inline short     Short.reverseBytes(short)
2167 // inline int     Integer.reverseBytes(int)
2168 // inline long       Long.reverseBytes(long)
2169 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2170   Node* arg = argument(0);
2171   Node* n = NULL;
2172   switch (id) {
2173   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2174   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2175   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2176   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2177   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2178   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2179   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2180   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2181   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2182   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2183   default:  fatal_unexpected_iid(id);  break;
2184   }
2185   set_result(_gvn.transform(n));
2186   return true;
2187 }
2188 
2189 //----------------------------inline_unsafe_access----------------------------
2190 
2191 // Helper that guards and inserts a pre-barrier.
2192 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2193                                         Node* pre_val, bool need_mem_bar) {
2194   // We could be accessing the referent field of a reference object. If so, when G1
2195   // is enabled, we need to log the value in the referent field in an SATB buffer.
2196   // This routine performs some compile time filters and generates suitable
2197   // runtime filters that guard the pre-barrier code.
2198   // Also add memory barrier for non volatile load from the referent field
2199   // to prevent commoning of loads across safepoint.
2200   if (!UseG1GC && !need_mem_bar)
2201     return;
2202 
2203   // Some compile time checks.
2204 
2205   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2206   const TypeX* otype = offset->find_intptr_t_type();
2207   if (otype != NULL && otype->is_con() &&
2208       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2209     // Constant offset but not the reference_offset so just return
2210     return;
2211   }
2212 
2213   // We only need to generate the runtime guards for instances.
2214   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2215   if (btype != NULL) {
2216     if (btype->isa_aryptr()) {
2217       // Array type so nothing to do
2218       return;
2219     }
2220 
2221     const TypeInstPtr* itype = btype->isa_instptr();
2222     if (itype != NULL) {
2223       // Can the klass of base_oop be statically determined to be
2224       // _not_ a sub-class of Reference and _not_ Object?
2225       ciKlass* klass = itype->klass();
2226       if ( klass->is_loaded() &&
2227           !klass->is_subtype_of(env()->Reference_klass()) &&
2228           !env()->Object_klass()->is_subtype_of(klass)) {
2229         return;
2230       }
2231     }
2232   }
2233 
2234   // The compile time filters did not reject base_oop/offset so
2235   // we need to generate the following runtime filters
2236   //
2237   // if (offset == java_lang_ref_Reference::_reference_offset) {
2238   //   if (instance_of(base, java.lang.ref.Reference)) {
2239   //     pre_barrier(_, pre_val, ...);
2240   //   }
2241   // }
2242 
2243   float likely   = PROB_LIKELY(  0.999);
2244   float unlikely = PROB_UNLIKELY(0.999);
2245 
2246   IdealKit ideal(this);
2247 #define __ ideal.
2248 
2249   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2250 
2251   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2252       // Update graphKit memory and control from IdealKit.
2253       sync_kit(ideal);
2254 
2255       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2256       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2257 
2258       // Update IdealKit memory and control from graphKit.
2259       __ sync_kit(this);
2260 
2261       Node* one = __ ConI(1);
2262       // is_instof == 0 if base_oop == NULL
2263       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2264 
2265         // Update graphKit from IdeakKit.
2266         sync_kit(ideal);
2267 
2268         // Use the pre-barrier to record the value in the referent field
2269         pre_barrier(false /* do_load */,
2270                     __ ctrl(),
2271                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2272                     pre_val /* pre_val */,
2273                     T_OBJECT);
2274         if (need_mem_bar) {
2275           // Add memory barrier to prevent commoning reads from this field
2276           // across safepoint since GC can change its value.
2277           insert_mem_bar(Op_MemBarCPUOrder);
2278         }
2279         // Update IdealKit from graphKit.
2280         __ sync_kit(this);
2281 
2282       } __ end_if(); // _ref_type != ref_none
2283   } __ end_if(); // offset == referent_offset
2284 
2285   // Final sync IdealKit and GraphKit.
2286   final_sync(ideal);
2287 #undef __
2288 }
2289 
2290 
2291 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2292   // Attempt to infer a sharper value type from the offset and base type.
2293   ciKlass* sharpened_klass = NULL;
2294 
2295   // See if it is an instance field, with an object type.
2296   if (alias_type->field() != NULL) {
2297     if (alias_type->field()->type()->is_klass()) {
2298       sharpened_klass = alias_type->field()->type()->as_klass();
2299     }
2300   }
2301 
2302   // See if it is a narrow oop array.
2303   if (adr_type->isa_aryptr()) {
2304     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2305       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2306       if (elem_type != NULL) {
2307         sharpened_klass = elem_type->klass();
2308       }
2309     }
2310   }
2311 
2312   // The sharpened class might be unloaded if there is no class loader
2313   // contraint in place.
2314   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2315     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2316 
2317 #ifndef PRODUCT
2318     if (C->print_intrinsics() || C->print_inlining()) {
2319       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2320       tty->print("  sharpened value: ");  tjp->dump();      tty->cr();
2321     }
2322 #endif
2323     // Sharpen the value type.
2324     return tjp;
2325   }
2326   return NULL;
2327 }
2328 
2329 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
2330   if (callee()->is_static())  return false;  // caller must have the capability!
2331   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2332   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2333   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2334 
2335 #ifndef PRODUCT
2336   {
2337     ResourceMark rm;
2338     // Check the signatures.
2339     ciSignature* sig = callee()->signature();
2340 #ifdef ASSERT
2341     if (!is_store) {
2342       // Object getObject(Object base, int/long offset), etc.
2343       BasicType rtype = sig->return_type()->basic_type();
2344       assert(rtype == type, "getter must return the expected value");
2345       assert(sig->count() == 2, "oop getter has 2 arguments");
2346       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2347       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2348     } else {
2349       // void putObject(Object base, int/long offset, Object x), etc.
2350       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2351       assert(sig->count() == 3, "oop putter has 3 arguments");
2352       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2353       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2354       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2355       assert(vtype == type, "putter must accept the expected value");
2356     }
2357 #endif // ASSERT
2358  }
2359 #endif //PRODUCT
2360 
2361   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2362 
2363   Node* receiver = argument(0);  // type: oop
2364 
2365   // Build address expression.
2366   Node* adr;
2367   Node* heap_base_oop = top();
2368   Node* offset = top();
2369   Node* val;
2370 
2371   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2372   Node* base = argument(1);  // type: oop
2373   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2374   offset = argument(2);  // type: long
2375   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2376   // to be plain byte offsets, which are also the same as those accepted
2377   // by oopDesc::field_base.
2378   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2379          "fieldOffset must be byte-scaled");
2380   // 32-bit machines ignore the high half!
2381   offset = ConvL2X(offset);
2382   adr = make_unsafe_address(base, offset, type, kind == Relaxed);
2383 
2384   if (_gvn.type(base)->isa_ptr() != TypePtr::NULL_PTR) {
2385     heap_base_oop = base;
2386   } else if (type == T_OBJECT) {
2387     return false; // off-heap oop accesses are not supported
2388   }
2389 
2390   // Can base be NULL? Otherwise, always on-heap access.
2391   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop));
2392 
2393   val = is_store ? argument(4) : NULL;
2394 
2395   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2396 
2397   // Try to categorize the address.
2398   Compile::AliasType* alias_type = C->alias_type(adr_type);
2399   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2400 
2401   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2402       alias_type->adr_type() == TypeAryPtr::RANGE) {
2403     return false; // not supported
2404   }
2405 
2406   bool mismatched = false;
2407   BasicType bt = alias_type->basic_type();
2408   if (bt != T_ILLEGAL) {
2409     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2410     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2411       // Alias type doesn't differentiate between byte[] and boolean[]).
2412       // Use address type to get the element type.
2413       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2414     }
2415     if (bt == T_ARRAY || bt == T_NARROWOOP) {
2416       // accessing an array field with getObject is not a mismatch
2417       bt = T_OBJECT;
2418     }
2419     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2420       // Don't intrinsify mismatched object accesses
2421       return false;
2422     }
2423     mismatched = (bt != type);
2424   } else if (alias_type->adr_type()->isa_oopptr()) {
2425     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2426   }
2427 
2428   assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2429 
2430   // First guess at the value type.
2431   const Type *value_type = Type::get_const_basic_type(type);
2432 
2433   // We will need memory barriers unless we can determine a unique
2434   // alias category for this reference.  (Note:  If for some reason
2435   // the barriers get omitted and the unsafe reference begins to "pollute"
2436   // the alias analysis of the rest of the graph, either Compile::can_alias
2437   // or Compile::must_alias will throw a diagnostic assert.)
2438   bool need_mem_bar = false;
2439   switch (kind) {
2440       case Relaxed:
2441           need_mem_bar = (mismatched && !adr_type->isa_aryptr()) || can_access_non_heap;
2442           break;
2443       case Opaque:
2444           // Opaque uses CPUOrder membars for protection against code movement.
2445       case Acquire:
2446       case Release:
2447       case Volatile:
2448           need_mem_bar = true;
2449           break;
2450       default:
2451           ShouldNotReachHere();
2452   }
2453 
2454   // Some accesses require access atomicity for all types, notably longs and doubles.
2455   // When AlwaysAtomicAccesses is enabled, all accesses are atomic.
2456   bool requires_atomic_access = false;
2457   switch (kind) {
2458       case Relaxed:
2459           requires_atomic_access = AlwaysAtomicAccesses;
2460           break;
2461       case Opaque:
2462           // Opaque accesses are atomic.
2463       case Acquire:
2464       case Release:
2465       case Volatile:
2466           requires_atomic_access = true;
2467           break;
2468       default:
2469           ShouldNotReachHere();
2470   }
2471 
2472   // Figure out the memory ordering.
2473   // Acquire/Release/Volatile accesses require marking the loads/stores with MemOrd
2474   MemNode::MemOrd mo = access_kind_to_memord_LS(kind, is_store);
2475 
2476   // If we are reading the value of the referent field of a Reference
2477   // object (either by using Unsafe directly or through reflection)
2478   // then, if G1 is enabled, we need to record the referent in an
2479   // SATB log buffer using the pre-barrier mechanism.
2480   // Also we need to add memory barrier to prevent commoning reads
2481   // from this field across safepoint since GC can change its value.
2482   bool need_read_barrier = !is_store &&
2483                            offset != top() && heap_base_oop != top();
2484 
2485   if (!is_store && type == T_OBJECT) {
2486     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2487     if (tjp != NULL) {
2488       value_type = tjp;
2489     }
2490   }
2491 
2492   receiver = null_check(receiver);
2493   if (stopped()) {
2494     return true;
2495   }
2496   // Heap pointers get a null-check from the interpreter,
2497   // as a courtesy.  However, this is not guaranteed by Unsafe,
2498   // and it is not possible to fully distinguish unintended nulls
2499   // from intended ones in this API.
2500 
2501   // We need to emit leading and trailing CPU membars (see below) in
2502   // addition to memory membars for special access modes. This is a little
2503   // too strong, but avoids the need to insert per-alias-type
2504   // volatile membars (for stores; compare Parse::do_put_xxx), which
2505   // we cannot do effectively here because we probably only have a
2506   // rough approximation of type.
2507 
2508   switch(kind) {
2509     case Relaxed:
2510     case Opaque:
2511     case Acquire:
2512       break;
2513     case Release:
2514     case Volatile:
2515       if (is_store) {
2516         insert_mem_bar(Op_MemBarRelease);
2517       } else {
2518         if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2519           insert_mem_bar(Op_MemBarVolatile);
2520         }
2521       }
2522       break;
2523     default:
2524       ShouldNotReachHere();
2525   }
2526 
2527   // Memory barrier to prevent normal and 'unsafe' accesses from
2528   // bypassing each other.  Happens after null checks, so the
2529   // exception paths do not take memory state from the memory barrier,
2530   // so there's no problems making a strong assert about mixing users
2531   // of safe & unsafe memory.
2532   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2533 
2534   if (!is_store) {
2535     Node* p = NULL;
2536     // Try to constant fold a load from a constant field
2537     ciField* field = alias_type->field();
2538     if (heap_base_oop != top() && field != NULL && field->is_constant() && !mismatched) {
2539       // final or stable field
2540       p = make_constant_from_field(field, heap_base_oop);
2541     }
2542     if (p == NULL) {
2543       // To be valid, unsafe loads may depend on other conditions than
2544       // the one that guards them: pin the Load node
2545       LoadNode::ControlDependency dep = LoadNode::Pinned;
2546       Node* ctrl = control();
2547       if (adr_type->isa_instptr()) {
2548         assert(adr_type->meet(TypePtr::NULL_PTR) != adr_type->remove_speculative(), "should be not null");
2549         intptr_t offset = Type::OffsetBot;
2550         AddPNode::Ideal_base_and_offset(adr, &_gvn, offset);
2551         if (offset >= 0) {
2552           int s = Klass::layout_helper_size_in_bytes(adr_type->isa_instptr()->klass()->layout_helper());
2553           if (offset < s) {
2554             // Guaranteed to be a valid access, no need to pin it
2555             dep = LoadNode::DependsOnlyOnTest;
2556             ctrl = NULL;
2557           }
2558         }
2559       }
2560       p = make_load(ctrl, adr, value_type, type, adr_type, mo, dep, requires_atomic_access, unaligned, mismatched);
2561       // load value
2562       switch (type) {
2563       case T_BOOLEAN:
2564       {
2565         // Normalize the value returned by getBoolean in the following cases
2566         if (mismatched ||
2567             heap_base_oop == top() ||                            // - heap_base_oop is NULL or
2568             (can_access_non_heap && alias_type->field() == NULL) // - heap_base_oop is potentially NULL
2569                                                                  //   and the unsafe access is made to large offset
2570                                                                  //   (i.e., larger than the maximum offset necessary for any
2571                                                                  //   field access)
2572             ) {
2573           IdealKit ideal = IdealKit(this);
2574 #define __ ideal.
2575           IdealVariable normalized_result(ideal);
2576           __ declarations_done();
2577           __ set(normalized_result, p);
2578           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2579           __ set(normalized_result, ideal.ConI(1));
2580           ideal.end_if();
2581           final_sync(ideal);
2582           p = __ value(normalized_result);
2583 #undef __
2584         }
2585       }
2586       case T_CHAR:
2587       case T_BYTE:
2588       case T_SHORT:
2589       case T_INT:
2590       case T_LONG:
2591       case T_FLOAT:
2592       case T_DOUBLE:
2593         break;
2594       case T_OBJECT:
2595         if (need_read_barrier) {
2596           // We do not require a mem bar inside pre_barrier if need_mem_bar
2597           // is set: the barriers would be emitted by us.
2598           insert_pre_barrier(heap_base_oop, offset, p, !need_mem_bar);
2599         }
2600         break;
2601       case T_ADDRESS:
2602         // Cast to an int type.
2603         p = _gvn.transform(new CastP2XNode(NULL, p));
2604         p = ConvX2UL(p);
2605         break;
2606       default:
2607         fatal("unexpected type %d: %s", type, type2name(type));
2608         break;
2609       }
2610     }
2611     // The load node has the control of the preceding MemBarCPUOrder.  All
2612     // following nodes will have the control of the MemBarCPUOrder inserted at
2613     // the end of this method.  So, pushing the load onto the stack at a later
2614     // point is fine.
2615     set_result(p);
2616   } else {
2617     // place effect of store into memory
2618     switch (type) {
2619     case T_DOUBLE:
2620       val = dstore_rounding(val);
2621       break;
2622     case T_ADDRESS:
2623       // Repackage the long as a pointer.
2624       val = ConvL2X(val);
2625       val = _gvn.transform(new CastX2PNode(val));
2626       break;
2627     }
2628 
2629     if (type == T_OBJECT) {
2630       store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo, mismatched);
2631     } else {
2632       store_to_memory(control(), adr, val, type, adr_type, mo, requires_atomic_access, unaligned, mismatched);
2633     }
2634   }
2635 
2636   switch(kind) {
2637     case Relaxed:
2638     case Opaque:
2639     case Release:
2640       break;
2641     case Acquire:
2642     case Volatile:
2643       if (!is_store) {
2644         insert_mem_bar(Op_MemBarAcquire);
2645       } else {
2646         if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2647           insert_mem_bar(Op_MemBarVolatile);
2648         }
2649       }
2650       break;
2651     default:
2652       ShouldNotReachHere();
2653   }
2654 
2655   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2656 
2657   return true;
2658 }
2659 
2660 //----------------------------inline_unsafe_load_store----------------------------
2661 // This method serves a couple of different customers (depending on LoadStoreKind):
2662 //
2663 // LS_cmp_swap:
2664 //
2665 //   boolean compareAndSetObject(Object o, long offset, Object expected, Object x);
2666 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2667 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2668 //
2669 // LS_cmp_swap_weak:
2670 //
2671 //   boolean weakCompareAndSetObject(       Object o, long offset, Object expected, Object x);
2672 //   boolean weakCompareAndSetObjectPlain(  Object o, long offset, Object expected, Object x);
2673 //   boolean weakCompareAndSetObjectAcquire(Object o, long offset, Object expected, Object x);
2674 //   boolean weakCompareAndSetObjectRelease(Object o, long offset, Object expected, Object x);
2675 //
2676 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);
2677 //   boolean weakCompareAndSetIntPlain(     Object o, long offset, int    expected, int    x);
2678 //   boolean weakCompareAndSetIntAcquire(   Object o, long offset, int    expected, int    x);
2679 //   boolean weakCompareAndSetIntRelease(   Object o, long offset, int    expected, int    x);
2680 //
2681 //   boolean weakCompareAndSetLong(         Object o, long offset, long   expected, long   x);
2682 //   boolean weakCompareAndSetLongPlain(    Object o, long offset, long   expected, long   x);
2683 //   boolean weakCompareAndSetLongAcquire(  Object o, long offset, long   expected, long   x);
2684 //   boolean weakCompareAndSetLongRelease(  Object o, long offset, long   expected, long   x);
2685 //
2686 // LS_cmp_exchange:
2687 //
2688 //   Object compareAndExchangeObjectVolatile(Object o, long offset, Object expected, Object x);
2689 //   Object compareAndExchangeObjectAcquire( Object o, long offset, Object expected, Object x);
2690 //   Object compareAndExchangeObjectRelease( Object o, long offset, Object expected, Object x);
2691 //
2692 //   Object compareAndExchangeIntVolatile(   Object o, long offset, Object expected, Object x);
2693 //   Object compareAndExchangeIntAcquire(    Object o, long offset, Object expected, Object x);
2694 //   Object compareAndExchangeIntRelease(    Object o, long offset, Object expected, Object x);
2695 //
2696 //   Object compareAndExchangeLongVolatile(  Object o, long offset, Object expected, Object x);
2697 //   Object compareAndExchangeLongAcquire(   Object o, long offset, Object expected, Object x);
2698 //   Object compareAndExchangeLongRelease(   Object o, long offset, Object expected, Object x);
2699 //
2700 // LS_get_add:
2701 //
2702 //   int  getAndAddInt( Object o, long offset, int  delta)
2703 //   long getAndAddLong(Object o, long offset, long delta)
2704 //
2705 // LS_get_set:
2706 //
2707 //   int    getAndSet(Object o, long offset, int    newValue)
2708 //   long   getAndSet(Object o, long offset, long   newValue)
2709 //   Object getAndSet(Object o, long offset, Object newValue)
2710 //
2711 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) {
2712   // This basic scheme here is the same as inline_unsafe_access, but
2713   // differs in enough details that combining them would make the code
2714   // overly confusing.  (This is a true fact! I originally combined
2715   // them, but even I was confused by it!) As much code/comments as
2716   // possible are retained from inline_unsafe_access though to make
2717   // the correspondences clearer. - dl
2718 
2719   if (callee()->is_static())  return false;  // caller must have the capability!
2720 
2721 #ifndef PRODUCT
2722   BasicType rtype;
2723   {
2724     ResourceMark rm;
2725     // Check the signatures.
2726     ciSignature* sig = callee()->signature();
2727     rtype = sig->return_type()->basic_type();
2728     switch(kind) {
2729       case LS_get_add:
2730       case LS_get_set: {
2731       // Check the signatures.
2732 #ifdef ASSERT
2733       assert(rtype == type, "get and set must return the expected type");
2734       assert(sig->count() == 3, "get and set has 3 arguments");
2735       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2736       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2737       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2738       assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation");
2739 #endif // ASSERT
2740         break;
2741       }
2742       case LS_cmp_swap:
2743       case LS_cmp_swap_weak: {
2744       // Check the signatures.
2745 #ifdef ASSERT
2746       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2747       assert(sig->count() == 4, "CAS has 4 arguments");
2748       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2749       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2750 #endif // ASSERT
2751         break;
2752       }
2753       case LS_cmp_exchange: {
2754       // Check the signatures.
2755 #ifdef ASSERT
2756       assert(rtype == type, "CAS must return the expected type");
2757       assert(sig->count() == 4, "CAS has 4 arguments");
2758       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2759       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2760 #endif // ASSERT
2761         break;
2762       }
2763       default:
2764         ShouldNotReachHere();
2765     }
2766   }
2767 #endif //PRODUCT
2768 
2769   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2770 
2771   // Get arguments:
2772   Node* receiver = NULL;
2773   Node* base     = NULL;
2774   Node* offset   = NULL;
2775   Node* oldval   = NULL;
2776   Node* newval   = NULL;
2777   switch(kind) {
2778     case LS_cmp_swap:
2779     case LS_cmp_swap_weak:
2780     case LS_cmp_exchange: {
2781       const bool two_slot_type = type2size[type] == 2;
2782       receiver = argument(0);  // type: oop
2783       base     = argument(1);  // type: oop
2784       offset   = argument(2);  // type: long
2785       oldval   = argument(4);  // type: oop, int, or long
2786       newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2787       break;
2788     }
2789     case LS_get_add:
2790     case LS_get_set: {
2791       receiver = argument(0);  // type: oop
2792       base     = argument(1);  // type: oop
2793       offset   = argument(2);  // type: long
2794       oldval   = NULL;
2795       newval   = argument(4);  // type: oop, int, or long
2796       break;
2797     }
2798     default:
2799       ShouldNotReachHere();
2800   }
2801 
2802   // Build field offset expression.
2803   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2804   // to be plain byte offsets, which are also the same as those accepted
2805   // by oopDesc::field_base.
2806   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2807   // 32-bit machines ignore the high half of long offsets
2808   offset = ConvL2X(offset);
2809   Node* adr = make_unsafe_address(base, offset, type, false);
2810   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2811 
2812   Compile::AliasType* alias_type = C->alias_type(adr_type);
2813   BasicType bt = alias_type->basic_type();
2814   if (bt != T_ILLEGAL &&
2815       ((bt == T_OBJECT || bt == T_ARRAY) != (type == T_OBJECT))) {
2816     // Don't intrinsify mismatched object accesses.
2817     return false;
2818   }
2819 
2820   // For CAS, unlike inline_unsafe_access, there seems no point in
2821   // trying to refine types. Just use the coarse types here.
2822   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2823   const Type *value_type = Type::get_const_basic_type(type);
2824 
2825   switch (kind) {
2826     case LS_get_set:
2827     case LS_cmp_exchange: {
2828       if (type == T_OBJECT) {
2829         const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2830         if (tjp != NULL) {
2831           value_type = tjp;
2832         }
2833       }
2834       break;
2835     }
2836     case LS_cmp_swap:
2837     case LS_cmp_swap_weak:
2838     case LS_get_add:
2839       break;
2840     default:
2841       ShouldNotReachHere();
2842   }
2843 
2844   // Null check receiver.
2845   receiver = null_check(receiver);
2846   if (stopped()) {
2847     return true;
2848   }
2849 
2850   int alias_idx = C->get_alias_index(adr_type);
2851 
2852   // Memory-model-wise, a LoadStore acts like a little synchronized
2853   // block, so needs barriers on each side.  These don't translate
2854   // into actual barriers on most machines, but we still need rest of
2855   // compiler to respect ordering.
2856 
2857   switch (access_kind) {
2858     case Relaxed:
2859     case Acquire:
2860       break;
2861     case Release:
2862       insert_mem_bar(Op_MemBarRelease);
2863       break;
2864     case Volatile:
2865       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2866         insert_mem_bar(Op_MemBarVolatile);
2867       } else {
2868         insert_mem_bar(Op_MemBarRelease);
2869       }
2870       break;
2871     default:
2872       ShouldNotReachHere();
2873   }
2874   insert_mem_bar(Op_MemBarCPUOrder);
2875 
2876   // Figure out the memory ordering.
2877   MemNode::MemOrd mo = access_kind_to_memord(access_kind);
2878 
2879   // 4984716: MemBars must be inserted before this
2880   //          memory node in order to avoid a false
2881   //          dependency which will confuse the scheduler.
2882   Node *mem = memory(alias_idx);
2883 
2884   // For now, we handle only those cases that actually exist: ints,
2885   // longs, and Object. Adding others should be straightforward.
2886   Node* load_store = NULL;
2887   switch(type) {
2888   case T_BYTE:
2889     switch(kind) {
2890       case LS_get_add:
2891         load_store = _gvn.transform(new GetAndAddBNode(control(), mem, adr, newval, adr_type));
2892         break;
2893       case LS_get_set:
2894         load_store = _gvn.transform(new GetAndSetBNode(control(), mem, adr, newval, adr_type));
2895         break;
2896       case LS_cmp_swap_weak:
2897         load_store = _gvn.transform(new WeakCompareAndSwapBNode(control(), mem, adr, newval, oldval, mo));
2898         break;
2899       case LS_cmp_swap:
2900         load_store = _gvn.transform(new CompareAndSwapBNode(control(), mem, adr, newval, oldval, mo));
2901         break;
2902       case LS_cmp_exchange:
2903         load_store = _gvn.transform(new CompareAndExchangeBNode(control(), mem, adr, newval, oldval, adr_type, mo));
2904         break;
2905       default:
2906         ShouldNotReachHere();
2907     }
2908     break;
2909   case T_SHORT:
2910     switch(kind) {
2911       case LS_get_add:
2912         load_store = _gvn.transform(new GetAndAddSNode(control(), mem, adr, newval, adr_type));
2913         break;
2914       case LS_get_set:
2915         load_store = _gvn.transform(new GetAndSetSNode(control(), mem, adr, newval, adr_type));
2916         break;
2917       case LS_cmp_swap_weak:
2918         load_store = _gvn.transform(new WeakCompareAndSwapSNode(control(), mem, adr, newval, oldval, mo));
2919         break;
2920       case LS_cmp_swap:
2921         load_store = _gvn.transform(new CompareAndSwapSNode(control(), mem, adr, newval, oldval, mo));
2922         break;
2923       case LS_cmp_exchange:
2924         load_store = _gvn.transform(new CompareAndExchangeSNode(control(), mem, adr, newval, oldval, adr_type, mo));
2925         break;
2926       default:
2927         ShouldNotReachHere();
2928     }
2929     break;
2930   case T_INT:
2931     switch(kind) {
2932       case LS_get_add:
2933         load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
2934         break;
2935       case LS_get_set:
2936         load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
2937         break;
2938       case LS_cmp_swap_weak:
2939         load_store = _gvn.transform(new WeakCompareAndSwapINode(control(), mem, adr, newval, oldval, mo));
2940         break;
2941       case LS_cmp_swap:
2942         load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval, mo));
2943         break;
2944       case LS_cmp_exchange:
2945         load_store = _gvn.transform(new CompareAndExchangeINode(control(), mem, adr, newval, oldval, adr_type, mo));
2946         break;
2947       default:
2948         ShouldNotReachHere();
2949     }
2950     break;
2951   case T_LONG:
2952     switch(kind) {
2953       case LS_get_add:
2954         load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
2955         break;
2956       case LS_get_set:
2957         load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
2958         break;
2959       case LS_cmp_swap_weak:
2960         load_store = _gvn.transform(new WeakCompareAndSwapLNode(control(), mem, adr, newval, oldval, mo));
2961         break;
2962       case LS_cmp_swap:
2963         load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval, mo));
2964         break;
2965       case LS_cmp_exchange:
2966         load_store = _gvn.transform(new CompareAndExchangeLNode(control(), mem, adr, newval, oldval, adr_type, mo));
2967         break;
2968       default:
2969         ShouldNotReachHere();
2970     }
2971     break;
2972   case T_OBJECT:
2973     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2974     // could be delayed during Parse (for example, in adjust_map_after_if()).
2975     // Execute transformation here to avoid barrier generation in such case.
2976     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2977       newval = _gvn.makecon(TypePtr::NULL_PTR);
2978 
2979     // Reference stores need a store barrier.
2980     switch(kind) {
2981       case LS_get_set: {
2982         // If pre-barrier must execute before the oop store, old value will require do_load here.
2983         if (!can_move_pre_barrier()) {
2984           pre_barrier(true /* do_load*/,
2985                       control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2986                       NULL /* pre_val*/,
2987                       T_OBJECT);
2988         } // Else move pre_barrier to use load_store value, see below.
2989         break;
2990       }
2991       case LS_cmp_swap_weak:
2992       case LS_cmp_swap:
2993       case LS_cmp_exchange: {
2994         // Same as for newval above:
2995         if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2996           oldval = _gvn.makecon(TypePtr::NULL_PTR);
2997         }
2998         // The only known value which might get overwritten is oldval.
2999         pre_barrier(false /* do_load */,
3000                     control(), NULL, NULL, max_juint, NULL, NULL,
3001                     oldval /* pre_val */,
3002                     T_OBJECT);
3003         break;
3004       }
3005       default:
3006         ShouldNotReachHere();
3007     }
3008 
3009 #ifdef _LP64
3010     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3011       Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
3012 
3013       switch(kind) {
3014         case LS_get_set:
3015           load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr, newval_enc, adr_type, value_type->make_narrowoop()));
3016           break;
3017         case LS_cmp_swap_weak: {
3018           Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
3019           load_store = _gvn.transform(new WeakCompareAndSwapNNode(control(), mem, adr, newval_enc, oldval_enc, mo));
3020           break;
3021         }
3022         case LS_cmp_swap: {
3023           Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
3024           load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr, newval_enc, oldval_enc, mo));
3025           break;
3026         }
3027         case LS_cmp_exchange: {
3028           Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
3029           load_store = _gvn.transform(new CompareAndExchangeNNode(control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo));
3030           break;
3031         }
3032         default:
3033           ShouldNotReachHere();
3034       }
3035     } else
3036 #endif
3037     switch (kind) {
3038       case LS_get_set:
3039         load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
3040         break;
3041       case LS_cmp_swap_weak:
3042         load_store = _gvn.transform(new WeakCompareAndSwapPNode(control(), mem, adr, newval, oldval, mo));
3043         break;
3044       case LS_cmp_swap:
3045         load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval, mo));
3046         break;
3047       case LS_cmp_exchange:
3048         load_store = _gvn.transform(new CompareAndExchangePNode(control(), mem, adr, newval, oldval, adr_type, value_type->is_oopptr(), mo));
3049         break;
3050       default:
3051         ShouldNotReachHere();
3052     }
3053 
3054     // Emit the post barrier only when the actual store happened. This makes sense
3055     // to check only for LS_cmp_* that can fail to set the value.
3056     // LS_cmp_exchange does not produce any branches by default, so there is no
3057     // boolean result to piggyback on. TODO: When we merge CompareAndSwap with
3058     // CompareAndExchange and move branches here, it would make sense to conditionalize
3059     // post_barriers for LS_cmp_exchange as well.
3060     //
3061     // CAS success path is marked more likely since we anticipate this is a performance
3062     // critical path, while CAS failure path can use the penalty for going through unlikely
3063     // path as backoff. Which is still better than doing a store barrier there.
3064     switch (kind) {
3065       case LS_get_set:
3066       case LS_cmp_exchange: {
3067         post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
3068         break;
3069       }
3070       case LS_cmp_swap_weak:
3071       case LS_cmp_swap: {
3072         IdealKit ideal(this);
3073         ideal.if_then(load_store, BoolTest::ne, ideal.ConI(0), PROB_STATIC_FREQUENT); {
3074           sync_kit(ideal);
3075           post_barrier(ideal.ctrl(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
3076           ideal.sync_kit(this);
3077         } ideal.end_if();
3078         final_sync(ideal);
3079         break;
3080       }
3081       default:
3082         ShouldNotReachHere();
3083     }
3084     break;
3085   default:
3086     fatal("unexpected type %d: %s", type, type2name(type));
3087     break;
3088   }
3089 
3090   // SCMemProjNodes represent the memory state of a LoadStore. Their
3091   // main role is to prevent LoadStore nodes from being optimized away
3092   // when their results aren't used.
3093   Node* proj = _gvn.transform(new SCMemProjNode(load_store));
3094   set_memory(proj, alias_idx);
3095 
3096   if (type == T_OBJECT && (kind == LS_get_set || kind == LS_cmp_exchange)) {
3097 #ifdef _LP64
3098     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3099       load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
3100     }
3101 #endif
3102     if (can_move_pre_barrier() && kind == LS_get_set) {
3103       // Don't need to load pre_val. The old value is returned by load_store.
3104       // The pre_barrier can execute after the xchg as long as no safepoint
3105       // gets inserted between them.
3106       pre_barrier(false /* do_load */,
3107                   control(), NULL, NULL, max_juint, NULL, NULL,
3108                   load_store /* pre_val */,
3109                   T_OBJECT);
3110     }
3111   }
3112 
3113   // Add the trailing membar surrounding the access
3114   insert_mem_bar(Op_MemBarCPUOrder);
3115 
3116   switch (access_kind) {
3117     case Relaxed:
3118     case Release:
3119       break; // do nothing
3120     case Acquire:
3121     case Volatile:
3122       insert_mem_bar(Op_MemBarAcquire);
3123       // !support_IRIW_for_not_multiple_copy_atomic_cpu handled in platform code
3124       break;
3125     default:
3126       ShouldNotReachHere();
3127   }
3128 
3129   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
3130   set_result(load_store);
3131   return true;
3132 }
3133 
3134 MemNode::MemOrd LibraryCallKit::access_kind_to_memord_LS(AccessKind kind, bool is_store) {
3135   MemNode::MemOrd mo = MemNode::unset;
3136   switch(kind) {
3137     case Opaque:
3138     case Relaxed:  mo = MemNode::unordered; break;
3139     case Acquire:  mo = MemNode::acquire;   break;
3140     case Release:  mo = MemNode::release;   break;
3141     case Volatile: mo = is_store ? MemNode::release : MemNode::acquire; break;
3142     default:
3143       ShouldNotReachHere();
3144   }
3145   guarantee(mo != MemNode::unset, "Should select memory ordering");
3146   return mo;
3147 }
3148 
3149 MemNode::MemOrd LibraryCallKit::access_kind_to_memord(AccessKind kind) {
3150   MemNode::MemOrd mo = MemNode::unset;
3151   switch(kind) {
3152     case Opaque:
3153     case Relaxed:  mo = MemNode::unordered; break;
3154     case Acquire:  mo = MemNode::acquire;   break;
3155     case Release:  mo = MemNode::release;   break;
3156     case Volatile: mo = MemNode::seqcst;    break;
3157     default:
3158       ShouldNotReachHere();
3159   }
3160   guarantee(mo != MemNode::unset, "Should select memory ordering");
3161   return mo;
3162 }
3163 
3164 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3165   // Regardless of form, don't allow previous ld/st to move down,
3166   // then issue acquire, release, or volatile mem_bar.
3167   insert_mem_bar(Op_MemBarCPUOrder);
3168   switch(id) {
3169     case vmIntrinsics::_loadFence:
3170       insert_mem_bar(Op_LoadFence);
3171       return true;
3172     case vmIntrinsics::_storeFence:
3173       insert_mem_bar(Op_StoreFence);
3174       return true;
3175     case vmIntrinsics::_fullFence:
3176       insert_mem_bar(Op_MemBarVolatile);
3177       return true;
3178     default:
3179       fatal_unexpected_iid(id);
3180       return false;
3181   }
3182 }
3183 
3184 bool LibraryCallKit::inline_onspinwait() {
3185   insert_mem_bar(Op_OnSpinWait);
3186   return true;
3187 }
3188 
3189 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3190   if (!kls->is_Con()) {
3191     return true;
3192   }
3193   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3194   if (klsptr == NULL) {
3195     return true;
3196   }
3197   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3198   // don't need a guard for a klass that is already initialized
3199   return !ik->is_initialized();
3200 }
3201 
3202 //----------------------------inline_unsafe_allocate---------------------------
3203 // public native Object Unsafe.allocateInstance(Class<?> cls);
3204 bool LibraryCallKit::inline_unsafe_allocate() {
3205   if (callee()->is_static())  return false;  // caller must have the capability!
3206 
3207   null_check_receiver();  // null-check, then ignore
3208   Node* cls = null_check(argument(1));
3209   if (stopped())  return true;
3210 
3211   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3212   kls = null_check(kls);
3213   if (stopped())  return true;  // argument was like int.class
3214 
3215   Node* test = NULL;
3216   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3217     // Note:  The argument might still be an illegal value like
3218     // Serializable.class or Object[].class.   The runtime will handle it.
3219     // But we must make an explicit check for initialization.
3220     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3221     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3222     // can generate code to load it as unsigned byte.
3223     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3224     Node* bits = intcon(InstanceKlass::fully_initialized);
3225     test = _gvn.transform(new SubINode(inst, bits));
3226     // The 'test' is non-zero if we need to take a slow path.
3227   }
3228 
3229   Node* obj = new_instance(kls, test);
3230   set_result(obj);
3231   return true;
3232 }
3233 
3234 //------------------------inline_native_time_funcs--------------
3235 // inline code for System.currentTimeMillis() and System.nanoTime()
3236 // these have the same type and signature
3237 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3238   const TypeFunc* tf = OptoRuntime::void_long_Type();
3239   const TypePtr* no_memory_effects = NULL;
3240   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3241   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3242 #ifdef ASSERT
3243   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3244   assert(value_top == top(), "second value must be top");
3245 #endif
3246   set_result(value);
3247   return true;
3248 }
3249 
3250 #ifdef TRACE_HAVE_INTRINSICS
3251 
3252 /*
3253 * oop -> myklass
3254 * myklass->trace_id |= USED
3255 * return myklass->trace_id & ~0x3
3256 */
3257 bool LibraryCallKit::inline_native_classID() {
3258   Node* cls = null_check(argument(0), T_OBJECT);
3259   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3260   kls = null_check(kls, T_OBJECT);
3261 
3262   ByteSize offset = TRACE_KLASS_TRACE_ID_OFFSET;
3263   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3264   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3265 
3266   Node* clsused = longcon(0x01l); // set the class bit
3267   Node* orl = _gvn.transform(new OrLNode(tvalue, clsused));
3268   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3269   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3270 
3271 #ifdef TRACE_ID_META_BITS
3272   Node* mbits = longcon(~TRACE_ID_META_BITS);
3273   tvalue = _gvn.transform(new AndLNode(tvalue, mbits));
3274 #endif
3275 #ifdef TRACE_ID_CLASS_SHIFT
3276   Node* cbits = intcon(TRACE_ID_CLASS_SHIFT);
3277   tvalue = _gvn.transform(new URShiftLNode(tvalue, cbits));
3278 #endif
3279 
3280   set_result(tvalue);
3281   return true;
3282 
3283 }
3284 
3285 bool LibraryCallKit::inline_native_getBufferWriter() {
3286   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3287 
3288   Node* jobj_ptr = basic_plus_adr(top(), tls_ptr,
3289                                   in_bytes(TRACE_THREAD_DATA_WRITER_OFFSET)
3290                                   );
3291 
3292   Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered);
3293 
3294   Node* jobj_cmp_null = _gvn.transform( new CmpPNode(jobj, null()) );
3295   Node* test_jobj_eq_null  = _gvn.transform( new BoolNode(jobj_cmp_null, BoolTest::eq) );
3296 
3297   IfNode* iff_jobj_null =
3298     create_and_map_if(control(), test_jobj_eq_null, PROB_MIN, COUNT_UNKNOWN);
3299 
3300   enum { _normal_path = 1,
3301          _null_path = 2,
3302          PATH_LIMIT };
3303 
3304   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3305   PhiNode*    result_val = new PhiNode(result_rgn, TypePtr::BOTTOM);
3306 
3307   Node* jobj_is_null = _gvn.transform(new IfTrueNode(iff_jobj_null));
3308   result_rgn->init_req(_null_path, jobj_is_null);
3309   result_val->init_req(_null_path, null());
3310 
3311   Node* jobj_is_not_null = _gvn.transform(new IfFalseNode(iff_jobj_null));
3312   result_rgn->init_req(_normal_path, jobj_is_not_null);
3313 
3314   Node* res = make_load(jobj_is_not_null, jobj, TypeInstPtr::NOTNULL, T_OBJECT, MemNode::unordered);
3315   result_val->init_req(_normal_path, res);
3316 
3317   set_result(result_rgn, result_val);
3318 
3319   return true;
3320 }
3321 
3322 #endif
3323 
3324 //------------------------inline_native_currentThread------------------
3325 bool LibraryCallKit::inline_native_currentThread() {
3326   Node* junk = NULL;
3327   set_result(generate_current_thread(junk));
3328   return true;
3329 }
3330 
3331 //------------------------inline_native_isInterrupted------------------
3332 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3333 bool LibraryCallKit::inline_native_isInterrupted() {
3334   // Add a fast path to t.isInterrupted(clear_int):
3335   //   (t == Thread.current() &&
3336   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3337   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3338   // So, in the common case that the interrupt bit is false,
3339   // we avoid making a call into the VM.  Even if the interrupt bit
3340   // is true, if the clear_int argument is false, we avoid the VM call.
3341   // However, if the receiver is not currentThread, we must call the VM,
3342   // because there must be some locking done around the operation.
3343 
3344   // We only go to the fast case code if we pass two guards.
3345   // Paths which do not pass are accumulated in the slow_region.
3346 
3347   enum {
3348     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3349     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3350     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3351     PATH_LIMIT
3352   };
3353 
3354   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3355   // out of the function.
3356   insert_mem_bar(Op_MemBarCPUOrder);
3357 
3358   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3359   PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3360 
3361   RegionNode* slow_region = new RegionNode(1);
3362   record_for_igvn(slow_region);
3363 
3364   // (a) Receiving thread must be the current thread.
3365   Node* rec_thr = argument(0);
3366   Node* tls_ptr = NULL;
3367   Node* cur_thr = generate_current_thread(tls_ptr);
3368   Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3369   Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3370 
3371   generate_slow_guard(bol_thr, slow_region);
3372 
3373   // (b) Interrupt bit on TLS must be false.
3374   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3375   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3376   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3377 
3378   // Set the control input on the field _interrupted read to prevent it floating up.
3379   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3380   Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3381   Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3382 
3383   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3384 
3385   // First fast path:  if (!TLS._interrupted) return false;
3386   Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3387   result_rgn->init_req(no_int_result_path, false_bit);
3388   result_val->init_req(no_int_result_path, intcon(0));
3389 
3390   // drop through to next case
3391   set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3392 
3393 #ifndef _WINDOWS
3394   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3395   Node* clr_arg = argument(1);
3396   Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3397   Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3398   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3399 
3400   // Second fast path:  ... else if (!clear_int) return true;
3401   Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3402   result_rgn->init_req(no_clear_result_path, false_arg);
3403   result_val->init_req(no_clear_result_path, intcon(1));
3404 
3405   // drop through to next case
3406   set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3407 #else
3408   // To return true on Windows you must read the _interrupted field
3409   // and check the event state i.e. take the slow path.
3410 #endif // _WINDOWS
3411 
3412   // (d) Otherwise, go to the slow path.
3413   slow_region->add_req(control());
3414   set_control( _gvn.transform(slow_region));
3415 
3416   if (stopped()) {
3417     // There is no slow path.
3418     result_rgn->init_req(slow_result_path, top());
3419     result_val->init_req(slow_result_path, top());
3420   } else {
3421     // non-virtual because it is a private non-static
3422     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3423 
3424     Node* slow_val = set_results_for_java_call(slow_call);
3425     // this->control() comes from set_results_for_java_call
3426 
3427     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3428     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3429 
3430     // These two phis are pre-filled with copies of of the fast IO and Memory
3431     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3432     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3433 
3434     result_rgn->init_req(slow_result_path, control());
3435     result_io ->init_req(slow_result_path, i_o());
3436     result_mem->init_req(slow_result_path, reset_memory());
3437     result_val->init_req(slow_result_path, slow_val);
3438 
3439     set_all_memory(_gvn.transform(result_mem));
3440     set_i_o(       _gvn.transform(result_io));
3441   }
3442 
3443   C->set_has_split_ifs(true); // Has chance for split-if optimization
3444   set_result(result_rgn, result_val);
3445   return true;
3446 }
3447 
3448 //---------------------------load_mirror_from_klass----------------------------
3449 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3450 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3451   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3452   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3453 }
3454 
3455 //-----------------------load_klass_from_mirror_common-------------------------
3456 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3457 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3458 // and branch to the given path on the region.
3459 // If never_see_null, take an uncommon trap on null, so we can optimistically
3460 // compile for the non-null case.
3461 // If the region is NULL, force never_see_null = true.
3462 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3463                                                     bool never_see_null,
3464                                                     RegionNode* region,
3465                                                     int null_path,
3466                                                     int offset) {
3467   if (region == NULL)  never_see_null = true;
3468   Node* p = basic_plus_adr(mirror, offset);
3469   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3470   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3471   Node* null_ctl = top();
3472   kls = null_check_oop(kls, &null_ctl, never_see_null);
3473   if (region != NULL) {
3474     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3475     region->init_req(null_path, null_ctl);
3476   } else {
3477     assert(null_ctl == top(), "no loose ends");
3478   }
3479   return kls;
3480 }
3481 
3482 //--------------------(inline_native_Class_query helpers)---------------------
3483 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER.
3484 // Fall through if (mods & mask) == bits, take the guard otherwise.
3485 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3486   // Branch around if the given klass has the given modifier bit set.
3487   // Like generate_guard, adds a new path onto the region.
3488   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3489   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3490   Node* mask = intcon(modifier_mask);
3491   Node* bits = intcon(modifier_bits);
3492   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3493   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3494   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3495   return generate_fair_guard(bol, region);
3496 }
3497 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3498   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3499 }
3500 
3501 //-------------------------inline_native_Class_query-------------------
3502 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3503   const Type* return_type = TypeInt::BOOL;
3504   Node* prim_return_value = top();  // what happens if it's a primitive class?
3505   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3506   bool expect_prim = false;     // most of these guys expect to work on refs
3507 
3508   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3509 
3510   Node* mirror = argument(0);
3511   Node* obj    = top();
3512 
3513   switch (id) {
3514   case vmIntrinsics::_isInstance:
3515     // nothing is an instance of a primitive type
3516     prim_return_value = intcon(0);
3517     obj = argument(1);
3518     break;
3519   case vmIntrinsics::_getModifiers:
3520     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3521     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3522     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3523     break;
3524   case vmIntrinsics::_isInterface:
3525     prim_return_value = intcon(0);
3526     break;
3527   case vmIntrinsics::_isArray:
3528     prim_return_value = intcon(0);
3529     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3530     break;
3531   case vmIntrinsics::_isPrimitive:
3532     prim_return_value = intcon(1);
3533     expect_prim = true;  // obviously
3534     break;
3535   case vmIntrinsics::_getSuperclass:
3536     prim_return_value = null();
3537     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3538     break;
3539   case vmIntrinsics::_getClassAccessFlags:
3540     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3541     return_type = TypeInt::INT;  // not bool!  6297094
3542     break;
3543   default:
3544     fatal_unexpected_iid(id);
3545     break;
3546   }
3547 
3548   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3549   if (mirror_con == NULL)  return false;  // cannot happen?
3550 
3551 #ifndef PRODUCT
3552   if (C->print_intrinsics() || C->print_inlining()) {
3553     ciType* k = mirror_con->java_mirror_type();
3554     if (k) {
3555       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3556       k->print_name();
3557       tty->cr();
3558     }
3559   }
3560 #endif
3561 
3562   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3563   RegionNode* region = new RegionNode(PATH_LIMIT);
3564   record_for_igvn(region);
3565   PhiNode* phi = new PhiNode(region, return_type);
3566 
3567   // The mirror will never be null of Reflection.getClassAccessFlags, however
3568   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3569   // if it is. See bug 4774291.
3570 
3571   // For Reflection.getClassAccessFlags(), the null check occurs in
3572   // the wrong place; see inline_unsafe_access(), above, for a similar
3573   // situation.
3574   mirror = null_check(mirror);
3575   // If mirror or obj is dead, only null-path is taken.
3576   if (stopped())  return true;
3577 
3578   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3579 
3580   // Now load the mirror's klass metaobject, and null-check it.
3581   // Side-effects region with the control path if the klass is null.
3582   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3583   // If kls is null, we have a primitive mirror.
3584   phi->init_req(_prim_path, prim_return_value);
3585   if (stopped()) { set_result(region, phi); return true; }
3586   bool safe_for_replace = (region->in(_prim_path) == top());
3587 
3588   Node* p;  // handy temp
3589   Node* null_ctl;
3590 
3591   // Now that we have the non-null klass, we can perform the real query.
3592   // For constant classes, the query will constant-fold in LoadNode::Value.
3593   Node* query_value = top();
3594   switch (id) {
3595   case vmIntrinsics::_isInstance:
3596     // nothing is an instance of a primitive type
3597     query_value = gen_instanceof(obj, kls, safe_for_replace);
3598     break;
3599 
3600   case vmIntrinsics::_getModifiers:
3601     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3602     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3603     break;
3604 
3605   case vmIntrinsics::_isInterface:
3606     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3607     if (generate_interface_guard(kls, region) != NULL)
3608       // A guard was added.  If the guard is taken, it was an interface.
3609       phi->add_req(intcon(1));
3610     // If we fall through, it's a plain class.
3611     query_value = intcon(0);
3612     break;
3613 
3614   case vmIntrinsics::_isArray:
3615     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3616     if (generate_array_guard(kls, region) != NULL)
3617       // A guard was added.  If the guard is taken, it was an array.
3618       phi->add_req(intcon(1));
3619     // If we fall through, it's a plain class.
3620     query_value = intcon(0);
3621     break;
3622 
3623   case vmIntrinsics::_isPrimitive:
3624     query_value = intcon(0); // "normal" path produces false
3625     break;
3626 
3627   case vmIntrinsics::_getSuperclass:
3628     // The rules here are somewhat unfortunate, but we can still do better
3629     // with random logic than with a JNI call.
3630     // Interfaces store null or Object as _super, but must report null.
3631     // Arrays store an intermediate super as _super, but must report Object.
3632     // Other types can report the actual _super.
3633     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3634     if (generate_interface_guard(kls, region) != NULL)
3635       // A guard was added.  If the guard is taken, it was an interface.
3636       phi->add_req(null());
3637     if (generate_array_guard(kls, region) != NULL)
3638       // A guard was added.  If the guard is taken, it was an array.
3639       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3640     // If we fall through, it's a plain class.  Get its _super.
3641     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3642     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3643     null_ctl = top();
3644     kls = null_check_oop(kls, &null_ctl);
3645     if (null_ctl != top()) {
3646       // If the guard is taken, Object.superClass is null (both klass and mirror).
3647       region->add_req(null_ctl);
3648       phi   ->add_req(null());
3649     }
3650     if (!stopped()) {
3651       query_value = load_mirror_from_klass(kls);
3652     }
3653     break;
3654 
3655   case vmIntrinsics::_getClassAccessFlags:
3656     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3657     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3658     break;
3659 
3660   default:
3661     fatal_unexpected_iid(id);
3662     break;
3663   }
3664 
3665   // Fall-through is the normal case of a query to a real class.
3666   phi->init_req(1, query_value);
3667   region->init_req(1, control());
3668 
3669   C->set_has_split_ifs(true); // Has chance for split-if optimization
3670   set_result(region, phi);
3671   return true;
3672 }
3673 
3674 //-------------------------inline_Class_cast-------------------
3675 bool LibraryCallKit::inline_Class_cast() {
3676   Node* mirror = argument(0); // Class
3677   Node* obj    = argument(1);
3678   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3679   if (mirror_con == NULL) {
3680     return false;  // dead path (mirror->is_top()).
3681   }
3682   if (obj == NULL || obj->is_top()) {
3683     return false;  // dead path
3684   }
3685   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3686 
3687   // First, see if Class.cast() can be folded statically.
3688   // java_mirror_type() returns non-null for compile-time Class constants.
3689   ciType* tm = mirror_con->java_mirror_type();
3690   if (tm != NULL && tm->is_klass() &&
3691       tp != NULL && tp->klass() != NULL) {
3692     if (!tp->klass()->is_loaded()) {
3693       // Don't use intrinsic when class is not loaded.
3694       return false;
3695     } else {
3696       int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3697       if (static_res == Compile::SSC_always_true) {
3698         // isInstance() is true - fold the code.
3699         set_result(obj);
3700         return true;
3701       } else if (static_res == Compile::SSC_always_false) {
3702         // Don't use intrinsic, have to throw ClassCastException.
3703         // If the reference is null, the non-intrinsic bytecode will
3704         // be optimized appropriately.
3705         return false;
3706       }
3707     }
3708   }
3709 
3710   // Bailout intrinsic and do normal inlining if exception path is frequent.
3711   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3712     return false;
3713   }
3714 
3715   // Generate dynamic checks.
3716   // Class.cast() is java implementation of _checkcast bytecode.
3717   // Do checkcast (Parse::do_checkcast()) optimizations here.
3718 
3719   mirror = null_check(mirror);
3720   // If mirror is dead, only null-path is taken.
3721   if (stopped()) {
3722     return true;
3723   }
3724 
3725   // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3726   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3727   RegionNode* region = new RegionNode(PATH_LIMIT);
3728   record_for_igvn(region);
3729 
3730   // Now load the mirror's klass metaobject, and null-check it.
3731   // If kls is null, we have a primitive mirror and
3732   // nothing is an instance of a primitive type.
3733   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3734 
3735   Node* res = top();
3736   if (!stopped()) {
3737     Node* bad_type_ctrl = top();
3738     // Do checkcast optimizations.
3739     res = gen_checkcast(obj, kls, &bad_type_ctrl);
3740     region->init_req(_bad_type_path, bad_type_ctrl);
3741   }
3742   if (region->in(_prim_path) != top() ||
3743       region->in(_bad_type_path) != top()) {
3744     // Let Interpreter throw ClassCastException.
3745     PreserveJVMState pjvms(this);
3746     set_control(_gvn.transform(region));
3747     uncommon_trap(Deoptimization::Reason_intrinsic,
3748                   Deoptimization::Action_maybe_recompile);
3749   }
3750   if (!stopped()) {
3751     set_result(res);
3752   }
3753   return true;
3754 }
3755 
3756 
3757 //--------------------------inline_native_subtype_check------------------------
3758 // This intrinsic takes the JNI calls out of the heart of
3759 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3760 bool LibraryCallKit::inline_native_subtype_check() {
3761   // Pull both arguments off the stack.
3762   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3763   args[0] = argument(0);
3764   args[1] = argument(1);
3765   Node* klasses[2];             // corresponding Klasses: superk, subk
3766   klasses[0] = klasses[1] = top();
3767 
3768   enum {
3769     // A full decision tree on {superc is prim, subc is prim}:
3770     _prim_0_path = 1,           // {P,N} => false
3771                                 // {P,P} & superc!=subc => false
3772     _prim_same_path,            // {P,P} & superc==subc => true
3773     _prim_1_path,               // {N,P} => false
3774     _ref_subtype_path,          // {N,N} & subtype check wins => true
3775     _both_ref_path,             // {N,N} & subtype check loses => false
3776     PATH_LIMIT
3777   };
3778 
3779   RegionNode* region = new RegionNode(PATH_LIMIT);
3780   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3781   record_for_igvn(region);
3782 
3783   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3784   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3785   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3786 
3787   // First null-check both mirrors and load each mirror's klass metaobject.
3788   int which_arg;
3789   for (which_arg = 0; which_arg <= 1; which_arg++) {
3790     Node* arg = args[which_arg];
3791     arg = null_check(arg);
3792     if (stopped())  break;
3793     args[which_arg] = arg;
3794 
3795     Node* p = basic_plus_adr(arg, class_klass_offset);
3796     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3797     klasses[which_arg] = _gvn.transform(kls);
3798   }
3799 
3800   // Having loaded both klasses, test each for null.
3801   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3802   for (which_arg = 0; which_arg <= 1; which_arg++) {
3803     Node* kls = klasses[which_arg];
3804     Node* null_ctl = top();
3805     kls = null_check_oop(kls, &null_ctl, never_see_null);
3806     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3807     region->init_req(prim_path, null_ctl);
3808     if (stopped())  break;
3809     klasses[which_arg] = kls;
3810   }
3811 
3812   if (!stopped()) {
3813     // now we have two reference types, in klasses[0..1]
3814     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3815     Node* superk = klasses[0];  // the receiver
3816     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3817     // now we have a successful reference subtype check
3818     region->set_req(_ref_subtype_path, control());
3819   }
3820 
3821   // If both operands are primitive (both klasses null), then
3822   // we must return true when they are identical primitives.
3823   // It is convenient to test this after the first null klass check.
3824   set_control(region->in(_prim_0_path)); // go back to first null check
3825   if (!stopped()) {
3826     // Since superc is primitive, make a guard for the superc==subc case.
3827     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3828     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3829     generate_guard(bol_eq, region, PROB_FAIR);
3830     if (region->req() == PATH_LIMIT+1) {
3831       // A guard was added.  If the added guard is taken, superc==subc.
3832       region->swap_edges(PATH_LIMIT, _prim_same_path);
3833       region->del_req(PATH_LIMIT);
3834     }
3835     region->set_req(_prim_0_path, control()); // Not equal after all.
3836   }
3837 
3838   // these are the only paths that produce 'true':
3839   phi->set_req(_prim_same_path,   intcon(1));
3840   phi->set_req(_ref_subtype_path, intcon(1));
3841 
3842   // pull together the cases:
3843   assert(region->req() == PATH_LIMIT, "sane region");
3844   for (uint i = 1; i < region->req(); i++) {
3845     Node* ctl = region->in(i);
3846     if (ctl == NULL || ctl == top()) {
3847       region->set_req(i, top());
3848       phi   ->set_req(i, top());
3849     } else if (phi->in(i) == NULL) {
3850       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3851     }
3852   }
3853 
3854   set_control(_gvn.transform(region));
3855   set_result(_gvn.transform(phi));
3856   return true;
3857 }
3858 
3859 //---------------------generate_array_guard_common------------------------
3860 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3861                                                   bool obj_array, bool not_array) {
3862 
3863   if (stopped()) {
3864     return NULL;
3865   }
3866 
3867   // If obj_array/non_array==false/false:
3868   // Branch around if the given klass is in fact an array (either obj or prim).
3869   // If obj_array/non_array==false/true:
3870   // Branch around if the given klass is not an array klass of any kind.
3871   // If obj_array/non_array==true/true:
3872   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3873   // If obj_array/non_array==true/false:
3874   // Branch around if the kls is an oop array (Object[] or subtype)
3875   //
3876   // Like generate_guard, adds a new path onto the region.
3877   jint  layout_con = 0;
3878   Node* layout_val = get_layout_helper(kls, layout_con);
3879   if (layout_val == NULL) {
3880     bool query = (obj_array
3881                   ? Klass::layout_helper_is_objArray(layout_con)
3882                   : Klass::layout_helper_is_array(layout_con));
3883     if (query == not_array) {
3884       return NULL;                       // never a branch
3885     } else {                             // always a branch
3886       Node* always_branch = control();
3887       if (region != NULL)
3888         region->add_req(always_branch);
3889       set_control(top());
3890       return always_branch;
3891     }
3892   }
3893   // Now test the correct condition.
3894   jint  nval = (obj_array
3895                 ? (jint)(Klass::_lh_array_tag_type_value
3896                    <<    Klass::_lh_array_tag_shift)
3897                 : Klass::_lh_neutral_value);
3898   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3899   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3900   // invert the test if we are looking for a non-array
3901   if (not_array)  btest = BoolTest(btest).negate();
3902   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3903   return generate_fair_guard(bol, region);
3904 }
3905 
3906 
3907 //-----------------------inline_native_newArray--------------------------
3908 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3909 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
3910 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
3911   Node* mirror;
3912   Node* count_val;
3913   if (uninitialized) {
3914     mirror    = argument(1);
3915     count_val = argument(2);
3916   } else {
3917     mirror    = argument(0);
3918     count_val = argument(1);
3919   }
3920 
3921   mirror = null_check(mirror);
3922   // If mirror or obj is dead, only null-path is taken.
3923   if (stopped())  return true;
3924 
3925   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3926   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3927   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3928   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3929   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3930 
3931   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3932   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3933                                                   result_reg, _slow_path);
3934   Node* normal_ctl   = control();
3935   Node* no_array_ctl = result_reg->in(_slow_path);
3936 
3937   // Generate code for the slow case.  We make a call to newArray().
3938   set_control(no_array_ctl);
3939   if (!stopped()) {
3940     // Either the input type is void.class, or else the
3941     // array klass has not yet been cached.  Either the
3942     // ensuing call will throw an exception, or else it
3943     // will cache the array klass for next time.
3944     PreserveJVMState pjvms(this);
3945     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3946     Node* slow_result = set_results_for_java_call(slow_call);
3947     // this->control() comes from set_results_for_java_call
3948     result_reg->set_req(_slow_path, control());
3949     result_val->set_req(_slow_path, slow_result);
3950     result_io ->set_req(_slow_path, i_o());
3951     result_mem->set_req(_slow_path, reset_memory());
3952   }
3953 
3954   set_control(normal_ctl);
3955   if (!stopped()) {
3956     // Normal case:  The array type has been cached in the java.lang.Class.
3957     // The following call works fine even if the array type is polymorphic.
3958     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3959     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3960     result_reg->init_req(_normal_path, control());
3961     result_val->init_req(_normal_path, obj);
3962     result_io ->init_req(_normal_path, i_o());
3963     result_mem->init_req(_normal_path, reset_memory());
3964 
3965     if (uninitialized) {
3966       // Mark the allocation so that zeroing is skipped
3967       AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj, &_gvn);
3968       alloc->maybe_set_complete(&_gvn);
3969     }
3970   }
3971 
3972   // Return the combined state.
3973   set_i_o(        _gvn.transform(result_io)  );
3974   set_all_memory( _gvn.transform(result_mem));
3975 
3976   C->set_has_split_ifs(true); // Has chance for split-if optimization
3977   set_result(result_reg, result_val);
3978   return true;
3979 }
3980 
3981 //----------------------inline_native_getLength--------------------------
3982 // public static native int java.lang.reflect.Array.getLength(Object array);
3983 bool LibraryCallKit::inline_native_getLength() {
3984   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3985 
3986   Node* array = null_check(argument(0));
3987   // If array is dead, only null-path is taken.
3988   if (stopped())  return true;
3989 
3990   // Deoptimize if it is a non-array.
3991   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3992 
3993   if (non_array != NULL) {
3994     PreserveJVMState pjvms(this);
3995     set_control(non_array);
3996     uncommon_trap(Deoptimization::Reason_intrinsic,
3997                   Deoptimization::Action_maybe_recompile);
3998   }
3999 
4000   // If control is dead, only non-array-path is taken.
4001   if (stopped())  return true;
4002 
4003   // The works fine even if the array type is polymorphic.
4004   // It could be a dynamic mix of int[], boolean[], Object[], etc.
4005   Node* result = load_array_length(array);
4006 
4007   C->set_has_split_ifs(true);  // Has chance for split-if optimization
4008   set_result(result);
4009   return true;
4010 }
4011 
4012 //------------------------inline_array_copyOf----------------------------
4013 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
4014 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
4015 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
4016   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
4017 
4018   // Get the arguments.
4019   Node* original          = argument(0);
4020   Node* start             = is_copyOfRange? argument(1): intcon(0);
4021   Node* end               = is_copyOfRange? argument(2): argument(1);
4022   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
4023 
4024   Node* newcopy = NULL;
4025 
4026   // Set the original stack and the reexecute bit for the interpreter to reexecute
4027   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
4028   { PreserveReexecuteState preexecs(this);
4029     jvms()->set_should_reexecute(true);
4030 
4031     array_type_mirror = null_check(array_type_mirror);
4032     original          = null_check(original);
4033 
4034     // Check if a null path was taken unconditionally.
4035     if (stopped())  return true;
4036 
4037     Node* orig_length = load_array_length(original);
4038 
4039     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
4040     klass_node = null_check(klass_node);
4041 
4042     RegionNode* bailout = new RegionNode(1);
4043     record_for_igvn(bailout);
4044 
4045     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
4046     // Bail out if that is so.
4047     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
4048     if (not_objArray != NULL) {
4049       // Improve the klass node's type from the new optimistic assumption:
4050       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
4051       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
4052       Node* cast = new CastPPNode(klass_node, akls);
4053       cast->init_req(0, control());
4054       klass_node = _gvn.transform(cast);
4055     }
4056 
4057     // Bail out if either start or end is negative.
4058     generate_negative_guard(start, bailout, &start);
4059     generate_negative_guard(end,   bailout, &end);
4060 
4061     Node* length = end;
4062     if (_gvn.type(start) != TypeInt::ZERO) {
4063       length = _gvn.transform(new SubINode(end, start));
4064     }
4065 
4066     // Bail out if length is negative.
4067     // Without this the new_array would throw
4068     // NegativeArraySizeException but IllegalArgumentException is what
4069     // should be thrown
4070     generate_negative_guard(length, bailout, &length);
4071 
4072     if (bailout->req() > 1) {
4073       PreserveJVMState pjvms(this);
4074       set_control(_gvn.transform(bailout));
4075       uncommon_trap(Deoptimization::Reason_intrinsic,
4076                     Deoptimization::Action_maybe_recompile);
4077     }
4078 
4079     if (!stopped()) {
4080       // How many elements will we copy from the original?
4081       // The answer is MinI(orig_length - start, length).
4082       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
4083       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
4084 
4085       // Generate a direct call to the right arraycopy function(s).
4086       // We know the copy is disjoint but we might not know if the
4087       // oop stores need checking.
4088       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
4089       // This will fail a store-check if x contains any non-nulls.
4090 
4091       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
4092       // loads/stores but it is legal only if we're sure the
4093       // Arrays.copyOf would succeed. So we need all input arguments
4094       // to the copyOf to be validated, including that the copy to the
4095       // new array won't trigger an ArrayStoreException. That subtype
4096       // check can be optimized if we know something on the type of
4097       // the input array from type speculation.
4098       if (_gvn.type(klass_node)->singleton()) {
4099         ciKlass* subk   = _gvn.type(load_object_klass(original))->is_klassptr()->klass();
4100         ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass();
4101 
4102         int test = C->static_subtype_check(superk, subk);
4103         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
4104           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
4105           if (t_original->speculative_type() != NULL) {
4106             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
4107           }
4108         }
4109       }
4110 
4111       bool validated = false;
4112       // Reason_class_check rather than Reason_intrinsic because we
4113       // want to intrinsify even if this traps.
4114       if (!too_many_traps(Deoptimization::Reason_class_check)) {
4115         Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original),
4116                                                    klass_node);
4117 
4118         if (not_subtype_ctrl != top()) {
4119           PreserveJVMState pjvms(this);
4120           set_control(not_subtype_ctrl);
4121           uncommon_trap(Deoptimization::Reason_class_check,
4122                         Deoptimization::Action_make_not_entrant);
4123           assert(stopped(), "Should be stopped");
4124         }
4125         validated = true;
4126       }
4127 
4128       if (!stopped()) {
4129         newcopy = new_array(klass_node, length, 0);  // no arguments to push
4130 
4131         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, false,
4132                                                 load_object_klass(original), klass_node);
4133         if (!is_copyOfRange) {
4134           ac->set_copyof(validated);
4135         } else {
4136           ac->set_copyofrange(validated);
4137         }
4138         Node* n = _gvn.transform(ac);
4139         if (n == ac) {
4140           ac->connect_outputs(this);
4141         } else {
4142           assert(validated, "shouldn't transform if all arguments not validated");
4143           set_all_memory(n);
4144         }
4145       }
4146     }
4147   } // original reexecute is set back here
4148 
4149   C->set_has_split_ifs(true); // Has chance for split-if optimization
4150   if (!stopped()) {
4151     set_result(newcopy);
4152   }
4153   return true;
4154 }
4155 
4156 
4157 //----------------------generate_virtual_guard---------------------------
4158 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
4159 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
4160                                              RegionNode* slow_region) {
4161   ciMethod* method = callee();
4162   int vtable_index = method->vtable_index();
4163   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4164          "bad index %d", vtable_index);
4165   // Get the Method* out of the appropriate vtable entry.
4166   int entry_offset  = in_bytes(Klass::vtable_start_offset()) +
4167                      vtable_index*vtableEntry::size_in_bytes() +
4168                      vtableEntry::method_offset_in_bytes();
4169   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
4170   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4171 
4172   // Compare the target method with the expected method (e.g., Object.hashCode).
4173   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
4174 
4175   Node* native_call = makecon(native_call_addr);
4176   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
4177   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
4178 
4179   return generate_slow_guard(test_native, slow_region);
4180 }
4181 
4182 //-----------------------generate_method_call----------------------------
4183 // Use generate_method_call to make a slow-call to the real
4184 // method if the fast path fails.  An alternative would be to
4185 // use a stub like OptoRuntime::slow_arraycopy_Java.
4186 // This only works for expanding the current library call,
4187 // not another intrinsic.  (E.g., don't use this for making an
4188 // arraycopy call inside of the copyOf intrinsic.)
4189 CallJavaNode*
4190 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
4191   // When compiling the intrinsic method itself, do not use this technique.
4192   guarantee(callee() != C->method(), "cannot make slow-call to self");
4193 
4194   ciMethod* method = callee();
4195   // ensure the JVMS we have will be correct for this call
4196   guarantee(method_id == method->intrinsic_id(), "must match");
4197 
4198   const TypeFunc* tf = TypeFunc::make(method);
4199   CallJavaNode* slow_call;
4200   if (is_static) {
4201     assert(!is_virtual, "");
4202     slow_call = new CallStaticJavaNode(C, tf,
4203                            SharedRuntime::get_resolve_static_call_stub(),
4204                            method, bci());
4205   } else if (is_virtual) {
4206     null_check_receiver();
4207     int vtable_index = Method::invalid_vtable_index;
4208     if (UseInlineCaches) {
4209       // Suppress the vtable call
4210     } else {
4211       // hashCode and clone are not a miranda methods,
4212       // so the vtable index is fixed.
4213       // No need to use the linkResolver to get it.
4214        vtable_index = method->vtable_index();
4215        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4216               "bad index %d", vtable_index);
4217     }
4218     slow_call = new CallDynamicJavaNode(tf,
4219                           SharedRuntime::get_resolve_virtual_call_stub(),
4220                           method, vtable_index, bci());
4221   } else {  // neither virtual nor static:  opt_virtual
4222     null_check_receiver();
4223     slow_call = new CallStaticJavaNode(C, tf,
4224                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
4225                                 method, bci());
4226     slow_call->set_optimized_virtual(true);
4227   }
4228   set_arguments_for_java_call(slow_call);
4229   set_edges_for_java_call(slow_call);
4230   return slow_call;
4231 }
4232 
4233 
4234 /**
4235  * Build special case code for calls to hashCode on an object. This call may
4236  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4237  * slightly different code.
4238  */
4239 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4240   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4241   assert(!(is_virtual && is_static), "either virtual, special, or static");
4242 
4243   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4244 
4245   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4246   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4247   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4248   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4249   Node* obj = NULL;
4250   if (!is_static) {
4251     // Check for hashing null object
4252     obj = null_check_receiver();
4253     if (stopped())  return true;        // unconditionally null
4254     result_reg->init_req(_null_path, top());
4255     result_val->init_req(_null_path, top());
4256   } else {
4257     // Do a null check, and return zero if null.
4258     // System.identityHashCode(null) == 0
4259     obj = argument(0);
4260     Node* null_ctl = top();
4261     obj = null_check_oop(obj, &null_ctl);
4262     result_reg->init_req(_null_path, null_ctl);
4263     result_val->init_req(_null_path, _gvn.intcon(0));
4264   }
4265 
4266   // Unconditionally null?  Then return right away.
4267   if (stopped()) {
4268     set_control( result_reg->in(_null_path));
4269     if (!stopped())
4270       set_result(result_val->in(_null_path));
4271     return true;
4272   }
4273 
4274   // We only go to the fast case code if we pass a number of guards.  The
4275   // paths which do not pass are accumulated in the slow_region.
4276   RegionNode* slow_region = new RegionNode(1);
4277   record_for_igvn(slow_region);
4278 
4279   // If this is a virtual call, we generate a funny guard.  We pull out
4280   // the vtable entry corresponding to hashCode() from the target object.
4281   // If the target method which we are calling happens to be the native
4282   // Object hashCode() method, we pass the guard.  We do not need this
4283   // guard for non-virtual calls -- the caller is known to be the native
4284   // Object hashCode().
4285   if (is_virtual) {
4286     // After null check, get the object's klass.
4287     Node* obj_klass = load_object_klass(obj);
4288     generate_virtual_guard(obj_klass, slow_region);
4289   }
4290 
4291   // Get the header out of the object, use LoadMarkNode when available
4292   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4293   // The control of the load must be NULL. Otherwise, the load can move before
4294   // the null check after castPP removal.
4295   Node* no_ctrl = NULL;
4296   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4297 
4298   // Test the header to see if it is unlocked.
4299   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4300   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4301   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4302   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
4303   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
4304 
4305   generate_slow_guard(test_unlocked, slow_region);
4306 
4307   // Get the hash value and check to see that it has been properly assigned.
4308   // We depend on hash_mask being at most 32 bits and avoid the use of
4309   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4310   // vm: see markOop.hpp.
4311   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4312   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4313   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4314   // This hack lets the hash bits live anywhere in the mark object now, as long
4315   // as the shift drops the relevant bits into the low 32 bits.  Note that
4316   // Java spec says that HashCode is an int so there's no point in capturing
4317   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4318   hshifted_header      = ConvX2I(hshifted_header);
4319   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4320 
4321   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4322   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4323   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4324 
4325   generate_slow_guard(test_assigned, slow_region);
4326 
4327   Node* init_mem = reset_memory();
4328   // fill in the rest of the null path:
4329   result_io ->init_req(_null_path, i_o());
4330   result_mem->init_req(_null_path, init_mem);
4331 
4332   result_val->init_req(_fast_path, hash_val);
4333   result_reg->init_req(_fast_path, control());
4334   result_io ->init_req(_fast_path, i_o());
4335   result_mem->init_req(_fast_path, init_mem);
4336 
4337   // Generate code for the slow case.  We make a call to hashCode().
4338   set_control(_gvn.transform(slow_region));
4339   if (!stopped()) {
4340     // No need for PreserveJVMState, because we're using up the present state.
4341     set_all_memory(init_mem);
4342     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4343     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4344     Node* slow_result = set_results_for_java_call(slow_call);
4345     // this->control() comes from set_results_for_java_call
4346     result_reg->init_req(_slow_path, control());
4347     result_val->init_req(_slow_path, slow_result);
4348     result_io  ->set_req(_slow_path, i_o());
4349     result_mem ->set_req(_slow_path, reset_memory());
4350   }
4351 
4352   // Return the combined state.
4353   set_i_o(        _gvn.transform(result_io)  );
4354   set_all_memory( _gvn.transform(result_mem));
4355 
4356   set_result(result_reg, result_val);
4357   return true;
4358 }
4359 
4360 //---------------------------inline_native_getClass----------------------------
4361 // public final native Class<?> java.lang.Object.getClass();
4362 //
4363 // Build special case code for calls to getClass on an object.
4364 bool LibraryCallKit::inline_native_getClass() {
4365   Node* obj = null_check_receiver();
4366   if (stopped())  return true;
4367   set_result(load_mirror_from_klass(load_object_klass(obj)));
4368   return true;
4369 }
4370 
4371 //-----------------inline_native_Reflection_getCallerClass---------------------
4372 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4373 //
4374 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4375 //
4376 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4377 // in that it must skip particular security frames and checks for
4378 // caller sensitive methods.
4379 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4380 #ifndef PRODUCT
4381   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4382     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4383   }
4384 #endif
4385 
4386   if (!jvms()->has_method()) {
4387 #ifndef PRODUCT
4388     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4389       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4390     }
4391 #endif
4392     return false;
4393   }
4394 
4395   // Walk back up the JVM state to find the caller at the required
4396   // depth.
4397   JVMState* caller_jvms = jvms();
4398 
4399   // Cf. JVM_GetCallerClass
4400   // NOTE: Start the loop at depth 1 because the current JVM state does
4401   // not include the Reflection.getCallerClass() frame.
4402   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4403     ciMethod* m = caller_jvms->method();
4404     switch (n) {
4405     case 0:
4406       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4407       break;
4408     case 1:
4409       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4410       if (!m->caller_sensitive()) {
4411 #ifndef PRODUCT
4412         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4413           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4414         }
4415 #endif
4416         return false;  // bail-out; let JVM_GetCallerClass do the work
4417       }
4418       break;
4419     default:
4420       if (!m->is_ignored_by_security_stack_walk()) {
4421         // We have reached the desired frame; return the holder class.
4422         // Acquire method holder as java.lang.Class and push as constant.
4423         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4424         ciInstance* caller_mirror = caller_klass->java_mirror();
4425         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4426 
4427 #ifndef PRODUCT
4428         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4429           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4430           tty->print_cr("  JVM state at this point:");
4431           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4432             ciMethod* m = jvms()->of_depth(i)->method();
4433             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4434           }
4435         }
4436 #endif
4437         return true;
4438       }
4439       break;
4440     }
4441   }
4442 
4443 #ifndef PRODUCT
4444   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4445     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4446     tty->print_cr("  JVM state at this point:");
4447     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4448       ciMethod* m = jvms()->of_depth(i)->method();
4449       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4450     }
4451   }
4452 #endif
4453 
4454   return false;  // bail-out; let JVM_GetCallerClass do the work
4455 }
4456 
4457 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4458   Node* arg = argument(0);
4459   Node* result = NULL;
4460 
4461   switch (id) {
4462   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4463   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4464   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4465   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4466 
4467   case vmIntrinsics::_doubleToLongBits: {
4468     // two paths (plus control) merge in a wood
4469     RegionNode *r = new RegionNode(3);
4470     Node *phi = new PhiNode(r, TypeLong::LONG);
4471 
4472     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4473     // Build the boolean node
4474     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4475 
4476     // Branch either way.
4477     // NaN case is less traveled, which makes all the difference.
4478     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4479     Node *opt_isnan = _gvn.transform(ifisnan);
4480     assert( opt_isnan->is_If(), "Expect an IfNode");
4481     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4482     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4483 
4484     set_control(iftrue);
4485 
4486     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4487     Node *slow_result = longcon(nan_bits); // return NaN
4488     phi->init_req(1, _gvn.transform( slow_result ));
4489     r->init_req(1, iftrue);
4490 
4491     // Else fall through
4492     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4493     set_control(iffalse);
4494 
4495     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4496     r->init_req(2, iffalse);
4497 
4498     // Post merge
4499     set_control(_gvn.transform(r));
4500     record_for_igvn(r);
4501 
4502     C->set_has_split_ifs(true); // Has chance for split-if optimization
4503     result = phi;
4504     assert(result->bottom_type()->isa_long(), "must be");
4505     break;
4506   }
4507 
4508   case vmIntrinsics::_floatToIntBits: {
4509     // two paths (plus control) merge in a wood
4510     RegionNode *r = new RegionNode(3);
4511     Node *phi = new PhiNode(r, TypeInt::INT);
4512 
4513     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4514     // Build the boolean node
4515     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4516 
4517     // Branch either way.
4518     // NaN case is less traveled, which makes all the difference.
4519     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4520     Node *opt_isnan = _gvn.transform(ifisnan);
4521     assert( opt_isnan->is_If(), "Expect an IfNode");
4522     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4523     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4524 
4525     set_control(iftrue);
4526 
4527     static const jint nan_bits = 0x7fc00000;
4528     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4529     phi->init_req(1, _gvn.transform( slow_result ));
4530     r->init_req(1, iftrue);
4531 
4532     // Else fall through
4533     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4534     set_control(iffalse);
4535 
4536     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4537     r->init_req(2, iffalse);
4538 
4539     // Post merge
4540     set_control(_gvn.transform(r));
4541     record_for_igvn(r);
4542 
4543     C->set_has_split_ifs(true); // Has chance for split-if optimization
4544     result = phi;
4545     assert(result->bottom_type()->isa_int(), "must be");
4546     break;
4547   }
4548 
4549   default:
4550     fatal_unexpected_iid(id);
4551     break;
4552   }
4553   set_result(_gvn.transform(result));
4554   return true;
4555 }
4556 
4557 //----------------------inline_unsafe_copyMemory-------------------------
4558 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4559 bool LibraryCallKit::inline_unsafe_copyMemory() {
4560   if (callee()->is_static())  return false;  // caller must have the capability!
4561   null_check_receiver();  // null-check receiver
4562   if (stopped())  return true;
4563 
4564   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4565 
4566   Node* src_ptr =         argument(1);   // type: oop
4567   Node* src_off = ConvL2X(argument(2));  // type: long
4568   Node* dst_ptr =         argument(4);   // type: oop
4569   Node* dst_off = ConvL2X(argument(5));  // type: long
4570   Node* size    = ConvL2X(argument(7));  // type: long
4571 
4572   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4573          "fieldOffset must be byte-scaled");
4574 
4575   Node* src = make_unsafe_address(src_ptr, src_off);
4576   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4577 
4578   // Conservatively insert a memory barrier on all memory slices.
4579   // Do not let writes of the copy source or destination float below the copy.
4580   insert_mem_bar(Op_MemBarCPUOrder);
4581 
4582   // Call it.  Note that the length argument is not scaled.
4583   make_runtime_call(RC_LEAF|RC_NO_FP,
4584                     OptoRuntime::fast_arraycopy_Type(),
4585                     StubRoutines::unsafe_arraycopy(),
4586                     "unsafe_arraycopy",
4587                     TypeRawPtr::BOTTOM,
4588                     src, dst, size XTOP);
4589 
4590   // Do not let reads of the copy destination float above the copy.
4591   insert_mem_bar(Op_MemBarCPUOrder);
4592 
4593   return true;
4594 }
4595 
4596 //------------------------clone_coping-----------------------------------
4597 // Helper function for inline_native_clone.
4598 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4599   assert(obj_size != NULL, "");
4600   Node* raw_obj = alloc_obj->in(1);
4601   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4602 
4603   AllocateNode* alloc = NULL;
4604   if (ReduceBulkZeroing) {
4605     // We will be completely responsible for initializing this object -
4606     // mark Initialize node as complete.
4607     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4608     // The object was just allocated - there should be no any stores!
4609     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4610     // Mark as complete_with_arraycopy so that on AllocateNode
4611     // expansion, we know this AllocateNode is initialized by an array
4612     // copy and a StoreStore barrier exists after the array copy.
4613     alloc->initialization()->set_complete_with_arraycopy();
4614   }
4615 
4616   // Copy the fastest available way.
4617   // TODO: generate fields copies for small objects instead.
4618   Node* src  = obj;
4619   Node* dest = alloc_obj;
4620   Node* size = _gvn.transform(obj_size);
4621 
4622   // Exclude the header but include array length to copy by 8 bytes words.
4623   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4624   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4625                             instanceOopDesc::base_offset_in_bytes();
4626   // base_off:
4627   // 8  - 32-bit VM
4628   // 12 - 64-bit VM, compressed klass
4629   // 16 - 64-bit VM, normal klass
4630   if (base_off % BytesPerLong != 0) {
4631     assert(UseCompressedClassPointers, "");
4632     if (is_array) {
4633       // Exclude length to copy by 8 bytes words.
4634       base_off += sizeof(int);
4635     } else {
4636       // Include klass to copy by 8 bytes words.
4637       base_off = instanceOopDesc::klass_offset_in_bytes();
4638     }
4639     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4640   }
4641   src  = basic_plus_adr(src,  base_off);
4642   dest = basic_plus_adr(dest, base_off);
4643 
4644   // Compute the length also, if needed:
4645   Node* countx = size;
4646   countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
4647   countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) ));
4648 
4649   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4650 
4651   ArrayCopyNode* ac = ArrayCopyNode::make(this, false, src, NULL, dest, NULL, countx, false, false);
4652   ac->set_clonebasic();
4653   Node* n = _gvn.transform(ac);
4654   if (n == ac) {
4655     set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
4656   } else {
4657     set_all_memory(n);
4658   }
4659 
4660   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4661   if (card_mark) {
4662     assert(!is_array, "");
4663     // Put in store barrier for any and all oops we are sticking
4664     // into this object.  (We could avoid this if we could prove
4665     // that the object type contains no oop fields at all.)
4666     Node* no_particular_value = NULL;
4667     Node* no_particular_field = NULL;
4668     int raw_adr_idx = Compile::AliasIdxRaw;
4669     post_barrier(control(),
4670                  memory(raw_adr_type),
4671                  alloc_obj,
4672                  no_particular_field,
4673                  raw_adr_idx,
4674                  no_particular_value,
4675                  T_OBJECT,
4676                  false);
4677   }
4678 
4679   // Do not let reads from the cloned object float above the arraycopy.
4680   if (alloc != NULL) {
4681     // Do not let stores that initialize this object be reordered with
4682     // a subsequent store that would make this object accessible by
4683     // other threads.
4684     // Record what AllocateNode this StoreStore protects so that
4685     // escape analysis can go from the MemBarStoreStoreNode to the
4686     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4687     // based on the escape status of the AllocateNode.
4688     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4689   } else {
4690     insert_mem_bar(Op_MemBarCPUOrder);
4691   }
4692 }
4693 
4694 //------------------------inline_native_clone----------------------------
4695 // protected native Object java.lang.Object.clone();
4696 //
4697 // Here are the simple edge cases:
4698 //  null receiver => normal trap
4699 //  virtual and clone was overridden => slow path to out-of-line clone
4700 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4701 //
4702 // The general case has two steps, allocation and copying.
4703 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4704 //
4705 // Copying also has two cases, oop arrays and everything else.
4706 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4707 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4708 //
4709 // These steps fold up nicely if and when the cloned object's klass
4710 // can be sharply typed as an object array, a type array, or an instance.
4711 //
4712 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4713   PhiNode* result_val;
4714 
4715   // Set the reexecute bit for the interpreter to reexecute
4716   // the bytecode that invokes Object.clone if deoptimization happens.
4717   { PreserveReexecuteState preexecs(this);
4718     jvms()->set_should_reexecute(true);
4719 
4720     Node* obj = null_check_receiver();
4721     if (stopped())  return true;
4722 
4723     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4724 
4725     // If we are going to clone an instance, we need its exact type to
4726     // know the number and types of fields to convert the clone to
4727     // loads/stores. Maybe a speculative type can help us.
4728     if (!obj_type->klass_is_exact() &&
4729         obj_type->speculative_type() != NULL &&
4730         obj_type->speculative_type()->is_instance_klass()) {
4731       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4732       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4733           !spec_ik->has_injected_fields()) {
4734         ciKlass* k = obj_type->klass();
4735         if (!k->is_instance_klass() ||
4736             k->as_instance_klass()->is_interface() ||
4737             k->as_instance_klass()->has_subklass()) {
4738           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4739         }
4740       }
4741     }
4742 
4743     Node* obj_klass = load_object_klass(obj);
4744     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4745     const TypeOopPtr*   toop   = ((tklass != NULL)
4746                                 ? tklass->as_instance_type()
4747                                 : TypeInstPtr::NOTNULL);
4748 
4749     // Conservatively insert a memory barrier on all memory slices.
4750     // Do not let writes into the original float below the clone.
4751     insert_mem_bar(Op_MemBarCPUOrder);
4752 
4753     // paths into result_reg:
4754     enum {
4755       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4756       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4757       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4758       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4759       PATH_LIMIT
4760     };
4761     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4762     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4763     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4764     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4765     record_for_igvn(result_reg);
4766 
4767     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4768     int raw_adr_idx = Compile::AliasIdxRaw;
4769 
4770     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4771     if (array_ctl != NULL) {
4772       // It's an array.
4773       PreserveJVMState pjvms(this);
4774       set_control(array_ctl);
4775       Node* obj_length = load_array_length(obj);
4776       Node* obj_size  = NULL;
4777       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4778 
4779       if (!use_ReduceInitialCardMarks()) {
4780         // If it is an oop array, it requires very special treatment,
4781         // because card marking is required on each card of the array.
4782         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4783         if (is_obja != NULL) {
4784           PreserveJVMState pjvms2(this);
4785           set_control(is_obja);
4786           // Generate a direct call to the right arraycopy function(s).
4787           Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4788           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL, false);
4789           ac->set_cloneoop();
4790           Node* n = _gvn.transform(ac);
4791           assert(n == ac, "cannot disappear");
4792           ac->connect_outputs(this);
4793 
4794           result_reg->init_req(_objArray_path, control());
4795           result_val->init_req(_objArray_path, alloc_obj);
4796           result_i_o ->set_req(_objArray_path, i_o());
4797           result_mem ->set_req(_objArray_path, reset_memory());
4798         }
4799       }
4800       // Otherwise, there are no card marks to worry about.
4801       // (We can dispense with card marks if we know the allocation
4802       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4803       //  causes the non-eden paths to take compensating steps to
4804       //  simulate a fresh allocation, so that no further
4805       //  card marks are required in compiled code to initialize
4806       //  the object.)
4807 
4808       if (!stopped()) {
4809         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4810 
4811         // Present the results of the copy.
4812         result_reg->init_req(_array_path, control());
4813         result_val->init_req(_array_path, alloc_obj);
4814         result_i_o ->set_req(_array_path, i_o());
4815         result_mem ->set_req(_array_path, reset_memory());
4816       }
4817     }
4818 
4819     // We only go to the instance fast case code if we pass a number of guards.
4820     // The paths which do not pass are accumulated in the slow_region.
4821     RegionNode* slow_region = new RegionNode(1);
4822     record_for_igvn(slow_region);
4823     if (!stopped()) {
4824       // It's an instance (we did array above).  Make the slow-path tests.
4825       // If this is a virtual call, we generate a funny guard.  We grab
4826       // the vtable entry corresponding to clone() from the target object.
4827       // If the target method which we are calling happens to be the
4828       // Object clone() method, we pass the guard.  We do not need this
4829       // guard for non-virtual calls; the caller is known to be the native
4830       // Object clone().
4831       if (is_virtual) {
4832         generate_virtual_guard(obj_klass, slow_region);
4833       }
4834 
4835       // The object must be easily cloneable and must not have a finalizer.
4836       // Both of these conditions may be checked in a single test.
4837       // We could optimize the test further, but we don't care.
4838       generate_access_flags_guard(obj_klass,
4839                                   // Test both conditions:
4840                                   JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER,
4841                                   // Must be cloneable but not finalizer:
4842                                   JVM_ACC_IS_CLONEABLE_FAST,
4843                                   slow_region);
4844     }
4845 
4846     if (!stopped()) {
4847       // It's an instance, and it passed the slow-path tests.
4848       PreserveJVMState pjvms(this);
4849       Node* obj_size  = NULL;
4850       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4851       // is reexecuted if deoptimization occurs and there could be problems when merging
4852       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4853       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4854 
4855       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4856 
4857       // Present the results of the slow call.
4858       result_reg->init_req(_instance_path, control());
4859       result_val->init_req(_instance_path, alloc_obj);
4860       result_i_o ->set_req(_instance_path, i_o());
4861       result_mem ->set_req(_instance_path, reset_memory());
4862     }
4863 
4864     // Generate code for the slow case.  We make a call to clone().
4865     set_control(_gvn.transform(slow_region));
4866     if (!stopped()) {
4867       PreserveJVMState pjvms(this);
4868       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4869       Node* slow_result = set_results_for_java_call(slow_call);
4870       // this->control() comes from set_results_for_java_call
4871       result_reg->init_req(_slow_path, control());
4872       result_val->init_req(_slow_path, slow_result);
4873       result_i_o ->set_req(_slow_path, i_o());
4874       result_mem ->set_req(_slow_path, reset_memory());
4875     }
4876 
4877     // Return the combined state.
4878     set_control(    _gvn.transform(result_reg));
4879     set_i_o(        _gvn.transform(result_i_o));
4880     set_all_memory( _gvn.transform(result_mem));
4881   } // original reexecute is set back here
4882 
4883   set_result(_gvn.transform(result_val));
4884   return true;
4885 }
4886 
4887 // If we have a tighly coupled allocation, the arraycopy may take care
4888 // of the array initialization. If one of the guards we insert between
4889 // the allocation and the arraycopy causes a deoptimization, an
4890 // unitialized array will escape the compiled method. To prevent that
4891 // we set the JVM state for uncommon traps between the allocation and
4892 // the arraycopy to the state before the allocation so, in case of
4893 // deoptimization, we'll reexecute the allocation and the
4894 // initialization.
4895 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
4896   if (alloc != NULL) {
4897     ciMethod* trap_method = alloc->jvms()->method();
4898     int trap_bci = alloc->jvms()->bci();
4899 
4900     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &
4901           !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
4902       // Make sure there's no store between the allocation and the
4903       // arraycopy otherwise visible side effects could be rexecuted
4904       // in case of deoptimization and cause incorrect execution.
4905       bool no_interfering_store = true;
4906       Node* mem = alloc->in(TypeFunc::Memory);
4907       if (mem->is_MergeMem()) {
4908         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
4909           Node* n = mms.memory();
4910           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4911             assert(n->is_Store(), "what else?");
4912             no_interfering_store = false;
4913             break;
4914           }
4915         }
4916       } else {
4917         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
4918           Node* n = mms.memory();
4919           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4920             assert(n->is_Store(), "what else?");
4921             no_interfering_store = false;
4922             break;
4923           }
4924         }
4925       }
4926 
4927       if (no_interfering_store) {
4928         JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
4929         uint size = alloc->req();
4930         SafePointNode* sfpt = new SafePointNode(size, old_jvms);
4931         old_jvms->set_map(sfpt);
4932         for (uint i = 0; i < size; i++) {
4933           sfpt->init_req(i, alloc->in(i));
4934         }
4935         // re-push array length for deoptimization
4936         sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
4937         old_jvms->set_sp(old_jvms->sp()+1);
4938         old_jvms->set_monoff(old_jvms->monoff()+1);
4939         old_jvms->set_scloff(old_jvms->scloff()+1);
4940         old_jvms->set_endoff(old_jvms->endoff()+1);
4941         old_jvms->set_should_reexecute(true);
4942 
4943         sfpt->set_i_o(map()->i_o());
4944         sfpt->set_memory(map()->memory());
4945         sfpt->set_control(map()->control());
4946 
4947         JVMState* saved_jvms = jvms();
4948         saved_reexecute_sp = _reexecute_sp;
4949 
4950         set_jvms(sfpt->jvms());
4951         _reexecute_sp = jvms()->sp();
4952 
4953         return saved_jvms;
4954       }
4955     }
4956   }
4957   return NULL;
4958 }
4959 
4960 // In case of a deoptimization, we restart execution at the
4961 // allocation, allocating a new array. We would leave an uninitialized
4962 // array in the heap that GCs wouldn't expect. Move the allocation
4963 // after the traps so we don't allocate the array if we
4964 // deoptimize. This is possible because tightly_coupled_allocation()
4965 // guarantees there's no observer of the allocated array at this point
4966 // and the control flow is simple enough.
4967 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms,
4968                                                     int saved_reexecute_sp, uint new_idx) {
4969   if (saved_jvms != NULL && !stopped()) {
4970     assert(alloc != NULL, "only with a tightly coupled allocation");
4971     // restore JVM state to the state at the arraycopy
4972     saved_jvms->map()->set_control(map()->control());
4973     assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?");
4974     assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?");
4975     // If we've improved the types of some nodes (null check) while
4976     // emitting the guards, propagate them to the current state
4977     map()->replaced_nodes().apply(saved_jvms->map(), new_idx);
4978     set_jvms(saved_jvms);
4979     _reexecute_sp = saved_reexecute_sp;
4980 
4981     // Remove the allocation from above the guards
4982     CallProjections callprojs;
4983     alloc->extract_projections(&callprojs, true);
4984     InitializeNode* init = alloc->initialization();
4985     Node* alloc_mem = alloc->in(TypeFunc::Memory);
4986     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
4987     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
4988     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
4989 
4990     // move the allocation here (after the guards)
4991     _gvn.hash_delete(alloc);
4992     alloc->set_req(TypeFunc::Control, control());
4993     alloc->set_req(TypeFunc::I_O, i_o());
4994     Node *mem = reset_memory();
4995     set_all_memory(mem);
4996     alloc->set_req(TypeFunc::Memory, mem);
4997     set_control(init->proj_out(TypeFunc::Control));
4998     set_i_o(callprojs.fallthrough_ioproj);
4999 
5000     // Update memory as done in GraphKit::set_output_for_allocation()
5001     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
5002     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
5003     if (ary_type->isa_aryptr() && length_type != NULL) {
5004       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
5005     }
5006     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
5007     int            elemidx  = C->get_alias_index(telemref);
5008     set_memory(init->proj_out(TypeFunc::Memory), Compile::AliasIdxRaw);
5009     set_memory(init->proj_out(TypeFunc::Memory), elemidx);
5010 
5011     Node* allocx = _gvn.transform(alloc);
5012     assert(allocx == alloc, "where has the allocation gone?");
5013     assert(dest->is_CheckCastPP(), "not an allocation result?");
5014 
5015     _gvn.hash_delete(dest);
5016     dest->set_req(0, control());
5017     Node* destx = _gvn.transform(dest);
5018     assert(destx == dest, "where has the allocation result gone?");
5019   }
5020 }
5021 
5022 
5023 //------------------------------inline_arraycopy-----------------------
5024 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
5025 //                                                      Object dest, int destPos,
5026 //                                                      int length);
5027 bool LibraryCallKit::inline_arraycopy() {
5028   // Get the arguments.
5029   Node* src         = argument(0);  // type: oop
5030   Node* src_offset  = argument(1);  // type: int
5031   Node* dest        = argument(2);  // type: oop
5032   Node* dest_offset = argument(3);  // type: int
5033   Node* length      = argument(4);  // type: int
5034 
5035   uint new_idx = C->unique();
5036 
5037   // Check for allocation before we add nodes that would confuse
5038   // tightly_coupled_allocation()
5039   AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
5040 
5041   int saved_reexecute_sp = -1;
5042   JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
5043   // See arraycopy_restore_alloc_state() comment
5044   // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards
5045   // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation
5046   // if saved_jvms == NULL and alloc != NULL, we can't emit any guards
5047   bool can_emit_guards = (alloc == NULL || saved_jvms != NULL);
5048 
5049   // The following tests must be performed
5050   // (1) src and dest are arrays.
5051   // (2) src and dest arrays must have elements of the same BasicType
5052   // (3) src and dest must not be null.
5053   // (4) src_offset must not be negative.
5054   // (5) dest_offset must not be negative.
5055   // (6) length must not be negative.
5056   // (7) src_offset + length must not exceed length of src.
5057   // (8) dest_offset + length must not exceed length of dest.
5058   // (9) each element of an oop array must be assignable
5059 
5060   // (3) src and dest must not be null.
5061   // always do this here because we need the JVM state for uncommon traps
5062   Node* null_ctl = top();
5063   src  = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src,  T_ARRAY);
5064   assert(null_ctl->is_top(), "no null control here");
5065   dest = null_check(dest, T_ARRAY);
5066 
5067   if (!can_emit_guards) {
5068     // if saved_jvms == NULL and alloc != NULL, we don't emit any
5069     // guards but the arraycopy node could still take advantage of a
5070     // tightly allocated allocation. tightly_coupled_allocation() is
5071     // called again to make sure it takes the null check above into
5072     // account: the null check is mandatory and if it caused an
5073     // uncommon trap to be emitted then the allocation can't be
5074     // considered tightly coupled in this context.
5075     alloc = tightly_coupled_allocation(dest, NULL);
5076   }
5077 
5078   bool validated = false;
5079 
5080   const Type* src_type  = _gvn.type(src);
5081   const Type* dest_type = _gvn.type(dest);
5082   const TypeAryPtr* top_src  = src_type->isa_aryptr();
5083   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5084 
5085   // Do we have the type of src?
5086   bool has_src = (top_src != NULL && top_src->klass() != NULL);
5087   // Do we have the type of dest?
5088   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
5089   // Is the type for src from speculation?
5090   bool src_spec = false;
5091   // Is the type for dest from speculation?
5092   bool dest_spec = false;
5093 
5094   if ((!has_src || !has_dest) && can_emit_guards) {
5095     // We don't have sufficient type information, let's see if
5096     // speculative types can help. We need to have types for both src
5097     // and dest so that it pays off.
5098 
5099     // Do we already have or could we have type information for src
5100     bool could_have_src = has_src;
5101     // Do we already have or could we have type information for dest
5102     bool could_have_dest = has_dest;
5103 
5104     ciKlass* src_k = NULL;
5105     if (!has_src) {
5106       src_k = src_type->speculative_type_not_null();
5107       if (src_k != NULL && src_k->is_array_klass()) {
5108         could_have_src = true;
5109       }
5110     }
5111 
5112     ciKlass* dest_k = NULL;
5113     if (!has_dest) {
5114       dest_k = dest_type->speculative_type_not_null();
5115       if (dest_k != NULL && dest_k->is_array_klass()) {
5116         could_have_dest = true;
5117       }
5118     }
5119 
5120     if (could_have_src && could_have_dest) {
5121       // This is going to pay off so emit the required guards
5122       if (!has_src) {
5123         src = maybe_cast_profiled_obj(src, src_k, true);
5124         src_type  = _gvn.type(src);
5125         top_src  = src_type->isa_aryptr();
5126         has_src = (top_src != NULL && top_src->klass() != NULL);
5127         src_spec = true;
5128       }
5129       if (!has_dest) {
5130         dest = maybe_cast_profiled_obj(dest, dest_k, true);
5131         dest_type  = _gvn.type(dest);
5132         top_dest  = dest_type->isa_aryptr();
5133         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
5134         dest_spec = true;
5135       }
5136     }
5137   }
5138 
5139   if (has_src && has_dest && can_emit_guards) {
5140     BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
5141     BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
5142     if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
5143     if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
5144 
5145     if (src_elem == dest_elem && src_elem == T_OBJECT) {
5146       // If both arrays are object arrays then having the exact types
5147       // for both will remove the need for a subtype check at runtime
5148       // before the call and may make it possible to pick a faster copy
5149       // routine (without a subtype check on every element)
5150       // Do we have the exact type of src?
5151       bool could_have_src = src_spec;
5152       // Do we have the exact type of dest?
5153       bool could_have_dest = dest_spec;
5154       ciKlass* src_k = top_src->klass();
5155       ciKlass* dest_k = top_dest->klass();
5156       if (!src_spec) {
5157         src_k = src_type->speculative_type_not_null();
5158         if (src_k != NULL && src_k->is_array_klass()) {
5159           could_have_src = true;
5160         }
5161       }
5162       if (!dest_spec) {
5163         dest_k = dest_type->speculative_type_not_null();
5164         if (dest_k != NULL && dest_k->is_array_klass()) {
5165           could_have_dest = true;
5166         }
5167       }
5168       if (could_have_src && could_have_dest) {
5169         // If we can have both exact types, emit the missing guards
5170         if (could_have_src && !src_spec) {
5171           src = maybe_cast_profiled_obj(src, src_k, true);
5172         }
5173         if (could_have_dest && !dest_spec) {
5174           dest = maybe_cast_profiled_obj(dest, dest_k, true);
5175         }
5176       }
5177     }
5178   }
5179 
5180   ciMethod* trap_method = method();
5181   int trap_bci = bci();
5182   if (saved_jvms != NULL) {
5183     trap_method = alloc->jvms()->method();
5184     trap_bci = alloc->jvms()->bci();
5185   }
5186 
5187   bool negative_length_guard_generated = false;
5188 
5189   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5190       can_emit_guards &&
5191       !src->is_top() && !dest->is_top()) {
5192     // validate arguments: enables transformation the ArrayCopyNode
5193     validated = true;
5194 
5195     RegionNode* slow_region = new RegionNode(1);
5196     record_for_igvn(slow_region);
5197 
5198     // (1) src and dest are arrays.
5199     generate_non_array_guard(load_object_klass(src), slow_region);
5200     generate_non_array_guard(load_object_klass(dest), slow_region);
5201 
5202     // (2) src and dest arrays must have elements of the same BasicType
5203     // done at macro expansion or at Ideal transformation time
5204 
5205     // (4) src_offset must not be negative.
5206     generate_negative_guard(src_offset, slow_region);
5207 
5208     // (5) dest_offset must not be negative.
5209     generate_negative_guard(dest_offset, slow_region);
5210 
5211     // (7) src_offset + length must not exceed length of src.
5212     generate_limit_guard(src_offset, length,
5213                          load_array_length(src),
5214                          slow_region);
5215 
5216     // (8) dest_offset + length must not exceed length of dest.
5217     generate_limit_guard(dest_offset, length,
5218                          load_array_length(dest),
5219                          slow_region);
5220 
5221     // (6) length must not be negative.
5222     // This is also checked in generate_arraycopy() during macro expansion, but
5223     // we also have to check it here for the case where the ArrayCopyNode will
5224     // be eliminated by Escape Analysis.
5225     if (EliminateAllocations) {
5226       generate_negative_guard(length, slow_region);
5227       negative_length_guard_generated = true;
5228     }
5229 
5230     // (9) each element of an oop array must be assignable
5231     Node* src_klass  = load_object_klass(src);
5232     Node* dest_klass = load_object_klass(dest);
5233     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5234 
5235     if (not_subtype_ctrl != top()) {
5236       PreserveJVMState pjvms(this);
5237       set_control(not_subtype_ctrl);
5238       uncommon_trap(Deoptimization::Reason_intrinsic,
5239                     Deoptimization::Action_make_not_entrant);
5240       assert(stopped(), "Should be stopped");
5241     }
5242     {
5243       PreserveJVMState pjvms(this);
5244       set_control(_gvn.transform(slow_region));
5245       uncommon_trap(Deoptimization::Reason_intrinsic,
5246                     Deoptimization::Action_make_not_entrant);
5247       assert(stopped(), "Should be stopped");
5248     }
5249   }
5250 
5251   arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp, new_idx);
5252 
5253   if (stopped()) {
5254     return true;
5255   }
5256 
5257   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL, negative_length_guard_generated,
5258                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
5259                                           // so the compiler has a chance to eliminate them: during macro expansion,
5260                                           // we have to set their control (CastPP nodes are eliminated).
5261                                           load_object_klass(src), load_object_klass(dest),
5262                                           load_array_length(src), load_array_length(dest));
5263 
5264   ac->set_arraycopy(validated);
5265 
5266   Node* n = _gvn.transform(ac);
5267   if (n == ac) {
5268     ac->connect_outputs(this);
5269   } else {
5270     assert(validated, "shouldn't transform if all arguments not validated");
5271     set_all_memory(n);
5272   }
5273 
5274   return true;
5275 }
5276 
5277 
5278 // Helper function which determines if an arraycopy immediately follows
5279 // an allocation, with no intervening tests or other escapes for the object.
5280 AllocateArrayNode*
5281 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5282                                            RegionNode* slow_region) {
5283   if (stopped())             return NULL;  // no fast path
5284   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5285 
5286   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5287   if (alloc == NULL)  return NULL;
5288 
5289   Node* rawmem = memory(Compile::AliasIdxRaw);
5290   // Is the allocation's memory state untouched?
5291   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5292     // Bail out if there have been raw-memory effects since the allocation.
5293     // (Example:  There might have been a call or safepoint.)
5294     return NULL;
5295   }
5296   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5297   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5298     return NULL;
5299   }
5300 
5301   // There must be no unexpected observers of this allocation.
5302   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5303     Node* obs = ptr->fast_out(i);
5304     if (obs != this->map()) {
5305       return NULL;
5306     }
5307   }
5308 
5309   // This arraycopy must unconditionally follow the allocation of the ptr.
5310   Node* alloc_ctl = ptr->in(0);
5311   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5312 
5313   Node* ctl = control();
5314   while (ctl != alloc_ctl) {
5315     // There may be guards which feed into the slow_region.
5316     // Any other control flow means that we might not get a chance
5317     // to finish initializing the allocated object.
5318     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5319       IfNode* iff = ctl->in(0)->as_If();
5320       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5321       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5322       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5323         ctl = iff->in(0);       // This test feeds the known slow_region.
5324         continue;
5325       }
5326       // One more try:  Various low-level checks bottom out in
5327       // uncommon traps.  If the debug-info of the trap omits
5328       // any reference to the allocation, as we've already
5329       // observed, then there can be no objection to the trap.
5330       bool found_trap = false;
5331       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5332         Node* obs = not_ctl->fast_out(j);
5333         if (obs->in(0) == not_ctl && obs->is_Call() &&
5334             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5335           found_trap = true; break;
5336         }
5337       }
5338       if (found_trap) {
5339         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5340         continue;
5341       }
5342     }
5343     return NULL;
5344   }
5345 
5346   // If we get this far, we have an allocation which immediately
5347   // precedes the arraycopy, and we can take over zeroing the new object.
5348   // The arraycopy will finish the initialization, and provide
5349   // a new control state to which we will anchor the destination pointer.
5350 
5351   return alloc;
5352 }
5353 
5354 //-------------inline_encodeISOArray-----------------------------------
5355 // encode char[] to byte[] in ISO_8859_1
5356 bool LibraryCallKit::inline_encodeISOArray() {
5357   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5358   // no receiver since it is static method
5359   Node *src         = argument(0);
5360   Node *src_offset  = argument(1);
5361   Node *dst         = argument(2);
5362   Node *dst_offset  = argument(3);
5363   Node *length      = argument(4);
5364 
5365   const Type* src_type = src->Value(&_gvn);
5366   const Type* dst_type = dst->Value(&_gvn);
5367   const TypeAryPtr* top_src = src_type->isa_aryptr();
5368   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5369   if (top_src  == NULL || top_src->klass()  == NULL ||
5370       top_dest == NULL || top_dest->klass() == NULL) {
5371     // failed array check
5372     return false;
5373   }
5374 
5375   // Figure out the size and type of the elements we will be copying.
5376   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5377   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5378   if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
5379     return false;
5380   }
5381 
5382   Node* src_start = array_element_address(src, src_offset, T_CHAR);
5383   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5384   // 'src_start' points to src array + scaled offset
5385   // 'dst_start' points to dst array + scaled offset
5386 
5387   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5388   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5389   enc = _gvn.transform(enc);
5390   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5391   set_memory(res_mem, mtype);
5392   set_result(enc);
5393   return true;
5394 }
5395 
5396 //-------------inline_multiplyToLen-----------------------------------
5397 bool LibraryCallKit::inline_multiplyToLen() {
5398   assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
5399 
5400   address stubAddr = StubRoutines::multiplyToLen();
5401   if (stubAddr == NULL) {
5402     return false; // Intrinsic's stub is not implemented on this platform
5403   }
5404   const char* stubName = "multiplyToLen";
5405 
5406   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5407 
5408   // no receiver because it is a static method
5409   Node* x    = argument(0);
5410   Node* xlen = argument(1);
5411   Node* y    = argument(2);
5412   Node* ylen = argument(3);
5413   Node* z    = argument(4);
5414 
5415   const Type* x_type = x->Value(&_gvn);
5416   const Type* y_type = y->Value(&_gvn);
5417   const TypeAryPtr* top_x = x_type->isa_aryptr();
5418   const TypeAryPtr* top_y = y_type->isa_aryptr();
5419   if (top_x  == NULL || top_x->klass()  == NULL ||
5420       top_y == NULL || top_y->klass() == NULL) {
5421     // failed array check
5422     return false;
5423   }
5424 
5425   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5426   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5427   if (x_elem != T_INT || y_elem != T_INT) {
5428     return false;
5429   }
5430 
5431   // Set the original stack and the reexecute bit for the interpreter to reexecute
5432   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5433   // on the return from z array allocation in runtime.
5434   { PreserveReexecuteState preexecs(this);
5435     jvms()->set_should_reexecute(true);
5436 
5437     Node* x_start = array_element_address(x, intcon(0), x_elem);
5438     Node* y_start = array_element_address(y, intcon(0), y_elem);
5439     // 'x_start' points to x array + scaled xlen
5440     // 'y_start' points to y array + scaled ylen
5441 
5442     // Allocate the result array
5443     Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5444     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5445     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5446 
5447     IdealKit ideal(this);
5448 
5449 #define __ ideal.
5450      Node* one = __ ConI(1);
5451      Node* zero = __ ConI(0);
5452      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5453      __ set(need_alloc, zero);
5454      __ set(z_alloc, z);
5455      __ if_then(z, BoolTest::eq, null()); {
5456        __ increment (need_alloc, one);
5457      } __ else_(); {
5458        // Update graphKit memory and control from IdealKit.
5459        sync_kit(ideal);
5460        Node* zlen_arg = load_array_length(z);
5461        // Update IdealKit memory and control from graphKit.
5462        __ sync_kit(this);
5463        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5464          __ increment (need_alloc, one);
5465        } __ end_if();
5466      } __ end_if();
5467 
5468      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5469        // Update graphKit memory and control from IdealKit.
5470        sync_kit(ideal);
5471        Node * narr = new_array(klass_node, zlen, 1);
5472        // Update IdealKit memory and control from graphKit.
5473        __ sync_kit(this);
5474        __ set(z_alloc, narr);
5475      } __ end_if();
5476 
5477      sync_kit(ideal);
5478      z = __ value(z_alloc);
5479      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5480      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5481      // Final sync IdealKit and GraphKit.
5482      final_sync(ideal);
5483 #undef __
5484 
5485     Node* z_start = array_element_address(z, intcon(0), T_INT);
5486 
5487     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5488                                    OptoRuntime::multiplyToLen_Type(),
5489                                    stubAddr, stubName, TypePtr::BOTTOM,
5490                                    x_start, xlen, y_start, ylen, z_start, zlen);
5491   } // original reexecute is set back here
5492 
5493   C->set_has_split_ifs(true); // Has chance for split-if optimization
5494   set_result(z);
5495   return true;
5496 }
5497 
5498 //-------------inline_squareToLen------------------------------------
5499 bool LibraryCallKit::inline_squareToLen() {
5500   assert(UseSquareToLenIntrinsic, "not implemented on this platform");
5501 
5502   address stubAddr = StubRoutines::squareToLen();
5503   if (stubAddr == NULL) {
5504     return false; // Intrinsic's stub is not implemented on this platform
5505   }
5506   const char* stubName = "squareToLen";
5507 
5508   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
5509 
5510   Node* x    = argument(0);
5511   Node* len  = argument(1);
5512   Node* z    = argument(2);
5513   Node* zlen = argument(3);
5514 
5515   const Type* x_type = x->Value(&_gvn);
5516   const Type* z_type = z->Value(&_gvn);
5517   const TypeAryPtr* top_x = x_type->isa_aryptr();
5518   const TypeAryPtr* top_z = z_type->isa_aryptr();
5519   if (top_x  == NULL || top_x->klass()  == NULL ||
5520       top_z  == NULL || top_z->klass()  == NULL) {
5521     // failed array check
5522     return false;
5523   }
5524 
5525   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5526   BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5527   if (x_elem != T_INT || z_elem != T_INT) {
5528     return false;
5529   }
5530 
5531 
5532   Node* x_start = array_element_address(x, intcon(0), x_elem);
5533   Node* z_start = array_element_address(z, intcon(0), z_elem);
5534 
5535   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5536                                   OptoRuntime::squareToLen_Type(),
5537                                   stubAddr, stubName, TypePtr::BOTTOM,
5538                                   x_start, len, z_start, zlen);
5539 
5540   set_result(z);
5541   return true;
5542 }
5543 
5544 //-------------inline_mulAdd------------------------------------------
5545 bool LibraryCallKit::inline_mulAdd() {
5546   assert(UseMulAddIntrinsic, "not implemented on this platform");
5547 
5548   address stubAddr = StubRoutines::mulAdd();
5549   if (stubAddr == NULL) {
5550     return false; // Intrinsic's stub is not implemented on this platform
5551   }
5552   const char* stubName = "mulAdd";
5553 
5554   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
5555 
5556   Node* out      = argument(0);
5557   Node* in       = argument(1);
5558   Node* offset   = argument(2);
5559   Node* len      = argument(3);
5560   Node* k        = argument(4);
5561 
5562   const Type* out_type = out->Value(&_gvn);
5563   const Type* in_type = in->Value(&_gvn);
5564   const TypeAryPtr* top_out = out_type->isa_aryptr();
5565   const TypeAryPtr* top_in = in_type->isa_aryptr();
5566   if (top_out  == NULL || top_out->klass()  == NULL ||
5567       top_in == NULL || top_in->klass() == NULL) {
5568     // failed array check
5569     return false;
5570   }
5571 
5572   BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5573   BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5574   if (out_elem != T_INT || in_elem != T_INT) {
5575     return false;
5576   }
5577 
5578   Node* outlen = load_array_length(out);
5579   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
5580   Node* out_start = array_element_address(out, intcon(0), out_elem);
5581   Node* in_start = array_element_address(in, intcon(0), in_elem);
5582 
5583   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5584                                   OptoRuntime::mulAdd_Type(),
5585                                   stubAddr, stubName, TypePtr::BOTTOM,
5586                                   out_start,in_start, new_offset, len, k);
5587   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5588   set_result(result);
5589   return true;
5590 }
5591 
5592 //-------------inline_montgomeryMultiply-----------------------------------
5593 bool LibraryCallKit::inline_montgomeryMultiply() {
5594   address stubAddr = StubRoutines::montgomeryMultiply();
5595   if (stubAddr == NULL) {
5596     return false; // Intrinsic's stub is not implemented on this platform
5597   }
5598 
5599   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
5600   const char* stubName = "montgomery_multiply";
5601 
5602   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
5603 
5604   Node* a    = argument(0);
5605   Node* b    = argument(1);
5606   Node* n    = argument(2);
5607   Node* len  = argument(3);
5608   Node* inv  = argument(4);
5609   Node* m    = argument(6);
5610 
5611   const Type* a_type = a->Value(&_gvn);
5612   const TypeAryPtr* top_a = a_type->isa_aryptr();
5613   const Type* b_type = b->Value(&_gvn);
5614   const TypeAryPtr* top_b = b_type->isa_aryptr();
5615   const Type* n_type = a->Value(&_gvn);
5616   const TypeAryPtr* top_n = n_type->isa_aryptr();
5617   const Type* m_type = a->Value(&_gvn);
5618   const TypeAryPtr* top_m = m_type->isa_aryptr();
5619   if (top_a  == NULL || top_a->klass()  == NULL ||
5620       top_b == NULL || top_b->klass()  == NULL ||
5621       top_n == NULL || top_n->klass()  == NULL ||
5622       top_m == NULL || top_m->klass()  == NULL) {
5623     // failed array check
5624     return false;
5625   }
5626 
5627   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5628   BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5629   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5630   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5631   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5632     return false;
5633   }
5634 
5635   // Make the call
5636   {
5637     Node* a_start = array_element_address(a, intcon(0), a_elem);
5638     Node* b_start = array_element_address(b, intcon(0), b_elem);
5639     Node* n_start = array_element_address(n, intcon(0), n_elem);
5640     Node* m_start = array_element_address(m, intcon(0), m_elem);
5641 
5642     Node* call = make_runtime_call(RC_LEAF,
5643                                    OptoRuntime::montgomeryMultiply_Type(),
5644                                    stubAddr, stubName, TypePtr::BOTTOM,
5645                                    a_start, b_start, n_start, len, inv, top(),
5646                                    m_start);
5647     set_result(m);
5648   }
5649 
5650   return true;
5651 }
5652 
5653 bool LibraryCallKit::inline_montgomerySquare() {
5654   address stubAddr = StubRoutines::montgomerySquare();
5655   if (stubAddr == NULL) {
5656     return false; // Intrinsic's stub is not implemented on this platform
5657   }
5658 
5659   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
5660   const char* stubName = "montgomery_square";
5661 
5662   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
5663 
5664   Node* a    = argument(0);
5665   Node* n    = argument(1);
5666   Node* len  = argument(2);
5667   Node* inv  = argument(3);
5668   Node* m    = argument(5);
5669 
5670   const Type* a_type = a->Value(&_gvn);
5671   const TypeAryPtr* top_a = a_type->isa_aryptr();
5672   const Type* n_type = a->Value(&_gvn);
5673   const TypeAryPtr* top_n = n_type->isa_aryptr();
5674   const Type* m_type = a->Value(&_gvn);
5675   const TypeAryPtr* top_m = m_type->isa_aryptr();
5676   if (top_a  == NULL || top_a->klass()  == NULL ||
5677       top_n == NULL || top_n->klass()  == NULL ||
5678       top_m == NULL || top_m->klass()  == NULL) {
5679     // failed array check
5680     return false;
5681   }
5682 
5683   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5684   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5685   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5686   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5687     return false;
5688   }
5689 
5690   // Make the call
5691   {
5692     Node* a_start = array_element_address(a, intcon(0), a_elem);
5693     Node* n_start = array_element_address(n, intcon(0), n_elem);
5694     Node* m_start = array_element_address(m, intcon(0), m_elem);
5695 
5696     Node* call = make_runtime_call(RC_LEAF,
5697                                    OptoRuntime::montgomerySquare_Type(),
5698                                    stubAddr, stubName, TypePtr::BOTTOM,
5699                                    a_start, n_start, len, inv, top(),
5700                                    m_start);
5701     set_result(m);
5702   }
5703 
5704   return true;
5705 }
5706 
5707 //-------------inline_vectorizedMismatch------------------------------
5708 bool LibraryCallKit::inline_vectorizedMismatch() {
5709   assert(UseVectorizedMismatchIntrinsic, "not implementated on this platform");
5710 
5711   address stubAddr = StubRoutines::vectorizedMismatch();
5712   if (stubAddr == NULL) {
5713     return false; // Intrinsic's stub is not implemented on this platform
5714   }
5715   const char* stubName = "vectorizedMismatch";
5716   int size_l = callee()->signature()->size();
5717   assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters");
5718 
5719   Node* obja = argument(0);
5720   Node* aoffset = argument(1);
5721   Node* objb = argument(3);
5722   Node* boffset = argument(4);
5723   Node* length = argument(6);
5724   Node* scale = argument(7);
5725 
5726   const Type* a_type = obja->Value(&_gvn);
5727   const Type* b_type = objb->Value(&_gvn);
5728   const TypeAryPtr* top_a = a_type->isa_aryptr();
5729   const TypeAryPtr* top_b = b_type->isa_aryptr();
5730   if (top_a == NULL || top_a->klass() == NULL ||
5731     top_b == NULL || top_b->klass() == NULL) {
5732     // failed array check
5733     return false;
5734   }
5735 
5736   Node* call;
5737   jvms()->set_should_reexecute(true);
5738 
5739   Node* obja_adr = make_unsafe_address(obja, aoffset);
5740   Node* objb_adr = make_unsafe_address(objb, boffset);
5741 
5742   call = make_runtime_call(RC_LEAF,
5743     OptoRuntime::vectorizedMismatch_Type(),
5744     stubAddr, stubName, TypePtr::BOTTOM,
5745     obja_adr, objb_adr, length, scale);
5746 
5747   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5748   set_result(result);
5749   return true;
5750 }
5751 
5752 /**
5753  * Calculate CRC32 for byte.
5754  * int java.util.zip.CRC32.update(int crc, int b)
5755  */
5756 bool LibraryCallKit::inline_updateCRC32() {
5757   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5758   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5759   // no receiver since it is static method
5760   Node* crc  = argument(0); // type: int
5761   Node* b    = argument(1); // type: int
5762 
5763   /*
5764    *    int c = ~ crc;
5765    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5766    *    b = b ^ (c >>> 8);
5767    *    crc = ~b;
5768    */
5769 
5770   Node* M1 = intcon(-1);
5771   crc = _gvn.transform(new XorINode(crc, M1));
5772   Node* result = _gvn.transform(new XorINode(crc, b));
5773   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5774 
5775   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5776   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5777   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5778   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5779 
5780   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5781   result = _gvn.transform(new XorINode(crc, result));
5782   result = _gvn.transform(new XorINode(result, M1));
5783   set_result(result);
5784   return true;
5785 }
5786 
5787 /**
5788  * Calculate CRC32 for byte[] array.
5789  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5790  */
5791 bool LibraryCallKit::inline_updateBytesCRC32() {
5792   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5793   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5794   // no receiver since it is static method
5795   Node* crc     = argument(0); // type: int
5796   Node* src     = argument(1); // type: oop
5797   Node* offset  = argument(2); // type: int
5798   Node* length  = argument(3); // type: int
5799 
5800   const Type* src_type = src->Value(&_gvn);
5801   const TypeAryPtr* top_src = src_type->isa_aryptr();
5802   if (top_src  == NULL || top_src->klass()  == NULL) {
5803     // failed array check
5804     return false;
5805   }
5806 
5807   // Figure out the size and type of the elements we will be copying.
5808   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5809   if (src_elem != T_BYTE) {
5810     return false;
5811   }
5812 
5813   // 'src_start' points to src array + scaled offset
5814   Node* src_start = array_element_address(src, offset, src_elem);
5815 
5816   // We assume that range check is done by caller.
5817   // TODO: generate range check (offset+length < src.length) in debug VM.
5818 
5819   // Call the stub.
5820   address stubAddr = StubRoutines::updateBytesCRC32();
5821   const char *stubName = "updateBytesCRC32";
5822 
5823   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5824                                  stubAddr, stubName, TypePtr::BOTTOM,
5825                                  crc, src_start, length);
5826   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5827   set_result(result);
5828   return true;
5829 }
5830 
5831 /**
5832  * Calculate CRC32 for ByteBuffer.
5833  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5834  */
5835 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5836   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5837   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5838   // no receiver since it is static method
5839   Node* crc     = argument(0); // type: int
5840   Node* src     = argument(1); // type: long
5841   Node* offset  = argument(3); // type: int
5842   Node* length  = argument(4); // type: int
5843 
5844   src = ConvL2X(src);  // adjust Java long to machine word
5845   Node* base = _gvn.transform(new CastX2PNode(src));
5846   offset = ConvI2X(offset);
5847 
5848   // 'src_start' points to src array + scaled offset
5849   Node* src_start = basic_plus_adr(top(), base, offset);
5850 
5851   // Call the stub.
5852   address stubAddr = StubRoutines::updateBytesCRC32();
5853   const char *stubName = "updateBytesCRC32";
5854 
5855   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5856                                  stubAddr, stubName, TypePtr::BOTTOM,
5857                                  crc, src_start, length);
5858   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5859   set_result(result);
5860   return true;
5861 }
5862 
5863 //------------------------------get_table_from_crc32c_class-----------------------
5864 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
5865   Node* table = load_field_from_object(NULL, "byteTable", "[I", /*is_exact*/ false, /*is_static*/ true, crc32c_class);
5866   assert (table != NULL, "wrong version of java.util.zip.CRC32C");
5867 
5868   return table;
5869 }
5870 
5871 //------------------------------inline_updateBytesCRC32C-----------------------
5872 //
5873 // Calculate CRC32C for byte[] array.
5874 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
5875 //
5876 bool LibraryCallKit::inline_updateBytesCRC32C() {
5877   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5878   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5879   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5880   // no receiver since it is a static method
5881   Node* crc     = argument(0); // type: int
5882   Node* src     = argument(1); // type: oop
5883   Node* offset  = argument(2); // type: int
5884   Node* end     = argument(3); // type: int
5885 
5886   Node* length = _gvn.transform(new SubINode(end, offset));
5887 
5888   const Type* src_type = src->Value(&_gvn);
5889   const TypeAryPtr* top_src = src_type->isa_aryptr();
5890   if (top_src  == NULL || top_src->klass()  == NULL) {
5891     // failed array check
5892     return false;
5893   }
5894 
5895   // Figure out the size and type of the elements we will be copying.
5896   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5897   if (src_elem != T_BYTE) {
5898     return false;
5899   }
5900 
5901   // 'src_start' points to src array + scaled offset
5902   Node* src_start = array_element_address(src, offset, src_elem);
5903 
5904   // static final int[] byteTable in class CRC32C
5905   Node* table = get_table_from_crc32c_class(callee()->holder());
5906   Node* table_start = array_element_address(table, intcon(0), T_INT);
5907 
5908   // We assume that range check is done by caller.
5909   // TODO: generate range check (offset+length < src.length) in debug VM.
5910 
5911   // Call the stub.
5912   address stubAddr = StubRoutines::updateBytesCRC32C();
5913   const char *stubName = "updateBytesCRC32C";
5914 
5915   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5916                                  stubAddr, stubName, TypePtr::BOTTOM,
5917                                  crc, src_start, length, table_start);
5918   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5919   set_result(result);
5920   return true;
5921 }
5922 
5923 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
5924 //
5925 // Calculate CRC32C for DirectByteBuffer.
5926 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
5927 //
5928 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
5929   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5930   assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
5931   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5932   // no receiver since it is a static method
5933   Node* crc     = argument(0); // type: int
5934   Node* src     = argument(1); // type: long
5935   Node* offset  = argument(3); // type: int
5936   Node* end     = argument(4); // type: int
5937 
5938   Node* length = _gvn.transform(new SubINode(end, offset));
5939 
5940   src = ConvL2X(src);  // adjust Java long to machine word
5941   Node* base = _gvn.transform(new CastX2PNode(src));
5942   offset = ConvI2X(offset);
5943 
5944   // 'src_start' points to src array + scaled offset
5945   Node* src_start = basic_plus_adr(top(), base, offset);
5946 
5947   // static final int[] byteTable in class CRC32C
5948   Node* table = get_table_from_crc32c_class(callee()->holder());
5949   Node* table_start = array_element_address(table, intcon(0), T_INT);
5950 
5951   // Call the stub.
5952   address stubAddr = StubRoutines::updateBytesCRC32C();
5953   const char *stubName = "updateBytesCRC32C";
5954 
5955   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5956                                  stubAddr, stubName, TypePtr::BOTTOM,
5957                                  crc, src_start, length, table_start);
5958   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5959   set_result(result);
5960   return true;
5961 }
5962 
5963 //------------------------------inline_updateBytesAdler32----------------------
5964 //
5965 // Calculate Adler32 checksum for byte[] array.
5966 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
5967 //
5968 bool LibraryCallKit::inline_updateBytesAdler32() {
5969   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5970   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5971   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5972   // no receiver since it is static method
5973   Node* crc     = argument(0); // type: int
5974   Node* src     = argument(1); // type: oop
5975   Node* offset  = argument(2); // type: int
5976   Node* length  = argument(3); // type: int
5977 
5978   const Type* src_type = src->Value(&_gvn);
5979   const TypeAryPtr* top_src = src_type->isa_aryptr();
5980   if (top_src  == NULL || top_src->klass()  == NULL) {
5981     // failed array check
5982     return false;
5983   }
5984 
5985   // Figure out the size and type of the elements we will be copying.
5986   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5987   if (src_elem != T_BYTE) {
5988     return false;
5989   }
5990 
5991   // 'src_start' points to src array + scaled offset
5992   Node* src_start = array_element_address(src, offset, src_elem);
5993 
5994   // We assume that range check is done by caller.
5995   // TODO: generate range check (offset+length < src.length) in debug VM.
5996 
5997   // Call the stub.
5998   address stubAddr = StubRoutines::updateBytesAdler32();
5999   const char *stubName = "updateBytesAdler32";
6000 
6001   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
6002                                  stubAddr, stubName, TypePtr::BOTTOM,
6003                                  crc, src_start, length);
6004   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6005   set_result(result);
6006   return true;
6007 }
6008 
6009 //------------------------------inline_updateByteBufferAdler32---------------
6010 //
6011 // Calculate Adler32 checksum for DirectByteBuffer.
6012 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
6013 //
6014 bool LibraryCallKit::inline_updateByteBufferAdler32() {
6015   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
6016   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
6017   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
6018   // no receiver since it is static method
6019   Node* crc     = argument(0); // type: int
6020   Node* src     = argument(1); // type: long
6021   Node* offset  = argument(3); // type: int
6022   Node* length  = argument(4); // type: int
6023 
6024   src = ConvL2X(src);  // adjust Java long to machine word
6025   Node* base = _gvn.transform(new CastX2PNode(src));
6026   offset = ConvI2X(offset);
6027 
6028   // 'src_start' points to src array + scaled offset
6029   Node* src_start = basic_plus_adr(top(), base, offset);
6030 
6031   // Call the stub.
6032   address stubAddr = StubRoutines::updateBytesAdler32();
6033   const char *stubName = "updateBytesAdler32";
6034 
6035   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
6036                                  stubAddr, stubName, TypePtr::BOTTOM,
6037                                  crc, src_start, length);
6038 
6039   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6040   set_result(result);
6041   return true;
6042 }
6043 
6044 //----------------------------inline_reference_get----------------------------
6045 // public T java.lang.ref.Reference.get();
6046 bool LibraryCallKit::inline_reference_get() {
6047   const int referent_offset = java_lang_ref_Reference::referent_offset;
6048   guarantee(referent_offset > 0, "should have already been set");
6049 
6050   // Get the argument:
6051   Node* reference_obj = null_check_receiver();
6052   if (stopped()) return true;
6053 
6054   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
6055 
6056   ciInstanceKlass* klass = env()->Object_klass();
6057   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
6058 
6059   Node* no_ctrl = NULL;
6060   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
6061 
6062   // Use the pre-barrier to record the value in the referent field
6063   pre_barrier(false /* do_load */,
6064               control(),
6065               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
6066               result /* pre_val */,
6067               T_OBJECT);
6068 
6069   // Add memory barrier to prevent commoning reads from this field
6070   // across safepoint since GC can change its value.
6071   insert_mem_bar(Op_MemBarCPUOrder);
6072 
6073   set_result(result);
6074   return true;
6075 }
6076 
6077 
6078 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
6079                                               bool is_exact=true, bool is_static=false,
6080                                               ciInstanceKlass * fromKls=NULL) {
6081   if (fromKls == NULL) {
6082     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
6083     assert(tinst != NULL, "obj is null");
6084     assert(tinst->klass()->is_loaded(), "obj is not loaded");
6085     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
6086     fromKls = tinst->klass()->as_instance_klass();
6087   } else {
6088     assert(is_static, "only for static field access");
6089   }
6090   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
6091                                               ciSymbol::make(fieldTypeString),
6092                                               is_static);
6093 
6094   assert (field != NULL, "undefined field");
6095   if (field == NULL) return (Node *) NULL;
6096 
6097   if (is_static) {
6098     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
6099     fromObj = makecon(tip);
6100   }
6101 
6102   // Next code  copied from Parse::do_get_xxx():
6103 
6104   // Compute address and memory type.
6105   int offset  = field->offset_in_bytes();
6106   bool is_vol = field->is_volatile();
6107   ciType* field_klass = field->type();
6108   assert(field_klass->is_loaded(), "should be loaded");
6109   const TypePtr* adr_type = C->alias_type(field)->adr_type();
6110   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
6111   BasicType bt = field->layout_type();
6112 
6113   // Build the resultant type of the load
6114   const Type *type;
6115   if (bt == T_OBJECT) {
6116     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
6117   } else {
6118     type = Type::get_const_basic_type(bt);
6119   }
6120 
6121   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
6122     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
6123   }
6124   // Build the load.
6125   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
6126   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, LoadNode::DependsOnlyOnTest, is_vol);
6127   // If reference is volatile, prevent following memory ops from
6128   // floating up past the volatile read.  Also prevents commoning
6129   // another volatile read.
6130   if (is_vol) {
6131     // Memory barrier includes bogus read of value to force load BEFORE membar
6132     insert_mem_bar(Op_MemBarAcquire, loadedField);
6133   }
6134   return loadedField;
6135 }
6136 
6137 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
6138                                                  bool is_exact = true, bool is_static = false,
6139                                                  ciInstanceKlass * fromKls = NULL) {
6140   if (fromKls == NULL) {
6141     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
6142     assert(tinst != NULL, "obj is null");
6143     assert(tinst->klass()->is_loaded(), "obj is not loaded");
6144     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
6145     fromKls = tinst->klass()->as_instance_klass();
6146   }
6147   else {
6148     assert(is_static, "only for static field access");
6149   }
6150   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
6151     ciSymbol::make(fieldTypeString),
6152     is_static);
6153 
6154   assert(field != NULL, "undefined field");
6155   assert(!field->is_volatile(), "not defined for volatile fields");
6156 
6157   if (is_static) {
6158     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
6159     fromObj = makecon(tip);
6160   }
6161 
6162   // Next code  copied from Parse::do_get_xxx():
6163 
6164   // Compute address and memory type.
6165   int offset = field->offset_in_bytes();
6166   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
6167 
6168   return adr;
6169 }
6170 
6171 //------------------------------inline_aescrypt_Block-----------------------
6172 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
6173   address stubAddr = NULL;
6174   const char *stubName;
6175   assert(UseAES, "need AES instruction support");
6176 
6177   switch(id) {
6178   case vmIntrinsics::_aescrypt_encryptBlock:
6179     stubAddr = StubRoutines::aescrypt_encryptBlock();
6180     stubName = "aescrypt_encryptBlock";
6181     break;
6182   case vmIntrinsics::_aescrypt_decryptBlock:
6183     stubAddr = StubRoutines::aescrypt_decryptBlock();
6184     stubName = "aescrypt_decryptBlock";
6185     break;
6186   }
6187   if (stubAddr == NULL) return false;
6188 
6189   Node* aescrypt_object = argument(0);
6190   Node* src             = argument(1);
6191   Node* src_offset      = argument(2);
6192   Node* dest            = argument(3);
6193   Node* dest_offset     = argument(4);
6194 
6195   // (1) src and dest are arrays.
6196   const Type* src_type = src->Value(&_gvn);
6197   const Type* dest_type = dest->Value(&_gvn);
6198   const TypeAryPtr* top_src = src_type->isa_aryptr();
6199   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6200   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6201 
6202   // for the quick and dirty code we will skip all the checks.
6203   // we are just trying to get the call to be generated.
6204   Node* src_start  = src;
6205   Node* dest_start = dest;
6206   if (src_offset != NULL || dest_offset != NULL) {
6207     assert(src_offset != NULL && dest_offset != NULL, "");
6208     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6209     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6210   }
6211 
6212   // now need to get the start of its expanded key array
6213   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6214   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6215   if (k_start == NULL) return false;
6216 
6217   if (Matcher::pass_original_key_for_aes()) {
6218     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6219     // compatibility issues between Java key expansion and SPARC crypto instructions
6220     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6221     if (original_k_start == NULL) return false;
6222 
6223     // Call the stub.
6224     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6225                       stubAddr, stubName, TypePtr::BOTTOM,
6226                       src_start, dest_start, k_start, original_k_start);
6227   } else {
6228     // Call the stub.
6229     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6230                       stubAddr, stubName, TypePtr::BOTTOM,
6231                       src_start, dest_start, k_start);
6232   }
6233 
6234   return true;
6235 }
6236 
6237 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
6238 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
6239   address stubAddr = NULL;
6240   const char *stubName = NULL;
6241 
6242   assert(UseAES, "need AES instruction support");
6243 
6244   switch(id) {
6245   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
6246     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
6247     stubName = "cipherBlockChaining_encryptAESCrypt";
6248     break;
6249   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
6250     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
6251     stubName = "cipherBlockChaining_decryptAESCrypt";
6252     break;
6253   }
6254   if (stubAddr == NULL) return false;
6255 
6256   Node* cipherBlockChaining_object = argument(0);
6257   Node* src                        = argument(1);
6258   Node* src_offset                 = argument(2);
6259   Node* len                        = argument(3);
6260   Node* dest                       = argument(4);
6261   Node* dest_offset                = argument(5);
6262 
6263   // (1) src and dest are arrays.
6264   const Type* src_type = src->Value(&_gvn);
6265   const Type* dest_type = dest->Value(&_gvn);
6266   const TypeAryPtr* top_src = src_type->isa_aryptr();
6267   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6268   assert (top_src  != NULL && top_src->klass()  != NULL
6269           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6270 
6271   // checks are the responsibility of the caller
6272   Node* src_start  = src;
6273   Node* dest_start = dest;
6274   if (src_offset != NULL || dest_offset != NULL) {
6275     assert(src_offset != NULL && dest_offset != NULL, "");
6276     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6277     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6278   }
6279 
6280   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6281   // (because of the predicated logic executed earlier).
6282   // so we cast it here safely.
6283   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6284 
6285   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6286   if (embeddedCipherObj == NULL) return false;
6287 
6288   // cast it to what we know it will be at runtime
6289   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
6290   assert(tinst != NULL, "CBC obj is null");
6291   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
6292   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6293   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6294 
6295   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6296   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6297   const TypeOopPtr* xtype = aklass->as_instance_type();
6298   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6299   aescrypt_object = _gvn.transform(aescrypt_object);
6300 
6301   // we need to get the start of the aescrypt_object's expanded key array
6302   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6303   if (k_start == NULL) return false;
6304 
6305   // similarly, get the start address of the r vector
6306   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
6307   if (objRvec == NULL) return false;
6308   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
6309 
6310   Node* cbcCrypt;
6311   if (Matcher::pass_original_key_for_aes()) {
6312     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6313     // compatibility issues between Java key expansion and SPARC crypto instructions
6314     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6315     if (original_k_start == NULL) return false;
6316 
6317     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
6318     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6319                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6320                                  stubAddr, stubName, TypePtr::BOTTOM,
6321                                  src_start, dest_start, k_start, r_start, len, original_k_start);
6322   } else {
6323     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6324     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6325                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6326                                  stubAddr, stubName, TypePtr::BOTTOM,
6327                                  src_start, dest_start, k_start, r_start, len);
6328   }
6329 
6330   // return cipher length (int)
6331   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
6332   set_result(retvalue);
6333   return true;
6334 }
6335 
6336 //------------------------------inline_counterMode_AESCrypt-----------------------
6337 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) {
6338   assert(UseAES, "need AES instruction support");
6339   if (!UseAESCTRIntrinsics) return false;
6340 
6341   address stubAddr = NULL;
6342   const char *stubName = NULL;
6343   if (id == vmIntrinsics::_counterMode_AESCrypt) {
6344     stubAddr = StubRoutines::counterMode_AESCrypt();
6345     stubName = "counterMode_AESCrypt";
6346   }
6347   if (stubAddr == NULL) return false;
6348 
6349   Node* counterMode_object = argument(0);
6350   Node* src = argument(1);
6351   Node* src_offset = argument(2);
6352   Node* len = argument(3);
6353   Node* dest = argument(4);
6354   Node* dest_offset = argument(5);
6355 
6356   // (1) src and dest are arrays.
6357   const Type* src_type = src->Value(&_gvn);
6358   const Type* dest_type = dest->Value(&_gvn);
6359   const TypeAryPtr* top_src = src_type->isa_aryptr();
6360   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6361   assert(top_src != NULL && top_src->klass() != NULL &&
6362          top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6363 
6364   // checks are the responsibility of the caller
6365   Node* src_start = src;
6366   Node* dest_start = dest;
6367   if (src_offset != NULL || dest_offset != NULL) {
6368     assert(src_offset != NULL && dest_offset != NULL, "");
6369     src_start = array_element_address(src, src_offset, T_BYTE);
6370     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6371   }
6372 
6373   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6374   // (because of the predicated logic executed earlier).
6375   // so we cast it here safely.
6376   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6377   Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6378   if (embeddedCipherObj == NULL) return false;
6379   // cast it to what we know it will be at runtime
6380   const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr();
6381   assert(tinst != NULL, "CTR obj is null");
6382   assert(tinst->klass()->is_loaded(), "CTR obj is not loaded");
6383   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6384   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6385   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6386   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6387   const TypeOopPtr* xtype = aklass->as_instance_type();
6388   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6389   aescrypt_object = _gvn.transform(aescrypt_object);
6390   // we need to get the start of the aescrypt_object's expanded key array
6391   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6392   if (k_start == NULL) return false;
6393   // similarly, get the start address of the r vector
6394   Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B", /*is_exact*/ false);
6395   if (obj_counter == NULL) return false;
6396   Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE);
6397 
6398   Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B", /*is_exact*/ false);
6399   if (saved_encCounter == NULL) return false;
6400   Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE);
6401   Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false);
6402 
6403   Node* ctrCrypt;
6404   if (Matcher::pass_original_key_for_aes()) {
6405     // no SPARC version for AES/CTR intrinsics now.
6406     return false;
6407   }
6408   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6409   ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6410                                OptoRuntime::counterMode_aescrypt_Type(),
6411                                stubAddr, stubName, TypePtr::BOTTOM,
6412                                src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used);
6413 
6414   // return cipher length (int)
6415   Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms));
6416   set_result(retvalue);
6417   return true;
6418 }
6419 
6420 //------------------------------get_key_start_from_aescrypt_object-----------------------
6421 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6422 #if defined(PPC64) || defined(S390)
6423   // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys.
6424   // Intel's extention is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns.
6425   // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption.
6426   // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]).
6427   Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I", /*is_exact*/ false);
6428   assert (objSessionK != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6429   if (objSessionK == NULL) {
6430     return (Node *) NULL;
6431   }
6432   Node* objAESCryptKey = load_array_element(control(), objSessionK, intcon(0), TypeAryPtr::OOPS);
6433 #else
6434   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6435 #endif // PPC64
6436   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6437   if (objAESCryptKey == NULL) return (Node *) NULL;
6438 
6439   // now have the array, need to get the start address of the K array
6440   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6441   return k_start;
6442 }
6443 
6444 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
6445 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6446   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6447   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6448   if (objAESCryptKey == NULL) return (Node *) NULL;
6449 
6450   // now have the array, need to get the start address of the lastKey array
6451   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6452   return original_k_start;
6453 }
6454 
6455 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6456 // Return node representing slow path of predicate check.
6457 // the pseudo code we want to emulate with this predicate is:
6458 // for encryption:
6459 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6460 // for decryption:
6461 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6462 //    note cipher==plain is more conservative than the original java code but that's OK
6463 //
6464 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6465   // The receiver was checked for NULL already.
6466   Node* objCBC = argument(0);
6467 
6468   // Load embeddedCipher field of CipherBlockChaining object.
6469   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6470 
6471   // get AESCrypt klass for instanceOf check
6472   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6473   // will have same classloader as CipherBlockChaining object
6474   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6475   assert(tinst != NULL, "CBCobj is null");
6476   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6477 
6478   // we want to do an instanceof comparison against the AESCrypt class
6479   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6480   if (!klass_AESCrypt->is_loaded()) {
6481     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6482     Node* ctrl = control();
6483     set_control(top()); // no regular fast path
6484     return ctrl;
6485   }
6486   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6487 
6488   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6489   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
6490   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6491 
6492   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6493 
6494   // for encryption, we are done
6495   if (!decrypting)
6496     return instof_false;  // even if it is NULL
6497 
6498   // for decryption, we need to add a further check to avoid
6499   // taking the intrinsic path when cipher and plain are the same
6500   // see the original java code for why.
6501   RegionNode* region = new RegionNode(3);
6502   region->init_req(1, instof_false);
6503   Node* src = argument(1);
6504   Node* dest = argument(4);
6505   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
6506   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
6507   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6508   region->init_req(2, src_dest_conjoint);
6509 
6510   record_for_igvn(region);
6511   return _gvn.transform(region);
6512 }
6513 
6514 //----------------------------inline_counterMode_AESCrypt_predicate----------------------------
6515 // Return node representing slow path of predicate check.
6516 // the pseudo code we want to emulate with this predicate is:
6517 // for encryption:
6518 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6519 // for decryption:
6520 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6521 //    note cipher==plain is more conservative than the original java code but that's OK
6522 //
6523 
6524 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() {
6525   // The receiver was checked for NULL already.
6526   Node* objCTR = argument(0);
6527 
6528   // Load embeddedCipher field of CipherBlockChaining object.
6529   Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6530 
6531   // get AESCrypt klass for instanceOf check
6532   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6533   // will have same classloader as CipherBlockChaining object
6534   const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr();
6535   assert(tinst != NULL, "CTRobj is null");
6536   assert(tinst->klass()->is_loaded(), "CTRobj is not loaded");
6537 
6538   // we want to do an instanceof comparison against the AESCrypt class
6539   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6540   if (!klass_AESCrypt->is_loaded()) {
6541     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6542     Node* ctrl = control();
6543     set_control(top()); // no regular fast path
6544     return ctrl;
6545   }
6546 
6547   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6548   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6549   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
6550   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6551   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6552 
6553   return instof_false; // even if it is NULL
6554 }
6555 
6556 //------------------------------inline_ghash_processBlocks
6557 bool LibraryCallKit::inline_ghash_processBlocks() {
6558   address stubAddr;
6559   const char *stubName;
6560   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
6561 
6562   stubAddr = StubRoutines::ghash_processBlocks();
6563   stubName = "ghash_processBlocks";
6564 
6565   Node* data           = argument(0);
6566   Node* offset         = argument(1);
6567   Node* len            = argument(2);
6568   Node* state          = argument(3);
6569   Node* subkeyH        = argument(4);
6570 
6571   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
6572   assert(state_start, "state is NULL");
6573   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
6574   assert(subkeyH_start, "subkeyH is NULL");
6575   Node* data_start  = array_element_address(data, offset, T_BYTE);
6576   assert(data_start, "data is NULL");
6577 
6578   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
6579                                   OptoRuntime::ghash_processBlocks_Type(),
6580                                   stubAddr, stubName, TypePtr::BOTTOM,
6581                                   state_start, subkeyH_start, data_start, len);
6582   return true;
6583 }
6584 
6585 //------------------------------inline_sha_implCompress-----------------------
6586 //
6587 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
6588 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
6589 //
6590 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
6591 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
6592 //
6593 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
6594 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
6595 //
6596 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
6597   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
6598 
6599   Node* sha_obj = argument(0);
6600   Node* src     = argument(1); // type oop
6601   Node* ofs     = argument(2); // type int
6602 
6603   const Type* src_type = src->Value(&_gvn);
6604   const TypeAryPtr* top_src = src_type->isa_aryptr();
6605   if (top_src  == NULL || top_src->klass()  == NULL) {
6606     // failed array check
6607     return false;
6608   }
6609   // Figure out the size and type of the elements we will be copying.
6610   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6611   if (src_elem != T_BYTE) {
6612     return false;
6613   }
6614   // 'src_start' points to src array + offset
6615   Node* src_start = array_element_address(src, ofs, src_elem);
6616   Node* state = NULL;
6617   address stubAddr;
6618   const char *stubName;
6619 
6620   switch(id) {
6621   case vmIntrinsics::_sha_implCompress:
6622     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
6623     state = get_state_from_sha_object(sha_obj);
6624     stubAddr = StubRoutines::sha1_implCompress();
6625     stubName = "sha1_implCompress";
6626     break;
6627   case vmIntrinsics::_sha2_implCompress:
6628     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
6629     state = get_state_from_sha_object(sha_obj);
6630     stubAddr = StubRoutines::sha256_implCompress();
6631     stubName = "sha256_implCompress";
6632     break;
6633   case vmIntrinsics::_sha5_implCompress:
6634     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
6635     state = get_state_from_sha5_object(sha_obj);
6636     stubAddr = StubRoutines::sha512_implCompress();
6637     stubName = "sha512_implCompress";
6638     break;
6639   default:
6640     fatal_unexpected_iid(id);
6641     return false;
6642   }
6643   if (state == NULL) return false;
6644 
6645   // Call the stub.
6646   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
6647                                  stubAddr, stubName, TypePtr::BOTTOM,
6648                                  src_start, state);
6649 
6650   return true;
6651 }
6652 
6653 //------------------------------inline_digestBase_implCompressMB-----------------------
6654 //
6655 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
6656 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
6657 //
6658 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
6659   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6660          "need SHA1/SHA256/SHA512 instruction support");
6661   assert((uint)predicate < 3, "sanity");
6662   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
6663 
6664   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
6665   Node* src            = argument(1); // byte[] array
6666   Node* ofs            = argument(2); // type int
6667   Node* limit          = argument(3); // type int
6668 
6669   const Type* src_type = src->Value(&_gvn);
6670   const TypeAryPtr* top_src = src_type->isa_aryptr();
6671   if (top_src  == NULL || top_src->klass()  == NULL) {
6672     // failed array check
6673     return false;
6674   }
6675   // Figure out the size and type of the elements we will be copying.
6676   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6677   if (src_elem != T_BYTE) {
6678     return false;
6679   }
6680   // 'src_start' points to src array + offset
6681   Node* src_start = array_element_address(src, ofs, src_elem);
6682 
6683   const char* klass_SHA_name = NULL;
6684   const char* stub_name = NULL;
6685   address     stub_addr = NULL;
6686   bool        long_state = false;
6687 
6688   switch (predicate) {
6689   case 0:
6690     if (UseSHA1Intrinsics) {
6691       klass_SHA_name = "sun/security/provider/SHA";
6692       stub_name = "sha1_implCompressMB";
6693       stub_addr = StubRoutines::sha1_implCompressMB();
6694     }
6695     break;
6696   case 1:
6697     if (UseSHA256Intrinsics) {
6698       klass_SHA_name = "sun/security/provider/SHA2";
6699       stub_name = "sha256_implCompressMB";
6700       stub_addr = StubRoutines::sha256_implCompressMB();
6701     }
6702     break;
6703   case 2:
6704     if (UseSHA512Intrinsics) {
6705       klass_SHA_name = "sun/security/provider/SHA5";
6706       stub_name = "sha512_implCompressMB";
6707       stub_addr = StubRoutines::sha512_implCompressMB();
6708       long_state = true;
6709     }
6710     break;
6711   default:
6712     fatal("unknown SHA intrinsic predicate: %d", predicate);
6713   }
6714   if (klass_SHA_name != NULL) {
6715     // get DigestBase klass to lookup for SHA klass
6716     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6717     assert(tinst != NULL, "digestBase_obj is not instance???");
6718     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6719 
6720     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6721     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6722     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6723     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6724   }
6725   return false;
6726 }
6727 //------------------------------inline_sha_implCompressMB-----------------------
6728 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6729                                                bool long_state, address stubAddr, const char *stubName,
6730                                                Node* src_start, Node* ofs, Node* limit) {
6731   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6732   const TypeOopPtr* xtype = aklass->as_instance_type();
6733   Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
6734   sha_obj = _gvn.transform(sha_obj);
6735 
6736   Node* state;
6737   if (long_state) {
6738     state = get_state_from_sha5_object(sha_obj);
6739   } else {
6740     state = get_state_from_sha_object(sha_obj);
6741   }
6742   if (state == NULL) return false;
6743 
6744   // Call the stub.
6745   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6746                                  OptoRuntime::digestBase_implCompressMB_Type(),
6747                                  stubAddr, stubName, TypePtr::BOTTOM,
6748                                  src_start, state, ofs, limit);
6749   // return ofs (int)
6750   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6751   set_result(result);
6752 
6753   return true;
6754 }
6755 
6756 //------------------------------get_state_from_sha_object-----------------------
6757 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
6758   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
6759   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
6760   if (sha_state == NULL) return (Node *) NULL;
6761 
6762   // now have the array, need to get the start address of the state array
6763   Node* state = array_element_address(sha_state, intcon(0), T_INT);
6764   return state;
6765 }
6766 
6767 //------------------------------get_state_from_sha5_object-----------------------
6768 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
6769   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
6770   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
6771   if (sha_state == NULL) return (Node *) NULL;
6772 
6773   // now have the array, need to get the start address of the state array
6774   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
6775   return state;
6776 }
6777 
6778 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
6779 // Return node representing slow path of predicate check.
6780 // the pseudo code we want to emulate with this predicate is:
6781 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
6782 //
6783 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
6784   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6785          "need SHA1/SHA256/SHA512 instruction support");
6786   assert((uint)predicate < 3, "sanity");
6787 
6788   // The receiver was checked for NULL already.
6789   Node* digestBaseObj = argument(0);
6790 
6791   // get DigestBase klass for instanceOf check
6792   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
6793   assert(tinst != NULL, "digestBaseObj is null");
6794   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6795 
6796   const char* klass_SHA_name = NULL;
6797   switch (predicate) {
6798   case 0:
6799     if (UseSHA1Intrinsics) {
6800       // we want to do an instanceof comparison against the SHA class
6801       klass_SHA_name = "sun/security/provider/SHA";
6802     }
6803     break;
6804   case 1:
6805     if (UseSHA256Intrinsics) {
6806       // we want to do an instanceof comparison against the SHA2 class
6807       klass_SHA_name = "sun/security/provider/SHA2";
6808     }
6809     break;
6810   case 2:
6811     if (UseSHA512Intrinsics) {
6812       // we want to do an instanceof comparison against the SHA5 class
6813       klass_SHA_name = "sun/security/provider/SHA5";
6814     }
6815     break;
6816   default:
6817     fatal("unknown SHA intrinsic predicate: %d", predicate);
6818   }
6819 
6820   ciKlass* klass_SHA = NULL;
6821   if (klass_SHA_name != NULL) {
6822     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6823   }
6824   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
6825     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
6826     Node* ctrl = control();
6827     set_control(top()); // no intrinsic path
6828     return ctrl;
6829   }
6830   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6831 
6832   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
6833   Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
6834   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6835   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6836 
6837   return instof_false;  // even if it is NULL
6838 }
6839 
6840 //-------------inline_fma-----------------------------------
6841 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) {
6842   Node *a = NULL;
6843   Node *b = NULL;
6844   Node *c = NULL;
6845   Node* result = NULL;
6846   switch (id) {
6847   case vmIntrinsics::_fmaD:
6848     assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each.");
6849     // no receiver since it is static method
6850     a = round_double_node(argument(0));
6851     b = round_double_node(argument(2));
6852     c = round_double_node(argument(4));
6853     result = _gvn.transform(new FmaDNode(control(), a, b, c));
6854     break;
6855   case vmIntrinsics::_fmaF:
6856     assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each.");
6857     a = argument(0);
6858     b = argument(1);
6859     c = argument(2);
6860     result = _gvn.transform(new FmaFNode(control(), a, b, c));
6861     break;
6862   default:
6863     fatal_unexpected_iid(id);  break;
6864   }
6865   set_result(result);
6866   return true;
6867 }
6868 
6869 bool LibraryCallKit::inline_profileBoolean() {
6870   Node* counts = argument(1);
6871   const TypeAryPtr* ary = NULL;
6872   ciArray* aobj = NULL;
6873   if (counts->is_Con()
6874       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
6875       && (aobj = ary->const_oop()->as_array()) != NULL
6876       && (aobj->length() == 2)) {
6877     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
6878     jint false_cnt = aobj->element_value(0).as_int();
6879     jint  true_cnt = aobj->element_value(1).as_int();
6880 
6881     if (C->log() != NULL) {
6882       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
6883                      false_cnt, true_cnt);
6884     }
6885 
6886     if (false_cnt + true_cnt == 0) {
6887       // According to profile, never executed.
6888       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6889                           Deoptimization::Action_reinterpret);
6890       return true;
6891     }
6892 
6893     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
6894     // is a number of each value occurrences.
6895     Node* result = argument(0);
6896     if (false_cnt == 0 || true_cnt == 0) {
6897       // According to profile, one value has been never seen.
6898       int expected_val = (false_cnt == 0) ? 1 : 0;
6899 
6900       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
6901       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6902 
6903       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
6904       Node* fast_path = _gvn.transform(new IfTrueNode(check));
6905       Node* slow_path = _gvn.transform(new IfFalseNode(check));
6906 
6907       { // Slow path: uncommon trap for never seen value and then reexecute
6908         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
6909         // the value has been seen at least once.
6910         PreserveJVMState pjvms(this);
6911         PreserveReexecuteState preexecs(this);
6912         jvms()->set_should_reexecute(true);
6913 
6914         set_control(slow_path);
6915         set_i_o(i_o());
6916 
6917         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6918                             Deoptimization::Action_reinterpret);
6919       }
6920       // The guard for never seen value enables sharpening of the result and
6921       // returning a constant. It allows to eliminate branches on the same value
6922       // later on.
6923       set_control(fast_path);
6924       result = intcon(expected_val);
6925     }
6926     // Stop profiling.
6927     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
6928     // By replacing method body with profile data (represented as ProfileBooleanNode
6929     // on IR level) we effectively disable profiling.
6930     // It enables full speed execution once optimized code is generated.
6931     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
6932     C->record_for_igvn(profile);
6933     set_result(profile);
6934     return true;
6935   } else {
6936     // Continue profiling.
6937     // Profile data isn't available at the moment. So, execute method's bytecode version.
6938     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
6939     // is compiled and counters aren't available since corresponding MethodHandle
6940     // isn't a compile-time constant.
6941     return false;
6942   }
6943 }
6944 
6945 bool LibraryCallKit::inline_isCompileConstant() {
6946   Node* n = argument(0);
6947   set_result(n->is_Con() ? intcon(1) : intcon(0));
6948   return true;
6949 }